1
|
Malliou F, Andriopoulou CE, Kofinas A, Katsogridaki A, Leondaritis G, Gonzalez FJ, Michaelidis TM, Darsinou M, Skaltsounis LA, Konstandi M. Oleuropein Promotes Neural Plasticity and Neuroprotection via PPARα-Dependent and Independent Pathways. Biomedicines 2023; 11:2250. [PMID: 37626746 PMCID: PMC10452728 DOI: 10.3390/biomedicines11082250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Oleuropein (OLE), a main constituent of olives, displays a pleiotropic beneficial dynamic in health and disease; the effects are based mainly on its antioxidant and hypolipidemic properties, and its capacity to protect the myocardium during ischemia. Furthermore, OLE activates the peroxisome proliferator-activated receptor (PPARα) in neurons and astrocytes, providing neuroprotection against noxious biological reactions that are induced following cerebral ischemia. The current study investigated the effect of OLE in the regulation of various neural plasticity indices, emphasizing the role of PPARα. For this purpose, 129/Sv wild-type (WT) and Pparα-null mice were treated with OLE for three weeks. The findings revealed that chronic treatment with OLE up-regulated the brain-derived neurotrophic factor (BDNF) and its receptor TrkB in the prefrontal cortex (PFC) of mice via activation of the ERK1/2, AKT and PKA/CREB signaling pathways. No similar effects were observed in the hippocampus. The OLE-induced effects on BDNF and TrkB appear to be mediated by PPARα, because no similar alterations were observed in the PFC of Pparα-null mice. Notably, OLE did not affect the neurotrophic factors NT3 and NT4/5 in both brain tissues. However, fenofibrate, a selective PPARα agonist, up-regulated BDNF and NT3 in the PFC of mice, whereas the drug induced NT4/5 in both brain sites tested. Interestingly, OLE provided neuroprotection in differentiated human SH-SY5Y cells against β-amyloid and H2O2 toxicity independently from PPARα activation. In conclusion, OLE and similar drugs, acting either as PPARα agonists or via PPARα independent mechanisms, could improve synaptic function/plasticity mainly in the PFC and to a lesser extent in the hippocampus, thus beneficially affecting cognitive functions.
Collapse
Affiliation(s)
- Foteini Malliou
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.M.); (C.E.A.); (A.K.); (A.K.); (G.L.)
| | - Christina E. Andriopoulou
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.M.); (C.E.A.); (A.K.); (A.K.); (G.L.)
| | - Aristeidis Kofinas
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.M.); (C.E.A.); (A.K.); (A.K.); (G.L.)
| | - Allena Katsogridaki
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.M.); (C.E.A.); (A.K.); (A.K.); (G.L.)
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.M.); (C.E.A.); (A.K.); (A.K.); (G.L.)
- Institute of Biosciences (I.BS.), University Research Center of Ioannina (U.R.C.I.), 45110 Ioannina, Greece
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA;
| | - Theologos M. Michaelidis
- Department of Biological Applications & Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (T.M.M.); (M.D.)
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Marousa Darsinou
- Department of Biological Applications & Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (T.M.M.); (M.D.)
| | - Leandros A. Skaltsounis
- Department of Pharmacognosy, Faculty of Pharmacy, National and Kapodestrian University of Athens, 11527 Athens, Greece;
| | - Maria Konstandi
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.M.); (C.E.A.); (A.K.); (A.K.); (G.L.)
| |
Collapse
|
2
|
Regulation of TrkB cell surface expression-a mechanism for modulation of neuronal responsiveness to brain-derived neurotrophic factor. Cell Tissue Res 2020; 382:5-14. [PMID: 32556728 PMCID: PMC7529634 DOI: 10.1007/s00441-020-03224-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Neurotrophin signaling via receptor tyrosine kinases is essential for the development and function of the nervous system in vertebrates. TrkB activation and signaling show substantial differences to other receptor tyrosine kinases of the Trk family that mediate the responses to nerve growth factor and neurotrophin-3. Growing evidence suggests that TrkB cell surface expression is highly regulated and determines the sensitivity of neurons to brain-derived neurotrophic factor (BDNF). This translocation of TrkB depends on co-factors and modulators of cAMP levels, N-glycosylation, and receptor transactivation. This process can occur in very short time periods and the resulting rapid modulation of target cell sensitivity to BDNF could represent a mechanism for fine-tuning of synaptic plasticity and communication in complex neuronal networks. This review focuses on those modulatory mechanisms in neurons that regulate responsiveness to BDNF via control of TrkB surface expression.
Collapse
|
3
|
Manohar S, Ramchander PV, Salvi R, Seigel GM. Synaptic Reorganization Response in the Cochlear Nucleus Following Intense Noise Exposure. Neuroscience 2018; 399:184-198. [PMID: 30593923 DOI: 10.1016/j.neuroscience.2018.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
The cochlear nucleus, located in the brainstem, receives its afferent auditory input exclusively from the auditory nerve fibers of the ipsilateral cochlea. Noise-induced neurodegenerative changes occurring in the auditory nerve stimulate a cascade of neuroplastic changes in the cochlear nucleus resulting in major changes in synaptic structure and function. To identify some of the key molecular mechanisms mediating this synaptic reorganization, we unilaterally exposed rats to a high-intensity noise that caused significant hearing loss and then measured the resulting changes in a synaptic plasticity gene array targeting neurogenesis and synaptic reorganization. We compared the gene expression patterns in the dorsal cochlear nucleus (DCN) and ventral cochlear nucleus (VCN) on the noise-exposed side versus the unexposed side using a PCR gene array at 2 d (early) and 28 d (late) post-exposure. We discovered a number of differentially expressed genes, particularly those related to synaptogenesis and regeneration. Significant gene expression changes occurred more frequently in the VCN than the DCN and more changes were seen at 28 d versus 2 d post-exposure. We confirmed the PCR findings by in situ hybridization for Brain-derived neurotrophic factor (Bdnf), Homer-1, as well as the glutamate NMDA receptor Grin1, all involved in neurogenesis and plasticity. These results suggest that Bdnf, Homer-1 and Grin1 play important roles in synaptic remodeling and homeostasis in the cochlear nucleus following severe noise-induced afferent degeneration.
Collapse
Affiliation(s)
- S Manohar
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| | - P V Ramchander
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| | - R Salvi
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States.
| | - G M Seigel
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| |
Collapse
|
4
|
Ma W, Yang JW, Gao Y, Liang Z, Li XT, Wang TT, Wang XB, Liu J, Fan CM, Guo JH, Li LY. Expression pattern of high-affinity tyrosine kinase Aduring the development of human fetal spinal cord. Biotech Histochem 2017; 92:577-583. [PMID: 29264935 DOI: 10.1080/10520295.2017.1369159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
High-affinity tyrosine kinase A (TrkA) is responsible for the biological activities of nerve growth factor. Most studies of the molecular mechanisms of TrkA that underlie the development of the spinal cord have been conducted in animals and the expression pattern of TrkA during the development of the human fetal spinal cord is not well characterized. We investigated 45 3-28-week-old (G3W-G28W) human fetuses. We assessed the expression pattern of TrkA in the human fetal spinal cord using immunohistochemistry, western blot and reverse transcription polymerase chain reaction to clarify the spatiotemporal developmental changes and to determine the role TrkA plays in development. TrkA immunoreactive products were detected widely in the alar and basal plates, ependyma, glial cells, gray and white matter, internal limiting membrane, mantle layer, marginal layer, neuroepithelium and neurons during this period of development. Expression levels of TrkA mRNA and protein peaked at G12W and G16W, respectively. The strong expression of TrkA was closely related to the formation of the dorsal and ventral horns, and the differentiation of somatic motor neurons during late embryonic development. Our findings suggest that TrkA receptors play crucial roles during the development of human fetal spinal cord. The characteristic expression patterns may clarify the developmental characteristics of the human spinal cord.
Collapse
Affiliation(s)
- W Ma
- a Institute of Neuroscience, Basic Medical College, Kunming Medical University , Yunnan , Kunming
| | - J-W Yang
- a Institute of Neuroscience, Basic Medical College, Kunming Medical University , Yunnan , Kunming.,b Second Department of General Surgery , First People's Hospital of Yunnan Province , Yunnan , Kunming
| | - Y Gao
- a Institute of Neuroscience, Basic Medical College, Kunming Medical University , Yunnan , Kunming.,c Department of Pathology , Children's Hospital of Kunming City , Yunnan , Kunming
| | - Z Liang
- a Institute of Neuroscience, Basic Medical College, Kunming Medical University , Yunnan , Kunming
| | - X-T Li
- a Institute of Neuroscience, Basic Medical College, Kunming Medical University , Yunnan , Kunming
| | - T-T Wang
- a Institute of Neuroscience, Basic Medical College, Kunming Medical University , Yunnan , Kunming
| | - X-B Wang
- a Institute of Neuroscience, Basic Medical College, Kunming Medical University , Yunnan , Kunming
| | - J Liu
- b Second Department of General Surgery , First People's Hospital of Yunnan Province , Yunnan , Kunming
| | - C-M Fan
- d Department of Critical Care Medicine , First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - J-H Guo
- b Second Department of General Surgery , First People's Hospital of Yunnan Province , Yunnan , Kunming
| | - L-Y Li
- a Institute of Neuroscience, Basic Medical College, Kunming Medical University , Yunnan , Kunming
| |
Collapse
|
5
|
Appert-Collin A, Duong FHT, Passilly DeGrace P, Bennasroune A, Poindron P, Warter JM, Gies JP. Xaliproden (SR57746A) Induces 5-Ht1A Receptors-Mediated Map Kinase Activation in Pc12 Cells. Int J Immunopathol Pharmacol 2016; 18:233-44. [PMID: 15888246 DOI: 10.1177/039463200501800206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neurotrophic growth factors are involved in cell survival. However, natural growth factors have a very limited therapeutic use because of their short half-life. In the present study, we investigated the mechanism of action of a non peptidic neurotrophic drug, Xaliproden, a potential molecule for the treatment of motoneuron diseases, since the transduction pathways of this synthetic 5-HT1A agonist are very poorly understood. Xaliproden does not activate the Trk receptor but causes a rapid increase in the activities of the ERK1 and ERK2 isoforms of MAP kinase, which then rapidly decrease to the basal level. We demonstrate that isoforms of the she adapter protein are phosphorylated independently of each other and are probably not the source of the Xaliproden-induced MAP kinases activation. The inhibitor of Ras farnesylation, FPT-1, and the protein kinase C inhibitors, GF 109203X and chelerythrine, inhibited the Xaliproden-induced MAP kinase activation, suggesting p21Ras and PKC involvement. Moreover, the observations that the 5-HT1A antagonist, pindobind, and pertussis toxin abolished the Xaliproden-induced ERK stimulation suggested that Xaliproden activates the MAP kinase pathways by stimulating the G-protein-coupled receptor, 5-HT1A. These results demonstrated clearly that the non peptidic compound, Xaliproden, exerts its neurotrophic effects through a mechanism of action differing from that of neurotrophins. These findings suggest that this compound does not involve MAPK activation by TrkA receptor stimulation but acts by MAP Kinase pathway by a pertussis toxin-sensitive mechanism involving 5-HT1A receptors, p21 Ras and MEK-1 and by PKC and Akt pathways.
