1
|
Shin SM, Itson-Zoske B, Xu H, Xiang H, Fan F, Hogan QH, Yu H. Sensory neuron-specific block of multifaceted sodium channels mitigates neuropathic pain behaviors of osteoarthritis. Pain Rep 2025; 10:e1288. [PMID: 40444021 PMCID: PMC12119052 DOI: 10.1097/pr9.0000000000001288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 06/02/2025] Open
Abstract
Objective Multiple voltage-gated sodium channels (NaVs) in the peripheral sensory neurons (PSNs) regulate action potentials and their dysfunction contributes to the pain pathogenesis of osteoarthritis (OA). A combined block of multiple NaV subtypes selectively in the PSNs may, therefore, represent an effective analgesic approach in OA painful neuropathy. Methods To test this hypothesis, we generated recombinant adeno-associated virus (AAV) encoding a potent NaV inhibitory peptide aptamer, termed NaViPA1, that has a multipronged feature of inhibiting tetrodotoxin-sensitive NaV1.7, 1.6, 1.1, and 1.3, characterized in our recent report. Adeno-associated virus-encoded NaViPA1 was delivered into the ipsilateral lumbar 4/5 dorsal root ganglia of rats 2 weeks after induction of knee monoiodoacetate-OA (MIA-OA) and evoked and spontaneous sensory behaviors were followed in 6 weeks. Results Expression of NaViPA1 selective in the PSNs produced significant and comparable mitigations of evoked and spontaneous pain behavior and reversal of weight-bearing asymmetry in both male and female MIA-OA rats. Whole-cell current-clamp recordings showed that AAV-mediated NaViPA1 expression normalized action potential firing of the PSNs from MIA animals, suggesting that NaViPA1 attenuated pain behavior by, at least in part, reversing neuronal hyperexcitability. Conclusion Together, these results support that (1) NaVs in peripheral sensory pathways contribute to MIA-OA pain pathogenesis and (2) NaViPA1 is a promising analgesic lead that, combined with AAV-targeted delivery to pathological sensory ganglia, may be a viable peripherally selective PSN-targeting strategy in mitigating chronic MIA-OA pain behaviors.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hao Xu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongfei Xiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fan Fan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Tay N, Alshammari A, Kaur S, Pettit A, Mu E, Reid A, Winkler I, Vetter I, Starobova H. A comprehensive protocol for simplified mouse DRG fixation, processing and F4/80 immunohistochemistry: Overcoming common challenges. J Neurosci Methods 2025; 418:110434. [PMID: 40132688 DOI: 10.1016/j.jneumeth.2025.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Dorsal root ganglia (DRGs) contain the cell bodies of sensory neurons and non-neuronal cells that play a role in the pathophysiology of painful inflammatory conditions, such as neuropathic pain. Immunohistochemistry (IHC) is a valuable tool for visualising and quantifying immune cell markers in DRGs, providing important insights into these mechanisms. However, isolating DRGs while preserving cell morphology for IHC staining is technically challenging due to their small size and location within the spinal column. OBJECTIVE Using F4/80, a pan monocyte-macrophage marker, we present an optimised protocol for the fixation, harvesting, processing, and IHC staining of formalin-fixed-paraffin-embedded (FFPE) mouse DRGs. This method is designed to maintain tissue integrity and ensure compatibility with downstream histopathological analysis. NEW METHOD The entire spinal column of mouse was fixed in 10 % neutral-buffered formalin at room temperature for 24 h before DRG isolation. DRGs were processed for 9 h, and antigen retrieval was performed using proteinase K. RESULTS The optimised immersion-fixation approach preserved cellular morphology and antigenicity, ensuring high-quality histological outcomes. COMPARISON WITH EXISTING METHODS While transcardial perfusion remains the gold standard for tissue fixation, it is time-intensive, requires training and raises ethical concerns. Our optimised method of whole spinal column fixation with subsequent tissue isolation is non-invasive and reduces the time between death and fixation in comparison to post-isolation fixation. Additionally, it delivers histological quality likely comparable to that of perfusion-based techniques. CONCLUSION This protocol is supported by a grading system to help evaluate variables and select conditions best suited to their experimental goals.
Collapse
Affiliation(s)
- Nicolette Tay
- School of Pharmacy and Pharmaceutical Sciences, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ammar Alshammari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Simranpreet Kaur
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Allison Pettit
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Erica Mu
- Histology Core Facility, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Anna Reid
- Histology Core Facility, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Ingrid Winkler
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Irina Vetter
- School of Pharmacy and Pharmaceutical Sciences, The University of Queensland, Woolloongabba, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
3
|
Li J, Shih YRV, Tao H, Negus M, Guerra JB, Varghese S. Extensive Periosteal Injury During Fracture Induces Long-Term Pain in Mice. J Orthop Res 2025; 43:1155-1163. [PMID: 40064600 DOI: 10.1002/jor.26067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/07/2025] [Accepted: 02/21/2025] [Indexed: 05/13/2025]
Abstract
Bone fractures pose a significant public health challenge, often necessitating surgical interventions to facilitate bone healing and functional recovery. Sensory nerve fibers innervate various compartments of the bone tissue, with the periosteum exhibiting the most extensive innervation that is susceptible to injury during trauma. Despite its importance, the effect of injured periosteum on fracture pain remains unknown. This study examines the impact of extensive periosteal injury on fracture pain by using a mouse model. Periosteal injury is induced by mechanical resection during unilateral transverse fracture and compared to transverse fractures with no periosteal injury. Our results demonstrate that extensive periosteal injury induces severe and long-term pain, as assessed by von Frey and dynamic weight bearing measurements, for up to 12 weeks postfracture. Immunofluorescence staining revealed an increase in local neurofilament heavy polypeptide (NF200 +) nerve innervation and an elevated number of calcitonin gene-related peptide (CGRP +) expressing neurons in the dorsal root ganglion (DRG). Additionally, flow cytometric analyses revealed increased presence of myeloid immune cells in the DRG. Furthermore, bone healing in fractures with extensive periosteal injury exhibited reduced callus size at all time points as assessed by Faxitron X-ray imaging. This study describes a previously unknown effect of extensive periosteal injury in exacerbating fracture pain and establishes a potential model to study long-term orthopedic fracture pain.
Collapse
Affiliation(s)
- Jiaoni Li
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Yu-Ru Vernon Shih
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Huchen Tao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Mitchell Negus
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Shyni Varghese
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Hirsch S, Kalpachidou T, Schlereth T, Kress M, Birklein F. Transgenic mice with a global depletion of toll-like receptor type 4 are largely protected from peripheral and central posttraumatic neuroinflammation. THE JOURNAL OF PAIN 2025; 29:105340. [PMID: 39961499 DOI: 10.1016/j.jpain.2025.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Experimental bone fracture induces a posttraumatic inflammatory reaction which is characterized by local swelling, increased temperature, tenderness, thermal hypersensitivity and pain at the lesion site. As a consequence, some patients develop complex regional pain syndrome (CRPS), a chronic pain condition which often starts with exacerbating inflammation of the limb. The transmembrane receptor Toll-like receptor type 4 (TLR4) plays a central role in the innate immune response and not only engages with extracellular but also intracellular ligands, initiating intricate intracellular signaling cascades promoting inflammation. Depletion of TLR4 specifically in microglia attenuates posttraumatic pain, especially in males. Here, it is shown that male mice lacking TLR4 develop less inflammation after distal bone fracture, with attenuated swelling, local warming, macrophage invation into the dorsal root ganglion and spinal activation of microglia. Furthermore, expression of neuroinflammatory markers such as NGF, TNFα, ATF3 and Il4rα, is reduced in dorsal root ganglia. Together, the results support a proinflammatory role of TLR4 after distal bone fracture possibly initiating mechanisms leading to complex regional pain syndrome development in some patients which may be a promising novel for analgesic drug development. PERSPECTIVE: TLR4 is causally involved in the development of posttraumatic neuroinflammation characterised by upregulation of inflammatory mediators, invasion of macrophages into the dorsal root ganglion, as well as activation of microglia changes in the spinal dorsal horn in a murine model of human complex regional pain syndrome.
Collapse
Affiliation(s)
- Silke Hirsch
- University Medical Centre of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany.
| | - Theodora Kalpachidou
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | - Tanja Schlereth
- Department of Neurology, DKD Helios Klink Wiesbaden, Wiesbaden, Germany
| | - Michaela Kress
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | - Frank Birklein
- University Medical Centre of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| |
Collapse
|
5
|
Moulin D, Sellam J, Berenbaum F, Guicheux J, Boutet MA. The role of the immune system in osteoarthritis: mechanisms, challenges and future directions. Nat Rev Rheumatol 2025; 21:221-236. [PMID: 40082724 DOI: 10.1038/s41584-025-01223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 03/16/2025]
Abstract
Osteoarthritis (OA) is a chronic joint disease that has long been considered a simple wear-and-tear condition. Over the past decade, research has revealed that various inflammatory features of OA, such as low-grade peripheral inflammation and synovitis, contribute substantially to the pathophysiology of the disease. Technological advances in the past 5 years have revealed a large diversity of innate and adaptive immune cells in the joints, particularly in the synovium and infrapatellar fat pad. Notably, the presence of synovial lymphoid structures, circulating autoantibodies and alterations in memory T cell and B cell populations have been documented in OA. These data indicate a potential contribution of self-reactivity to the disease pathogenesis, blurring the often narrow and inaccurate line between chronic inflammatory and autoimmune diseases. The diverse immune changes associated with OA pathogenesis can vary across disease phenotypes, and a better characterization of their underlying molecular endotypes will be key to stratifying patients, designing novel therapeutic approaches and ultimately ameliorating treatment allocation. Furthermore, examining both articular and systemic alterations, including changes in the gut-joint axis and microbial dysbiosis, could open up novel avenues for OA management.
Collapse
Affiliation(s)
- David Moulin
- Université de Lorraine, CNRS, IMoPA, Nancy, France.
- CHRU-Nancy, IHU INFINY, Nancy, France.
| | - Jérémie Sellam
- Department of Rheumatology, Saint-Antoine Hospital, Centre de Recherche Saint-Antoine, Inserm, Sorbonne Université UMRS 938, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Francis Berenbaum
- Department of Rheumatology, Saint-Antoine Hospital, Centre de Recherche Saint-Antoine, Inserm, Sorbonne Université UMRS 938, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, INSERM, CHU Nantes, UMR1229 Regenerative Medicine and Skeleton, RMeS, Nantes, France
| | - Marie-Astrid Boutet
- Nantes Université, Oniris, INSERM, CHU Nantes, UMR1229 Regenerative Medicine and Skeleton, RMeS, Nantes, France.
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK.
| |
Collapse
|
6
|
Mckiver BD, Herz SM, Patel S, Bryan T, Mann J, Poklis JL, Bigbee JW, Windle JJ, Salem AK, Sarkar D, Damaj MI. Astrocyte elevated gene-1 (AEG-1) in myeloid cells is a key driver for the development of chemotherapy-induced peripheral neuropathy. Brain Behav Immun 2025; 127:329-340. [PMID: 40101807 DOI: 10.1016/j.bbi.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect of chemotherapy treatment, often resulting in the discontinuation of treatment. Paclitaxel activates peripheral macrophages, generating a neuroinflammatory response that contributes to CIPN development and maintenance. Astrocyte Elevated Gene-1 (AEG-1), also known as Metadherin or LYRIC, is a multifunctional protein that modulates macrophage activity and regulates inflammation through direct interaction with NF-κB, a transcriptional regulator of proinflammatory cytokine/chemokine (PIC) expression. We aimed to determine whether AEG-1 contributes to the development and maintenance of CIPN pathologies by using both global (AEG-1 KO) and myelocyte-specific knockout (AEG-1ΔMAC) transgenic mouse strains in an animal model of CIPN that replicates specific human clinical phenotypes. We hypothesized that inhibition of AEG1 expression in myeloid cells, such as monocytes and macrophages, would prevent the development and maintenance of CIPN. Our results showed that global AEG-1 deletion prevented the development of CIPN pathologies induced by PAC, as well as oxaliplatin (OHP). PAC treatment was found to increase AEG-1 and PIC expression in the DRGs of WT mice and in peritoneal macrophages isolated from C57BL/6J mice. However, in the absence of AEG-1 expression, PAC-induced neuroinflammation was completely halted in the DRGs of AEG-1 KO mice. This preventative phenotype and PIC expression profile was mirrored in AEG-1ΔMAC mice, which also displayed reduced NF-κB protein levels and F4/80+ macrophages trafficked to the lumbar DRGs following PAC treatment. In summary, our results are the first to demonstrate the biological role AEG-1, particularly in myeloid cells, in development of CIPN.
