1
|
Sutton GP, Szczecinski NS, Quinn RD, Chiel HJ. Phase shift between joint rotation and actuation reflects dominant forces and predicts muscle activation patterns. PNAS NEXUS 2023; 2:pgad298. [PMID: 37822766 PMCID: PMC10563792 DOI: 10.1093/pnasnexus/pgad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023]
Abstract
During behavior, the work done by actuators on the body can be resisted by the body's inertia, elastic forces, gravity, or viscosity. The dominant forces that resist actuation have major consequences on the control of that behavior. In the literature, features and actuation of locomotion, for example, have been successfully predicted by nondimensional numbers (e.g. Froude number and Reynolds number) that generally express the ratio between two of these forces (gravitational, inertial, elastic, and viscous). However, animals of different sizes or motions at different speeds may not share the same dominant forces within a behavior, making ratios of just two of these forces less useful. Thus, for a broad comparison of behavior across many orders of magnitude of limb length and cycle period, a dimensionless number that includes gravitational, inertial, elastic, and viscous forces is needed. This study proposes a nondimensional number that relates these four forces: the phase shift (ϕ) between the displacement of the limb and the actuator force that moves it. Using allometric scaling laws, ϕ for terrestrial walking is expressed as a function of the limb length and the cycle period at which the limb steps. Scale-dependent values of ϕ are used to explain and predict the electromyographic (EMG) patterns employed by different animals as they walk.
Collapse
Affiliation(s)
- G P Sutton
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK
| | - N S Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506-6106, USA
| | - R D Quinn
- Department of Mechanical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - H J Chiel
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Dallmann CJ, Dickerson BH, Simpson JH, Wyart C, Jayaram K. Mechanosensory Control of Locomotion in Animals and Robots: Moving Forward. Integr Comp Biol 2023; 63:450-463. [PMID: 37279901 PMCID: PMC10445419 DOI: 10.1093/icb/icad057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
While animals swim, crawl, walk, and fly with apparent ease, building robots capable of robust locomotion remains a significant challenge. In this review, we draw attention to mechanosensation-the sensing of mechanical forces generated within and outside the body-as a key sense that enables robust locomotion in animals. We discuss differences between mechanosensation in animals and current robots with respect to (1) the encoding properties and distribution of mechanosensors and (2) the integration and regulation of mechanosensory feedback. We argue that robotics would benefit greatly from a detailed understanding of these aspects in animals. To that end, we highlight promising experimental and engineering approaches to study mechanosensation, emphasizing the mutual benefits for biologists and engineers that emerge from moving forward together.
Collapse
Affiliation(s)
- Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Julie H Simpson
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, Paris 75005, France
| | - Kaushik Jayaram
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
3
|
Wosnitza A, Martin JP, Pollack AJ, Svenson GJ, Ritzmann RE. The Role of Central Complex Neurons in Prey Detection and Tracking in the Freely Moving Praying Mantis (Tenodera sinensis). Front Neural Circuits 2022; 16:893004. [PMID: 35769200 PMCID: PMC9234402 DOI: 10.3389/fncir.2022.893004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Complex tasks like hunting moving prey in an unpredictable environment require high levels of motor and sensory integration. An animal needs to detect and track suitable prey objects, measure their distance and orientation relative to its own position, and finally produce the correct motor output to approach and capture the prey. In the insect brain, the central complex (CX) is one target area where integration is likely to take place. In this study, we performed extracellular multi-unit recordings on the CX of freely hunting praying mantises (Tenodera sinensis). Initially, we recorded the neural activity of freely moving mantises as they hunted live prey. The recordings showed activity in cells that either reflected the mantis's own movements or the actions of a prey individual, which the mantises focused on. In the latter case, the activity increased as the prey moved and decreased when it stopped. Interestingly, cells ignored the movement of the other prey than the one to which the mantis attended. To obtain quantitative data, we generated simulated prey targets presented on an LCD screen positioned below the clear floor of the arena. The simulated target oscillated back and forth at various angles and distances. We identified populations of cells whose activity patterns were strongly linked to the appearance, movement, and relative position of the virtual prey. We refer to these as sensory responses. We also found cells whose activity preceded orientation movement toward the prey. We call these motor responses. Some cells showed both sensory and motor properties. Stimulation through tetrodes in some of the preparations could also generate similar movements. These results suggest the crucial importance of the CX to prey-capture behavior in predatory insects like the praying mantis and, hence, further emphasize its role in behaviorally and ecologically relevant contexts.