Collapse
Affiliation(s)
- A Appert-Collin
- Université Louis Pasteur, Faculté de Pharmacie, Laboratoire de Pathologie des Communications, Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Xiao N, Le QT. Neurotrophic Factors and Their Potential Applications in Tissue Regeneration. Arch Immunol Ther Exp (Warsz) 2015; 64:89-99. [PMID: 26611762 DOI: 10.1007/s00005-015-0376-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/02/2015] [Indexed: 12/24/2022]
Abstract
Neurotrophic factors are growth factors that can nourish neurons and promote neuron survival and regeneration. They have been studied as potential drug candidates for treating neurodegenerative diseases. Since their identification, there are more and more evidences to indicate that neurotrophic factors are also expressed in non-neuronal tissues and regulate the survival, anti-inflammation, proliferation and differentiation in these tissues. This mini review summarizes the characteristics of the neurotrophic factors and their potential clinical applications in the regeneration of neuronal and non-neuronal tissues.
Collapse
Affiliation(s)
- Nan Xiao
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA.
| | - Quynh-Thu Le
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Inoue A, Iwasaki S, Fujimoto C, Nakajima T, Yamasoba T. Developmental changes in the protective effect of exogenous brain-derived neurotrophic factor and neurotrophin-3 against ototoxic drugs in cultured rat vestibular ganglion neurons. Cell Tissue Res 2014; 356:299-308. [DOI: 10.1007/s00441-014-1813-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 01/14/2014] [Indexed: 12/13/2022]
|
8
|
Zuñiga-Aguilar E, Olayo R, Ramírez-Fernández O, Morales J, Godínez R. Nerve cells culture from lumbar spinal cord on surfaces modified by plasma pyrrole polymerization. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:729-47. [PMID: 24650203 DOI: 10.1080/09205063.2014.898124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Currently, there are several techniques for modified cell culture surfaces under research to improve cell growth and adhesion. Recently, different methods have been used for surface coating, using biomolecules that enhance cell attachment and growth of nerve cells from spinal cord, such as the use of Poly-DL-Ornithine/Laminin. Plasma-polymerized pyrrole (PPy)-treated surfaces have showed improvement on surfaces biocompatibility with the cells in culture since they do not interfere with any of the biological cell functions. In the present work, we present a novel mouse nerve cell culture technique, using PPy-treated cell culture surfaces. A comparative study of cell survival using Poly-DL-Ornithine/Laminin-treated surfaces was performed. Our results of cell survival when compared with data already reported by other investigators, show that cells cultured on the PPy-modified surface increased survival up to 21 days when compared with Poly-DL-Ornithine/Laminin-coated culture, where 8 days cell survival was obtained. There were electrical and morphological differences in the nerve cells grown in the different surfaces. By comparing the peak ion currents of Poly-DL-Ornithine/Laminin-seeded cells for 8 days with cells grown for 21 days on PPy, an increase of 516% in the Na(+) current and 127% in K(+) currents in cells seeded on PPy were observed. Immunofluorescence techniques showed the presence of cell synapses and culture viability after 21 days. Our results then showed that PPy-modified surfaces are an alternative culture method that increases nerve cells survival from lumbar spinal cord cell culture by preserving its electrical and morphological features.
Collapse
Affiliation(s)
- E Zuñiga-Aguilar
- a Department of Electrical Engineer , Division of Biomedical Engineer, Universidad Autonoma Metropolitana , Unidad Iztapalapa , A.P. 55-534 , Iztapalapa , México, D.F., Mexico
| | | | | | | | | |
Collapse
|
9
|
Aburto MR, Magariños M, Leon Y, Varela-Nieto I, Sanchez-Calderon H. AKT signaling mediates IGF-I survival actions on otic neural progenitors. PLoS One 2012; 7:e30790. [PMID: 22292041 PMCID: PMC3264639 DOI: 10.1371/journal.pone.0030790] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 12/29/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Otic neurons and sensory cells derive from common progenitors whose transition into mature cells requires the coordination of cell survival, proliferation and differentiation programmes. Neurotrophic support and survival of post-mitotic otic neurons have been intensively studied, but the bases underlying the regulation of programmed cell death in immature proliferative otic neuroblasts remains poorly understood. The protein kinase AKT acts as a node, playing a critical role in controlling cell survival and cell cycle progression. AKT is activated by trophic factors, including insulin-like growth factor I (IGF-I), through the generation of the lipidic second messenger phosphatidylinositol 3-phosphate by phosphatidylinositol 3-kinase (PI3K). Here we have investigated the role of IGF-dependent activation of the PI3K-AKT pathway in maintenance of otic neuroblasts. METHODOLOGY/PRINCIPAL FINDINGS By using a combination of organotypic cultures of chicken (Gallus gallus) otic vesicles and acoustic-vestibular ganglia, Western blotting, immunohistochemistry and in situ hybridization, we show that IGF-I-activation of AKT protects neural progenitors from programmed cell death. IGF-I maintains otic neuroblasts in an undifferentiated and proliferative state, which is characterised by the upregulation of the forkhead box M1 (FoxM1) transcription factor. By contrast, our results indicate that post-mitotic p27(Kip)-positive neurons become IGF-I independent as they extend their neuronal processes. Neurons gradually reduce their expression of the Igf1r, while they increase that of the neurotrophin receptor, TrkC. CONCLUSIONS/SIGNIFICANCE Proliferative otic neuroblasts are dependent on the activation of the PI3K-AKT pathway by IGF-I for survival during the otic neuronal progenitor phase of early inner ear development.
Collapse
Affiliation(s)
- Maria R. Aburto
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
- CIBERER, Unit 761, ISCIII, Madrid, Spain
| | - Marta Magariños
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
- CIBERER, Unit 761, ISCIII, Madrid, Spain
- Departamento de Biologia, Universidad Autonoma de Madrid, Madrid, Spain
| | - Yolanda Leon
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
- Departamento de Biologia, Universidad Autonoma de Madrid, Madrid, Spain
| | - Isabel Varela-Nieto
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
- CIBERER, Unit 761, ISCIII, Madrid, Spain
| | - Hortensia Sanchez-Calderon
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
- CIBERER, Unit 761, ISCIII, Madrid, Spain
| |
Collapse
|
10
|
Responsiveness of rat vestibular ganglion neurons to exogenous neurotrophic factors during postnatal development in dissociated cultures. Brain Res 2011; 1408:1-7. [DOI: 10.1016/j.brainres.2011.06.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/15/2011] [Accepted: 06/27/2011] [Indexed: 12/18/2022]
|
11
|
Montoya G JV, Sutachan JJ, Chan WS, Sideris A, Blanck TJJ, Recio-Pinto E. Muscle-conditioned media and cAMP promote survival and neurite outgrowth of adult spinal cord motor neurons. Exp Neurol 2009; 220:303-15. [PMID: 19747480 DOI: 10.1016/j.expneurol.2009.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 01/15/2023]
Abstract
Embryonic spinal cord motor neurons (MNs) can be maintained in vitro for weeks with a cocktail of trophic factors and muscle-derived factors under serum-containing conditions. Here we investigated the beneficial effects of muscle-derived factors in the form of muscle-conditioned medium (MCM) on the survival and neurite outgrowth of adult rat spinal cord MNs under serum-free conditions. Ventral horn dissociated cell cultures from the cervical enlargement were maintained in the presence of one or more of the following factors: brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), a cell permeant cyclic adenosine-3',5'-monophosphate (cAMP) analog and MCM. The cell cultures were immunostained with several antibodies recognizing a general neuronal marker the microtubule-associated protein 2 (MAP2) and either one or more motor neuronal markers: the non-phosphorylated neurofilament heavy isoform (SMI32), the transcription factors HB9 and Islet-1 and the choline acetyl transferase. We found that treatment with MCM together with the cAMP analog was sufficient to promote selective survival and neurite outgrowth of adult spinal cord MNs. These conditions can be used to maintain adult spinal cord MNs in dissociated cultures for several weeks and may have therapeutic potential following spinal cord injury or motor neuropathies. More studies are necessary to evaluate how MCM and the cAMP analog act in synergy to promote the survival and neurite outgrowth of adult MNs.