Collapse
Affiliation(s)
- Bryan D Mckiver
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, USA
| | - Sara M Herz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Shivani Patel
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Tayla Bryan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jared Mann
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - John W Bigbee
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
7
|
Aihaiti Y, Yu H, Xu P. The Role of Thrombospondins in Osteoarthritis: from Molecular Mechanisms to Therapeutic Potential. Int J Biol Sci 2025; 21:2346-2359. [PMID: 40083685 PMCID: PMC11900822 DOI: 10.7150/ijbs.103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/28/2024] [Indexed: 03/16/2025] Open
Abstract
Osteoarthritis (OA) is a prevalent chronic degenerative joint disorder characterized by cartilage degeneration, joint inflammation, and pain. The pathogenesis of OA still remains unclear. Among the various factors contributing to OA, the role of extracellular matrix (ECM) proteins, particularly thrombospondins (TSPs), has garnered significant attention. TSPs, a family of multifunctional extracellular matrix glycoproteins, are known to participate in numerous physiological and pathological processes, including cell adhesion, migration, differentiation, angiogenesis, and synaptogenesis through cell-cell and cell-matrix interactions. In this review, we provide a summary of the current understanding of TSP proteins in the pathogenesis of OA, including their effects on cartilage homeostasis, synovial inflammation, and subchondral bone remodeling and arthritic pain. We also review the evidence supporting the potential of TSP proteins as diagnostic biomarkers and therapeutic targets, with a focus on recent advances in cartilage regeneration, gene delivery therapy and pain management. Considering the multifaceted roles of TSP proteins in maintaining articular homeostasis, TSP proteins emerge as promising therapeutic targets for OA.
Collapse
Affiliation(s)
- Yirixiati Aihaiti
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
- Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, ShaanXi province, China
| | - Hui Yu
- Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, ShaanXi province, China
| | - Peng Xu
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
- Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, ShaanXi province, China
| |
Collapse
|
8
|
Tang Y, Wang Z, Cao J, Tu Y. Bone-brain crosstalk in osteoarthritis: pathophysiology and interventions. Trends Mol Med 2025; 31:281-295. [PMID: 39438197 DOI: 10.1016/j.molmed.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Osteoarthritis (OA) is a prevalent articular disorder characterized by joint degeneration and persistent pain; it imposes a significant burden on both individuals and society. While OA has traditionally been viewed as a localized peripheral disorder, recent preclinical and clinical studies have revealed the crucial interconnections between the bone and the brain, highlighting the systemic nature of OA. The neuronal pathway, molecular signaling, circadian rhythms, and genetic underpinnings within the bone-brain axis play vital roles in the complex interplay that contributes to OA initiation and progression. This review explores emerging evidence of the crosstalk between the bone and brain in OA progression, and discusses the potential contributions of the bone-brain axis to the development of effective interventions for managing OA.
Collapse
Affiliation(s)
- Yilan Tang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Cao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Shih YRV, Tao H, Gilpin A, Lee YW, Perikamana SM, Varghese S. Specialized pro-resolving mediator Maresin 1 attenuates pain in a mouse model of osteoarthritis. Osteoarthritis Cartilage 2025; 33:341-350. [PMID: 39617202 PMCID: PMC11842212 DOI: 10.1016/j.joca.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE We test whether the specialized pro-resolving molecule Maresin 1 (MaR1) attenuates nociceptive behaviors in mice with osteoarthritis-like pain. DESIGN Osteoarthritis (OA)-like pain behavior was induced by intra-articular injection of monosodium iodoacetate (MIA) and treated with MaR1 (N=6) or vehicle (N=5) by intraperitoneal injection 8 weeks after injury. Mice without MIA injection were used as control (N=6). Nociceptive behaviors were examined by von Frey and dynamic weight bearing measurements. Calcitonin gene-related peptide (CGRP) expression and activated macrophages in the dorsal root ganglion (DRG) were examined by immunofluorescence staining. The inflammatory profile in circulation was assessed by cytokine array. Calcium imaging was performed to assess the in vitro functional response of DRG neurons from animals with OA-like pain behavior to MaR1 with or without RAR Related Orphan Receptor A (RORA) inverse agonist SR3335. RESULTS MaR1 attenuated knee pain behavior in treated mice (N=6) compared to non-treated mice (N=5) as shown by increased paw withdrawal threshold with a mean difference of 112.2% (95% CI [49.79, 174.6], p=0.0784) at 4 h and 150.9% (95% CI [104.2, 197.5], p=0.0001) at 4 days post-MaR1 treatment, and increased weight bearing with a mean difference of 20.08% (95% CI [2.798, 37.37], p=0.0277) at 1 day post-MaR1 treatment. CGRP expression and activated macrophages were decreased in the DRG, and inflammatory cytokine levels in the circulation were attenuated. Calcium imaging showed MaR1 reduced the functional response of DRG neurons through RORA. CONCLUSIONS Our results show that MaR1 reduces OA-like pain behavior in mice and could be a potential treatment for OA pain.
Collapse
MESH Headings
- Animals
- Docosahexaenoic Acids/pharmacology
- Docosahexaenoic Acids/therapeutic use
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/drug effects
- Mice
- Disease Models, Animal
- Calcitonin Gene-Related Peptide/metabolism
- Calcitonin Gene-Related Peptide/drug effects
- Male
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Osteoarthritis, Knee/drug therapy
- Osteoarthritis, Knee/metabolism
- Macrophages/metabolism
- Macrophages/drug effects
- Pain Measurement
- Osteoarthritis/drug therapy
- Behavior, Animal/drug effects
- Injections, Intra-Articular
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Yu-Ru V Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Huchen Tao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA.
| | - Anna Gilpin
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| | - Yuan-Wen Lee
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | | | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Tang S, Zhang C, Oo WM, Fu K, Risberg MA, Bierma-Zeinstra SM, Neogi T, Atukorala I, Malfait AM, Ding C, Hunter DJ. Osteoarthritis. Nat Rev Dis Primers 2025; 11:10. [PMID: 39948092 DOI: 10.1038/s41572-025-00594-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 05/09/2025]
Abstract
Osteoarthritis is a heterogeneous whole-joint disease that can cause pain and is a leading cause of disability and premature work loss. The predominant disease risk factors - obesity and joint injury - are well recognized and modifiable. A greater understanding of the complex mechanisms, including inflammatory, metabolic and post-traumatic processes, that can lead to disease and of the pathophysiology of pain is helping to delineate mechanistic targets. Currently, management is primarily focused on alleviating the main symptoms of pain and obstructed function through lifestyle interventions such as self-management programmes, education, physical activity, exercise and weight management. However, lack of adherence to known effective osteoarthritis therapeutic strategies also contributes to the high global disease burden. For those who have persistent symptoms that are compromising quality of life and have not responded adequately to core treatments, joint replacement is an option to consider. The burden imparted by the disease causes a substantial impact on individuals affected in terms of quality of life. For society, this disease is a substantial driver of increased health-care costs and underemployment. This Primer highlights advances and controversies in osteoarthritis, drawing key insights from the current evidence base.
Collapse
Affiliation(s)
- Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Exercise and Rehabilitation Science, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Win Min Oo
- Department of Rheumatology, Royal North Shore Hospital and Sydney Musculoskeletal Health, Faculty of Medicine and Health Science, Kolling Institute, University of Sydney, Sydney, Australia
- Department of Physical Medicine and Rehabilitation, Mandalay General Hospital, University of Medicine, Mandalay, Myanmar
| | - Kai Fu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - May Arna Risberg
- Department of Sport Medicine, Norwegian School Sport Sciences, Oslo, Norway
| | - Sita M Bierma-Zeinstra
- Department of General Practice, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tuhina Neogi
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Inoshi Atukorala
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Institute of Exercise and Rehabilitation Science, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - David J Hunter
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Rheumatology, Royal North Shore Hospital and Sydney Musculoskeletal Health, Faculty of Medicine and Health Science, Kolling Institute, University of Sydney, Sydney, Australia.
| |
Collapse
|
11
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. Cell Rep 2024; 43:115045. [PMID: 39661516 DOI: 10.1016/j.celrep.2024.115045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential environmental dangers. However, this function can be detrimental during allergic reactions, as vagal nociceptors contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we investigate the changes in the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identify a specific class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of allergic airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the neuropeptide Y (NPY) receptor Npy1r. A screening of cytokines and neurotrophins reveals that interleukin 1β (IL-1β), IL-13, and brain-derived neurotrophic factor (BDNF) drive part of this reprogramming. IL-13 triggers Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, NPY is released into the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells reveals that a cell-specific knockout of NPY1R in nociceptor neurons in asthmatic mice altered T cell infiltration. Opposite findings are observed in asthmatic mice in which nociceptor neurons are chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits the activity of nociceptor neurons.
Collapse
Affiliation(s)
- Theo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l'Apprentissage, Université de Montréal, Montreal, QC, Canada; Département de Physique, Université de Montréal, Montreal, QC, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Herbert Herzog
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l'Apprentissage, Université de Montréal, Montreal, QC, Canada; Département de Physique, Université de Montréal, Montreal, QC, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
12
|
Geraghty T, Ishihara S, Obeidat AM, Adamczyk NS, Hunter RS, Li J, Wang L, Lee H, Ko FC, Malfait AM, Miller RE. Acute systemic macrophage depletion in osteoarthritic mice alleviates pain-related behaviors and does not affect joint damage. Arthritis Res Ther 2024; 26:224. [PMID: 39707543 PMCID: PMC11660666 DOI: 10.1186/s13075-024-03457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a painful degenerative joint disease and a leading source of years lived with disability globally due to inadequate treatment options. Neuroimmune interactions reportedly contribute to OA pain pathogenesis. Notably, in rodents, macrophages in the DRG are associated with onset of persistent OA pain. Our objective was to determine the effects of acute systemic macrophage depletion on pain-related behaviors and joint damage using surgical mouse models in both sexes. METHODS We depleted CSF1R + macrophages by treating male macrophage Fas-induced apoptosis (MaFIA) transgenic mice 8- or 16-weeks post destabilization of the medial meniscus (DMM) with AP20187 or vehicle control (10 mg/kg i.p., 1x/day for 5 days), or treating female MaFIA mice 12 weeks post partial meniscectomy (PMX) with AP20187 or vehicle control. We measured pain-related behaviors 1-3 days before and after depletion, and, 3-4 days after the last injection we examined joint histopathology and performed flow cytometry of the dorsal root ganglia (DRGs). In a separate cohort of male 8-week DMM mice or age-matched naïve vehicle controls, we conducted DRG bulk RNA-sequencing analyses after the 5-day vehicle or AP20187 treatment. RESULTS Eight- and 16-weeks post DMM in male mice, AP20187-induced macrophage depletion resulted in attenuated mechanical allodynia and knee hyperalgesia. Female mice showed alleviation of mechanical allodynia, knee hyperalgesia, and weight bearing deficits after macrophage depletion at 12 weeks post PMX. Macrophage depletion did not affect the degree of cartilage degeneration, osteophyte width, or synovitis in either sex. Flow cytometry of the DRG revealed that macrophages and neutrophils were reduced after AP20187 treatment. In addition, in the DRG, only MHCII + M1-like macrophages were significantly decreased, while CD163 + MHCII- M2-like macrophages were not affected in both sexes. DRG bulk RNA-seq revealed that Cxcl10 and Il1b were upregulated with DMM surgery compared to naïve mice, and downregulated in DMM after acute macrophage depletion. CONCLUSIONS Acute systemic macrophage depletion reduced the levels of pro-inflammatory macrophages in the DRG and alleviated pain-related behaviors in established surgically induced OA in mice of both sexes, without affecting joint damage. Overall, these studies provide insight into immune cell regulation in the DRG during OA.
