1
|
Patel H, Garrido Portilla V, Shneidman AV, Movilli J, Alvarenga J, Dupré C, Aizenberg M, Murthy VN, Tropsha A, Aizenberg J. Design Principles From Natural Olfaction for Electronic Noses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412669. [PMID: 39835449 PMCID: PMC11948017 DOI: 10.1002/advs.202412669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/29/2024] [Indexed: 01/22/2025]
Abstract
Natural olfactory systems possess remarkable sensitivity and precision beyond what is currently achievable by engineered gas sensors. Unlike their artificial counterparts, noses are capable of distinguishing scents associated with mixtures of volatile molecules in complex, typically fluctuating environments and can adapt to changes. This perspective examines the multifaceted biological principles that provide olfactory systems their discriminatory prowess, and how these ideas can be ported to the design of electronic noses for substantial improvements in performance across metrics such as sensitivity and ability to speciate chemical mixtures. The topics examined herein include the fluid dynamics of odorants in natural channels; specificity and kinetics of odorant interactions with olfactory receptors and mucus linings; complex signal processing that spatiotemporally encodes physicochemical properties of odorants; active sampling techniques, like biological sniffing and nose repositioning; biological priming; and molecular chaperoning. Each of these components of natural olfactory systems are systmatically investigated, as to how they have been or can be applied to electronic noses. While not all artificial sensors can employ these strategies simultaneously, integrating a subset of bioinspired principles can address issues like sensitivity, drift, and poor selectivity, offering advancements in many sectors such as environmental monitoring, industrial safety, and disease diagnostics.
Collapse
Affiliation(s)
- Haritosh Patel
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02134USA
| | - Vicente Garrido Portilla
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02134USA
| | - Anna V. Shneidman
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02134USA
| | - Jacopo Movilli
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02134USA
- Department of Chemical SciencesUniversity of PadovaPadova35131Italy
| | - Jack Alvarenga
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02134USA
| | - Christophe Dupré
- Department of Molecular & Cellular BiologyHarvard UniversityCambridgeMA02138USA
| | - Michael Aizenberg
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02134USA
| | - Venkatesh N. Murthy
- Department of Molecular & Cellular BiologyHarvard UniversityCambridgeMA02138USA
- Center for Brain ScienceHarvard UniversityCambridgeMA02138USA
- Kempner InstituteHarvard UniversityBostonMA02134USA
| | - Alexander Tropsha
- Department of ChemistryThe University of North Carolina at Chapel HillChapel HillNC27516USA
| | - Joanna Aizenberg
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02134USA
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
2
|
Kim YK, Jo D, Choi S, Song J. High-fat diet triggers transcriptomic changes in the olfactory bulb. Heliyon 2025; 11:e42196. [PMID: 39927144 PMCID: PMC11804815 DOI: 10.1016/j.heliyon.2025.e42196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Metabolic imbalance contributes to cognitive impairment, anxiety, depressive behavior, and impaired olfactory perception. Recent studies have focused on olfactory dysfunction in patients with obesity and diabetes accompanied by cognitive dysfunction, considering that the synaptic signal from the olfactory bulb is directly transmitted to memory consolidation-related brain regions. This study investigated transcriptomic changes in the olfactory bulb in high-fat diet (HFD)-fed mice compared to that in normal-diet-fed mice. We sampled olfactory bulbs from HFD-fed mice, performed RNA sequencing, and measured mRNA levels in olfactory bulb tissue. Additionally, we assessed plasma cytokine levels in HFD-fed mice. We found differences in the expression of protein-coding and non-coding RNAs involved in insulin, lipid metabolism, neurogenesis, serotonin, dopamine, and gamma-aminobutyric acid-related signaling in the olfactory bulb of HFD-fed mice compared to control mice. Thus, our findings suggest potential therapeutic targets for treating olfactory dysfunction and related neural disorders in individuals with metabolic syndrome.
Collapse
Affiliation(s)
- Young-Kook Kim
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Danbi Jo
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Seoyoon Choi
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Juhyun Song
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| |
Collapse
|
3
|
Puche AC, Hook C, Zhou FW. Cell type-specific and frequency-dependent centrifugal modulation in olfactory bulb output neurons in vivo. J Neurophysiol 2024; 131:1226-1239. [PMID: 38691531 PMCID: PMC11381121 DOI: 10.1152/jn.00078.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Mitral/tufted cells (M/TCs) form complex local circuits with interneurons in the olfactory bulb and are powerfully inhibited by these interneurons. The horizontal limb of the diagonal band of Broca (HDB), the only GABAergic/inhibitory source of centrifugal circuit with the olfactory bulb, is known to target olfactory bulb interneurons, and we have shown targeting also to olfactory bulb glutamatergic neurons in vitro. However, the net efficacy of these circuits under different patterns of activation in vivo and the relative balance between the various targeted intact local and centrifugal circuits was the focus of this study. Here channelrhodopsin-2 (ChR2) was expressed in HDB GABAergic neurons to investigate the short-term plasticity of HDB-activated disinhibitory rebound excitation of M/TCs. Optical activation of HDB interneurons increased spontaneous M/TC firing without odor presentation and increased odor-evoked M/TC firing. HDB activation induced disinhibitory rebound excitation (burst or cluster of spiking) in all classes of M/TCs. This excitation was frequency dependent, with short-term facilitation only at higher HDB stimulation frequency (5 Hz and above). However, frequency-dependent HDB regulation was more potent in the deeper layer M/TCs compared with more superficial layer M/TCs. In all neural circuits the balance between inhibition and excitation in local and centrifugal circuits plays a critical functional role, and this patterned input-dependent regulation of inhibitory centrifugal inputs to the olfactory bulb may help maintain the precise balance across the populations of output neurons in different environmental odors, putatively to sharpen the enhancement of tuning specificity of individual or classes of M/TCs to odors.NEW & NOTEWORTHY Neuronal local circuits in the olfactory bulb are modulated by centrifugal long circuits. In vivo study here shows that inhibitory horizontal limb of the diagonal band of Broca (HDB) modulates all five types of mitral/tufted cells (M/TCs), by direct inhibitory circuits HDB → M/TCs and indirect disinhibitory long circuits HDB → interneurons → M/TCs. The HDB net effect exerts excitation in all types of M/TCs but more powerful in deeper layer output neurons as HDB activation frequency increases, which may sharpen the tuning specificity of classes of M/TCs to odors during sensory processing.
Collapse
Affiliation(s)
- Adam C Puche
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Chelsea Hook
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Fu-Wen Zhou
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Gumaste A, Baker KL, Izydorczak M, True AC, Vasan G, Crimaldi JP, Verhagen J. Behavioral discrimination and olfactory bulb encoding of odor plume intermittency. eLife 2024; 13:e85303. [PMID: 38441541 PMCID: PMC11001298 DOI: 10.7554/elife.85303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
In order to survive, animals often need to navigate a complex odor landscape where odors can exist in airborne plumes. Several odor plume properties change with distance from the odor source, providing potential navigational cues to searching animals. Here, we focus on odor intermittency, a temporal odor plume property that measures the fraction of time odor is above a threshold at a given point within the plume and decreases with increasing distance from the odor source. We sought to determine if mice can use changes in intermittency to locate an odor source. To do so, we trained mice on an intermittency discrimination task. We establish that mice can discriminate odor plume samples of low and high intermittency and that the neural responses in the olfactory bulb can account for task performance and support intermittency encoding. Modulation of sniffing, a behavioral parameter that is highly dynamic during odor-guided navigation, affects both behavioral outcome on the intermittency discrimination task and neural representation of intermittency. Together, this work demonstrates that intermittency is an odor plume property that can inform olfactory search and more broadly supports the notion that mammalian odor-based navigation can be guided by temporal odor plume properties.