Collapse
Affiliation(s)
- Jose V Montoya G
- Anesthesiology Department, New York University Langone Medical Center, RR605, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Pomeroy-Black MJ, Jortner BS, Ehrich MF. Early effects of neuropathy-inducing organophosphates on in vivo concentrations of three neurotrophins. Neurotox Res 2007; 11:85-91. [PMID: 17449451 DOI: 10.1007/bf03033387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Exposure to OP compounds that inhibit neurotoxic esterase (NTE) induces a delayed neuropathy (OPIDN) characterized by Wallerian-like degeneration of long axons in certain animals, including humans. Pope et al. (Toxicol. Lett. 75:111-117, 1995) found that neurite outgrowth occurred following the addition of spinal cord extracts from chickens with active OPIDN to neuroblastoma cells, suggesting growth factor expression during the neuropathy. We hypothesized that, shortly after exposure to a neuropathic OP compound, the central nervous system (CNS) attempts to recover from the toxic insult through upregulation of the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) in susceptible regions of the nervous system. We hypothesized that such upregulation is transient and cannot be sustained. To test this hypothesis, we exposed 10-week-old chickens to a neuropathic OP compound (PSP, 2.5 mg/kg), a non-neuropathic OP compound (paraoxon, 0.10 mg/kg), and vehicle (DMSO, 0.5 ml/kg) intramuscularly. By day 8, all PSP-treated birds demonstrated clinical signs of OPIDN. We sacrificed chickens by pentobarbital overdose at 4, 8, 24, and 48 hours, and 5 and 10 days post-exposure and confirmed NTE inhibition in birds treated with PSP 4 and 24 hours earlier. Enzyme-linked immunosorbant assays indicated that NGF, BDNF, and NT-3 are found in chicken lumbar spinal cord after exposure to a neuropathic OP compound. However, exposure to the neuropathic OP compound, PSP, did not preferentially elevate levels of NGF, BDNF, and NTE compared to the non-neuropathic OP compound, paraoxon. This suggests that these neurotrophins alone do not contribute to a sustained regenerative effort in the CNS.
Collapse
Affiliation(s)
- M J Pomeroy-Black
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, 1 Duckpond Drive, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|
13
|
Brunet N, Tarabal O, Portero-Otín M, Oppenheim RW, Esquerda JE, Calderó J. Survival and death of mature avian motoneurons in organotypic slice culture: trophic requirements for survival and different types of degeneration. J Comp Neurol 2007; 501:669-90. [PMID: 17299760 DOI: 10.1002/cne.21157] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have developed an organotypic culture technique that uses slices of chick embryo spinal cord, in which trophic requirements for long-term survival of mature motoneurons (MNs) were studied. Slices were obtained from E16 chick embryos and maintained for up to 28 days in vitro (DIV) in a basal medium. Under these conditions, most MNs died. To promote MN survival, 14 different trophic factors were assayed. Among these 14, glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor were the most effective. GDNF was able to promote MN survival for at least 28 DIV. K(+) depolarization or caspase inhibition prevented MN death but also induced degenerative-like changes in rescued MNs. Agents that elevate cAMP levels promoted the survival of a proportion of MNs for at least 7 DIV. Examination of dying MNs revealed that, in addition to cells exhibiting a caspase-3-dependent apoptotic pattern, some MNs died by a caspase-3-independent mechanism and displayed autophagic vacuoles, an extremely convoluted nucleus, and a close association with microglia. This organotypic spinal cord slice culture may provide a convenient model for testing conditions that promote survival of mature-like MNs that are affected in late-onset MN disease such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Núria Brunet
- Unitat de Neurobiologia Cel.lular, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida and IRB Lleida, 25008 Lleida, Catalonia, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Gingras M, Beaulieu MM, Gagnon V, Durham HD, Berthod F. In vitro study of axonal migration and myelination of motor neurons in a three-dimensional tissue-engineered model. Glia 2007; 56:354-64. [DOI: 10.1002/glia.20617] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Frebel K, Wiese S. Signalling molecules essential for neuronal survival and differentiation. Biochem Soc Trans 2006; 34:1287-90. [PMID: 17073803 DOI: 10.1042/bst0341287] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Motoneurons are made in excess throughout development. Initial analysis of the mechanisms that lead to apoptotic cell death during later stages of development and the early postnatal period led to the discovery of neurotrophic factors. These factors comprise different families acting through different tyrosine kinase receptors. Intracellular signalling cascades that lead to the survival of neurons are, on the one hand, the Ras/Raf (Ras-activated factor)/MAPK (mitogen-activated protein kinase) pathway and, on the other, the PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B) pathway. The initial thought of these factors acting as single molecules in separate cascades has been converted into a model in which the dynamics of interaction of these pathways and the subcellular diverse functions of the key regulators have been taken into account. Bag1 (Bcl-2-associated athanogene 1), a molecule that was originally found to act as a co-chaperone of Hsp70 (heat-shock protein 70), also interacts with B-Raf, C-Raf and Akt to phosphorylate Bad (Bcl-2/Bcl-XL-antagonist, causing cell death), a pro-apoptotic member of the Bcl-2 family, and leads to specific subcellular distribution of phosphorylated Akt and B-Raf. These functions lead to survival of embryonic neural stem cells and therefore serve as a key event to regulate the viability of these cells.
Collapse
Affiliation(s)
- K Frebel
- Institute for Clinical Neurobiology, Julius-Maximilians University of Würzburg, Josef Schneider Strasse 11, D97080 Würzburg, Germany
| | | |
Collapse
|
16
|
von Bartheld CS, Fritzsch B. Comparative analysis of neurotrophin receptors and ligands in vertebrate neurons: tools for evolutionary stability or changes in neural circuits? BRAIN, BEHAVIOR AND EVOLUTION 2006; 68:157-72. [PMID: 16912469 DOI: 10.1159/000094085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To better understand the role of multiple neurotrophin ligands and their receptors in vertebrate brain evolution, we examined the distribution of trk neurotrophin receptors in representatives of several vertebrate classes. Trk receptors are largely expressed in homologous neuronal populations among different species/classes of vertebrates. In many neurons, trkB and trkC receptors are co-expressed. TrkB and trkC receptors are primarily found in neurons with more restricted, specialized dendritic and axonal fields that are thought to be involved in discriminative or 'analytical' functions. The neurotrophin receptor trkA is expressed predominantly in neurons with larger, overlapping dendritic fields with more heterogeneous connections ('integrative' or 'modulatory' systems) such as nociceptive and sympathetic autonomic nervous system, locus coeruleus and cholinergic basal forebrain. Surveys of trk receptor expression and function in the peripheral nervous system of different vertebrate classes reveal trends ranging from dependency on a single neurotrophin to a more complex dependency on increasing numbers of neurotrophins and their receptors, for example, in taste and inner ear innervation. Gene deletion studies in mice provide evidence for a complex regulation of neuronal survival of sensory ganglion cells by different neurotrophins. Although expression of neurotrophins and their receptors is predominantly conserved in most circuits, increasing diversity of neurotrophin ligands and their receptors and a more complex dependency of neurons on neurotrophins might have facilitated the formation of at least some new neuronal entities.
Collapse
|
17
|
Pitts EV, Potluri S, Hess DM, Balice-Gordon RJ. Neurotrophin and Trk-mediated signaling in the neuromuscular system. Int Anesthesiol Clin 2006; 44:21-76. [PMID: 16849956 DOI: 10.1097/00004311-200604420-00004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Song H, Moon A. Glial cell-derived neurotrophic factor (GDNF) promotes low-grade Hs683 glioma cell migration through JNK, ERK-1/2 and p38 MAPK signaling pathways. Neurosci Res 2006; 56:29-38. [PMID: 16814421 DOI: 10.1016/j.neures.2006.04.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 03/17/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
Invasion of tumor cells is the primary cause of therapeutic failure in the treatment of malignant gliomas. In an attempt to investigate the properties of the malignant progression of glioma cells, we examined the correlation between cell migration and glial cell-derived neurotrophic factor (GDNF) secretion of two glioma cell lines which differ in their invasive phenotypes. Here, we show that the high-grade C6 cells are more migrative and secrete more GDNF than the low-grade Hs683 cells. GDNF signaling is more highly activated in C6 cells than in Hs683 cells. Treatment of the Hs683 cells with GDNF significantly increased migration comparable to the C6 cells, revealing the autocrine and/or paracrine effect of GDNF on promotion of the glioma cell migration. We then examined the involvement of mitogen-activated protein kinases (MAPKs) including c-Jun N-terminal protein kinase (JNK), extracellular signal-regulated kinases (ERKs) and p38 MAPK in Hs683 cell migration induced by GDNF. A prominent activation of JNK, ERKs and p38 MAPK was observed in the GDNF-treated cells. Functional studies showed that the activation of these MAPKs was critical for Hs683 cell migration induced by GDNF. Our findings revealing molecular mechanisms for the promoting effect of GDNF on glioma cell migration may provide an insight into a better understanding to the malignant progression of human gliomas.
Collapse
Affiliation(s)
- Hyun Song
- College of Pharmacy, Duksung Women's University, 419 Ssangmun-Dong, Dobong-Gu, Seoul, Republic of Korea
| | | |
Collapse
|
19
|
Pugh PC, Zhou X, Jayakar SS, Margiotta JF. Depolarization promotes survival of ciliary ganglion neurons by BDNF-dependent and -independent mechanisms. Dev Biol 2006; 291:182-91. [PMID: 16426601 DOI: 10.1016/j.ydbio.2005.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 11/29/2005] [Accepted: 12/01/2005] [Indexed: 01/19/2023]
Abstract
Membrane activity upregulates brain derived neurotrophic factor (BDNF) expression to coordinately support neuronal survival in many systems. In parasympathetic ciliary ganglion (CG) neurons, activity mimicked by KCl depolarization provides nearly full trophic support. While BDNF has been considered unable to influence CG neuronal survival, we now document its expression during CG development and show that low concentrations do support survival via high-affinity TrkB receptors. Furthermore, a contribution of BDNF to activity-induced trophic support was demonstrated by showing that KCl depolarization increased BDNF mRNA and protein in, and release of BDNF from, CG neuron cultures. Application of anti-BDNF blocking antibody or mitogen activated protein kinase (MAPK) kinase inhibitor, attenuated depolarization-supported survival, implicating canonical BDNF/TrkB signaling. Ca2+-Calmodulin kinase II (CaMKII) was also required since its inhibition combined with anti-BDNF or MAPK kinase inhibitor abolished or greatly reduced the trophic effects of depolarization. Membrane activity may thus support CG neuronal survival both by stimulating release of BDNF that binds high-affinity TrkB receptors to activate MAPK and by recruiting CaMKII. This mechanism could have relevance late in development in vivo as ganglionic transmission and the effectiveness of BDNF over other growth factors both increase.