Collapse
Affiliation(s)
- Terese Geraghty
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Shingo Ishihara
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Alia M Obeidat
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Natalie S Adamczyk
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Rahel S Hunter
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Jun Li
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Lai Wang
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Hoomin Lee
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Frank C Ko
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA.
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA.
| |
Collapse
|
13
|
Dos Santos GG, Jiménez-Andrade JM, Muñoz-Islas E, Candanedo-Quiroz ME, Cardenas AG, Drummond B, Pham P, Stilson G, Hsu CC, Delay L, Navia-Pelaez JM, Lemes JP, Miller YI, Yaksh TL, Corr M. Role of TLR4 activation and signaling in bone remodeling, and afferent sprouting in serum transfer arthritis. Arthritis Res Ther 2024; 26:212. [PMID: 39696684 DOI: 10.1186/s13075-024-03424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/23/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND In the murine K/BxN serum transfer rheumatoid arthritis (RA) model, tactile allodynia persists after resolution of inflammation in male and partially in female wild type (WT) mice, which is absent in Toll-like receptor (TLR)4 deficient animals. We assessed the role of TLR4 on allodynia, bone remodeling and afferent sprouting in this model of arthritis. METHODS K/BxN sera were injected into male and female mice with conditional or stable TLR4 deletion and controls. Paw swelling was scored and allodynia assessed by von Frey filaments. At day 28, synovial neural fibers were visualized with confocal microscopy and bone density assayed with microCT. Microglial activity and TLR4 dimerization in spinal cords were examined by immunofluorescence and flow cytometry. RESULTS In the synovium, K/BxN injected WT male and female mice showed robust increases in calcitonin gene related-peptide (CGRP+), tyrosine hydroxylase (TH)+ and GAP43+ nerve fibers. Trabecular bone density by microCT was significantly decreased in K/BxN WT female but not in WT male mice. The number of osteoclasts increased in both sexes of WT mice, but not in Tlr4-/- K/BxN mice. We used conditional strains with Cre drivers for monocytes/osteoclasts (lysozyme M), microglia (Tmem119 and Cx3CR1), astrocytes (GFAP) and sensory neurons (advillin) for Tlr4f/f disruption. All strains developed similar arthritis scores after K/BxN serum injection with the exception being the Tlr4Tmem119 mice which showed a reduction. Both sexes of Tlr4Lyz2, Tlr4Tmem119 and Tlr4Cx3cr1 mice displayed a partial reversal of the chronic pain phenotype but not in Tlr4Avil, and Tlr4Gfap mice. WT K/BxN male mice showed increases in spinal Iba1, but not GFAP, compared to Tlr4-/- male mice. To determine whether spinal TLR4 was indeed activated in the K/BxN mice, flow cytometry of lumbar spinal cords of WT K/BxN male mice was performed and revealed that TLR4 in microglia cells (CD11b+ /TMEM119+) demonstrated dimerization (e.g. activation) and a characteristic increase in lipid rafts. CONCLUSION These results demonstrated a complex chronic allodynia phenotype associated with TLR4 in microglia and monocytic cell lineages, and a parallel spinal TLR4 activation. However, TLR4 is dispensable for the development of peripheral nerve sprouting in this model.
Collapse
Affiliation(s)
| | | | - Enriqueta Muñoz-Islas
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, UAT, Reynosa, Tamaulipas, México
| | | | - Andrea Gonzalez Cardenas
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Bronwen Drummond
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Peter Pham
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Gwendalynn Stilson
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Chao-Chin Hsu
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Lauriane Delay
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Juliana M Navia-Pelaez
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Julia Paes Lemes
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Yury I Miller
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Maripat Corr
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA.
| |
Collapse
|
14
|
DaCunza JT, Wickman JR, Ajit SK. miRNA packaging into small extracellular vesicles and implications in pain. Pain Rep 2024; 9:e1198. [PMID: 39450410 PMCID: PMC11500789 DOI: 10.1097/pr9.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 10/26/2024] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous group of lipid bilayer bound particles naturally released by cells. These vesicles are classified based on their biogenesis pathway and diameter. The overlap in size of exosomes generated from the exosomal pathway and macrovesicles that are pinched off from the surface of the plasma membrane makes it challenging to isolate pure populations. Hence, isolated vesicles that are less than 200 nm are called small extracellular vesicles (sEVs). Extracellular vesicles transport a variety of cargo molecules, and multiple mechanisms govern the packaging of cargo into sEVs. Here, we discuss the current understanding of how miRNAs are targeted into sEVs, including the role of RNA binding proteins and EXOmotif sequences present in miRNAs in sEV loading. Several studies in human pain disorders and rodent models of pain have reported alterations in sEV cargo, including miRNAs. The sorting mechanisms and target regulation of miR-939, a miRNA altered in individuals with complex regional pain syndrome, is discussed in the context of inflammation. We also provide a broad overview of the therapeutic strategies being pursued to utilize sEVs in the clinic and the work needed to further our understanding of EVs to successfully deploy sEVs as a pain therapeutic.
Collapse
Affiliation(s)
- Jason T. DaCunza
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Molecular & Cell Biology & Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
15
|
Wijesinghe SN, Ditchfield C, Flynn S, Agrawal J, Davis ET, Dajas-Bailador F, Chapman V, Jones SW. Immunomodulation and fibroblast dynamics driving nociceptive joint pain within inflammatory synovium: Unravelling mechanisms for therapeutic advancements in osteoarthritis. Osteoarthritis Cartilage 2024; 32:1358-1370. [PMID: 38960140 DOI: 10.1016/j.joca.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Synovitis is a widely accepted sign of osteoarthritis (OA), characterised by tissue hyperplasia, where increased infiltration of immune cells and proliferation of resident fibroblasts adopt a pro-inflammatory phenotype, and increased the production of pro-inflammatory mediators that are capable of sensitising and activating sensory nociceptors, which innervate the joint tissues. As such, it is important to understand the cellular composition of synovium and their involvement in pain sensitisation to better inform the development of effective analgesics. METHODS Studies investigating pain sensitisation in OA with a focus on immune cells and fibroblasts were identified using PubMed, Web of Science and SCOPUS. RESULTS In this review, we comprehensively assess the evidence that cellular crosstalk between resident immune cells or synovial fibroblasts with joint nociceptors in inflamed OA synovium contributes to peripheral pain sensitisation. Moreover, we explore whether the elucidation of common mechanisms identified in similar joint conditions may inform the development of more effective analgesics specifically targeting OA joint pain. CONCLUSION The concept of local environment and cellular crosstalk within the inflammatory synovium as a driver of nociceptive joint pain presents a compelling opportunity for future research and therapeutic advancements.
Collapse
Affiliation(s)
- Susanne N Wijesinghe
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Caitlin Ditchfield
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Sariah Flynn
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jyoti Agrawal
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | - Victoria Chapman
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
16
|
Doswell F, Haley JD, Kaczocha M. Proteomic Analysis of Signaling Pathways Modulated by Fatty Acid Binding Protein 5 (FABP5) in Macrophages. J Pharmacol Exp Ther 2024; 391:289-300. [PMID: 38849143 PMCID: PMC11493448 DOI: 10.1124/jpet.123.002006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Although acute inflammation serves essential functions in maintaining tissue homeostasis, chronic inflammation is causally linked to many diseases. Macrophages are a major cell type that orchestrates inflammatory processes. During inflammation, macrophages undergo polarization and activation, thereby mobilizing pro-inflammatory and anti-inflammatory transcriptional programs that regulate ensuing macrophage functions. Fatty acid binding protein 5 (FABP5) is a lipid chaperone highly expressed in macrophages. FABP5 deletion is implicated in driving macrophages toward an anti-inflammatory phenotype, yet signaling pathways regulated by macrophage-FABP5 have not been systematically profiled. We leveraged proteomic and phosphoproteomic approaches to characterize pathways modulated by FABP5 in M1 and M2 polarized bone marrow-derived macrophages (BMDMs). Stable isotope labeling by amino acids-based analysis of M1 and M2 polarized wild-type and FABP5 knockout BMDMs revealed numerous differentially regulated proteins and phosphoproteins. FABP5 deletion impacted downstream pathways associated with inflammation, cytokine production, oxidative stress, and kinase activity. Toll-like receptor 2 (TLR2) emerged as a novel target of FABP5 and pharmacological FABP5 inhibition blunted TLR2-mediated activation of downstream pathways, ascribing a novel role for FABP5 in TLR2 signaling. This study represents a comprehensive characterization of the impact of FABP5 deletion on the proteomic and phosphoproteomic landscape of M1 and M2 polarized BMDMs. Loss of FABP5 altered pathways implicated in inflammatory responses, macrophage function, and TLR2 signaling. This work provides a foundation for future studies seeking to investigate the therapeutic potential of FABP5 inhibition in pathophysiological states resulting from dysregulated inflammatory signaling. SIGNIFICANCE STATEMENT: This research offers a comprehensive analysis of fatty acid binding protein 5 (FABP5) in macrophages during inflammatory response. The authors employed quantitative proteomic and phosphoproteomic approaches to investigate this utilizing bone marrow-derived macrophages that were M1 and M2 polarized using lipopolysaccharide with interferon γ and interleukin-4, respectively. This revealed multiple pathways related to inflammation that were differentially regulated due to the absence of FABP5. These findings underscore the potential therapeutic significance of macrophage-FABP5 as a candidate for addressing inflammatory-related diseases.
Collapse
Affiliation(s)
- Faniya Doswell
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York (F.D.); Departments of Anesthesiology (F.D., M.K.) and Pathology (J.D.H.) and Biological Mass Spectrometry Facility, (J.D.H.), Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - John D Haley
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York (F.D.); Departments of Anesthesiology (F.D., M.K.) and Pathology (J.D.H.) and Biological Mass Spectrometry Facility, (J.D.H.), Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Martin Kaczocha
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York (F.D.); Departments of Anesthesiology (F.D., M.K.) and Pathology (J.D.H.) and Biological Mass Spectrometry Facility, (J.D.H.), Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
17
|
Amodeo G, Magni G, Galimberti G, Riboldi B, Franchi S, Sacerdote P, Ceruti S. Neuroinflammation in osteoarthritis: From pain to mood disorders. Biochem Pharmacol 2024; 228:116182. [PMID: 38556026 DOI: 10.1016/j.bcp.2024.116182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Osteoarthritis (OA) is the most common form of musculoskeletal disease, and its prevalence is increasing due to the aging of the population. Chronic pain is the most burdensome symptom of OA that significantly lowers patients' quality of life, also due to its frequent association with emotional comorbidities, such as anxiety and depression. In recent years, both chronic pain and mood alterations have been linked to the development of neuroinflammation in the peripheral nervous system, spinal cord and supraspinal brain areas. Thus, mechanisms at the basis of the development of the neuroinflammatory process may indicate promising targets for novel treatment for pain and affective comorbidities that accompany OA. In order to assess the key role of neuroinflammation in the maintenance of chronic pain and its potential involvement in development of psychiatric components, the monoiodoacetate (MIA) model of OA in rodents has been used and validated. In the present commentary article, we aim to summarize up-to-date results achieved in this experimental model of OA, focusing on glia activation and cytokine production in the sciatic nerve, dorsal root ganglia (DRGs), spinal cord and brain areas. The association of a neuroinflammatory state with the development of pain and anxiety- and depression-like behaviors are discussed. Results suggest that cells and molecules involved in neuroinflammation may represent novel targets for innovative pharmacological treatments of OA pain and mood comorbidities.
Collapse
Affiliation(s)
- Giada Amodeo
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Giulia Magni
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Giulia Galimberti
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Benedetta Riboldi
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Silvia Franchi
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Paola Sacerdote
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Stefania Ceruti
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy.
| |
Collapse
|
18
|
Jauffret C. Arthrose. REVUE DU RHUMATISME 2024; 91:567-569. [DOI: 10.1016/j.rhum.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525731. [PMID: 39345572 PMCID: PMC11429693 DOI: 10.1101/2023.01.26.525731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential dangers in the environment. However, this function can be detrimental during allergic reactions, since vagal nociceptors can contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance, in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we aimed to investigate the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identified a unique class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the NPY receptor Npy1r. A screening of cytokines and neurotrophins revealed that IL-1β, IL-13 and BDNF drive part of this reprogramming. IL-13 triggered Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, sympathetic neurons and macrophages release NPY in the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells has revealed that a cell-specific knockout of Npy1r in nociceptor neurons in asthmatic mice leads to an increase in airway inflammation mediated by T cells. Opposite findings were observed in asthmatic mice in which nociceptor neurons were chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits nociceptor neurons' activity.