Collapse
Affiliation(s)
- Anne Wosnitza
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Joshua P. Martin
- Department of Biology, Colby College, Waterville, ME, United States
- *Correspondence: Joshua P. Martin
| | - Alan J. Pollack
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Gavin J. Svenson
- Cleveland Museum of Natural History, Cleveland, OH, United States
| | - Roy E. Ritzmann
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Agrawal S, Tuthill JC. The two-body problem: Proprioception and motor control across the metamorphic divide. Curr Opin Neurobiol 2022; 74:102546. [PMID: 35512562 DOI: 10.1016/j.conb.2022.102546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/11/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022]
Abstract
Like a rocket being propelled into space, evolution has engineered flies to launch into adulthood via multiple stages. Flies develop and deploy two distinct bodies, linked by the transformative process of metamorphosis. The fly larva is a soft hydraulic tube that can crawl to find food and avoid predators. The adult fly has a stiff exoskeleton with articulated limbs that enable long-distance navigation and rich social interactions. Because the larval and adult forms are so distinct in structure, they require distinct strategies for sensing and moving the body. The metamorphic divide thus presents an opportunity for comparative analysis of neural circuits. Here, we review recent progress toward understanding the neural mechanisms of proprioception and motor control in larval and adult Drosophila. We highlight commonalities that point toward general principles of sensorimotor control and differences that may reflect unique constraints imposed by biomechanics. Finally, we discuss emerging opportunities for comparative analysis of neural circuit architecture in the fly and other animal species.
Collapse
Affiliation(s)
- Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Ritzmann RE, Fox JL. Insect neuroethology: Flight constructs a compass for monarch migration. Curr Biol 2022; 32:R72-R74. [DOI: 10.1016/j.cub.2021.11.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Beetz MJ, Kraus C, Franzke M, Dreyer D, Strube-Bloss MF, Rössler W, Warrant EJ, Merlin C, El Jundi B. Flight-induced compass representation in the monarch butterfly heading network. Curr Biol 2021; 32:338-349.e5. [PMID: 34822766 DOI: 10.1016/j.cub.2021.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
For navigation, animals use a robust internal compass. Compass navigation is crucial for long-distance migrating animals like monarch butterflies, which use the sun to navigate over 4,000 km to their overwintering sites every fall. Sun-compass neurons of the central complex have only been recorded in immobile butterflies, and experimental evidence for encoding the animal's heading in these neurons is still missing. Although the activity of central-complex neurons exhibits a locomotor-dependent modulation in many insects, the function of such modulations remains unexplored. Here, we developed tetrode recordings from tethered flying monarch butterflies to reveal how flight modulates heading representation. We found that, during flight, heading-direction neurons change their tuning, transforming the central-complex network to function as a global compass. This compass is characterized by the dominance of processing steering feedback and allows for robust heading representation even under unreliable visual scenarios, an ideal strategy for maintaining a migratory heading over enormous distances.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Am Hubland 1, 97074 Würzburg, Germany.
| | - Christian Kraus
- Zoology II, Biocenter, University of Würzburg, Am Hubland 1, 97074 Würzburg, Germany
| | - Myriam Franzke
- Zoology II, Biocenter, University of Würzburg, Am Hubland 1, 97074 Würzburg, Germany
| | - David Dreyer
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Martin F Strube-Bloss
- Department of Biological Cybernetics, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Wolfgang Rössler
- Zoology II, Biocenter, University of Würzburg, Am Hubland 1, 97074 Würzburg, Germany
| | - Eric J Warrant
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Basil El Jundi
- Zoology II, Biocenter, University of Würzburg, Am Hubland 1, 97074 Würzburg, Germany.
| |
Collapse
|
7
|
Hulse BK, Haberkern H, Franconville R, Turner-Evans D, Takemura SY, Wolff T, Noorman M, Dreher M, Dan C, Parekh R, Hermundstad AM, Rubin GM, Jayaraman V. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife 2021; 10:e66039. [PMID: 34696823 PMCID: PMC9477501 DOI: 10.7554/elife.66039] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Flexible behaviors over long timescales are thought to engage recurrent neural networks in deep brain regions, which are experimentally challenging to study. In insects, recurrent circuit dynamics in a brain region called the central complex (CX) enable directed locomotion, sleep, and context- and experience-dependent spatial navigation. We describe the first complete electron microscopy-based connectome of the Drosophila CX, including all its neurons and circuits at synaptic resolution. We identified new CX neuron types, novel sensory and motor pathways, and network motifs that likely enable the CX to extract the fly's head direction, maintain it with attractor dynamics, and combine it with other sensorimotor information to perform vector-based navigational computations. We also identified numerous pathways that may facilitate the selection of CX-driven behavioral patterns by context and internal state. The CX connectome provides a comprehensive blueprint necessary for a detailed understanding of network dynamics underlying sleep, flexible navigation, and state-dependent action selection.