Collapse
Affiliation(s)
- Phyllis C Pugh
- Department of Neurosciences, Medical University of Ohio, Block HS 108, 3035 Arlington Ave., Toledo, OH 43614, USA
| | | | | | | |
Collapse
|
20
|
Yamauchi T, Sawa Y, Sakurai M, Hiroshi T, Matsumiya G, Abe K, Matsuda H. ONO-5046 attenuation of delayed motor neuron death and effect on the induction of brain-derived neurotrophic factor, phosphorylated extracellular signal–regulated kinase, and caspase3 after spinal cord ischemia in rabbits. J Thorac Cardiovasc Surg 2006; 131:644-50. [PMID: 16515918 DOI: 10.1016/j.jtcvs.2005.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2004] [Revised: 04/20/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The mechanism of spinal cord injury is believed to be related to the vulnerability of spinal motor neuron cells to ischemia. The aim of this study was to investigate whether ONO-5046, a specific inhibitor of neutrophil elastase that can attenuate tissue or organ injury in various pathologic conditions, could protect against ischemic spinal cord damage. METHODS After induction of spinal ischemia, ONO-5046 or vehicle was injected intravenously. Cell damage was analyzed by counting the number of motor neurons. To investigate the mechanism by which ONO-5046 prevents ischemic spinal cord damage, we observed the immunoreactivity of CPP32 (caspase3), brain-derived neurotrophic factor, and phosphorylated extracellular signal-regulated kinase. RESULTS ONO-5046 eased the functional deficits and increased the number of motor neurons after ischemia. The induction of caspase3 was significantly reduced by ONO-5046 treatment. Furthermore, the expressions of brain-derived neurotrophic factor and phosphorylated extracellular signal-regulated kinase were prolonged. CONCLUSION ONO-5046 may protect motor neurons from ischemic injury by reducing caspase3 and prolonging the expressions of brain-derived neurotrophic factor and phosphorylated extracellular signal-regulated kinase. ONO-5046 may be a strong candidate for use as a therapeutic agent in the treatment of ischemic spinal cord injury.
Collapse
Affiliation(s)
- Takashi Yamauchi
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Trivedi AA, Igarashi T, Compagnone N, Fan X, Hsu JYC, Hall DE, John CM, Noble-Haeusslein LJ. Suitability of allogeneic sertoli cells for ex vivo gene delivery in the injured spinal cord. Exp Neurol 2006; 198:88-100. [PMID: 16387298 DOI: 10.1016/j.expneurol.2005.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 11/15/2005] [Accepted: 11/15/2005] [Indexed: 01/21/2023]
Abstract
Cell-based gene delivery for gene therapy offers the advantages of long-term stable expression of proteins without the safety concerns associated with viral vectors. However, issues of immune rejection prevent the widespread use of allogeneic cell implants. In this study, we determine if Sertoli cells, known for their immune privileged status, are suitable vehicles for allogeneic cell-based gene delivery into the injured spinal cord. As proof of concept, Sertoli cells were modified with recombinant adenovirus expressing enhanced green fluorescent protein (eGFP) or a human trophic factor, neurotrophin-3 (hNT-3), and eGFP. Genetically modified Sertoli cells retained their immunosuppressive ability in vitro, based upon lymphocyte proliferation assays, and were capable of generating biologically relevant levels of NT-3. Similarly, modified, allogeneic cells, implanted into the acutely injured spinal cord, reduced the early inflammatory response while producing significant levels of hNT-3 for at least 3 days after grafting. Moreover, these cells survived for at least 42 days after implantation in the injured cord. Together, these results demonstrate that Sertoli cells function in immunomodulation, can be engineered to produce bioactive molecules, and show long-term survival after implantation into the hostile environment of the acutely injured spinal cord. Such long-term survival represents an important first step toward developing an optimal cell-based delivery system that generates sustained expression of a therapeutic molecule.
Collapse
Affiliation(s)
- Alpa A Trivedi
- MandalMed, Inc., 2645 Ocean Avenue, Suite 302, San Francisco, CA 94132, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kato T, Ohtani-Kaneko R, Ono K, Okado N, Shiga T. Developmental regulation of activated ERK expression in the spinal cord and dorsal root ganglion of the chick embryo. Neurosci Res 2005; 52:11-9. [PMID: 15811548 DOI: 10.1016/j.neures.2005.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 01/02/2005] [Accepted: 01/05/2005] [Indexed: 12/13/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are involved in the intracellular pathways that respond to various extracellular signals. Extracellular signal-regulated kinase (ERK) is a member of MAPKs and has various functions in neural development. However, the in vivo distribution of the activated form of ERK (p-ERK) in the developing nervous system is not well understood. Here, we investigated the expression of p-ERK in the spinal cord and dorsal root ganglion (DRG) of chick embryos. In the spinal cord, p-ERK-positive cells appeared in the ventral ventricular zone on embryonic day 4 (E4). From E6 onward, they appeared in the gray matter and in the white matter, suggesting migration from the ventricular zone. A double labeling method revealed that these p-ERK-positive cells included oligodendrocyte precursors. In the dorsal horn, p-ERK-positive small cells appeared on E6. Subsequently, the positive cells in the dorsal horn increased transiently in number and then decreased markedly by E10. Motoneurons also expressed p-ERK transiently on E7. In the DRG, weak p-ERK immunoreaction appeared in the ventrolateral region on E5. From E6, the immunoreactivity became stronger and by E9 intense p-ERK-positive cells were observed throughout the DRG. These data provide a neuroanatomical framework to begin to examine the in vivo role of ERK in neural development.
Collapse
Affiliation(s)
- Taro Kato
- Department of Anatomy, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | | | | | | | | |
Collapse
|
23
|
Gibbons A, Wreford N, Pankhurst J, Bailey K. Continuous supply of the neurotrophins BDNF and NT-3 improve chick motor neuron survival in vivo. Int J Dev Neurosci 2004; 23:389-96. [PMID: 15927763 DOI: 10.1016/j.ijdevneu.2004.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/15/2004] [Accepted: 10/18/2004] [Indexed: 11/17/2022] Open
Abstract
Following neurogenesis, motor neurons undergo a phase of large-scale neuronal loss. During this period, the motor neurons are responsive to specific trophic factors for their survival. Several neurotrophic factors, including the neurotrophins BDNF and NT-3, have survival effects although no single factor has been shown to support the survival of all motor neurons. It is unclear whether this is due to factor deprivation during the study or whether there are distinct neuronal subpopulations dependent on different factor requirements. In this study, we have used an expression system to supply a continuous source of BDNF and/or NT-3 to the developing motor neurons in the chick. Continuous supply of BDNF resulted in the survival of 40% of the motor neurons normally lost between embryonic day 6 and embryonic day 10, whereas NT-3 supported 36% of the motor neurons normally lost. In combination, BDNF and NT-3 supported 62% of the motor neurons normally lost indicating that there is some redundancy in neurotrophin requirements. Our results show that a continuous supply of neurotrophins is more effective in promoting motor neuron survival than intermittent administration, particularly for NT-3. However, even with continuous administration of both factors in combination we are unable to support all motor neurons that would normally undergo neuronal degeneration.
Collapse
Affiliation(s)
- Andrew Gibbons
- School of Biological Sciences, PO Box 18, Monash University, 3800 Vic., Australia
| | | | | | | |
Collapse
|
24
|
Vernon EM, Oppenheim RW, Johnson JE. Distinct muscle targets do not vary in the developmental regulation of brain-derived neurotrophic factor. J Comp Neurol 470:317-329,2004. J Comp Neurol 2004; 470:330-7. [PMID: 14755520 DOI: 10.1002/cne.20018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Developing neurons depend on many target-derived signals. One of these signals is the neurotrophin brain-derived neurotrophic factor (BDNF). Exogenous application of BDNF in vitro and in vivo rescues a population of lumbar motoneurons from programmed cell death. Given that BDNF does not rescue all motoneurons and that motoneurons differ in trophic factor receptor expression, subpopulations of motoneurons may have different sensitivities to the factor. These differences may be reflected in distinct target muscles specialized to produce different protein concentrations, or muscles may contain equal amounts of the factor and receptor expression determines motoneuron responsiveness. By using a sensitive electrochemiluminescent immunoassay (ECLIA), we measured normal developmental changes in BDNF protein concentration in anatomically and functionally distinct chick embryonic thigh muscles from E6 to E18. We found that there were no significant differences in BDNF protein concentration between muscles classified according to function (fast vs. slow) or anatomical position (flexor vs. extensor) and that the quantity of BDNF in the target did not appear to be activity dependent. These results suggest that, during development, the differences in the response of motoneurons to BDNF are not due to the anatomical or functional diversity of muscle targets. J. Comp. Neurol. 470:330-337, 2004.
Collapse
Affiliation(s)
- Elizabeth Marie Vernon
- Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
25
|
Peng HB, Yang JF, Dai Z, Lee CW, Hung HW, Feng ZH, Ko CP. Differential effects of neurotrophins and schwann cell-derived signals on neuronal survival/growth and synaptogenesis. J Neurosci 2003; 23:5050-60. [PMID: 12832528 PMCID: PMC6741189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Recent studies have shown that the survival of mammalian motoneurons in vitro is promoted by neurotrophins (NTs) and cAMP. There is also evidence that neurotrophins enhance transmitter release. We thus investigated whether these agents also promote synaptogenesis. Cultured Xenopus spinal cord neurons were treated with a mixture of BDNF, glia-derived neurotrophic factor, NT-3, and NT-4, in addition to forskolin and IBMX or the cell-permeant form of cAMP, to elevate the cAMP level. The outgrowth and survival of neurons were dramatically increased by this trophic stimulation. However, when these neurons were cocultured with muscle cells, the trophic agents resulted in a failure of synaptogenesis. Specifically, the induction of ACh receptor (AChR) clustering in cultured muscle cells was inhibited at nerve-muscle contacts, in sharp contrast to control, untreated cocultures. Because AChR clustering induced by agrin or growth factor-coated beads in muscle cells was unaffected by trophic stimulation, its effect on synaptogenesis is presynaptic in origin. In the control, agrin was deposited along the neurite and at nerve-muscle contacts. This was significantly downregulated in cultures treated with trophic stimuli. Reverse transcriptase-PCR analyses showed that this decrease in agrin deposition was caused by an inhibition of agrin synthesis by trophic stimuli. Both agrin synthesis and induction of AChR clustering were restored under trophic stimulation when Schwann cell-conditioned medium was introduced. These results suggest that trophic stimulation maintains spinal neurons in the growth state, and Schwann cell-derived factors allow them to switch to the synaptogenic state.