Collapse
Affiliation(s)
- Ankita Gumaste
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
- John B. Pierce LaboratoryNew HavenUnited States
- Department of Neuroscience, Yale School of MedicineNew HavenUnited States
| | - Keeley L Baker
- John B. Pierce LaboratoryNew HavenUnited States
- Department of Neuroscience, Yale School of MedicineNew HavenUnited States
| | | | - Aaron C True
- Department of Civil, Environmental and Architectural Engineering, University of ColoradoBoulderUnited States
| | | | - John P Crimaldi
- Department of Civil, Environmental and Architectural Engineering, University of ColoradoBoulderUnited States
| | - Justus Verhagen
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
- John B. Pierce LaboratoryNew HavenUnited States
- Department of Neuroscience, Yale School of MedicineNew HavenUnited States
| |
Collapse
|
5
|
Zhou FW, Hook C, Puche AC. Frequency-dependent centrifugal modulation of the activity of different classes of mitral and tufted cells in olfactory bulb. J Neurophysiol 2023; 129:1515-1533. [PMID: 37222431 PMCID: PMC10281792 DOI: 10.1152/jn.00390.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 05/25/2023] Open
Abstract
Mitral/tufted cells (M/TCs), the principal output neuron classes form complex circuits with bulbar neurons and long-range centrifugal circuits with higher processing areas such as the horizontal limb of the diagonal band of Broca (HDB). The precise excitability of output neurons is sculpted by local inhibitory circuits. Here, light-gated cation channel channelrhodopsin-2 (ChR2) was expressed in HDB GABAergic neurons to investigate the short-term plasticity of evoked postsynaptic currents/potentials of HDB input to all classes of M/TCs and effects on firing in the acute slice preparation. Activation of the HDB directly inhibited all classes of output neurons exhibiting frequency-dependent short-term depression of evoked inhibitory postsynaptic current (eIPSC)/potential (eIPSP), resulting in decreased inhibition of responses to olfactory nerve input as a function of input frequency. In contrast, activation of an indirect circuit of HDB→interneurons→M/TCs induced frequency-dependent disinhibition, resulting in short-term facilitation of evoked excitatory postsynaptic current (eEPSC) eliciting a burst or cluster of spiking in M/TCs. The facilitatory effects of elevated HDB input frequency were strongest on deeper output neurons (deep tufted and mitral cells) and negligible on peripheral output neurons (external and superficial tufted cells). Taken together, GABAergic HDB activation generates frequency-dependent regulation that differentially affects the excitability and responses across the five classes of M/TCs. This regulation may help maintain the precise balance between inhibition and excitation of neuronal circuits across the populations of output neurons in the face of changes in an animal sniffing rate, putatively to enhance and sharpen the tuning specificity of individual or classes of M/TCs to odors.NEW & NOTEWORTHY Neuronal circuits in the olfactory bulb closely modulate olfactory bulb output activity. Activation of GABAergic circuits from the HDB to the olfactory bulb has both direct and indirect action differentially across the five classes of M/TC bulbar output neurons. The net effect enhances the excitability of deeper output neurons as HDB frequency increases, altering the relative inhibition-excitation balance of output circuits. We hypothesize that this sharpens the tuning specificity of classes of M/TCs to odors during sensory processing.
Collapse
Affiliation(s)
- Fu-Wen Zhou
- Department of Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Chelsea Hook
- Department of Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Adam C Puche
- Department of Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
6
|
Cousens GA, Fotis MM, Bradshaw CM, Ramirez-Alvarado YM, McKittrick CR. Characterization of Retronasal Airflow Patterns during Intraoral Fluid Discrimination Using a Low-Cost, Open-Source Biosensing Platform. SENSORS (BASEL, SWITZERLAND) 2022; 22:6817. [PMID: 36146175 PMCID: PMC9505993 DOI: 10.3390/s22186817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Nasal airflow plays a critical role in olfactory processes, and both retronasal and orthonasal olfaction involve sensorimotor processes that facilitate the delivery of volatiles to the olfactory epithelium during odor sampling. Although methods are readily available for monitoring nasal airflow characteristics in laboratory and clinical settings, our understanding of odor sampling behavior would be enhanced by the development of inexpensive wearable technologies. Thus, we developed a method of monitoring nasal air pressure using a lightweight, open-source brain-computer interface (BCI) system and used the system to characterize patterns of retronasal airflow in human participants performing an oral fluid discrimination task. Participants exhibited relatively sustained low-rate retronasal airflow during sampling punctuated by higher-rate pulses often associated with deglutition. Although characteristics of post-deglutitive pulses did not differ across fluid conditions, the cumulative duration, probability, and estimated volume of retronasal airflow were greater during discrimination of perceptually similar solutions. These findings demonstrate the utility of a consumer-grade BCI system in assessing human olfactory behavior. They suggest further that sensorimotor processes regulate retronasal airflow to optimize the delivery of volatiles to the olfactory epithelium and that discrimination of perceptually similar oral fluids may be accomplished by varying the duration of optimal airflow rate.
Collapse
Affiliation(s)
- Graham A. Cousens
- Department of Psychology, Drew University, 36 Madison Avenue, Madison, NJ 07940, USA
- Neuroscience Program, Drew University, 36 Madison Avenue, Madison, NJ 07940, USA
| | | | | | | | - Christina R. McKittrick
- Neuroscience Program, Drew University, 36 Madison Avenue, Madison, NJ 07940, USA
- Department of Biology, Drew University, 36 Madison Avenue, Madison, NJ 07940, USA
| |
Collapse
|
7
|
Canto-Bustos M, Friason FK, Bassi C, Oswald AMM. Disinhibitory Circuitry Gates Associative Synaptic Plasticity in Olfactory Cortex. J Neurosci 2022; 42:2942-2950. [PMID: 35181596 PMCID: PMC8985865 DOI: 10.1523/jneurosci.1369-21.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/02/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
Inhibitory microcircuits play an essential role in regulating cortical responses to sensory stimuli. Interneurons that inhibit dendritic or somatic integration act as gatekeepers for neural activity, synaptic plasticity, and the formation of sensory representations. Conversely, interneurons that selectively inhibit other interneurons can open gates through disinhibition. In the anterior piriform cortex, relief of inhibition permits associative LTP of excitatory synapses between pyramidal neurons. However, the interneurons and circuits mediating disinhibition have not been elucidated. In this study, we use an optogenetic approach in mice of both sexes to identify the inhibitory interneurons and disinhibitory circuits that regulate LTP. We focused on three prominent interneuron classes: somatostatin (SST), parvalbumin (PV), and vasoactive intestinal polypeptide (VIP) interneurons. We find that LTP is gated by the inactivation SST or PV interneurons and by the activation of VIP interneurons. Further, VIP interneurons strongly inhibit putative SST cells during LTP induction but only weakly inhibit PV interneurons. Together, these findings suggest that VIP interneurons mediate a disinhibitory circuit that gates synaptic plasticity during the formation of olfactory representations.SIGNIFICANCE STATEMENT Inhibitory interneurons stabilize neural activity during sensory processing. However, inhibition must also be modulated to allow sensory experience shape neural responses. In olfactory cortex, inhibition regulates activity-dependent increases in excitatory synaptic strength that accompany odor learning. We identify two inhibitory interneuron classes that act as gatekeepers preventing excitatory enhancement. We demonstrate that driving a third class of interneurons inhibits the gatekeepers and opens the gate for excitatory enhancement. All three inhibitory neuron classes comprise disinhibitory microcircuit motifs found throughout the cortex. Our findings suggest that a common disinhibitory microcircuit promotes changes in synaptic strength during sensory processing and learning.