Collapse
Affiliation(s)
- Brad K Hulse
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hannah Haberkern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Romain Franconville
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Daniel Turner-Evans
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shin-ya Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marcella Noorman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Chuntao Dan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ann M Hermundstad
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
8
|
Yarger AM, Jordan KA, Smith AJ, Fox JL. Takeoff diversity in Diptera. Proc Biol Sci 2021; 288:20202375. [PMID: 33434467 PMCID: PMC7892408 DOI: 10.1098/rspb.2020.2375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/07/2020] [Indexed: 11/12/2022] Open
Abstract
The order Diptera (true flies) are named for their two wings because their hindwings have evolved into specialized mechanosensory organs called halteres. Flies use halteres to detect body rotations and maintain stability during flight and other behaviours. The most recently diverged dipteran monophyletic subsection, the Calyptratae, is highly successful, accounting for approximately 12% of dipteran diversity, and includes common families like house flies. These flies move their halteres independently from their wings and oscillate their halteres during walking. Here, we demonstrate that this subsection of flies uses their halteres to stabilize their bodies during takeoff, whereas non-Calyptratae flies do not. We find that flies of the Calyptratae are able to take off more rapidly than non-Calyptratae flies without sacrificing stability. Haltere removal decreased both velocity and stability in the takeoffs of Calyptratae, but not other flies. The loss of takeoff velocity following haltere removal in Calyptratae (but not other flies) is a direct result of a decrease in leg extension speed. A closely related non-Calyptratae species (D. melanogaster) also has a rapid takeoff, but takeoff duration and stability are unaffected by haltere removal. Haltere use thus allows for greater speed and stability during fast escapes, but only in the Calyptratae clade.
Collapse
Affiliation(s)
| | | | | | - Jessica L. Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| |
Collapse
|
9
|
Currier TA, Matheson AMM, Nagel KI. Encoding and control of orientation to airflow by a set of Drosophila fan-shaped body neurons. eLife 2020; 9:e61510. [PMID: 33377868 PMCID: PMC7793622 DOI: 10.7554/elife.61510] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
The insect central complex (CX) is thought to underlie goal-oriented navigation but its functional organization is not fully understood. We recorded from genetically-identified CX cell types in Drosophila and presented directional visual, olfactory, and airflow cues known to elicit orienting behavior. We found that a group of neurons targeting the ventral fan-shaped body (ventral P-FNs) are robustly tuned for airflow direction. Ventral P-FNs did not generate a 'map' of airflow direction. Instead, cells in each hemisphere were tuned to 45° ipsilateral, forming a pair of orthogonal bases. Imaging experiments suggest that ventral P-FNs inherit their airflow tuning from neurons that provide input from the lateral accessory lobe (LAL) to the noduli (NO). Silencing ventral P-FNs prevented flies from selecting appropriate corrective turns following changes in airflow direction. Our results identify a group of CX neurons that robustly encode airflow direction and are required for proper orientation to this stimulus.
Collapse
Affiliation(s)
- Timothy A Currier
- Neuroscience Institute, New York University Langone Medical CenterNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Andrew MM Matheson
- Neuroscience Institute, New York University Langone Medical CenterNew YorkUnited States
| | - Katherine I Nagel
- Neuroscience Institute, New York University Langone Medical CenterNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
10
|
Kaushik PK, Olsson SB. Using virtual worlds to understand insect navigation for bio-inspired systems. CURRENT OPINION IN INSECT SCIENCE 2020; 42:97-104. [PMID: 33010476 DOI: 10.1016/j.cois.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Insects perform a wide array of intricate behaviors over large spatial and temporal scales in complex natural environments. A mechanistic understanding of insect cognition has direct implications on how brains integrate multimodal information and can inspire bio-based solutions for autonomous robots. Virtual Reality (VR) offers an opportunity assess insect neuroethology while presenting complex, yet controlled, stimuli. Here, we discuss the use of insects as inspiration for artificial systems, recent advances in different VR technologies, current knowledge gaps, and the potential for application of insect VR research to bio-inspired robots. Finally, we advocate the need to diversify our model organisms, behavioral paradigms, and embrace the complexity of the natural world. This will help us to uncover the proximate and ultimate basis of brain and behavior and extract general principles for common challenging problems.
Collapse
Affiliation(s)
- Pavan Kumar Kaushik
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560064, India.
| | - Shannon B Olsson
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560064, India.
| |
Collapse
|
11
|
Pickard SC, Quinn RD, Szczecinski NS. A dynamical model exploring sensory integration in the insect central complex substructures. BIOINSPIRATION & BIOMIMETICS 2020; 15:026003. [PMID: 31726442 DOI: 10.1088/1748-3190/ab57b6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is imperative that an animal has the ability to contextually integrate received sensory information to formulate appropriate behavioral responses. Determining a body heading based on a multitude of ego-motion cues and visual landmarks is an example of such a task that requires this context dependent integration. The work presented here simulates a sensory integrator in the insect brain called the central complex (CX). Based on the architecture of the CX, we assembled a dynamical neural simulation of two structures called the protocerebral bridge (PB) and the ellipsoid body (EB). Using non-spiking neuronal dynamics, our simulation was able to recreate in vivo neuronal behavior such as correlating body rotation direction and speed to activity bumps within the EB as well as updating the believed heading with quick secondary system updates. With this model, we performed sensitivity analysis of certain neuronal parameters as a possible means to control multi-system gains during sensory integration. We found that modulation of synapses in the memory network and EB inhibition are two possible mechanisms in which a sensory system could affect the memory stability and gain of another input, respectively. This model serves as an exploration in network design for integrating simultaneous idiothetic and allothetic cues in the task of body tracking and determining contextually dependent behavioral outputs.
Collapse
Affiliation(s)
- S C Pickard
- Author to whom any correspondence should be addressed
| | | | | |
Collapse
|