Collapse
Affiliation(s)
- H Benjamin Peng
- Department of Biology, Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
26
|
Ono T, Fischer-Hansen B, Nolting D, KjÆr I. Nerve Growth Factor Receptor Immunolocalization During Human Palate and Tongue Development. Cleft Palate Craniofac J 2003. [DOI: 10.1597/1545-1569(2003)040<0116:ngfrid>2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Ono T, Fischer-Hansen B, Nolting D, Kjaer I. Nerve growth factor receptor immunolocalization during human palate and tongue development. Cleft Palate Craniofac J 2003; 40:116-25. [PMID: 12605516 DOI: 10.1597/1545-1569_2003_040_0116_ngfrid_2.0.co_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To investigate the temporospatial pattern of nerve growth factor receptor (NGFR) immunolocalization during human palatal closure. MATERIALS Human palate and tongue tissues from 33 embryos/fetuses, 9 to 22 weeks of fertilization age. METHODS Tissues were divided according to developmental stage and palatal development (before, during, and after closure) and then subjected to decalcification, paraffin embedding, serial sectioning, survey staining, and p75NGFR immunohistochemical staining. RESULTS Specific temporospatial patterns of p75NGFR reactivity were observed; reactivity was intense in the soft tissue palatal shelves before and during palatal closure and was weaker in the palate after palatal closure. In the tongue, intense reactivity was seen throughout 9 to 22 weeks. CONCLUSION The observed patterns suggest that p75NGFR may enable the visualization of physiological events in palatal closure during normal human development.
Collapse
Affiliation(s)
- Takashi Ono
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | |
Collapse
|
28
|
Kishino A, Nakayama C. Enhancement of BDNF and activated-ERK immunoreactivity in spinal motor neurons after peripheral administration of BDNF. Brain Res 2003; 964:56-66. [PMID: 12573513 DOI: 10.1016/s0006-8993(02)04066-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) shows neurotrophic effects on adult motor neurons when given systemically, But it is unknown whether systemically administered BDNF is transported to central cell bodies to affect them directly. Here we used immunohistochemistry to investigate the transport of peripherally injected BDNF to spinal motor neurons and the subsequent activation of a signaling pathway. We first injected BDNF into the flexor digitorum brevis (FDB) and analyzed the motor nucleus that projects to the FDB for BDNF immunoreactivity (BDNF-ir) and phosphorylated extracellular signal-regulated kinase (ERK) 1/2 immunoreactivity (pERK1/2-ir). Both immunoreactivities were observed in the motor neuron cell bodies. Next, BDNF was injected subcutaneously (s.c.) into rats with a unilaterally axotomized sciatic nerve. pERK1/2-ir was detected in motor neurons of the lesioned side. BDNF-ir and pERK1/2-ir were also observed on the unlesioned side when a high dose of BDNF was injected. Therefore, we examined BDNF-ir and pERK1/2-ir after injecting BDNF s.c. into normal rats. Both immunoreactivities were observed in motor nuclei on both sides. Finally, we examined pERK1/2-ir after a lower dose of BDNF was injected, which prevents the decrease in choline acetyl transferase that occurs in the motor neuron upon axotomy. Spinal motor nuclei contained a few cell bodies with pERK1/2-ir. These findings represent the first direct evidence that subcutaneously injected BDNF is transported to motor neurons and that it activates a signaling pathway in the spinal cord and exhibits neurotrophic effects in vivo.
Collapse
Affiliation(s)
- Akiyoshi Kishino
- Sumitomo Pharmaceuticals Research Division, 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-0022, Japan.
| | | |
Collapse
|
29
|
Martin-Caraballo M, Dryer SE. Glial cell line-derived neurotrophic factor and target-dependent regulation of large-conductance KCa channels in developing chick lumbar motoneurons. J Neurosci 2002; 22:10201-8. [PMID: 12451121 PMCID: PMC6758763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
The functional expression of large-conductance Ca2+-activated K+ (K(Ca)) channels in lumbar motoneurons (LMNs) of the developing chick embryo is regulated in part by interactions with striated muscle target tissues. Here we show that the functional expression of K(Ca) channels in LMNs developing in vitro can be stimulated by application of a skeletal muscle extract (MEX) or by coculture with hindlimb myotubes. A similar stimulation of K(Ca) channels in vitro can be produced by the trophic factors glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor but not by neurotrophin (NT)-3 or NT-4. The actions of MEX and hindlimb myotubes are blocked by a GDNF-neutralizing antiserum. Moreover, injection of this same antiserum into the embryonic hindlimb reduced the functional expression of K(Ca) channels in vivo to levels seen in LMNs deprived of interactions with the hindlimb. The effects of GDNF on K(Ca) channel expression in LMNs require 24 hr of continuous exposure to reach maximum and are blocked by the translation inhibitor anisomycin, indicating the need for synthesis of new proteins. GDNF actions are also blocked by the farnesyl transferase inhibitor manumycin, suggesting a role for Ras in the actions of GDNF. Finally, the actions of GDNF are inhibited by PP2, an inhibitor of Src family tyrosine kinases, and by LY29003, an inhibitor of phosphatidylinositol 3 kinases, but not by PD98059, an inhibitor of the Erk signaling cascade. None of these treatments alter expression of voltage-activated Ca2+ channels. Thus, the actions of GDNF on LMN K(Ca) channel expression appear to use a transduction pathway similar to that used for regulation of apoptosis.
Collapse
Affiliation(s)
- Miguel Martin-Caraballo
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5513, USA
| | | |
Collapse
|
30
|
Mousavi K, Miranda W, Parry DJ. Neurotrophic factors enhance the survival of muscle fibers in EDL, but not SOL, after neonatal nerve injury. Am J Physiol Cell Physiol 2002; 283:C950-9. [PMID: 12176751 DOI: 10.1152/ajpcell.00081.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neonatal sciatic nerve crush results in a sustained reduction of the mass of both extensor digitorum longus (EDL) and soleus (SOL) muscles in the rat. Type IIB fibers are selectively lost from EDL. We have investigated the effects of ciliary neurotrophic factor (CNTF) combined with neurotrophin (NT)-3 or NT-4 on muscle mass, as well as the number, cross-sectional area, and distribution of muscle fiber types and the number of motor neurons innervating EDL and SOL 3 mo after transient axotomy 5 days after birth. Both NT treatments prevented the axotomy-induced loss of muscle mass in both EDL and SOL and of total number of muscle fibers in EDL but not in SOL. Although IIB fiber loss was not prevented, both NT treatments resulted in altered fiber type distribution. Both NT combinations also reduced the loss of EDL motor neurons. These data suggest that a differential distribution of NT receptors on either motor neurons or muscle fibers may lead to different levels of susceptibility to neonatal axotomy.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Axotomy
- Cell Survival/drug effects
- Ciliary Neurotrophic Factor/pharmacology
- Disease Models, Animal
- Drug Therapy, Combination
- Immunohistochemistry
- Motor Neurons/drug effects
- Motor Neurons/pathology
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle Fibers, Skeletal/classification
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/innervation
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Myosin Heavy Chains/biosynthesis
- Nerve Crush
- Nerve Growth Factors/pharmacology
- Neurotrophin 3/pharmacology
- Rats
- Rats, Sprague-Dawley
- Sciatic Neuropathy/drug therapy
- Sciatic Neuropathy/pathology
- Sciatic Neuropathy/physiopathology
Collapse
Affiliation(s)
- Kambiz Mousavi
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario K1H-8M5, Canada
| | | | | |
Collapse
|
31
|
Naeem A, Abbas L, Guthrie S. Comparison of the effects of HGF, BDNF, CT-1, CNTF, and the branchial arches on the growth of embryonic cranial motor neurons. JOURNAL OF NEUROBIOLOGY 2002; 51:101-14. [PMID: 11932952 DOI: 10.1002/neu.10048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the developing embryo, axon growth and guidance depend on cues that include diffusible molecules. We have shown previously that the branchial arches and hepatocyte growth factor (HGF) are growth-promoting and chemoattractant for young embryonic cranial motor axons. HGF is produced in the branchial arches of the embryo, but a number of lines of evidence suggest that HGF is unlikely to be the only factor involved in the growth and guidance of these axons. Here we investigate whether other neurotrophic factors could be involved in the growth of young cranial motor neurons in explant cultures. We find that brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and cardiotrophin-1 (CT-1) all promote the outgrowth of embryonic cranial motor neurons, while glial cell line-derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3) fail to affect outgrowth. We next examined whether HGF and the branchial arches had similar effects on motor neuron subpopulations at different axial levels. Our results show that HGF acts as a generalized rather than a specific neurotrophic factor and guidance cue for cranial motor neurons. Although the branchial arches also had general growth-promoting effects on all motor neuron subpopulations, they chemoattracted different axial levels differentially, with motor neurons from the caudal hindbrain showing the most striking response.
Collapse
Affiliation(s)
- Arifa Naeem
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College, Guy's Campus, London SE1 1 UL, UK
| | | | | |
Collapse
|
32
|
Becktor KB, Hansen BF, Nolting D, Kjaer I. Spatiotemporal expression of NGFR during pre-natal human tooth development. Orthod Craniofac Res 2002; 5:85-9. [PMID: 12086329 DOI: 10.1034/j.1600-0544.2002.01181.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The relation between nerve growth factor receptor (NGFR) in the human pre-natal tooth buds and the dental follicle was investigated. In particular, we sought to determine if there is a specific pattern of p75NGFR expression in developing human tooth buds and their surrounding tissue. SETTING AND SAMPLE POPULATION The Department of Orthodontics at Copenhagen University, Denmark. Histological sections from 11 fetuses, aged 11-21 gestational weeks. METHOD The sections were studied by conventional immunohistochemistry. RESULTS Specific spatiotemporal patterns of p75NGFR reactions were observed in the tooth buds and dental follicle: Before matrix production by the ameloblasts, the entire inner enamel epithelium and the entire dental follicle display p75NGFR immunoreactivity; after matrix production is initiated, the immunoreactivity of the matrix producing cells is lost, as is that of the dental follicle adjacent to these matrix-producing cells. CONCLUSION A unique spatiotemporal distribution of NGFR in the pre-eruptive human tooth bud was demonstrated.