Collapse
Affiliation(s)
- Martha Canto-Bustos
- Department of Neuroscience
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - F Kathryn Friason
- Department of Neuroscience
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Anne-Marie M Oswald
- Department of Neuroscience
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Neurobiology
- Neuroscience Institute, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
8
|
Adefuin AM, Lindeman S, Reinert JK, Fukunaga I. State-dependent representations of mixtures by the olfactory bulb. eLife 2022; 11:76882. [PMID: 35254262 PMCID: PMC8937304 DOI: 10.7554/elife.76882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/05/2022] [Indexed: 12/02/2022] Open
Abstract
Sensory systems are often tasked to analyse complex signals from the environment, separating relevant from irrelevant parts. This process of decomposing signals is challenging when a mixture of signals does not equal the sum of its parts, leading to an unpredictable corruption of signal patterns. In olfaction, nonlinear summation is prevalent at various stages of sensory processing. Here, we investigate how the olfactory system deals with binary mixtures of odours under different brain states by two-photon imaging of olfactory bulb (OB) output neurons. Unlike previous studies using anaesthetised animals, we found that mixture summation is more linear in the early phase of evoked responses in awake, head-fixed mice performing an odour detection task, due to dampened responses. Despite smaller and more variable responses, decoding analyses indicated that the data from behaving mice was well discriminable. Curiously, the time course of decoding accuracy did not correlate strictly with the linearity of summation. Further, a comparison with naïve mice indicated that learning to accurately perform the mixture detection task is not accompanied by more linear mixture summation. Finally, using a simulation, we demonstrate that, while saturating sublinearity tends to degrade the discriminability, the extent of the impairment may depend on other factors, including pattern decorrelation. Altogether, our results demonstrate that the mixture representation in the primary olfactory area is state-dependent, but the analytical perception may not strictly correlate with linearity in summation.
Collapse
Affiliation(s)
- Aliya Mari Adefuin
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sander Lindeman
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Janine K Reinert
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Izumi Fukunaga
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
9
|
Moran AK, Eiting TP, Wachowiak M. Circuit Contributions to Sensory-Driven Glutamatergic Drive of Olfactory Bulb Mitral and Tufted Cells During Odorant Inhalation. Front Neural Circuits 2021; 15:779056. [PMID: 34776878 PMCID: PMC8578712 DOI: 10.3389/fncir.2021.779056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
In the mammalian olfactory bulb (OB), mitral/tufted (MT) cells respond to odorant inhalation with diverse temporal patterns that are thought to encode odor information. Much of this diversity is already apparent at the level of glutamatergic input to MT cells, which receive direct, monosynaptic excitatory input from olfactory sensory neurons (OSNs) as well as a multisynaptic excitatory drive via glutamatergic interneurons. Both pathways are also subject to modulation by inhibitory circuits in the glomerular layer of the OB. To understand the role of direct OSN input vs. postsynaptic OB circuit mechanisms in shaping diverse dynamics of glutamatergic drive to MT cells, we imaged glutamate signaling onto MT cell dendrites in anesthetized mice while blocking multisynaptic excitatory drive with ionotropic glutamate receptor antagonists and blocking presynaptic modulation of glutamate release from OSNs with GABAB receptor antagonists. GABAB receptor blockade increased the magnitude of inhalation-linked glutamate transients onto MT cell apical dendrites without altering their inhalation-linked dynamics, confirming that presynaptic inhibition impacts the gain of OSN inputs to the OB. Surprisingly, blockade of multisynaptic excitation only modestly impacted glutamatergic input to MT cells, causing a slight reduction in the amplitude of inhalation-linked glutamate transients in response to low odorant concentrations and no change in the dynamics of each transient. The postsynaptic blockade also modestly impacted glutamate dynamics over a slower timescale, mainly by reducing adaptation of the glutamate response across multiple inhalations of odorant. These results suggest that direct glutamatergic input from OSNs provides the bulk of excitatory drive to MT cells, and that diversity in the dynamics of this input may be a primary determinant of the temporal diversity in MT cell responses that underlies odor representations at this stage.
Collapse
Affiliation(s)
- Andrew K. Moran
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Thomas P. Eiting
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Matt Wachowiak
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
10
|
Strauch C, Hoang TH, Angenstein F, Manahan-Vaughan D. Olfactory Information Storage Engages Subcortical and Cortical Brain Regions That Support Valence Determination. Cereb Cortex 2021; 32:689-708. [PMID: 34379749 PMCID: PMC8841565 DOI: 10.1093/cercor/bhab226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
The olfactory bulb (OB) delivers sensory information to the piriform cortex (PC) and other components of the olfactory system. OB-PC synapses have been reported to express short-lasting forms of synaptic plasticity, whereas long-term potentiation (LTP) of the anterior PC (aPC) occurs predominantly by activating inputs from the prefrontal cortex. This suggests that brain regions outside the olfactory system may contribute to olfactory information processing and storage. Here, we compared functional magnetic resonance imaging BOLD responses triggered during 20 or 100 Hz stimulation of the OB. We detected BOLD signal increases in the anterior olfactory nucleus (AON), PC and entorhinal cortex, nucleus accumbens, dorsal striatum, ventral diagonal band of Broca, prelimbic–infralimbic cortex (PrL-IL), dorsal medial prefrontal cortex, and basolateral amygdala. Significantly stronger BOLD responses occurred in the PrL-IL, PC, and AON during 100 Hz compared with 20 Hz OB stimulation. LTP in the aPC was concomitantly induced by 100 Hz stimulation. Furthermore, 100 Hz stimulation triggered significant nuclear immediate early gene expression in aPC, AON, and PrL-IL. The involvement of the PrL-IL in this process is consistent with its putative involvement in modulating behavioral responses to odor experience. Furthermore, these results indicate that OB-mediated information storage by the aPC is embedded in a connectome that supports valence evaluation.
Collapse
Affiliation(s)
- Christina Strauch
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| | - Thu-Huong Hoang
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 39118 Magdeburg, Germany.,Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.,Medical Faculty, Otto-von Guericke University, 39118 Magdeburg, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
11
|
Martelli C, Storace DA. Stimulus Driven Functional Transformations in the Early Olfactory System. Front Cell Neurosci 2021; 15:684742. [PMID: 34413724 PMCID: PMC8369031 DOI: 10.3389/fncel.2021.684742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Olfactory stimuli are encountered across a wide range of odor concentrations in natural environments. Defining the neural computations that support concentration invariant odor perception, odor discrimination, and odor-background segmentation across a wide range of stimulus intensities remains an open question in the field. In principle, adaptation could allow the olfactory system to adjust sensory representations to the current stimulus conditions, a well-known process in other sensory systems. However, surprisingly little is known about how adaptation changes olfactory representations and affects perception. Here we review the current understanding of how adaptation impacts processing in the first two stages of the vertebrate olfactory system, olfactory receptor neurons (ORNs), and mitral/tufted cells.