Collapse
Affiliation(s)
- Théo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | | | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet. Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University. Canada
| |
Collapse
|
20
|
Zou Y, Liu C, Wang Z, Li G, Xiao J. Neural and immune roles in osteoarthritis pain: Mechanisms and intervention strategies. J Orthop Translat 2024; 48:123-132. [PMID: 39220678 PMCID: PMC11363721 DOI: 10.1016/j.jot.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Pain is the leading symptom for most individuals with osteoarthritis (OA), a complex condition marked by joint discomfort. Recently, the dynamic interplay between the nervous and immune systems has become a focal point for understanding pain regulation. Despite this, there is still a substantial gap in our comprehensive understanding of the neuroimmune interactions and their effects on pain in OA. This review examines the bidirectional influences between immune cells and nerves in OA progression. It explores current approaches that target neuroimmune pathways, including promoting M2 macrophage polarization and specific neuronal receptor targeting, for effective pain reduction. Translational potential statement This review provides a comprehensive overview of the mechanisms underlying the interplay between the immune system and nervous system during the progression of OA, as well as their contributions to pain. Additionally, it compiles existing intervention strategies targeting neuroimmunity for the treatment of OA pain. This information offers valuable insights for researchers seeking to address the challenge of OA pain.
Collapse
Affiliation(s)
- Yi Zou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Changyu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Guanghui Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| |
Collapse
|
21
|
Iwata K, Hayashi Y, Hitomi S, Tsuboi Y, Shinoda M. Non-neuronal cells act as crucial players in neuropathic orofacial pain. J Oral Biosci 2024; 66:491-495. [PMID: 39032826 DOI: 10.1016/j.job.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Following peripheral nerve damage, various non-neuronal cells are activated, triggering accumulation in the peripheral and central nervous systems, and communicate with neurons. Evidence suggest that neuronal and non-neuronal cell communication is a critical mechanism of neuropathic pain; however, its detailed mechanisms in contributing to neuropathic orofacial pain development remain unclear. HIGHLIGHT Neuronal and non-neuronal cell communication in the trigeminal ganglion (TG) is believed to cause neuronal hyperactivation following trigeminal nerve damage, resulting in neuropathic orofacial pain. Trigeminal nerve damage activates and accumulates non-neuronal cells, such as satellite cells and macrophages in the TG and microglia, astrocytes, and oligodendrocytes in the trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2). These non-neuronal cells release various molecules, contributing to the hyperactivation of TG, Vc, and C1-C2 nociceptive neurons. These hyperactive nociceptive neurons release molecules that enhance non-neuronal cell activation. This neuron and non-neuronal cell crosstalk causes hyperactivation of nociceptive neurons in the TG, Vc, and C1-C2. Here, we addressed previous and recent data on the contribution of neuronal and non-neuronal cell communication and its involvement in neuropathic orofacial pain development. CONCLUSION Previous and recent data suggest that neuronal and non-neuronal cell communication in the TG, Vc, and C1-C2 is a key mechanism that causes neuropathic orofacial pain associated with trigeminal nerve damage.
Collapse
Affiliation(s)
- Koichi Iwata
- Departments of Physiology, Nihon University School of Dentistry, Tokyo, Japan.
| | - Yoshinori Hayashi
- Departments of Physiology, Nihon University School of Dentistry, Tokyo, Japan.
| | - Suzuro Hitomi
- Departments of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiyuki Tsuboi
- Departments of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masamichi Shinoda
- Departments of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
22
|
Geraghty T, Ishihara S, Obeidat AM, Adamczyk NS, Hunter RS, Li J, Wang L, Lee H, Ko FC, Malfait AM, Miller RE. Acute systemic macrophage depletion in osteoarthritic mice alleviates pain-related behaviors and does not affect joint damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608301. [PMID: 39229102 PMCID: PMC11370380 DOI: 10.1101/2024.08.16.608301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background Osteoarthritis (OA) is a painful degenerative joint disease and a leading source of years lived with disability globally due to inadequate treatment options. Neuroimmune interactions reportedly contribute to OA pain pathogenesis. Notably, in rodents, macrophages in the DRG are associated with onset of persistent OA pain. Our objective was to determine the effects of acute systemic macrophage depletion on pain-related behaviors and joint damage using surgical mouse models in both sexes. Methods We depleted CSF1R+ macrophages by treating male macrophage Fas-induced apoptosis (MaFIA) transgenic mice 8- or 16-weeks post destabilization of the medial meniscus (DMM) with AP20187 or vehicle control (10 mg/kg i.p., 1x/day for 5 days), or treating female MaFIA mice 12 weeks post partial meniscectomy (PMX) with AP20187 or vehicle control. We measured pain-related behaviors 1-3 days before and after depletion, and, 3-4 days after the last injection we examined joint histopathology and performed flow cytometry of the dorsal root ganglia (DRGs). In a separate cohort of male 8-week DMM mice or age-matched naïve vehicle controls, we conducted DRG bulk RNA-sequencing analyses after the 5-day vehicle or AP20187 treatment. Results Eight- and 16-weeks post DMM in male mice, AP20187-induced macrophage depletion resulted in attenuated mechanical allodynia and knee hyperalgesia. Female mice showed alleviation of mechanical allodynia, knee hyperalgesia, and weight bearing deficits after macrophage depletion at 12 weeks post PMX. Macrophage depletion did not affect the degree of cartilage degeneration, osteophyte width, or synovitis in either sex. Flow cytometry of the DRG revealed that macrophages and neutrophils were reduced after AP20187 treatment. In addition, in the DRG, only MHCII+ M1-like macrophages were significantly decreased, while CD163+MHCII- M2-like macrophages were not affected in both sexes. DRG bulk RNA-seq revealed that Cxcl10 and Il1b were upregulated with DMM surgery compared to naïve mice, and downregulated in DMM after acute macrophage depletion. Conclusions Acute systemic macrophage depletion reduced the levels of pro-inflammatory macrophages in the DRG and alleviated pain-related behaviors in established surgically induced OA in mice of both sexes, without affecting joint damage. Overall, these studies provide insight into immune cell regulation in the DRG during OA.
Collapse
Affiliation(s)
- Terese Geraghty
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Shingo Ishihara
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Alia M Obeidat
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Natalie S Adamczyk
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Rahel S Hunter
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Jun Li
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Lai Wang
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Hoomin Lee
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Frank C Ko
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Anne-Marie Malfait
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Rachel E Miller
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| |
Collapse
|
23
|
Zhu X, Chen S, Xie Y, Cheng Z, Zhu X, Guo Q. Role of M1/M2 macrophages in pain modulation. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1155-1163. [PMID: 39788503 PMCID: PMC11495980 DOI: 10.11817/j.issn.1672-7347.2024.240017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Indexed: 01/12/2025]
Abstract
Pain is a signal of inflammation that can have both protective and pathogenic effects. Macrophages, significant components of the immune system, play crucial roles in the occurrence and development of pain, particularly in neuroimmune communication. Macrophages exhibit plasticity and heterogeneity, adopting either pro-inflammatory M1 or anti-inflammatory M2 phenotypes depending on their functional orientation. Recent research highlights the contribution of macrophages to pain dynamics by undergoing changes in their functional polarity, leading to macrophage activation, tissue infiltration, and cytokine secretion. M1 macrophages release pro-inflammatory mediators that are not only essential in defending against infections, but also contributing to tissue damage and the elicitation of pain. However, this process can be counteracted by M2 macrophages, facilitating pain relief through producing anti-inflammatory cytokines and opioid peptides or enhancing efferocytosis. M1 and M2 macrophages play important roles in both the initiation and mitigation of pain.
Collapse
Affiliation(s)
- Xiaoye Zhu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Saige Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongqiu Xie
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhigang Cheng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaoyan Zhu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
24
|
Reynders A, Anissa Jhumka Z, Gaillard S, Mantilleri A, Malapert P, Magalon K, Etzerodt A, Salio C, Ugolini S, Castets F, Saurin AJ, Serino M, Hoeffel G, Moqrich A. Gut microbiota promotes pain chronicity in Myosin1A deficient male mice. Brain Behav Immun 2024; 119:750-766. [PMID: 38710336 DOI: 10.1016/j.bbi.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
Chronic pain is a heavily debilitating condition and a huge socio-economic burden, with no efficient treatment. Over the past decade, the gut microbiota has emerged as an important regulator of nervous system's health and disease states. Yet, its contribution to the pathogenesis of chronic somatic pain remains poorly documented. Here, we report that male but not female mice lacking Myosin1a (KO) raised under single genotype housing conditions (KO-SGH) are predisposed to develop chronic pain in response to a peripheral tissue injury. We further underscore the potential of MYO1A loss-of-function to alter the composition of the gut microbiota and uncover a functional connection between the vulnerability to chronic pain and the dysbiotic gut microbiota of KO-SGH males. As such, parental antibiotic treatment modifies gut microbiota composition and completely rescues the injury-induced pain chronicity in male KO-SGH offspring. Furthermore, in KO-SGH males, this dysbiosis is accompanied by a transcriptomic activation signature in the dorsal root ganglia (DRG) macrophage compartment, in response to tissue injury. We identify CD206+CD163- and CD206+CD163+ as the main subsets of DRG resident macrophages and show that both are long-lived and self-maintained and exhibit the capacity to monitor the vasculature. Consistently, in vivo depletion of DRG macrophages rescues KO-SGH males from injury-induced chronic pain underscoring a deleterious role for DRG macrophages in a Myo1a-loss-of function context. Together, our findings reveal gene-sex-microbiota interactions in determining the predisposition to injury-induced chronic pain and point-out DRG macrophages as potential effector cells.
Collapse
Affiliation(s)
- Ana Reynders
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France.
| | - Z Anissa Jhumka
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | | | - Annabelle Mantilleri
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Pascale Malapert
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Karine Magalon
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Sophie Ugolini
- Aix-Marseille-Université, CNRS, INSER, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Francis Castets
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Andrew J Saurin
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Matteo Serino
- Institut de Recherche en Santé Digestive, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Guillaume Hoeffel
- Aix-Marseille-Université, CNRS, INSER, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France.
| |
Collapse
|
25
|
Jain A, Hakim S, Woolf CJ. Immune drivers of physiological and pathological pain. J Exp Med 2024; 221:e20221687. [PMID: 38607420 PMCID: PMC11010323 DOI: 10.1084/jem.20221687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Physiological pain serves as a warning of exposure to danger and prompts us to withdraw from noxious stimuli to prevent tissue damage. Pain can also alert us of an infection or organ dysfunction and aids in locating such malfunction. However, there are instances where pain is purely pathological, such as unresolved pain following an inflammation or injury to the nervous system, and this can be debilitating and persistent. We now appreciate that immune cells are integral to both physiological and pathological pain, and that pain, in consequence, is not strictly a neuronal phenomenon. Here, we discuss recent findings on how immune cells in the skin, nerve, dorsal root ganglia, and spinal cord interact with somatosensory neurons to mediate pain. We also discuss how both innate and adaptive immune cells, by releasing various ligands and mediators, contribute to the initiation, modulation, persistence, or resolution of various modalities of pain. Finally, we propose that the neuroimmune axis is an attractive target for pain treatment, but the challenges in objectively quantifying pain preclinically, variable sex differences in pain presentation, as well as adverse outcomes associated with immune system modulation, all need to be considered in the development of immunotherapies against pain.