Collapse
Affiliation(s)
- K B Becktor
- Department of Orthodontics, School of Dentistry, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
33
|
Panahi M, Al-Tiraihi T. Morphometric evaluation of the neuroprotective effect of deprenyl on postaxotomic motor neuron losses. Clin Neuropharmacol 2002; 25:75-8. [PMID: 11981232 DOI: 10.1097/00002826-200203000-00003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Newborn rats were used to evaluate the neuroprotective effect of deprenyl on spinal motor neurons. The left sides were axotomized at age day 5 and the right sides were kept as a control. One hour after surgery, the operated animals received a daily dose of deprenyl intraperitoneally for 21 days. Each group received 0.25, 10, 30, 45, 60, or 75 mg/kg. The control side received the vehicle only. The number of motor neurons in the L4 through L6 spinal segments in all groups was counted, and the results were tested for normality using the Kolmogorov-Smirnov test. The number of the motor neurons at the axotomized treated sides were compared with those of the intact treated sides using analysis of variance. Significant differences (p < 0.05) were found in all groups except for the highest dose (75 mg/kg). The results in the untreated control showed a significant reduction in the percentage of motor neurons in the axotomized untreated group (-25.6%). The percentages of neuronal response and the percentages of maximal response were calculated, and the results show a sustained increase in percentage of neuronal response, with the highest response at a dose of 45 mg/kg followed by a decline. The results of the regression analysis show that there were two phases in the spinal motor neuron response: an initial neuroprotective phase followed by a neurotoxic declining phase. This study confirms the neuroprotectivity of motor neurons by deprenyl.
Collapse
Affiliation(s)
- Merziah Panahi
- Department of Anatomic Sciences, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | | |
Collapse
|
34
|
Jia Q, Liang F, Ohka S, Nomoto A, Hashikawa T. Expression of brain-derived neurotrophic factor in the central nervous system of mice using a poliovirus-based vector. J Neurovirol 2002; 8:14-23. [PMID: 11847588 DOI: 10.1080/135502802317247776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a promising candidate for the gene therapy of neurological disease. To deliver BDNF to neurons of the central nervous system (CNS), a nucleotide sequence encoding the mature peptide of BDNF was inserted into the genome of poliovirus, a neurotropic virus that is known to replicate mainly in motor neurons of the spinal cord of the CNS. Thus, the recombinant poliovirus constructed was replication-competent. The expression of BDNF in cultured cells infected with the recombinant poliovirus was evident when the cells were analyzed using an immunofluorescence assay and Western blotting. When the recombinant viruses were injected intramuscularly into transgenic mice that carry the human poliovirus receptor gene, the antigens of poliovirus and BDNF were detected in the motor neurons of the spinal cord at 3 days postinfection, and had disappeared by 7 days postinfection. This study suggests that poliovirus can be used as a virus vector for the delivery of neurotrophic factors to the motor neurons of the central nervous system and may provide a new approach for the treatment of motor neuron diseases.
Collapse
Affiliation(s)
- Qingmei Jia
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
35
|
Tzeng SF. Neural progenitors isolated from newborn rat spinal cords differentiate into neurons and astroglia. J Biomed Sci 2002; 9:10-6. [PMID: 11810020 DOI: 10.1007/bf02256573] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Permanent functional deficit in patients with spinal cord injury (SCI) is in part due to severe neural cell death. Therefore, cell replacement using stem cells and neural progenitors that give rise to neurons and glia is thought to be a potent strategy to promote tissue repair after SCI. Many studies have shown that stem cells and neural progenitors can be isolated from embryonic, postnatal and adult spinal cords. Recently, we isolated neural progenitors from newborn rat spinal cords. In general, the neural progenitors grew as spheres in culture, and showed immunoreactivity to a neural progenitor cellular marker, nestin. They were found to proliferate and differentiate into glial fibrillary acidic protein-positive astroglia and multiple neuronal populations, including GABAergic and cholinergic neurons. Neurotrophin 3 and neurotrophin 4 enhanced the differentiation of neural progenitors into neurons. Furthermore, the neural progenitors that were transplanted into contusive spinal cords were found to survive and have migrated in the spinal cord rostrally and caudally over 8 mm to the lesion center 7 days after injury. Thus, the neural progenitors isolated from newborn rat spinal cords in combination with neurotrophic factors may provide a tool for cell therapy in SCI patients.
Collapse
Affiliation(s)
- Shun-Fen Tzeng
- Department of Biology, National Cheng-Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
36
|
Martin-Caraballo M, Dryer SE. Activity- and target-dependent regulation of large-conductance Ca2+-activated K+ channels in developing chick lumbar motoneurons. J Neurosci 2002; 22:73-81. [PMID: 11756490 PMCID: PMC6757614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The functional expression of large-conductance (BK-type) Ca2+-activated K+ (K(Ca)) channels was examined in developing chick lumbar motoneurons (LMNs) between embryonic day 6 (E6) and E13 using patch-clamp recording techniques. The macroscopic K(Ca) current of E13 LMNs is inhibited by iberiotoxin and resistant to apamin. The average macroscopic K(Ca) density was low before E8 and increased 3.3-fold by E11, with an additional 1.8-fold increase occurring by E13. BK-type K(Ca) channels could not be detected in inside-out patches from E8 LMNs but were readily detected at E11. The density of voltage-activated Ca2+ currents did not change between E8 and E11. Surgical ablation of target tissues at E5 caused a significant reduction in average K(Ca) density in LMNs measured at E11. Conversely, chronic in ovo administration of d-tubocurarine, which causes an increase in motoneuron branching on the surface of the muscle target tissue, evoked a 1.8-fold increase in average LMN K(Ca) density measured at E11. Electrical activity also contributed to developmental regulation of LMN K(Ca) density. A significant reduction in E11 K(Ca) density was found after chronic in ovo treatment with the neuronal nicotinic antagonist mecamylamine or the GABA receptor agonist muscimol, agents that reduce activation of LMNs in ovo. Moreover, 3 d exposure to depolarizing concentrations of external K+ to LMNs cultured at E8 caused an increase in K(Ca) expression. Conversely, tetrodotoxin caused a decrease in K(Ca) expression in cultured E8 LMNs developing for 3 d in the presence of neurotrophic factors that promote neuronal survival in the absence of target tissues.
Collapse
Affiliation(s)
- Miguel Martin-Caraballo
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5513, USA
| | | |
Collapse
|
37
|
Berggren K, Ezerman EB, McCaffery P, Forehand CJ. Expression and regulation of the retinoic acid synthetic enzyme RALDH-2 in the embryonic chicken wing. Dev Dyn 2001; 222:1-16. [PMID: 11507765 DOI: 10.1002/dvdy.1166] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Retinaldehyde dehydrogenase type 2 (RALDH-2) is a major retinoic acid (RA) generating enzyme in the embryo. Here, we report immunolocalization of this enzyme (RALDH-2-IR) in the developing wings of stage 17-30 chicken embryos. RALDH-2-IR is located in the area of the presumptive muscle masses, although it is not colocalized with developing muscle cells. RALDH-2-IR is located in tendon precursor cells and may be present in muscular connective tissue. We show that motor neurons and blood vessels, tissues showing RALDH-2-IR as they enter the limb, are capable of synthesizing and releasing RA in culture. RALDH-2-IR in the limb mesenchyme is under the control of both the vasculature and the motor innervation; it is decreased with denervation and increased with hypervascularization. RALDH-2-IR is present in the motor neuron pool of the brachial spinal cord, but this expression pattern is apparently not under the control of limb target tissues, RA in the periphery, or somitic factors. RA is known to be a potent inducer of cellular differentiation; we propose that locally synthesized RA may be involved in aspects of wing tissue specification, including cartilage condensation and outgrowth, skeletal muscle differentiation, and recruitment of smooth muscle cells to the vasculature.
Collapse
Affiliation(s)
- K Berggren
- University of Vermont, Department of Anatomy and Neurobiology, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
38
|
Egea J, Espinet C, Soler RM, Dolcet X, Yuste VJ, Encinas M, Iglesias M, Rocamora N, Comella JX. Neuronal survival induced by neurotrophins requires calmodulin. J Cell Biol 2001; 154:585-97. [PMID: 11489918 PMCID: PMC2196427 DOI: 10.1083/jcb.200101023] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
It has been reported that phosphoinositide 3-kinase (PI 3-kinase) and its downstream target, protein kinase B (PKB), play a central role in the signaling of cell survival triggered by neurotrophins (NTs). In this report, we have analyzed the involvement of Ca2+ and calmodulin (CaM) in the activation of the PKB induced by NTs. We have found that reduction of intracellular Ca2+ concentration or functional blockade of CaM abolished NGF-induced activation of PKB in PC12 cells. Similar results were obtained in cultures of chicken spinal cord motoneurons treated with brain-derived neurotrophic factor (BDNF). Moreover, CaM inhibition prevented the cell survival triggered by NGF or BDNF. This effect was counteracted by the transient expression of constitutive active forms of the PKB, indicating that CaM regulates NT-induced cell survival through the activation of the PKB. We have investigated the mechanisms whereby CaM regulates the activation of the PKB, and we have found that CaM was necessary for the proper generation and/or accumulation of the products of the PI 3-kinase in intact cells.