Collapse
Affiliation(s)
- Carlotta Martelli
- Institute of Developmental Biology and Neurobiology, University of Mainz, Mainz, Germany
| | - Douglas Anthony Storace
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
12
|
Zeppilli S, Ackels T, Attey R, Klimpert N, Ritola KD, Boeing S, Crombach A, Schaefer AT, Fleischmann A. Molecular characterization of projection neuron subtypes in the mouse olfactory bulb. eLife 2021; 10:e65445. [PMID: 34292150 PMCID: PMC8352594 DOI: 10.7554/elife.65445] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Projection neurons (PNs) in the mammalian olfactory bulb (OB) receive input from the nose and project to diverse cortical and subcortical areas. Morphological and physiological studies have highlighted functional heterogeneity, yet no molecular markers have been described that delineate PN subtypes. Here, we used viral injections into olfactory cortex and fluorescent nucleus sorting to enrich PNs for high-throughput single nucleus and bulk RNA deep sequencing. Transcriptome analysis and RNA in situ hybridization identified distinct mitral and tufted cell populations with characteristic transcription factor network topology, cell adhesion, and excitability-related gene expression. Finally, we describe a new computational approach for integrating bulk and snRNA-seq data and provide evidence that different mitral cell populations preferentially project to different target regions. Together, we have identified potential molecular and gene regulatory mechanisms underlying PN diversity and provide new molecular entry points into studying the diverse functional roles of mitral and tufted cell subtypes.
Collapse
Affiliation(s)
- Sara Zeppilli
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, and CNRS UMR 7241 and INSERM U1050ParisFrance
| | - Tobias Ackels
- The Francis Crick Institute, Sensory Circuits and Neurotechnology LaboratoryLondonUnited Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Robin Attey
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Nell Klimpert
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Kimberly D Ritola
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Stefan Boeing
- The Francis Crick Institute, Bioinformatics and BiostatisticsLondonUnited Kingdom
- The Francis Crick Institute, Scientific Computing - Digital Development TeamLondonUnited Kingdom
| | - Anton Crombach
- Inria Antenne Lyon La DouaVilleurbanneFrance
- Université de Lyon, INSA-Lyon, LIRIS, UMR 5205VilleurbanneFrance
| | - Andreas T Schaefer
- The Francis Crick Institute, Sensory Circuits and Neurotechnology LaboratoryLondonUnited Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, and CNRS UMR 7241 and INSERM U1050ParisFrance
| |
Collapse
|
13
|
Chockanathan U, Crosier EJW, Waddle S, Lyman E, Gerkin RC, Padmanabhan K. Changes in pairwise correlations during running reshape global network state in the main olfactory bulb. J Neurophysiol 2021; 125:1612-1623. [PMID: 33656931 DOI: 10.1152/jn.00464.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural codes for sensory inputs have been hypothesized to reside in a broader space defined by ongoing patterns of spontaneous activity. To understand the structure of this spontaneous activity in the olfactory system, we performed high-density recordings of neural populations in the main olfactory bulb of awake mice. We observed changes in pairwise correlations of spontaneous activity between mitral and tufted (M/T) cells when animals were running, which resulted in an increase in the entropy of the population. Surprisingly, pairwise maximum entropy models that described the population activity using only assumptions about the firing rates and correlations of neurons were better at predicting the global structure of activity when animals were stationary as compared to when they were running, implying that higher order (3rd, 4th order) interactions governed population activity during locomotion. Taken together, we found that locomotion alters the functional interactions that shape spontaneous population activity at the earliest stages of olfactory processing, one synapse away from the sensory receptors in the nasal epithelium. These data suggest that the coding space available for sensory representations responds adaptively to the animal's behavioral state.NEW & NOTEWORTHY The organization and structure of spontaneous population activity in the olfactory system places constraints of how odor information is represented. Using high-density electrophysiological recordings of mitral and tufted cells, we found that running increases the dimensionality of spontaneous activity, implicating higher order interactions among neurons during locomotion. Behavior, thus, flexibly alters neuronal activity at the earliest stages of sensory processing.
Collapse
Affiliation(s)
- Udaysankar Chockanathan
- Medical Scientist Training Program (MSTP), University of Rochester School of Medicine, Rochester, New York.,Department of Neuroscience and Neuroscience Graduate Program (NGP), University of Rochester School of Medicine, Rochester, New York
| | - Emily J W Crosier
- Department of Neuroscience and Neuroscience Graduate Program (NGP), University of Rochester School of Medicine, Rochester, New York
| | - Spencer Waddle
- Department of Physics, University of Delaware, Newark, Delaware
| | - Edward Lyman
- Department of Physics, University of Delaware, Newark, Delaware
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Krishnan Padmanabhan
- Medical Scientist Training Program (MSTP), University of Rochester School of Medicine, Rochester, New York.,Department of Neuroscience and Neuroscience Graduate Program (NGP), University of Rochester School of Medicine, Rochester, New York.,Center for Visual Sciences, University of Rochester School of Medicine, Rochester, New York
| |
Collapse
|
14
|
Zhou G, Olofsson JK, Koubeissi MZ, Menelaou G, Rosenow J, Schuele SU, Xu P, Voss JL, Lane G, Zelano C. Human hippocampal connectivity is stronger in olfaction than other sensory systems. Prog Neurobiol 2021; 201:102027. [PMID: 33640412 DOI: 10.1016/j.pneurobio.2021.102027] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/20/2021] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
During mammalian evolution, primate neocortex expanded, shifting hippocampal functional networks away from primary sensory cortices, towards association cortices. Reflecting this rerouting, human resting hippocampal functional networks preferentially include higher association cortices, while those in rodents retained primary sensory cortices. Research on human visual, auditory and somatosensory systems shows evidence of this rerouting. Olfaction, however, is unique among sensory systems in its relative structural conservation throughout mammalian evolution, and it is unknown whether human primary olfactory cortex was subject to the same rerouting. We combined functional neuroimaging and intracranial electrophysiology to directly compare hippocampal functional networks across human sensory systems. We show that human primary olfactory cortex-including the anterior olfactory nucleus, olfactory tubercle and piriform cortex-has stronger functional connectivity with hippocampal networks at rest, compared to other sensory systems. This suggests that unlike other sensory systems, olfactory-hippocampal connectivity may have been retained in mammalian evolution. We further show that olfactory-hippocampal connectivity oscillates with nasal breathing. Our findings suggest olfaction might provide insight into how memory and cognition depend on hippocampal interactions.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Jonas K Olofsson