Collapse
Affiliation(s)
- Aakanksha Jain
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
| | - Sara Hakim
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Clifford J. Woolf
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Deng D, Zhang T, Ma L, Zhao W, Huang S, Wang K, Shu S, Chen X. PD-L1/PD-1 pathway: a potential neuroimmune target for pain relief. Cell Biosci 2024; 14:51. [PMID: 38643205 PMCID: PMC11031890 DOI: 10.1186/s13578-024-01227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/01/2024] [Indexed: 04/22/2024] Open
Abstract
Pain is a common symptom of many diseases with a high incidence rate. Clinically, drug treatment, as the main method to relieve pain at present, is often accompanied by different degrees of adverse reactions. Therefore, it is urgent to gain a profound understanding of the pain mechanisms in order to develop advantageous analgesic targets. The PD-L1/PD-1 pathway, an important inhibitory molecule in the immune system, has taken part in regulating neuroinflammation and immune response. Accumulating evidence indicates that the PD-L1/PD-1 pathway is aberrantly activated in various pain models. And blocking PD-L1/PD-1 pathway will aggravate pain behaviors. This review aims to summarize the emerging evidence on the role of the PD-L1/PD-1 pathway in alleviating pain and provide an overview of the mechanisms involved in pain resolution, including the regulation of macrophages, microglia, T cells, as well as nociceptor neurons. However, its underlying mechanism still needs to be further elucidated in the future. In conclusion, despite more deep researches are needed, these pioneering studies indicate that PD-L1/PD-1 may be a potential neuroimmune target for pain relief.
Collapse
Affiliation(s)
- Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Kaixing Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shaofang Shu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
27
|
van den Bosch MHJ, Blom AB, van der Kraan PM. Inflammation in osteoarthritis: Our view on its presence and involvement in disease development over the years. Osteoarthritis Cartilage 2024; 32:355-364. [PMID: 38142733 DOI: 10.1016/j.joca.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Inflammation, both locally in the joint and systemic, is nowadays considered among the mechanisms involved in osteoarthritis (OA). However, this concept has not always been generally accepted. In fact, for long OA has been described as a relatively simple degeneration of articular cartilage as the result of wear and tear only. In this narrative review, we present what our understanding of OA was at the time of the inaugural release of Osteoarthritis and Cartilage about 30 years ago and discuss a set of pivotal papers that changed our view on the role of inflammation in OA development. Furthermore, we briefly discuss the current view on the involvement of inflammation in OA. Next, we use the example of transforming growth factor-β signaling to show how inflammation might influence processes in the joint in a manner that is beyond the simple interaction of ligand and receptor leading to the release of inflammatory and catabolic mediators. Finally, we discuss our view on what should be done in the future to bring the field forward.
Collapse
Affiliation(s)
| | - Arjen B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Li W, He H, Du M, Gao M, Sun Q, Wang Y, Lu H, Ou S, Xia C, Xu C, Zhao Q, Sun H. Quercetin as a promising intervention for rat osteoarthritis by decreasing M1-polarized macrophages via blocking the TRPV1-mediated P2X7/NLRP3 signaling pathway. Phytother Res 2024; 38:1990-2006. [PMID: 38372204 DOI: 10.1002/ptr.8158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Osteoarthritis (OA) is characterized by an imbalance between M1 and M2 polarized synovial macrophages. Quercetin has shown protective effects against OA by altering M1/M2-polarized macrophages, but the underlying mechanisms remain unclear. In this study, rat chondrocytes were treated with 10 ng/mL of IL-1β. To create M1-polarized macrophages in vitro, rat bone marrow-derived macrophages (rBMDMs) were treated with 100 ng/mL LPS. To mimic OA conditions observed in vivo, a co-culture system of chondrocytes and macrophages was established. ATP release assays, immunofluorescence assays, Fluo-4 AM staining, Transwell assays, ELISA assays, and flow cytometry were performed. Male adult Sprague-Dawley (SD) rats were used to create an OA model. Histological analyses, including H&E, and safranin O-fast green staining were performed. Our data showed a quercetin-mediated suppression of calcium ion influx and ATP release, with concurrent downregulation of TRPV1 and P2X7 in the chondrocytes treated with IL-1β. Activation of TRPV1 abolished the quercetin-mediated effects on calcium ion influx and ATP release in chondrocytes treated with IL-1β. In the co-culture system, overexpression of P2X7 in macrophages attenuated the quercetin-mediated effects on M1 polarization, migration, and inflammation. Either P2X7 or NLRP3 knockdown attenuated IL-1β-induced M1/M2 polarization, migration, and inflammation. Moreover, overexpression of TRPV1 reduced the quercetin-mediated suppressive effects on OA by promoting M1/M2-polarized macrophages in vivo. Collectively, our data showed that quercetin-induced suppression of TRPV1 leads to a delay in OA progression by shifting the macrophage polarization from M1 to M2 subtypes via modulation of the P2X7/NLRP3 pathway.
Collapse
Affiliation(s)
- Wenjun Li
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Hebei He
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Min Du
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Mu Gao
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Qijie Sun
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Yeyang Wang
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Hanyu Lu
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Shuanji Ou
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Changliang Xia
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Changpeng Xu
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Qi Zhao
- MoE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Hongtao Sun
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Morioka N, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. High mobility group box-1: A therapeutic target for analgesia and associated symptoms in chronic pain. Biochem Pharmacol 2024; 222:116058. [PMID: 38367818 DOI: 10.1016/j.bcp.2024.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The number of patients with chronic pain continues to increase against the background of an ageing society and a high incidence of various epidemics and disasters. One factor contributing to this situation is the absence of truly effective analgesics. Chronic pain is a persistent stress for the organism and can trigger a variety of neuropsychiatric symptoms. Hence, the search for useful analgesic targets is currently being intensified worldwide, and it is anticipated that the key to success may be molecules involved in emotional as well as sensory systems. High mobility group box-1 (HMGB1) has attracted attention as a therapeutic target for a variety of diseases. It is a very unique molecule having a dual role as a nuclear protein while also functioning as an inflammatory agent outside the cell. In recent years, numerous studies have shown that HMGB1 acts as a pain inducer in primary sensory nerves and the spinal dorsal horn. In addition, HMGB1 can function in the brain, and is involved in the symptoms of depression, anxiety and cognitive dysfunction that accompany chronic pain. In this review, we will summarize recent research and discuss the potential of HMGB1 as a useful drug target for chronic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
30
|
Blackler G, Lai-Zhao Y, Klapak J, Philpott HT, Pitchers KK, Maher AR, Fiset B, Walsh LA, Gillies ER, Appleton CT. Targeting STAT6-mediated synovial macrophage activation improves pain in experimental knee osteoarthritis. Arthritis Res Ther 2024; 26:73. [PMID: 38509602 PMCID: PMC10953260 DOI: 10.1186/s13075-024-03309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Pain from osteoarthritis (OA) is one of the top causes of disability worldwide, but effective treatment is lacking. Nociceptive factors are released by activated synovial macrophages in OA, but depletion of synovial macrophages paradoxically worsens inflammation and tissue damage in previous studies. Rather than depleting macrophages, we hypothesized that inhibiting macrophage activation may improve pain without increasing tissue damage. We aimed to identify key mechanisms mediating synovial macrophage activation and test the role of STAT signaling in macrophages on pain outcomes in experimental knee OA. METHODS We induced experimental knee OA in rats via knee destabilization surgery, and performed RNA sequencing analysis on sorted synovial tissue macrophages to identify macrophage activation mechanisms. Liposomes laden with STAT1 or STAT6 inhibitors, vehicle (control), or clodronate (depletion control) were delivered selectively to synovial macrophages via serial intra-articular injections up to 12 weeks after OA induction. Treatment effects on knee and hindpaw mechanical pain sensitivity were measured during OA development, along with synovitis, cartilage damage, and synovial macrophage infiltration using histopathology and immunofluorescence. Lastly, crosstalk between drug-treated synovial tissue and articular chondrocytes was assessed in co-culture. RESULTS The majority of pathways identified by transcriptomic analyses in OA synovial macrophages involve STAT signaling. As expected, macrophage depletion reduced pain, but increased synovial tissue fibrosis and vascularization. In contrast, STAT6 inhibition in macrophages led to marked, sustained improvements in mechanical pain sensitivity and synovial inflammation without worsening synovial or cartilage pathology. During co-culture, STAT6 inhibitor-treated synovial tissue had minimal effects on healthy chondrocyte gene expression, whereas STAT1 inhibitor-treated synovium induced changes in numerous cartilage turnover-related genes. CONCLUSION These results suggest that STAT signaling is a major mediator of synovial macrophage activation in experimental knee OA. STAT6 may be a key mechanism mediating the release of nociceptive factors from macrophages and the development of mechanical pain sensitivity. Whereas therapeutic depletion of macrophages paradoxically increases inflammation and fibrosis, blocking STAT6-mediated synovial macrophage activation may be a novel strategy for OA-pain management without accelerating tissue damage.
Collapse
Affiliation(s)
- Garth Blackler
- Department of Physiology and Pharmacology, Western University, London, ON, N6A 5B5, Canada
| | - Yue Lai-Zhao
- Department of Physiology and Pharmacology, Western University, London, ON, N6A 5B5, Canada
- Bone and Joint Institute, Western University, London, ON, N6A 5B5, Canada
| | - Joseph Klapak
- Department of Physiology and Pharmacology, Western University, London, ON, N6A 5B5, Canada
| | - Holly T Philpott
- Department of Physiology and Pharmacology, Western University, London, ON, N6A 5B5, Canada
- Bone and Joint Institute, Western University, London, ON, N6A 5B5, Canada
| | - Kyle K Pitchers
- Department of Physiology and Pharmacology, Western University, London, ON, N6A 5B5, Canada
| | - Andrew R Maher
- Department of Physiology and Pharmacology, Western University, London, ON, N6A 5B5, Canada
| | - Benoit Fiset
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Logan A Walsh
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Elizabeth R Gillies
- Department of Chemistry, Western University, London, ON, N6A 5B5, Canada
- Department of Chemical and Biochemical Engineering, Western University, London, ON, N6A 5B5, Canada
| | - C Thomas Appleton
- Department of Physiology and Pharmacology, Western University, London, ON, N6A 5B5, Canada.
- Bone and Joint Institute, Western University, London, ON, N6A 5B5, Canada.
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada.
| |
Collapse
|
31
|
Gordon C, Trainor J, Shah RJ, Studholme K, Gelman A, Doswell F, Sadar F, Giovannetti A, Gershenson J, Khan A, Nicholson J, Huang Z, Spurgat M, Tang SJ, Wang H, Ojima I, Carlson D, Komatsu DE, Kaczocha M. Fatty acid binding protein 5 inhibition attenuates pronociceptive cytokine/chemokine expression and suppresses osteoarthritis pain: A comparative human and rat study. Osteoarthritis Cartilage 2024; 32:266-280. [PMID: 38035977 PMCID: PMC11283882 DOI: 10.1016/j.joca.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is often accompanied by debilitating pain that is refractory to available analgesics due in part to the complexity of signaling molecules that drive OA pain and our inability to target these in parallel. Fatty acid binding protein 5 (FABP5) is a lipid chaperone that regulates inflammatory pain; however, its contribution to OA pain has not been characterized. DESIGN This combined clinical and pre-clinical study utilized synovial tissues obtained from subjects with end-stage OA and rats with monoiodoacetate-induced OA. Cytokine and chemokine release from human synovia incubated with a selective FABP5 inhibitor was profiled with cytokine arrays and ELISA. Immunohistochemical analyses were conducted for FABP5 in human and rat synovium. The efficacy of FABP5 inhibitors on pain was assessed in OA rats using incapacitance as an outcome. RNA-seq was then performed to characterize the transcriptomic landscape of synovial gene expression in OA rats treated with FABP5 inhibitor or vehicle. RESULTS FABP5 was expressed in human synovium and FABP5 inhibition reduced the secretion of pronociceptive cytokines (interleukin-6 [IL6], IL8) and chemokines (CCL2, CXCL1). In rats, FABP5 was upregulated in the OA synovium and its inhibition alleviated incapacitance. The transcriptome of the rat OA synovium exhibited >6000 differentially expressed genes, including the upregulation of numerous pronociceptive cytokines and chemokines. FABP5 inhibition blunted the upregulation of the majority of these pronociceptive mediators. CONCLUSIONS FABP5 is expressed in the OA synovium and its inhibition suppresses pronociceptive signaling and pain, indicating that FABP5 inhibitors may constitute a novel class of analgesics to treat OA.