Collapse
Affiliation(s)
- J Egea
- Grup de Neurobiologia Molecular, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sakuma K, Watanabe K, Sano M, Uramoto I, Nakano H, Li YJ, Kaneda S, Sorimachi Y, Yoshimoto K, Yasuhara M, Totsuka T. A possible role for BDNF, NT-4 and TrkB in the spinal cord and muscle of rat subjected to mechanical overload, bupivacaine injection and axotomy. Brain Res 2001; 907:1-19. [PMID: 11430880 DOI: 10.1016/s0006-8993(01)02288-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurotrophins play a crucial role in the regulation of survival and the maintenance of specific functions for various populations of neurons. Neurotrophin-4 (NT-4) is most abundant in skeletal muscle, and is thought to promote sciatic nerve sprouting, inhibit agrin-induced acetylcholine receptor (AChR) clustering, evoke postsynaptic potentiation and induce mitochondrial proliferation. Using Western blot analysis, immunoprecipitation and immunohistochemistry, we investigated the distribution of NT-4 in slow- and fast-type muscles. We also tested the adaptive response of this protein in the mechanically overloaded muscle, in the regenerating muscle following bupivacaine injection and in the denervated muscle. Additionally, we investigated whether TrkB phosphorylation in the spinal cord and in the sciatic nerve occurs through the interaction with BDNF or NT-4 when the innervating muscle is damaged. Markedly more NT-4 was expressed in fast-type muscles compared with the slow types. TrkB protein was more frequently observed around the edge of myofibers (neuromuscular junction) of the soleus muscle compared with the gastrocnemius muscle. TrkB tyrosine phosphorylation occurred in the spinal cord but not in the sciatic nerve 24 h after bupivacaine injection of the innervating muscle. At the same time, the amount of TrkB co-precipitating with BDNF was markedly increased in the spinal cord. A rapid activation of TrkB (1-8 h) was also observed in the spinal cord after axotomy,while the amount of TrkB co-precipitating with NT-4 was markedly lower after axotomy. These results indicate that NT-4 is preferentially distributed in fast-type muscles. Furthermore, by interacting with BDNF and NT-4, the TrkB in the spinal cord may be important for the survival of motoneurons and outgrowth of injured peripheral axons following muscle damage.
Collapse
Affiliation(s)
- K Sakuma
- Department of Legal Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jensen T, Johnson AL. Expression and function of brain-derived neurotrophin factor and its receptor, TrkB, in ovarian follicles from the domestic hen (Gallus gallus domesticus). J Exp Biol 2001; 204:2087-95. [PMID: 11441050 DOI: 10.1242/jeb.204.12.2087] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
This report summarizes patterns of mRNA expression for the brain-derived neurotrophic factor (BDNF) together with its high-affinity neurotrophin receptor trkB within the hen ovary during follicle development, describes hormonal mechanisms for the regulation of trkB gene expression and provides preliminary evidence for a novel function for BDNF-mediated TrkB signaling within the granulosa layer. Levels of BDNF mRNA in the thecal layer and of trkB mRNA within the granulosa cell layer increase coincident with entrance of the follicle into the preovulatory hierarchy. Localization of the BDNF mRNA transcript correlates with expression of BDNF protein within the theca interna of preovulatory follicles, while localization of trkB mRNA and protein occurs extensively within the granulosa cell layer of preovulatory follicles. This pattern of expression suggests a paracrine relationship between theca and granulosa cells for BDNF signaling via TrkB. Vasoactive intestinal peptide and gonadotropin treatments stimulate increases in levels of trkB mRNA within cultured granulosa cells derived from both prehierarchal and preovulatory follicles, and this response is increased by co-treatment with 3-isobutyl-1-methylxanthine. Finally, BDNF treatment of cultured granulosa cells from preovulatory follicles results in a modest, but significant, reduction in basal progesterone production, whereas this effect was reversed by k252a, an inhibitor of Trk kinase activity. These results support the proposals that BDNF functions as a paracrine signal in hen granulosa cells and that its physiological functions may include the modulation of steroidogenesis.
Collapse
Affiliation(s)
- T Jensen
- Department of Biological Sciences, PO Box 369, The University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
41
|
Chen Z, Chai Y, Cao L, Huang A, Cui R, Lu C, He C. Glial cell line-derived neurotrophic factor promotes survival and induces differentiation through the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathway respectively in PC12 cells. Neuroscience 2001; 104:593-8. [PMID: 11377858 DOI: 10.1016/s0306-4522(01)00093-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PC12-GFRalpha1 cells, a clonal cell line engineered to express glial cell line-derived neurotrophic factor receptor alpha1 were constructed. Given glial cell line-derived neurotrophic factor could induce the differentiation and promote the survival of PC12-GFRalpha1 cells at low concentrations, the cells provide an unlimited source of monoclonal cells for studies on the signal transduction pathway of glial cell line-derived neurotrophic factor. To characterize the involvement of the mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways in the biological effect of glial cell line-derived neurotrophic factor, we used the mitogen-activated protein kinase kinase inhibitor PD98059 and the phosphatidylinositol 3-kinase inhibitor LY294002. PD98059 blocked glial cell line-derived neurotrophic factor-induced PC12-GFRalpha1 cells neurite formation in a dose-dependent manner, without significantly altering cell viability. LY294002 reversed the survival-promoting effect of glial cell line-derived neurotrophic factor on the PC12-GFRalpha1 cells in serum-deprived medium. The present study demonstrates that phosphatidylinositol 3-kinase pathway seems to mediate the survival-promoting effect of glial cell line-derived neurotrophic factor on PC12-GFRalpha1 cells, while the activation of mitogen-activated protein kinase pathway could be an important step in mediating PC12-GFRalpha1 cells differentiation induced by glial cell line-derived neurotrophic factor. Therefore, it is inferred that similar intracellular signaling components are used by distinct growth factors toward a common biological effect.
Collapse
Affiliation(s)
- Z Chen
- Department of Neurobiology, The Second Military Medical University, 800 Xiangyin Road, 200433, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Oppenheim RW, Wiese S, Prevette D, Armanini M, Wang S, Houenou LJ, Holtmann B, Gotz R, Pennica D, Sendtner M. Cardiotrophin-1, a muscle-derived cytokine, is required for the survival of subpopulations of developing motoneurons. J Neurosci 2001; 21:1283-91. [PMID: 11160399 PMCID: PMC6762241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Developing motoneurons require trophic support from their target, the skeletal muscle. Despite a large number of neurotrophic molecules with survival-promoting activity for isolated embryonic motoneurons, those factors that are required for motoneuron survival during development are still not known. Cytokines of the ciliary neurotrophic factor (CNTF)-leukemia inhibitory factor (LIF) family have been shown to play a role in motoneuron (MN) survival. Importantly, in mice lacking the LIFRbeta or the CNTFRalpha there is a significant loss of MNs during embryonic development. Because genetic deletion of either (or both) CNTF or LIF fails, by contrast, to perturb MN survival before birth, it was concluded that another ligand exists that is functionally inactivated in the receptor deleted mice, resulting in MN loss during development. One possible candidate for this ligand is the CNTF-LIF family member cardiotrophin-1 (CT-1). CT-1 is highly expressed in embryonic skeletal muscle, secreted by myotubes, and promotes the survival of cultured embryonic mouse and rat MNs. Here we show that ct-1 deficiency causes increased motoneuron cell death in spinal cord and brainstem nuclei of mice during a period between embryonic day 14 and the first postnatal week. Interestingly, no further loss was detectable during the subsequent postnatal period, and nerve lesion in young adult ct-1-deficient mice did not result in significant additional loss of motoneurons, as had been previously observed in mice lacking both CNTF and LIF. CT-1 is the first bona fide muscle-derived neurotrophic factor to be identified that is required for the survival of subgroups of developing motoneurons.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Axotomy
- Brain Stem/embryology
- Brain Stem/metabolism
- Brain Stem/pathology
- Cell Death
- Cell Survival/drug effects
- Cell Survival/genetics
- Cells, Cultured
- Chick Embryo
- Ciliary Neurotrophic Factor/genetics
- Ciliary Neurotrophic Factor/metabolism
- Cytokine Receptor gp130
- Cytokines/deficiency
- Cytokines/genetics
- Cytokines/metabolism
- Cytokines/pharmacology
- Dose-Response Relationship, Drug
- Facial Nerve
- Growth Inhibitors/genetics
- Growth Inhibitors/metabolism
- Interleukin-6
- Leukemia Inhibitory Factor
- Lymphokines/genetics
- Lymphokines/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Motor Neurons/drug effects
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Neurodegenerative Diseases/genetics
- Neurodegenerative Diseases/metabolism
- Neurodegenerative Diseases/pathology
- RNA, Messenger/biosynthesis
- Receptor, Ciliary Neurotrophic Factor/genetics
- Receptor, Ciliary Neurotrophic Factor/metabolism
- Spinal Cord/embryology
- Spinal Cord/metabolism
- Spinal Cord/pathology
Collapse
Affiliation(s)
- R W Oppenheim
- Department of Neurobiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Boruch AV, Conners JJ, Pipitone M, Deadwyler G, Storer PD, Devries GH, Jones KJ. Neurotrophic and migratory properties of an olfactory ensheathing cell line. Glia 2001. [DOI: 10.1002/1098-1136(200103)33:3<225::aid-glia1021>3.0.co;2-y] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Wiklund P, Ekström PA. Axonal outgrowth from adult mouse nodose ganglia in vitro is stimulated by neurotrophin-4 in a Trk receptor and mitogen-activated protein kinase-dependent way. JOURNAL OF NEUROBIOLOGY 2000; 45:142-51. [PMID: 11074460 DOI: 10.1002/1097-4695(20001115)45:3<142::aid-neu2>3.0.co;2-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The actions of neurotrophic factors on sensory neurons of the adult nodose ganglion were studied in vitro. The ganglia were explanted in an extracellular matrix-based gel that permitted observation of the growing axons. Neurotrophin-4 (NT-4) was a very efficient stimulator of outgrowth of axons from the nodose ganglion and had almost doubled the outgrowth length when this was analyzed after 2 days in culture. Brain-derived neurotrophic factor also stimulated outgrowth, but to a lesser degree, whereas NT-3 gave only weak stimulatory tendencies. Nerve growth factor and glial cell line-derived neurotrophic factor both lacked stimulatory effects. NT-4 is known to act via TrkB receptors, and the presence of these on growing nodose neurons was demonstrated immunohistochemically. In line with a Trk-mediated growth effect, the NT-4 stimulation was abolished by K252a, a selective inhibitor of neurotrophin receptor-associated tyrosine kinase activity. K252a had no effect on the unstimulated preparation. NT-4 treatment led to activation of the mitogen-activated protein kinase and inhibition of the latter pathway by PD98059 significantly reduced the NT-4 stimulated outgrowth, whereas the drug had no effect on the unstimulated growth. In conclusion, the data suggest that NT-4 can serve as a powerful growth factor for neurons of adult nodose ganglia and that the growth stimulation involves TrkB- and mitogen-activated protein kinase.