- Department of Psychology, Stockholm University, Stockholm, Sweden; Emotional Brain Institute, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | | | - Joshua Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stephan U Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China; Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China; Guangdong-Hong Kong-Macao Greater Bay Area Research Institute for Neuroscience and Neurotechnologies, Kwun Tong, Hong Kong, China
| | - Joel L Voss
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gregory Lane
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
15
|
Dynamic Impairment of Olfactory Behavior and Signaling Mediated by an Olfactory Corticofugal System. J Neurosci 2020; 40:7269-7285. [PMID: 32817250 DOI: 10.1523/jneurosci.2667-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 01/16/2023] Open
Abstract
Processing of olfactory information is modulated by centrifugal projections from cortical areas, yet their behavioral relevance and underlying neural mechanisms remain unclear in most cases. The anterior olfactory nucleus (AON) is part of the olfactory cortex, and its extensive connections to multiple upstream and downstream brain centers place it in a prime position to modulate early sensory information in the olfactory system. Here, we show that optogenetic activation of AON neurons in awake male and female mice was not perceived as an odorant equivalent cue. However, AON activation during odorant presentation reliably suppressed behavioral odor responses. This AON-mediated effect was fast and constant across odors and concentrations. Likewise, activation of glutamatergic AON projections to the olfactory bulb (OB) transiently inhibited the excitability of mitral/tufted cells (MTCs) that relay olfactory input to the cortex. Single-unit MTC recordings revealed that optogenetic activation of glutamatergic AON terminals in the OB transiently decreased sensory-evoked MTC spiking, regardless of the strength or polarity of the sensory response. The reduction in MTC firing during optogenetic stimulation was confirmed in recordings in awake mice. These findings suggest that glutamatergic AON projections to the OB impede early olfactory signaling by inhibiting OB output neurons, thereby dynamically gating sensory throughput to the cortex.SIGNIFICANCE STATEMENT The anterior olfactory nucleus (AON) as an olfactory information processing area sends extensive projections to multiple brain centers, but the behavioral consequences of its activation have been scarcely investigated. Using behavioral tests in combination with optogenetic manipulation, we show that, in contrast to what has been suggested previously, the AON does not seem to form odor percepts but instead suppresses behavioral odor responses across odorants and concentrations. Furthermore, this study shows that AON activation inhibits olfactory bulb output neurons in both anesthetized as well as awake mice, pointing to a potential mechanism by which the olfactory cortex can actively and dynamically gate sensory throughput to higher brain centers.
Collapse
|
16
|
Reisert J, Golden GJ, Dibattista M, Gelperin A. Dynamics of odor sampling strategies in mice. PLoS One 2020; 15:e0237756. [PMID: 32797072 PMCID: PMC7428156 DOI: 10.1371/journal.pone.0237756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/31/2020] [Indexed: 11/18/2022] Open
Abstract
Mammalian olfactory receptor neurons in the nasal cavity are stimulated by odorants carried by the inhaled air and their activation is therefore tied to and driven by the breathing or sniffing frequency. Sniffing frequency can be deliberately modulated to alter how odorants stimulate olfactory receptor neurons, giving the animal control over the frequency of odorant exposure to potentially aid odorant detection and discrimination. We monitored sniffing behaviors and odorant discrimination ability of freely-moving mice while they sampled either decreasing concentrations of target odorants or sampled a fixed target odorant concentration in the presence of a background of increasing odorant concentrations, using a Go-NoGo behavioral paradigm. This allowed us to ask how mice alter their odorant sampling duration and sampling (sniffing) frequency depending on the demands of the task and its difficulty. Mice showed an anticipatory increase in sniffing rate prior to odorant exposure and chose to sample for longer durations when exposed to odorants as compared to the solvent control odorant. Similarly, mice also took more odorant sampling sniffs when exposed to target odorants compared to the solvent control odorant. In general, odorant sampling strategies became more similar the more difficult the task was, e.g. the lower the target odorant concentration or the lower the target odorant contrast relative to the background odorant, suggesting that sniffing patterns are not preset, but are dynamically modulated by the particular task and its difficulty.
Collapse
Affiliation(s)
- Johannes Reisert
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Glen J. Golden
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Michele Dibattista
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari “A. Moro”, Bari, Italy
| | - Alan Gelperin
- Department of Neuroscience, Princeton University, Princeton, NJ, United States of America
| |
Collapse
|
17
|
Ackels T, Jordan R, Schaefer AT, Fukunaga I. Respiration-Locking of Olfactory Receptor and Projection Neurons in the Mouse Olfactory Bulb and Its Modulation by Brain State. Front Cell Neurosci 2020; 14:220. [PMID: 32765224 PMCID: PMC7378796 DOI: 10.3389/fncel.2020.00220] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023] Open
Abstract
For sensory systems of the brain, the dynamics of an animal’s own sampling behavior has a direct consequence on ensuing computations. This is particularly the case for mammalian olfaction, where a rhythmic flow of air over the nasal epithelium entrains activity in olfactory system neurons in a phenomenon known as sniff-locking. Parameters of sniffing can, however, change drastically with brain states. Coupled to the fact that different observation methods have different kinetics, consensus on the sniff-locking properties of neurons is lacking. To address this, we investigated the sniff-related activity of olfactory sensory neurons (OSNs), as well as the principal neurons of the olfactory bulb (OB), using 2-photon calcium imaging and intracellular whole-cell patch-clamp recordings in vivo, both in anesthetized and awake mice. Our results indicate that OSNs and OB output neurons lock robustly to the sniff rhythm, but with a slight temporal shift between behavioral states. We also observed a slight delay between methods. Further, the divergent sniff-locking by tufted cells (TCs) and mitral cells (MCs) in the absence of odor can be used to determine the cell type reliably using a simple linear classifier. Using this classification on datasets where morphological identification is unavailable, we find that MCs use a wider range of temporal shifts to encode odors than previously thought, while TCs have a constrained timing of activation due to an early-onset hyperpolarization. We conclude that the sniff rhythm serves as a fundamental rhythm but its impact on odor encoding depends on cell type, and this difference is accentuated in awake mice.