Collapse
Affiliation(s)
- Chris Gordon
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - James Trainor
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Rohan J Shah
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Keith Studholme
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Alex Gelman
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Faniya Doswell
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Faisal Sadar
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Allessio Giovannetti
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Josh Gershenson
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Ayesha Khan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - James Nicholson
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - ZeYu Huang
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Michael Spurgat
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Shao-Jun Tang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Hehe Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - David Carlson
- Genomics Core Facility and Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, NY, USA
| | - David E Komatsu
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
32
|
Pandey A, Singla M, Geller A, Goodman SB, Bhutani N. Targeting an inflammation-amplifying cell population can attenuate osteoarthritis-associated pain. Arthritis Res Ther 2024; 26:53. [PMID: 38368390 PMCID: PMC10874031 DOI: 10.1186/s13075-024-03284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Understanding of pain in osteoarthritis, its genesis, and perception is still in its early stages. Identification of precise ligand-receptor pairs that transduce pain and the cells and tissues in which they reside will elucidate new therapeutic approaches for pain management. Our recent studies had identified an inflammation-amplifying (Inf-A) cell population that is expanded in human OA cartilage and is distinctive in the expression of both IL1R1 and TNF-R2 receptors and active Jnk signaling cascade. METHODS In this study, we have tested the function of the cartilage-resident IL1R1+TNF-R2+ Inf-A cells in OA. We have identified that the IL1R1+TNF-R2+ Inf-A cells expand in aged mice as well as after anterior cruciate ligament tear upon tibia loading and OA initiation in mice. We targeted and modulated the Jnk signaling cascade in InfA through competitive inhibition of Jnk signaling in mice and human OA explants and tested the effects on joint structure and gait in mice. RESULTS Modulation of Jnk signaling led to attenuation of inflammatory cytokines CCL2 and CCL7 without showing any structural improvements in the joint architecture. Interestingly, Jnk inhibition and lowered CCL2 and 7 are sufficient to significantly improve the gait parameters in treated PTOA mice demonstrating reduced OA-associated pain. Consistent with the mice data, treatment with JNK inhibitor did not improve human OA cartilage explants. CONCLUSION These studies demonstrate that Inf-A, an articular-cartilage resident cell population, contributes to pain in OA via secretion of CCL2 and 7 and can be targeted via inhibition of Jnk signaling.
Collapse
Affiliation(s)
- Akshay Pandey
- Department of Orthopaedic Surgery, Stanford School of Medicine, 240, Pasteur Drive, Biomedical Innovations Bldg, Stanford, CA, 94034, USA
| | - Mamta Singla
- Department of Orthopaedic Surgery, Stanford School of Medicine, 240, Pasteur Drive, Biomedical Innovations Bldg, Stanford, CA, 94034, USA
| | - Ana Geller
- Department of Orthopaedic Surgery, Stanford School of Medicine, 240, Pasteur Drive, Biomedical Innovations Bldg, Stanford, CA, 94034, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford School of Medicine, 240, Pasteur Drive, Biomedical Innovations Bldg, Stanford, CA, 94034, USA
| | - Nidhi Bhutani
- Department of Orthopaedic Surgery, Stanford School of Medicine, 240, Pasteur Drive, Biomedical Innovations Bldg, Stanford, CA, 94034, USA.
| |
Collapse
|
33
|
Lund H, Hunt MA, Kurtović Z, Sandor K, Kägy PB, Fereydouni N, Julien A, Göritz C, Vazquez-Liebanas E, Andaloussi Mäe M, Jurczak A, Han J, Zhu K, Harris RA, Lampa J, Graversen JH, Etzerodt A, Haglund L, Yaksh TL, Svensson CI. CD163+ macrophages monitor enhanced permeability at the blood-dorsal root ganglion barrier. J Exp Med 2024; 221:e20230675. [PMID: 38117255 PMCID: PMC10733632 DOI: 10.1084/jem.20230675] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/04/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163+ macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.
Collapse
Affiliation(s)
- Harald Lund
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew A. Hunt
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zerina Kurtović
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paul B. Kägy
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Noah Fereydouni
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anais Julien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Vazquez-Liebanas
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jinming Han
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Keying Zhu
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A. Harris
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jon Lampa
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lisbet Haglund
- Division of Orthopaedic Surgery, Department of Surgery, McGill University, Montreal, Canada
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Martin Gil C, Raoof R, Versteeg S, Willemen HLDM, Lafeber FPJG, Mastbergen SC, Eijkelkamp N. Myostatin and CXCL11 promote nervous tissue macrophages to maintain osteoarthritis pain. Brain Behav Immun 2024; 116:203-215. [PMID: 38070625 DOI: 10.1016/j.bbi.2023.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Pain is the most debilitating symptom of knee osteoarthritis (OA) that can even persist after total knee replacement. The severity and duration of pain do not correlate well with joint tissue alterations, suggesting other mechanisms may drive pain persistence in OA. Previous work identified that macrophages accumulate in the dorsal root ganglia (DRG) containing the somas of sensory neurons innervating the injured knee joint in a mouse OA model and acquire a M1-like phenotype to maintain pain. Here we aimed to unravel the mechanisms that govern DRG macrophage accumulation and programming. The accumulation of F4/80+iNOS+ (M1-like) DRG macrophages was detectable at day 3 after mono-iodoacetate (MIA)-induced OA in the mouse. Depletion of macrophages prior to induction of OA resolved pain-like behaviors by day 7 without affecting the initial development of pain-like behaviors. Analysis of DRG transcript identified CXCL11 and myostatin. CXCL11 and myostatin were increased at 3 weeks post OA induction, with CXCL11 expression partially localized in satellite glial cells and myostatin in sensory neurons. Blocking CXCL11 or myostatin prevented the persistence of OA pain, without affecting the initiation of pain. CXCL11 neutralization reduced the number of total and F4/80+iNOS+ DRG macrophages, whilst myostatin inhibition diminished the programming of F4/80+iNOS+ DRG macrophages. Intrathecal injection of recombinant CXCL11 did not induce pain-associated behaviors. In contrast, intrathecal myostatin increased the number of F4/80+iNOS+ DRG macrophages concurrent with the development of mechanical hypersensitivity that was prevented by macrophages depletion or CXCL11 blockade. Finally, myostatin inhibition during established OA, resolved pain and F4/80+iNOS+ macrophage accumulation in the DRG. In conclusion, DRG macrophages maintain OA pain, but are not required for the induction of OA pain. Myostatin is a key ligand in neuro-immune communication that drives the persistence of pain in OA through nervous tissue macrophages and represent a novel therapeutic target for the treatment of OA pain.
Collapse
Affiliation(s)
- Christian Martin Gil
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ramin Raoof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hanneke L D M Willemen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Floris P J G Lafeber
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Simon C Mastbergen
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
35
|
Wang S, Jiang C, Cao K, Li R, Gao Z, Wang Y. HK2 in microglia and macrophages contribute to the development of neuropathic pain. Glia 2024; 72:396-410. [PMID: 37909251 DOI: 10.1002/glia.24482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Neuropathic pain is a complex pain condition accompanied by prominent neuroinflammation involving activation of both central and peripheral immune cells. Metabolic switch to glycolysis is an important feature of activated immune cells. Hexokinase 2 (HK2), a key glycolytic enzyme enriched in microglia, has recently been shown important in regulating microglial functions. Whether and how HK2 is involved in neuropathic pain-related neuroinflammation remains unknown. Using a HK2-tdTomato reporter line, we found that HK2 was prominently elevated in spinal microglia. Pharmacological inhibition of HK2 effectively alleviated nerve injury-induced acute mechanical pain. However, selective ablation of Hk2 in microglia reduced microgliosis in the spinal dorsal horn (SDH) with little analgesic effects. Further analyses showed that nerve injury also significantly induced HK2 expression in dorsal root ganglion (DRG) macrophages. Deletion of Hk2 in myeloid cells, including both DRG macrophages and spinal microglia, led to the alleviation of mechanical pain during the first week after injury, along with attenuated microgliosis in the ipsilateral SDH, macrophage proliferation in DRGs, and suppressed inflammatory responses in DRGs. These data suggest that HK2 plays an important role in regulating neuropathic pain-related immune cell responses at acute phase and that HK2 contributes to neuropathic pain onset primarily through peripheral monocytes and DRG macrophages rather than spinal microglia.
Collapse
Affiliation(s)
- Siyuan Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Jiang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelei Cao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Frontier Research Center of Brain & Brain-machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Run Li
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Frontier Research Center of Brain & Brain-machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Xu J, Huang P, Bie B, Dai Y, Ben-Salem S, Borjini N, Zhang L, Chen J, Olman M, Cheng J, Lin F. Complement Receptor C3aR1 Contributes to Paclitaxel-Induced Peripheral Neuropathic Pain in Mice and Rats. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1736-1746. [PMID: 37861348 PMCID: PMC10841827 DOI: 10.4049/jimmunol.2300252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Cancer chemotherapy-induced neuropathic pain is a devastating pain syndrome without effective therapies. We previously reported that rats deficient in complement C3, the central component of complement activation cascade, showed a reduced degree of paclitaxel-induced mechanical allodynia (PIMA), suggesting that complement is integrally involved in the pathogenesis of this model. However, the underlying mechanism was unclear. Complement activation leads to the production of C3a, which mediates inflammation through its receptor C3aR1. In this article, we report that the administration of paclitaxel induced a significantly higher expression level of C3aR1 on dorsal root ganglion (DRG) macrophages and expansion of these macrophages in DRGs in wild-type (WT) compared with in C3aR1 knockout (KO) mice. We also found that paclitaxel induced less severe PIMA, along with a reduced DRG expression of transient receptor potential channels of the vanilloid subtype 4 (TRPV4), an essential mediator for PIMA, in C3aR1 KO than in WT mice. Treating WT mice or rats with a C3aR1 antagonist markedly attenuated PIMA in association with downregulated DRG TRPV4 expression, reduced DRG macrophages expansion, suppressed DRG neuron hyperexcitability, and alleviated peripheral intraepidermal nerve fiber loss. Administration of C3aR1 antagonist to TRPV4 KO mice further protected them from PIMA. These results suggest that complement regulates PIMA development through C3aR1 to upregulate TRPV4 on DRG neurons and promote DRG macrophage expansion. Targeting C3aR1 could be a novel therapeutic approach to alleviate this debilitating pain syndrome.
Collapse
Affiliation(s)
- Jijun Xu
- Department of Pain Management, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
- Department of Inflammation and Immunity, 9500 Euclid Ave., Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ping Huang
- Department of Inflammation and Immunity, 9500 Euclid Ave., Cleveland Clinic, Cleveland, OH 44195, USA
| | - Bihua Bie
- Department of Pain Management, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Yang Dai
- Department of Inflammation and Immunity, 9500 Euclid Ave., Cleveland Clinic, Cleveland, OH 44195, USA
| | - Salma Ben-Salem
- Department of Inflammation and Immunity, 9500 Euclid Ave., Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nozha Borjini
- Department of Inflammation and Immunity, 9500 Euclid Ave., Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lingjun Zhang
- Department of Inflammation and Immunity, 9500 Euclid Ave., Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jin Chen
- Department of Inflammation and Immunity, 9500 Euclid Ave., Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mitchell Olman
- Department of Inflammation and Immunity, 9500 Euclid Ave., Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jianguo Cheng
- Department of Pain Management, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
- Department of Neurosciences, 9500 Euclid Ave., Cleveland Clinic, Cleveland, OH 44195, USA
| | - Feng Lin
- Department of Inflammation and Immunity, 9500 Euclid Ave., Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
37
|
Zhang Y, Ji Q. Macrophage polarization in osteoarthritis progression: a promising therapeutic target. Front Cell Dev Biol 2023; 11:1269724. [PMID: 37954210 PMCID: PMC10639142 DOI: 10.3389/fcell.2023.1269724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Osteoarthritis (OA) is one of the leading causes of pain and disability in the elderly. Synovitis, cartilage destruction and osteophyte formation histologically manifest OA. Unfortunately, there is currently no effective therapy to delay its progression and the underlying mechanisms of OA require further exploration. Macrophage is a main cellular component of joint synovium. It is highly plastic and can be stimulated to polarize to different phenotypes, namely, the pro-inflammatory phenotype (M1) and the anti-inflammatory/tissue-repairing phenotype (M2). Ample evidence has demonstrated the vital roles of macrophages in the progression of OA. Imbalanced M1/M2 ratio is significantly related to OA severity indicating macrophage polarization might be a promising therapeutic target for OA. In this review, we summarized the involvements of polarized macrophages in synovitis, cartilage degradation, osteophyte formation and OA-related chronic pain. Promising therapies targeting macrophage polarization including the intra-articular cell/derivates-based therapy and the alternative non-invasive intervention such as photobiomodulation therapy were reviewed as well.