Collapse
Affiliation(s)
- P Wiklund
- Department of Animal Physiology, University of Lund, Helgonavägen 3B, SE-223 62 Lund, Sweden
| | | |
Collapse
|
45
|
Miura T, Tanaka S, Seichi A, Arai M, Goto T, Katagiri H, Asano T, Oda H, Nakamura K. Partial functional recovery of paraplegic rat by adenovirus-mediated gene delivery of constitutively active MEK1. Exp Neurol 2000; 166:115-26. [PMID: 11031088 DOI: 10.1006/exnr.2000.7493] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spinal cord injury in adult mammals results in little axonal regeneration, although the mechanism of regeneration failure still remains elusive. Recent research has revealed that activation of the extracellular-signal-regulated kinases (ERKs) plays an important role in the neurite outgrowth. In the present study, we constructed a replication-defective adenovirus vector carrying mutated form of MEK1 (CA-MEK virus), which constitutively activate ERK pathway, and investigated its effect on thoracic spinal cord injury model in young adult rats as well as neurite outgrowth in vitro. In rat pheocromocytoma cell line PC12 cells, CA-MEK virus infection induced sustained activation of ERKs and stimulated neurite outgrowth in the absence of neurotrophic factors. In rat spinal cord transection model, injection of CA-MEK virus into the completely transected spinal cord efficiently activated ERKs in the supraspinal neurons and induced axonal regeneration across the transection site, which was confirmed by anterograde labeling with wheat-germ-agglutinin conjugated peroxidase (WGA-HRP). Spinal cord evoked potentials (SCEP) showed that these regenerated axons were electroconductive. Most importantly, CA-MEK virus-treated rats showed significant recovery of hind limb function 2 weeks after operation compared to the control rats treated with no virus or LacZ virus. These results suggest that adenovirus-mediated CA-MEK gene transduction offers a novel strategy for the gene therapy of spinal cord injury.
Collapse
Affiliation(s)
- T Miura
- Department of Orthopaedic Surgery, The Third Department of Internal Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jones MA, Werle MJ. Nitric oxide is a downstream mediator of agrin-induced acetylcholine receptor aggregation. Mol Cell Neurosci 2000; 16:649-60. [PMID: 11083925 DOI: 10.1006/mcne.2000.0901] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The synaptic basal lamina protein, agrin, is required for the formation of the neuromuscular junction. Agrin signals through a muscle-specific receptor tyrosine kinase (MuSK) initiating a cascade of events that lead to the aggregation of acetylcholine receptors (AChR) at the postsynaptic site. Another important synaptic signalling molecule is nitric oxide (NO), which is produced by the enzyme, nitric oxide synthase (NOS). We investigated the interaction between the agrin signalling cascade and the NO signalling cascade by treating cultured myotubes with agrin, NOS inhibitors, and NO donors. NOS inhibitors prevented agrin induced AChR aggregation and phosphorylation of the AChR beta subunit. Furthermore, NO donors induced AChR aggregation in the absence of agrin, as well as phosphorylation of the AChR beta subunit. These results demonstrate a role for NO as a downstream mediator of agrin induced AChR aggregation and AChR beta subunit phosphorylation at the neuromuscular junction.
Collapse
Affiliation(s)
- M A Jones
- Department of Anatomy and Cell Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
47
|
Janiga TA, Rind HB, von Bartheld CS. Differential effects of the trophic factors BDNF, NT-4, GDNF, and IGF-I on the isthmo-optic nucleus in chick embryos. JOURNAL OF NEUROBIOLOGY 2000; 43:289-303. [PMID: 10842241 DOI: 10.1002/(sici)1097-4695(20000605)43:3<289::aid-neu7>3.0.co;2-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The isthmo-optic nucleus (ION) of chick embryos is a model system for the study of retrograde trophic signaling in developing CNS neurons. The role of brain-derived neurotrophic factor (BDNF) is well established in this system. Recent work has implicated neurotrophin-4 (NT-4), glial cell line-derived neurotrophic factor (GDNF), and insulin-like growth factor I (IGF-I) as additional trophic factors for ION neurons. Here it was examined in vitro and in vivo whether these factors are target-derived trophic factors for the ION in 13- to 16-day-old chick embryos. Unlike BDNF, neither GDNF, NT-4, nor IGF-I increased the survival of ION neurons in dissociated cultures identified by retrograde labeling with the fluorescent tracer DiI. BDNF and IGF-I promoted neurite outgrowth from ION explants, whereas GDNF and NT-4 had no effect. Injections of NT-4, but not GDNF, in the retina decreased the survival of ION neurons and accelerated cell death in the ION. NT-4-like immunoreactivity was present in the retina and the ION. Exogenous, radiolabeled NT-4, but not GDNF or IGF-I, was retrogradely transported from the retina to the ION. NT-4 transport was significantly reduced by coinjection of excess cold nerve growth factor (NGF), indicating that the majority of NT-4 bound to p75 neurotrophin receptors during axonal transport. Binding of NT-4 to chick p75 receptors was confirmed in L-cells, which express chick p75 receptors. These data indicate that GDNF has no direct trophic effects on ION neurons. IGF-I may be an afferent trophic factor for the ION, and NT-4 may act as an antagonist to BDNF, either by competing with BDNF for p75 and/or trkB binding or by signaling cell death via p75.
Collapse
Affiliation(s)
- T A Janiga
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
48
|
Egea J, Espinet C, Soler RM, Peiró S, Rocamora N, Comella JX. Nerve growth factor activation of the extracellular signal-regulated kinase pathway is modulated by Ca(2+) and calmodulin. Mol Cell Biol 2000; 20:1931-46. [PMID: 10688641 PMCID: PMC110811 DOI: 10.1128/mcb.20.6.1931-1946.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nerve growth factor is a member of the neurotrophin family of trophic factors that have been reported to be essential for the survival and development of sympathetic neurons and a subset of sensory neurons. Nerve growth factor exerts its effects mainly by interaction with the specific receptor TrkA, which leads to the activation of several intracellular signaling pathways. Once activated, TrkA also allows for a rapid and moderate increase in intracellular calcium levels, which would contribute to the effects triggered by nerve growth factor in neurons. In this report, we analyzed the relationship of calcium to the activation of the Ras/extracellular signal-regulated kinase pathway in PC12 cells. We observed that calcium and calmodulin are both necessary for the acute activation of extracellular signal-regulated kinases after TrkA stimulation. We analyzed the elements of the pathway that lead to this activation, and we observed that calmodulin antagonists completely block the initial Raf-1 activation without affecting the function of upstream elements, such as Ras, Grb2, Shc, and Trk. We have broadened our study to other stimuli that activate extracellular signal-regulated kinases through tyrosine kinase receptors, and we have observed that calmodulin also modulates the activation of such kinases after epidermal growth factor receptor stimulation in PC12 cells and after TrkB stimulation in cultured chicken embryo motoneurons. Calmodulin seems to regulate the full activation of Raf-1 after Ras activation, since functional Ras is necessary for Raf-1 activation after nerve growth factor stimulation and calmodulin-Sepharose is able to precipitate Raf-1 in a calcium-dependent manner.
Collapse
Affiliation(s)
- J Egea
- Grup de Neurobiologia Molecular, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, 25198 Lleida, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- G Heinrich
- VA Northern California Health Care System and EBIRE, 150 Muir Road, Martinez, CA 94553, USA.
| | | |
Collapse
|
50
|
Fryer HJ, Wolf DH, Knox RJ, Strittmatter SM, Pennica D, O'Leary RM, Russell DS, Kalb RG. Brain-derived neurotrophic factor induces excitotoxic sensitivity in cultured embryonic rat spinal motor neurons through activation of the phosphatidylinositol 3-kinase pathway. J Neurochem 2000; 74:582-95. [PMID: 10646509 DOI: 10.1046/j.1471-4159.2000.740582.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurotrophic factors (NTFs) can protect against or sensitize neurons to excitotoxicity. We studied the role played by various NTFs in the excitotoxic death of purified embryonic rat motor neurons. Motor neurons cultured in brain-derived neurotrophic factor, but not neurotrophin 3, glial-derived neurotrophic factor, or cardiotrophin 1, were sensitive to excitotoxic insult. BDNF also induces excitotoxic sensitivity (ES) in motor neurons when BDNF is combined with these other NTFs. The effect of BDNF depends on de novo protein and mRNA synthesis. Reagents that either activate or inhibit the 75-kDa NTF receptor p75NTR do not affect BDNF-induced ES. The low EC50 for BDNF-induced survival and ES suggests that TrkB mediates both of these biological activities. BDNF does not alter glutamate-evoked rises of intracellular Ca2+, suggesting BDNF acts downstream. Both wortmannin and LY294002, which specifically block the phosphatidylinositol 3-kinase (PI3K) intracellular signaling pathway in motor neurons, inhibit BDNF-induced ES. We confirm this finding using a herpes simplex virus (HSV) that expresses the dominant negative p85 subunit of PI3K. Infecting motor neurons with this HSV, but not a control HSV, blocks activation of the PI3K pathway and BDNF-induced ES. Through the activation of TrkB and the PI3K signaling pathway, BDNF renders developing motor neurons susceptible to glutamate receptor-mediated cell death.
Collapse
Affiliation(s)
- H J Fryer
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520-8018, USA
| | | | | | | | | | | | | | | |
Collapse
|