Collapse
Affiliation(s)
- Tobias Ackels
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Rebecca Jordan
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Andreas T Schaefer
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Izumi Fukunaga
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
18
|
Chen Z, Padmanabhan K. Top-Down Control of Inhibitory Granule Cells in the Main Olfactory Bulb Reshapes Neural Dynamics Giving Rise to a Diversity of Computations. Front Comput Neurosci 2020; 14:59. [PMID: 32765248 PMCID: PMC7381246 DOI: 10.3389/fncom.2020.00059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/22/2020] [Indexed: 01/05/2023] Open
Abstract
Growing evidence shows that top-down projections from excitatory neurons in piriform cortex selectively synapse onto local inhibitory granule cells in the main olfactory bulb, effectively gating their own inputs by controlling inhibition. An open question in olfaction is the role this feedback plays in shaping the dynamics of local circuits, and the resultant computational benefits it provides. Using rate models of neuronal firing in a network consisting of excitatory mitral and tufted cells, inhibitory granule cells and top-down piriform cortical neurons, we found that changes in the weight of feedback to inhibitory neurons generated diverse network dynamics and complex transitions between these dynamics. Changes in the weight of top-down feedback supported a number of computations, including both pattern separation and oscillatory synchrony. Additionally, the network could generate gamma oscillations though a mechanism we termed Top-down control of Inhibitory Neuron Gamma (TING). Collectively, these functions arose from a codimension-2 bifurcation in the dynamical system. Our results highlight a key role for this top-down feedback, gating inhibition to facilitate often diametrically different computations.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
| | - Krishnan Padmanabhan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| |
Collapse
|
19
|
Pashkovski SL, Iurilli G, Brann D, Chicharro D, Drummey K, Franks KM, Panzeri S, Datta SR. Structure and flexibility in cortical representations of odour space. Nature 2020; 583:253-258. [PMID: 32612230 PMCID: PMC7450987 DOI: 10.1038/s41586-020-2451-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 04/02/2020] [Indexed: 02/08/2023]
Abstract
The cortex organizes sensory information to enable discrimination and generalization1-4. As systematic representations of chemical odour space have not yet been described in the olfactory cortex, it remains unclear how odour relationships are encoded to place chemically distinct but similar odours, such as lemon and orange, into perceptual categories, such as citrus5-7. Here, by combining chemoinformatics and multiphoton imaging in the mouse, we show that both the piriform cortex and its sensory inputs from the olfactory bulb represent chemical odour relationships through correlated patterns of activity. However, cortical odour codes differ from those in the bulb: cortex more strongly clusters together representations for related odours, selectively rewrites pairwise odour relationships, and better matches odour perception. The bulb-to-cortex transformation depends on the associative network originating within the piriform cortex, and can be reshaped by passive odour experience. Thus, cortex actively builds a structured representation of chemical odour space that highlights odour relationships; this representation is similar across individuals but remains plastic, suggesting a means through which the olfactory system can assign related odour cues to common and yet personalized percepts.
Collapse
Affiliation(s)
| | - Giuliano Iurilli
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - David Brann
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Daniel Chicharro
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Kristen Drummey
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kevin M Franks
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Stefano Panzeri
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | | |
Collapse
|
20
|
Böhm E, Brunert D, Rothermel M. Input dependent modulation of olfactory bulb activity by HDB GABAergic projections. Sci Rep 2020; 10:10696. [PMID: 32612119 PMCID: PMC7329849 DOI: 10.1038/s41598-020-67276-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
Basal forebrain modulation of central circuits is associated with active sensation, attention, and learning. While cholinergic modulations have been studied extensively the effect of non-cholinergic basal forebrain subpopulations on sensory processing remains largely unclear. Here, we directly compare optogenetic manipulation effects of two major basal forebrain subpopulations on principal neuron activity in an early sensory processing area, i.e. mitral/tufted cells (MTCs) in the olfactory bulb. In contrast to cholinergic projections, which consistently increased MTC firing, activation of GABAergic fibers from basal forebrain to the olfactory bulb leads to differential modulation effects: while spontaneous MTC activity is mainly inhibited, odor-evoked firing is predominantly enhanced. Moreover, sniff-triggered averages revealed an enhancement of maximal sniff evoked firing amplitude and an inhibition of firing rates outside the maximal sniff phase. These findings demonstrate that GABAergic neuromodulation affects MTC firing in a bimodal, sensory-input dependent way, suggesting that GABAergic basal forebrain modulation could be an important factor in attention mediated filtering of sensory information to the brain.
Collapse
Affiliation(s)
- Erik Böhm
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany
| | - Daniela Brunert
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany.
| |
Collapse
|
21
|
CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb. J Neurosci 2020; 40:6189-6206. [PMID: 32605937 DOI: 10.1523/jneurosci.0769-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 01/13/2023] Open
Abstract
Delineation of functional synaptic connections is fundamental to understanding sensory processing. Olfactory signals are synaptically processed initially in the olfactory bulb (OB) where neural circuits are formed among inhibitory interneurons and the output neurons mitral cells (MCs) and tufted cells (TCs). TCs function in parallel with but differently from MCs and are further classified into multiple subpopulations based on their anatomic and functional heterogeneities. Here, we combined optogenetics with electrophysiology to characterize the synaptic transmission from a subpopulation of TCs, which exclusively express the neuropeptide cholecystokinin (CCK), to two groups of spatially segregated GABAergic interneurons, granule cells (GCs) and glomerular interneurons in mice of both sexes with four major findings. First, CCKergic TCs receive direct input from the olfactory sensory neurons (OSNs). This monosynaptic transmission exhibits high fidelity in response to repetitive OSN input. Second, CCKergic TCs drive GCs through two functionally distinct types of monosynaptic connections: (1) dendrodendritic synapses onto GC distal dendrites via their lateral dendrites in the superficial external plexiform layer (EPL); (2) axodendritic synapses onto GC proximal dendrites via their axon collaterals or terminals in the internal plexiform layer (IPL) on both sides of each bulb. Third, CCKergic TCs monosynaptically excite two subpopulations of inhibitory glomerular interneurons via dendrodendritic synapses. Finally, sniff-like patterned activation of CCKergic TCs induces robust frequency-dependent depression of the dendrodendritic synapses but facilitation of the axodendritic synapses. These results demonstrated important roles of the CCKergic TCs in olfactory processing by orchestrating OB inhibitory activities.SIGNIFICANCE STATEMENT Neuronal morphology and organization in the olfactory bulb (OB) have been extensively studied, however, the functional operation of neuronal interactions is not fully understood. We combined optogenetic and electrophysiological approaches to investigate the functional operation of synaptic connections between a specific population of excitatory output neuron and inhibitory interneurons in the OB. We found that these output neurons formed distinct types of synapses with two populations of spatially segregated interneurons. The functional characteristics of these synapses vary significantly depending on the presynaptic compartments so that these output neurons can dynamically rebalance inhibitory feedback or feedforward to other neurons types in the OB in response to dynamic rhythmic inputs.
Collapse
|
22
|
Differential Impacts of Repeated Sampling on Odor Representations by Genetically-Defined Mitral and Tufted Cell Subpopulations in the Mouse Olfactory Bulb. J Neurosci 2020; 40:6177-6188. [PMID: 32601245 DOI: 10.1523/jneurosci.0258-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
Sniffing, the active control of breathing beyond passive respiration, is used by mammals to modulate olfactory sampling. Sniffing allows animals to make odor-guided decisions within ∼200 ms, but animals routinely engage in bouts of high-frequency sniffing spanning several seconds; the impact of such repeated odorant sampling on odor representations remains unclear. We investigated this question in the mouse olfactory bulb (OB), where mitral and tufted cells (MTCs) form parallel output streams of odor information processing. To test the impact of repeated odorant sampling on MTC responses, we used two-photon imaging in anesthetized male and female mice to record activation of MTCs while precisely varying inhalation frequency. A combination of genetic targeting and viral expression of GCaMP6 reporters allowed us to access mitral cell (MC) and superficial tufted cell (sTC) subpopulations separately. We found that repeated odorant sampling differentially affected responses in MCs and sTCs, with MCs showing more diversity than sTCs over the same time period. Impacts of repeated sampling among MCs included both increases and decreases in excitation, as well as changes in response polarity. Response patterns across simultaneously-imaged MCs reformatted over time, with representations of different odorants becoming more distinct. Individual MCs responded differentially to changes in inhalation frequency, whereas sTC responses were more uniform over time and across frequency. Our results support the idea that MCs and TCs comprise functionally distinct pathways for odor information processing, and suggest that the reformatting of MC odor representations by high-frequency sniffing may serve to enhance the discrimination of similar odors.SIGNIFICANCE STATEMENT Repeated sampling of odorants during high-frequency respiration (sniffing) is a hallmark of active odorant sampling by mammals; however, the adaptive function of this behavior remains unclear. We found distinct effects of repeated sampling on odor representations carried by the two main output channels from the mouse olfactory bulb (OB), mitral and tufted cells (MTCs). Mitral cells (MCs) showed more diverse changes in response patterns over time as compared with tufted cells (TCs), leading to odorant representations that were more distinct after repeated sampling. These results support the idea that MTCs contribute different aspects to encoding odor information, and they indicate that MCs (but not TCs) may play a primary role in the modulation of olfactory processing by sampling behavior.