Collapse
Affiliation(s)
| | - Quanbo Ji
- Department of Orthopedics, The General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
38
|
Fuller AM, Luiz A, Tian N, Arcangeletti M, Iseppon F, Sexton JE, Millet Q, Caxaria S, Ketabi N, Celik P, Wood JN, Sikandar S. Gate control of sensory neurotransmission in peripheral ganglia by proprioceptive sensory neurons. Brain 2023; 146:4033-4039. [PMID: 37249190 PMCID: PMC10549771 DOI: 10.1093/brain/awad182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/12/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Melzak and Wall's gate control theory proposed that innocuous input into the dorsal horn of the spinal cord represses pain-inducing nociceptive input. Here we show that input from proprioceptive parvalbumin-expressing sensory neurons tonically represses nociceptor activation within dorsal root ganglia. Deletion of parvalbumin-positive sensory neurons leads to enhanced nociceptor activity measured with GCaMP3, increased input into wide dynamic range neurons of the spinal cord and increased acute and spontaneous pain behaviour, as well as potentiated innocuous sensation. Parvalbumin-positive sensory neurons express the enzymes and transporters necessary to produce vesicular GABA that is known to be released from depolarized somata. These observations support the view that gate control mechanisms occur peripherally within dorsal root ganglia.
Collapse
Affiliation(s)
- Alice M Fuller
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Ana Luiz
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Naxi Tian
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Manuel Arcangeletti
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Federico Iseppon
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Jane E Sexton
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Queensta Millet
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Sara Caxaria
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Niloofar Ketabi
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Petek Celik
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - John N Wood
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Shafaq Sikandar
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
39
|
Geraghty T, Obeidat AM, Ishihara S, Wood MJ, Li J, Lopes EBP, Scanzello CR, Griffin TM, Malfait AM, Miller RE. Age-Associated Changes in Knee Osteoarthritis, Pain-Related Behaviors, and Dorsal Root Ganglia Immunophenotyping of Male and Female Mice. Arthritis Rheumatol 2023; 75:1770-1780. [PMID: 37096632 PMCID: PMC10543384 DOI: 10.1002/art.42530] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a leading cause of chronic pain, yet OA pain management remains poor. Age is the strongest predictor of OA development, and mechanisms driving OA pain are unclear. We undertook this study to characterize age-associated changes in knee OA, pain-related behaviors, and dorsal root ganglion (DRG) molecular phenotypes in mice of both sexes. METHODS Male or female C57BL/6 mice 6 or 20 months of age were evaluated for histopathologic knee OA, pain-related behaviors, and L3-L5 DRG immune characterization via flow cytometry. DRG gene expression in older mice and humans was also examined. RESULTS Male mice at 20 months of age had worse cartilage degeneration than 6-month-old mice. Older female mouse knees showed increased cartilage degeneration but to a lesser degree than those of male mice. Older mice of both sexes had worse mechanical allodynia, knee hyperalgesia, and grip strength compared to younger mice. For both sexes, DRGs from older mice showed decreased CD45+ cells and a significant increase in F4/80+ macrophages and CD11c+ dendritic cells. Older male mouse DRGs showed increased expression of Ccl2 and Ccl5, and older female mouse DRGs showed increased Cxcr4 and Ccl3 expression compared to 6-month-old mouse DRGs, among other differentially expressed genes. Human DRG analysis from 6 individuals >80 years of age revealed elevated CCL2 in men compared to women, whereas CCL3 was higher in DRGs from women. CONCLUSION We found that aging in male and female mice is accompanied by mild knee OA, mechanical sensitization, and changes to immune cell populations in the DRG, suggesting novel avenues for development of OA therapies.
Collapse
Affiliation(s)
- Terese Geraghty
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | - Alia M. Obeidat
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | - Shingo Ishihara
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | - Matthew J. Wood
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | - Jun Li
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | | | - Carla R. Scanzello
- Department of Medicine, Division of Rheumatology, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corp. Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Timothy M. Griffin
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- OKC Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | - Rachel E. Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
40
|
Li Q, Mathena RP, Li F, Dong X, Guan Y, Mintz CD. Effects of Early Exposure to Isoflurane on Susceptibility to Chronic Pain Are Mediated by Increased Neural Activity Due to Actions of the Mammalian Target of the Rapamycin Pathway. Int J Mol Sci 2023; 24:13760. [PMID: 37762067 PMCID: PMC10530853 DOI: 10.3390/ijms241813760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Patients who have undergone surgery in early life may be at elevated risk for suffering neuropathic pain in later life. The risk factors for this susceptibility are not fully understood. Here, we used a mouse chronic pain model to test the hypothesis that early exposure to the general anesthetic (GA) Isoflurane causes cellular and molecular alterations in dorsal spinal cord (DSC) and dorsal root ganglion (DRG) that produces a predisposition to neuropathic pain via an upregulation of the mammalian target of the rapamycin (mTOR) signaling pathway. Mice were exposed to isoflurane at postnatal day 7 (P7) and underwent spared nerve injury at P28 which causes chronic pain. Selected groups were treated with rapamycin, an mTOR inhibitor, for eight weeks. Behavioral tests showed that early isoflurane exposure enhanced susceptibility to chronic pain, and rapamycin treatment improved outcomes. Immunohistochemistry, Western blotting, and q-PCR indicated that isoflurane upregulated mTOR expression and neural activity in DSC and DRG. Accompanying upregulation of mTOR and rapamycin-reversible changes in chronic pain-associated markers, including N-cadherin, cAMP response element-binding protein (CREB), purinergic P2Y12 receptor, glial fibrillary acidic protein (GFAP) in DSC; and connexin 43, phospho-extracellular signal-regulated kinase (p-ERK), GFAP, Iba1 in DRG, were observed. We concluded that early GA exposure, at least with isoflurane, alters the development of pain circuits such that mice are subsequently more vulnerable to chronic neuropathic pain states.
Collapse
Affiliation(s)
- Qun Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.P.M.); (F.L.); (Y.G.)
| | - Reilley Paige Mathena
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.P.M.); (F.L.); (Y.G.)
| | - Fengying Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.P.M.); (F.L.); (Y.G.)
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience and Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.P.M.); (F.L.); (Y.G.)
| | - Cyrus David Mintz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.P.M.); (F.L.); (Y.G.)
| |
Collapse
|
41
|
Zhao W, Ma L, Deng D, Zhang T, Han L, Xu F, Huang S, Ding Y, Chen X. M2 macrophage polarization: a potential target in pain relief. Front Immunol 2023; 14:1243149. [PMID: 37705982 PMCID: PMC10497114 DOI: 10.3389/fimmu.2023.1243149] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Pain imposes a significant urden on patients, affecting them physically, psychologically, and economically. Despite numerous studies on the pathogenesis of pain, its clinical management remains suboptimal, leading to the under-treatment of many pain patients. Recently, research on the role of macrophages in pain processes has been increasing, offering potential for novel therapeutic approaches. Macrophages, being indispensable immune cells in the innate immune system, exhibit remarkable diversity and plasticity. However, the majority of research has primarily focused on the contributions of M1 macrophages in promoting pain. During the late stage of tissue damage or inflammatory invasion, M1 macrophages typically transition into M2 macrophages. In recent years, growing evidence has highlighted the role of M2 macrophages in pain relief. In this review, we summarize the mechanisms involved in M2 macrophage polarization and discuss their emerging roles in pain relief. Notably, M2 macrophages appear to be key players in multiple endogenous pathways that promote pain relief. We further analyze potential pathways through which M2 macrophages may alleviate pain.
Collapse
Affiliation(s)
- Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| |
Collapse
|
42
|
Zhang L, Liu J, Zhou C. Current aspects of small extracellular vesicles in pain process and relief. Biomater Res 2023; 27:78. [PMID: 37563666 PMCID: PMC10416402 DOI: 10.1186/s40824-023-00417-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
Small extracellular vesicles (sEVs) have been identified as a noteworthy paracrine mechanism of intercellular communication in diagnosing and managing neurological disorders. Current research suggests that sEVs play a pivotal role in the pathological progression of pain, emphasizing their critical function in the pathological progression of pain in acute and chronic pain models. By facilitating the transfer of diverse molecules, such as proteins, nucleic acids, and metabolites, sEVs can modulate pain signaling transmission in both the central and peripheral nervous systems. Furthermore, the unique molecules conveyed by sEVs in pain disorders indicate their potential as diagnostic biomarkers. The application of sEVs derived from mesenchymal stem cells (MSCs) in regenerative pain medicine has emerged as a promising strategy for pain management. Moreover, modified sEVs have garnered considerable attention in the investigation of pathological processes and therapeutic interventions. This review presents a comprehensive overview of the current knowledge regarding the involvement of sEVs in pain pathogenesis and treatment. Nevertheless, additional research is imperative to facilitate their clinical implementation. Schematic diagram of sEVs in the biogenesis, signal transmission, diagnosis, and treatment of pain disorders. Small extracellular vesicles (sEVs) are secreted by multiple cells, loading with various biomolecules, such as miRNAs, transmembrane proteins, and amino acids. They selectively target other cells and regulating pain signal transmission. The composition of sEVs can serve as valuable biomarkers for pain diagnosis. In particular, mesenchymal stem cell-derived sEVs have shown promise as regenerative medicine for managing multiple pain disorders. Furthermore, by modifying the structure or contents of sEVs, they could potentially be used as a potent analgesic method.
Collapse
Affiliation(s)
- Lanyu Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia & Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
43
|
Zhao J, Huh Y, Bortsov A, Diatchenko L, Ji RR. Immunotherapies in chronic pain through modulation of neuroimmune interactions. Pharmacol Ther 2023; 248:108476. [PMID: 37307899 PMCID: PMC10527194 DOI: 10.1016/j.pharmthera.2023.108476] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
It is generally believed that immune activation can elicit pain through production of inflammatory mediators that can activate nociceptive sensory neurons. Emerging evidence suggests that immune activation may also contribute to the resolution of pain by producing distinct pro-resolution/anti-inflammatory mediators. Recent research into the connection between the immune and nervous systems has opened new avenues for immunotherapy in pain management. This review provides an overview of the most utilized forms of immunotherapies (e.g., biologics) and highlight their potential for immune and neuronal modulation in chronic pain. Specifically, we discuss pain-related immunotherapy mechanisms that target inflammatory cytokine pathways, the PD-L1/PD-1 pathway, and the cGAS/STING pathway. This review also highlights cell-based immunotherapies targeting macrophages, T cells, neutrophils and mesenchymal stromal cells for chronic pain management.