Collapse
|
23
|
Zhou FW, Shao ZY, Shipley MT, Puche AC. Short-term plasticity in glomerular inhibitory circuits shapes olfactory bulb output. J Neurophysiol 2020; 123:1120-1132. [PMID: 31995427 DOI: 10.1152/jn.00628.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Short-term plasticity is a fundamental synaptic property thought to underlie memory and neural processing. The glomerular microcircuit comprises complex excitatory and inhibitory interactions and transmits olfactory nerve signals to the excitatory output neurons, mitral/tufted cells (M/TCs). The major glomerular inhibitory interneurons, short axon cells (SACs) and periglomerular cells (PGCs), both provide feedforward and feedback inhibition to M/TCs and have reciprocal inhibitory synapses between each other. Olfactory input is episodically driven by sniffing. We hypothesized that frequency-dependent short-term plasticity within these inhibitory circuits could influence signals sent to higher-order olfactory networks. To assess short-term plasticity in glomerular circuits and MC outputs, we virally delivered channelrhodopsin-2 (ChR2) in glutamic acid decarboxylase-65 promotor (GAD2-cre) or tyrosine hydroxylase promoter (TH-cre) mice and selectively activated one of these two populations while recording from cells of the other population or from MCs. Selective activation of TH-ChR2-expressing SACs inhibited all recorded GAD2-green fluorescent protein(GFP)-expressing presumptive PGC cells, and activation of GAD2-ChR2 cells inhibited TH-GFP-expressing SACs, indicating reciprocal inhibitory connections. SAC synaptic inhibition of GAD2-expressing cells was significantly facilitated at 5-10 Hz activation frequencies. In contrast, GAD2-ChR2 cell inhibition of TH-expressing cells was activation-frequency independent. Both SAC and PGC inhibition of MCs also exhibited short-term plasticity, pronounced in the 5-20 Hz range corresponding to investigative sniffing frequency ranges. In paired SAC and olfactory nerve electrical stimulations, the SAC to MC synapse was able to markedly suppress MC spiking. These data suggest that short-term plasticity across investigative sniffing ranges may differentially regulate intra- and interglomerular inhibitory circuits to dynamically shape glomerular output signals to downstream targets.NEW & NOTEWORTHY Short-term plasticity is a fundamental synaptic property that modulates synaptic strength based on preceding activity of the synapse. In rodent olfaction, sensory input arrives episodically driven by sniffing rates ranging from quiescent respiration (1-2 Hz) through to investigative sniffing (5-10 Hz). Here we show that glomerular inhibitory networks are exquisitely sensitive to input frequencies and exhibit plasticity proportional to investigative sniffing frequencies. This indicates that olfactory glomerular circuits are dynamically modulated by episodic sniffing input.
Collapse
Affiliation(s)
- Fu-Wen Zhou
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zuo-Yi Shao
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Michael T Shipley
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Adam C Puche
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
Storace DA, Cohen LB, Choi Y. Using Genetically Encoded Voltage Indicators (GEVIs) to Study the Input-Output Transformation of the Mammalian Olfactory Bulb. Front Cell Neurosci 2019; 13:342. [PMID: 31417362 PMCID: PMC6684792 DOI: 10.3389/fncel.2019.00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022] Open
Abstract
Genetically encoded voltage indicators (GEVIs) are fluorescent protein reporters of membrane potential. These tools can, in principle, be used to monitor the neural activity of genetically distinct cell types in the brain. Although introduced in 1997, they have been a challenge to use to study intact neural circuits due to a combination of small signal-to-noise ratio, slow kinetics, and poor membrane expression. New strategies have yielded novel GEVIs such as ArcLight, which have improved properties. Here, we compare the in vivo properties of ArcLight with Genetically Encoded Calcium Indicators (GECIs) in the mouse olfactory bulb. We show how voltage imaging can be combined with organic calcium sensitive dyes to measure the input-output transformation of the olfactory bulb. Finally, we demonstrate that ArcLight can be targeted to olfactory bulb interneurons. The olfactory bulb contributes substantially to the perception of the concentration invariance of odor recognition.
Collapse
Affiliation(s)
- Douglas A Storace
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Lawrence B Cohen
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States.,Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, South Korea
| | - Yunsook Choi
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States.,Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, South Korea
| |
Collapse
|
25
|
Memory formation in the absence of experience. Nat Neurosci 2019; 22:933-940. [PMID: 31036944 DOI: 10.1038/s41593-019-0389-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/18/2019] [Indexed: 12/23/2022]
Abstract
Memory is coded by patterns of neural activity in distinct circuits. Therefore, it should be possible to reverse engineer a memory by artificially creating these patterns of activity in the absence of a sensory experience. In olfactory conditioning, an odor conditioned stimulus (CS) is paired with an unconditioned stimulus (US; for example, a footshock), and the resulting CS-US association guides future behavior. Here we replaced the odor CS with optogenetic stimulation of a specific olfactory glomerulus and the US with optogenetic stimulation of distinct inputs into the ventral tegmental area that mediate either aversion or reward. In doing so, we created a fully artificial memory in mice. Similarly to a natural memory, this artificial memory depended on CS-US contingency during training, and the conditioned response was specific to the CS and reflected the US valence. Moreover, both real and implanted memories engaged overlapping brain circuits and depended on basolateral amygdala activity for expression.
Collapse
|
26
|
Viertel R, Borisyuk A. A Computational model of the mammalian external tufted cell. J Theor Biol 2019; 462:109-121. [PMID: 30290156 DOI: 10.1016/j.jtbi.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/14/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
We introduce a novel detailed conductance-based model of the bursting activity in external tufted (ET) cells of the olfactory bulb. We investigate the mechanisms underlying their bursting, and make experimentally-testable predictions. The ionic currents included in the model are specific to ET cells, and their kinetic and other parameters are based on experimental recordings. We validate the model by showing that its bursting characteristics under various conditions (e.g. blocking various currents) are consistent with experimental observations. Further, we identify the bifurcation structure and dynamics that explain bursting behavior. This analysis allows us to make predictions of the response of the cell to current pulses at different burst phases. We find that depolarizing (but not hyperpolarizing) inputs received during the interburst interval can advance burst timing, creating the substrate for synchronization by excitatory connections. It has been hypothesized that such synchronization among the ET cells within one glomerulus might help coordinate the glomerular output. Next we investigate model parameter sensitivity and identify parameters that play the most prominent role in controlling each burst characteristic, such as the burst frequency and duration. Finally, the response of the cell to periodic inputs is examined, reflecting the sniffing-modulated input that these cell receive in vivo. We find that individual cells can be better entrained by inputs with higher, rather than lower, frequencies than the intrinsic bursting frequency of the cell. Nevertheless, a heterogeneous population of ET cells (as may be found in a glomerulus) is able to produce reliable periodic population responses even at lower input frequencies.