Collapse
Affiliation(s)
- Junli Zhao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrey Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC H3A 0G4, Canada; Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0G4, Canada
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
44
|
Valdrighi N, Blom AB, Vago JP, van Beuningen HM, Vitters EL, Helsen MM, Walgreen B, Arntz OJ, Koenders MI, van der Kraan PM, Blaney Davidson EN, van de Loo FAJ. Innate Immunity and Sex: Distinct Inflammatory Profiles Associated with Murine Pain in Acute Synovitis. Cells 2023; 12:1913. [PMID: 37508577 PMCID: PMC10378550 DOI: 10.3390/cells12141913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Joint pain severity in arthritic diseases differs between sexes and is often more pronounced in women. This disparity is thought to stem from biological mechanisms, particularly innate immunity, yet the understanding of sex-specific differences in arthritic pain remains incomplete. This study aims to investigate these disparities using an innate immunity-driven inflammation model induced by intra-articular injections of Streptococcus Cell Wall fragments to mimic both acute and pre-sensitized joint conditions. Nociceptive behavior was evaluated via gait analysis and static weight-bearing, and inflammation was evaluated via joint histology and the synovial gene expression involved in immune response. Although acute inflammation and pain severity were comparable between sexes, distinct associations between synovial inflammatory gene expression and static nociceptive behavior emerged. These associations delineated sex-specific relationships with pain, highlighting differential gene interactions (Il6 versus Cybb on day 1 and Cyba/Gas6 versus Nos2 on day 8) between sexes. In conclusion, our study found that, despite similar pain severity between sexes, the association of inflammatory synovial genes revealed sex-specific differences in the molecular inflammatory mechanisms underlying pain. These findings suggest a path towards more personalized treatment strategies for pain management in arthritis and other inflammatory joint diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Fons A. J. van de Loo
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands; (N.V.); (A.B.B.); (J.P.V.); (H.M.v.B.); (E.L.V.); (M.M.H.); (B.W.); (O.J.A.); (M.I.K.); (P.M.v.d.K.); (E.N.B.D.)
| |
Collapse
|
45
|
Yaksh TL, Santos GGD, Borges Paes Lemes J, Malange K. Neuraxial drug delivery in pain management: An overview of past, present, and future. Best Pract Res Clin Anaesthesiol 2023; 37:243-265. [PMID: 37321769 DOI: 10.1016/j.bpa.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 06/17/2023]
Abstract
Activation of neuraxial nociceptive linkages leads to a high level of encoding of the message that is transmitted to the brain and that can initiate a pain state with its attendant emotive covariates. As we review here, the encoding of this message is subject to a profound regulation by pharmacological targeting of dorsal root ganglion and dorsal horn systems. Though first shown with the robust and selective modulation by spinal opiates, subsequent work has revealed the pharmacological and biological complexity of these neuraxial systems and points to several regulatory targets. Novel therapeutic delivery platforms, such as viral transfection, antisense and targeted neurotoxins, point to disease-modifying approaches that can selectively address the acute and chronic pain phenotype. Further developments are called for in delivery devices to enhance local distribution and to minimize concentration gradients, as frequently occurs with the poorly mixed intrathecal space. The field has advanced remarkably since the mid-1970s, but these advances must always address the issues of safety and tolerability of neuraxial therapy.
Collapse
Affiliation(s)
- Tony L Yaksh
- Department of Anesthesiology University of California, San Diego, San Diego CA, 92103, USA.
| | | | | | - Kaue Malange
- Department of Anesthesiology University of California, San Diego, San Diego CA, 92103, USA
| |
Collapse
|
46
|
Serafini RA, Frere JJ, Zimering J, Giosan IM, Pryce KD, Golynker I, Panis M, Ruiz A, tenOever BR, Zachariou V. SARS-CoV-2 airway infection results in the development of somatosensory abnormalities in a hamster model. Sci Signal 2023; 16:eade4984. [PMID: 37159520 PMCID: PMC10422867 DOI: 10.1126/scisignal.ade4984] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/06/2023] [Indexed: 05/11/2023]
Abstract
Although largely confined to the airways, SARS-CoV-2 infection has been associated with sensory abnormalities that manifest in both acute and chronic phenotypes. To gain insight on the molecular basis of these sensory abnormalities, we used the golden hamster model to characterize and compare the effects of infection with SARS-CoV-2 and influenza A virus (IAV) on the sensory nervous system. We detected SARS-CoV-2 transcripts but no infectious material in the cervical and thoracic spinal cord and dorsal root ganglia (DRGs) within the first 24 hours of intranasal virus infection. SARS-CoV-2-infected hamsters exhibited mechanical hypersensitivity that was milder but prolonged compared with that observed in IAV-infected hamsters. RNA sequencing analysis of thoracic DRGs 1 to 4 days after infection suggested perturbations in predominantly neuronal signaling in SARS-CoV-2-infected animals as opposed to type I interferon signaling in IAV-infected animals. Later, 31 days after infection, a neuropathic transcriptome emerged in thoracic DRGs from SARS-CoV-2-infected animals, which coincided with SARS-CoV-2-specific mechanical hypersensitivity. These data revealed potential targets for pain management, including the RNA binding protein ILF3, which was validated in murine pain models. This work elucidates transcriptomic signatures in the DRGs triggered by SARS-CoV-2 that may underlie both short- and long-term sensory abnormalities.
Collapse
Affiliation(s)
- Randal A. Serafini
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Justin J. Frere
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jeffrey Zimering
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ilinca M. Giosan
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kerri D. Pryce
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ilona Golynker
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Maryline Panis
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anne Ruiz
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin R. tenOever
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Venetia Zachariou
- Nash Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
47
|
Haberberger RV, Kuramatilake J, Barry CM, Matusica D. Ultrastructure of dorsal root ganglia. Cell Tissue Res 2023:10.1007/s00441-023-03770-w. [PMID: 37079097 PMCID: PMC10115609 DOI: 10.1007/s00441-023-03770-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/28/2023] [Indexed: 04/21/2023]
Abstract
Dorsal root ganglia (DRG) contains thousands of sensory neurons that transmit information about our external and internal environment to the central nervous system. This includes signals related to proprioception, temperature, and nociception. Our understanding of DRG has increased tremendously over the last 50 years and has established the DRG as an active participant in peripheral processes. This includes interactions between neurons and non-neuronal cells such as satellite glia cells and macrophages that contribute to an increasingly complex cellular environment that modulates neuronal function. Early ultrastructural investigations of the DRG have described subtypes of sensory neurons based on differences in the arrangement of organelles such as the Golgi apparatus and the endoplasmic reticulum. The neuron-satellite cell complex and the composition of the axon hillock in DRG have also been investigated, but, apart from basic descriptions of Schwann cells, ultrastructural investigations of other cell types in DRG are limited. Furthermore, detailed descriptions of key components of DRG, such as blood vessels and the capsule that sits at the intersection of the meninges and the connective tissue covering the peripheral nervous system, are lacking to date. With rising interest in DRG as potential therapeutic targets for aberrant signalling associated with chronic pain conditions, gaining further insights into DRG ultrastructure will be fundamental to understanding cell-cell interactions that modulate DRG function. In this review, we aim to provide a synopsis of the current state of knowledge on the ultrastructure of the DRG and its components, as well as to identify areas of interest for future studies.
Collapse
Affiliation(s)
- Rainer Viktor Haberberger
- Division of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, Australia.
| | - Jaliya Kuramatilake
- Division of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Christine M Barry
- Anatomy, Histology & Pathology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Dusan Matusica
- Anatomy, Histology & Pathology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
48
|
Madar J, Tiwari N, Smith C, Sharma D, Shen S, Elmahdi A, Qiao LY. Piezo2 regulates colonic mechanical sensitivity in a sex specific manner in mice. Nat Commun 2023; 14:2158. [PMID: 37061508 PMCID: PMC10105732 DOI: 10.1038/s41467-023-37683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/27/2023] [Indexed: 04/17/2023] Open
Abstract
The mechanosensitive ion channel Piezo2 in mucosa and primary afferents transduces colonic mechanical sensation. Here we show that chemogenetic activation or nociceptor-targeted deletion of Piezo2 is sufficient to regulate colonic mechanical sensitivity in a sex dependent manner. Clozapine N-oxide-induced activation of Piezo2;hM3Dq-expressing sensory neurons evokes colonic hypersensitivity in male mice, and causes dyspnea in female mice likely due to effects on lung sensory neurons. Activation of Piezo2-expressing colonic afferent neurons also induces colonic hypersensitivity in male but not female mice. Piezo2 levels in nociceptive neurons are higher in female than in male mice. We also show that Piezo2 conditional deletion from nociceptive neurons increases body weight growth, slows colonic transits, and reduces colonic mechanosensing in female but not male mice. Piezo2 deletion blocks colonic hypersensitivity in male but not female mice. These results suggest that Piezo2 in nociceptive neurons mediates innocuous colonic mechanosensing in female mice and painful sensation in male mice, suggesting a sexual dimorphism of Piezo2 function in the colonic sensory system.
Collapse
Affiliation(s)
- Jonathan Madar
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Namrata Tiwari
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Cristina Smith
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Divya Sharma
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Shanwei Shen
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Alsiddig Elmahdi
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Liya Y Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
49
|
Su CJ, Zhang JT, Zhao FL, Xu DL, Pan J, Liu T. Resolvin D1/N-formyl peptide receptor 2 ameliorates paclitaxel-induced neuropathic pain through the activation of IL-10/Nrf2/HO-1 pathway in mice. Front Immunol 2023; 14:1091753. [PMID: 36993950 PMCID: PMC10040838 DOI: 10.3389/fimmu.2023.1091753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionPaclitaxel is a chemotherapy drug that is commonly used to treat cancer, but it can cause paclitaxel-induced neuropathic pain (PINP) as a side effect. Resolvin D1 (RvD1) has been shown to be effective in promoting the resolution of inflammation and chronic pain. In this study, we evaluated the effects of RvD1 on PINP and its underlying mechanisms in mice.MethodsBehavioral analysis was used to assess the establishment of the PINP mouse model and to test the effects of RvD1 or other formulations on mouse pain behavior. Quantitative real-time polymerase chain reaction analysis was employed to detect the impact of RvD1 on 12/15 Lox, FPR2, and neuroinflammation in PTX-induced DRG neurons. Western blot analysis was used to examine the effects of RvD1 on FPR2, Nrf2, and HO-1 expression in DRG induced by PTX. TUNEL staining was used to detect the apoptosis of DRG neurons induced by BMDM conditioned medium. H2DCF-DA staining was used to detect the reactive oxygen species level of DRG neurons in the presence of PTX or RvD1+PTX treated BMDMs CM.ResultsExpression of 12/15-Lox was decreased in the sciatic nerve and DRG of mice with PINP, suggesting a potential involvement of RvD1 in the resolution of PINP. Intraperitoneal injection of RvD1 promoted pain resolution of PINP in mice. Intrathecal injection of PTX-treated BMDMs induced mechanical pain hypersensitivity in naïve mice, while pretreatment of RvD1 in BMDMs prevented it. Macrophage infiltration increased in the DRGs of PINP mice, but it was not affected by RvD1 treatment. RvD1 increased IL-10 expression in the DRGs and macrophages, while IL-10 neutralizing antibody abolished the analgesic effect of RvD1 on PINP. The effects of RvD1 in promoting IL-10 production were also inhibited by N-formyl peptide receptor 2 (FPR2) antagonist. The primary cultured DRG neurons apoptosis increased after stimulation with condition medium of PTX-treated BMDMs, but decreased after pretreatment with RvD1 in BMDMs. Finally, Nrf2-HO1 signaling was additionally activated in DRG neurons after stimulation with condition medium of RvD1+PTX-treated BMDMs, but these effects were abolished by FPR2 blocker or IL-10 neutralizing antibody.DiscussionIn conclusion, this study provides evidence that RvD1 may be a potential therapeutic strategy for the clinical treatment of PINP. RvD1/FPR2 upregulates IL-10 in macrophages under PINP condition, and then IL-10 activates the Nrf2- HO1 pathway in DRG neurons, relieve neuronal damage and PINP.
Collapse
Affiliation(s)
- Cun-Jin Su
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Tong Liu, ; Cun-Jin Su,
| | - Jiang-Tao Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Feng-Lun Zhao
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - De-Lai Xu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
- College of Life Sciences, Yanan University, Yanan, China
- Suzhou Key Laboratory of Intelligent Medicine and Equipment, Suzhou Medical College of Soochow University, Suzhou, China
- *Correspondence: Tong Liu, ; Cun-Jin Su,
| |
Collapse
|
50
|
Walters ET, Crook RJ, Neely GG, Price TJ, Smith ESJ. Persistent nociceptor hyperactivity as a painful evolutionary adaptation. Trends Neurosci 2023; 46:211-227. [PMID: 36610893 PMCID: PMC9974896 DOI: 10.1016/j.tins.2022.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Chronic pain caused by injury or disease of the nervous system (neuropathic pain) has been linked to persistent electrical hyperactivity of the sensory neurons (nociceptors) specialized to detect damaging stimuli and/or inflammation. This pain and hyperactivity are considered maladaptive because both can persist long after injured tissues have healed and inflammation has resolved. While the assumption of maladaptiveness is appropriate in many diseases, accumulating evidence from diverse species, including humans, challenges the assumption that neuropathic pain and persistent nociceptor hyperactivity are always maladaptive. We review studies indicating that persistent nociceptor hyperactivity has undergone evolutionary selection in widespread, albeit selected, animal groups as a physiological response that can increase survival long after bodily injury, using both highly conserved and divergent underlying mechanisms.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Robyn J Crook
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - G Gregory Neely
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|