Collapse
Affiliation(s)
- Ryan Viertel
- University of Utah, Department of Mathematics, 155 S 1400 E, Salt Lake City, Utah 84112, United States.
| | - Alla Borisyuk
- University of Utah, Department of Mathematics, 155 S 1400 E, Salt Lake City, Utah 84112, United States.
| |
Collapse
|
27
|
Noguchi T, Miyazono S, Kashiwayanagi M. Stimulus dynamics-dependent information transfer of olfactory and vomeronasal sensory neurons in mice. Neuroscience 2018; 400:48-61. [PMID: 30599273 DOI: 10.1016/j.neuroscience.2018.12.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 01/29/2023]
Abstract
The parallel processing of chemical signals by the main olfactory system and the vomeronasal system has been known to control animal behavior. The physiological significance of peripheral parallel pathways consisting of olfactory sensory neurons and vomeronasal sensory neurons is not well understood. Here, we show complementary characteristics of the information transfer of the olfactory sensory neurons and vomeronasal sensory neurons. A difference in excitability between the sensory neurons was revealed by patch-clamp experiments. The olfactory and vomeronasal sensory neurons showed phasic and tonic firing, respectively. Intrinsic channel kinetics determining firing patterns was demonstrated by a Hodgkin-Huxley-style computation. Our estimation of the information carried by action potentials during one cycle of sinusoidal stimulation with variable durations revealed distinct characteristics of information transfer between the sensory neurons. Phasic firing of the olfactory sensory neurons was suitable to carry information about rapid changes in a shorter cycle (<200 ms). In contrast, tonic firing of the vomeronasal sensory neurons was able to convey information about smaller stimuli changing slowly with longer cycles (>500 ms). Thus, the parallel pathways of the two types of sensory neurons can convey information about a wide range of dynamic stimuli. A combination of complementary characteristics of olfactory information transfer may enhance the synergy of the interaction between the main olfactory system and the vomeronasal system.
Collapse
Affiliation(s)
- Tomohiro Noguchi
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan.
| | - Sadaharu Miyazono
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan.
| | - Makoto Kashiwayanagi
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
28
|
Sniffing Fast: Paradoxical Effects on Odor Concentration Discrimination at the Levels of Olfactory Bulb Output and Behavior. eNeuro 2018; 5:eN-NWR-0148-18. [PMID: 30596145 PMCID: PMC6306510 DOI: 10.1523/eneuro.0148-18.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/07/2018] [Accepted: 08/11/2018] [Indexed: 12/03/2022] Open
Abstract
In awake mice, sniffing behavior is subject to complex contextual modulation. It has been hypothesized that variance in inhalation dynamics alters odor concentration profiles in the naris despite a constant environmental concentration. Using whole-cell recordings in the olfactory bulb of awake mice, we directly demonstrate that rapid sniffing mimics the effect of odor concentration increase at the level of both mitral and tufted cell (MTC) firing rate responses and temporal responses. Paradoxically, we find that mice are capable of discriminating fine concentration differences within short timescales despite highly variable sniffing behavior. One way that the olfactory system could differentiate between a change in sniffing and a change in concentration would be to receive information about the inhalation parameters in parallel with information about the odor. We find that the sniff-driven activity of MTCs without odor input is informative of the kind of inhalation that just occurred, allowing rapid detection of a change in inhalation. Thus, a possible reason for sniff modulation of the early olfactory system may be to directly inform downstream centers of nasal flow dynamics, so that an inference can be made about environmental concentration independent of sniff variance.
Collapse
|
29
|
Abstract
Sampling regulates stimulus intensity and temporal dynamics at the sense organ. Despite variations in sampling behavior, animals must make veridical perceptual judgments about external stimuli. In olfaction, odor sampling varies with respiration, which influences neural responses at the olfactory periphery. Nevertheless, rats were able to perform fine odor intensity judgments despite variations in sniff kinetics. To identify the features of neural activity supporting stable intensity perception, in awake mice we measured responses of mitral/tufted (MT) cells to different odors and concentrations across a range of sniff frequencies. Amplitude and latency of the MT cells' responses vary with sniff duration. A fluid dynamics (FD) model based on odor concentration kinetics in the intranasal cavity can account for this variability. Eliminating sniff waveform dependence of MT cell responses using the FD model allows for significantly better decoding of concentration. This suggests potential schemes for sniff waveform invariant odor concentration coding.
Collapse
|
30
|
Jordan R, Fukunaga I, Kollo M, Schaefer AT. Active Sampling State Dynamically Enhances Olfactory Bulb Odor Representation. Neuron 2018; 98:1214-1228.e5. [PMID: 29861286 PMCID: PMC6030445 DOI: 10.1016/j.neuron.2018.05.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/26/2018] [Accepted: 05/08/2018] [Indexed: 11/06/2022]
Abstract
The olfactory bulb (OB) is the first site of synaptic odor information processing, yet a wealth of contextual and learned information has been described in its activity. To investigate the mechanistic basis of contextual modulation, we use whole-cell recordings to measure odor responses across rapid learning episodes in identified mitral/tufted cells (MTCs). Across these learning episodes, diverse response changes occur already during the first sniff cycle. Motivated mice develop active sniffing strategies across learning that robustly correspond to the odor response changes, resulting in enhanced odor representation. Evoking fast sniffing in different behavioral states demonstrates that response changes during active sampling exceed those predicted from feedforward input alone. Finally, response changes are highly correlated in tufted cells, but not mitral cells, indicating there are cell-type-specific effects on odor representation during active sampling. Altogether, we show that active sampling is strongly associated with enhanced OB responsiveness on rapid timescales.
Collapse
Affiliation(s)
- Rebecca Jordan
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London NW1 5AT, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Izumi Fukunaga
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London NW1 5AT, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Mihaly Kollo
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London NW1 5AT, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Andreas T Schaefer
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London NW1 5AT, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The sense of smell is today one of the focuses of interest in aging and neurodegenerative disease research. In several neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease, the olfactory dysfunction is one of the initial symptoms appearing years before motor symptoms and cognitive decline, being considered a clinical marker of these diseases' early stages and a marker of disease progression and cognitive decline. Overall and under the umbrella of precision medicine, attention to olfactory function may help to improve chances of success for neuroprotective and disease-modifying therapeutic strategies. RECENT FINDINGS The use of olfaction, as clinical marker for neurodegenerative diseases is helpful in the characterization of prodromal stages of these diseases, early diagnostic strategies, differential diagnosis, and potentially prediction of treatment success. Understanding the mechanisms underlying olfactory dysfunction is central to determine its association with neurodegenerative disorders. Several anatomical systems and environmental factors may underlie or contribute to olfactory loss associated with neurological diseases, although the direct biological link to each disorder remains unclear and, thus, requires further investigation. In this review, we describe the neurobiology of olfaction, and the most common olfactory function measurements in neurodegenerative diseases. We also highlight the evidence for the presence of olfactory dysfunction in several neurodegenerative diseases, its value as a clinical marker for early stages of the diseases when combined with other clinical, biological, and neuroimage markers, and its role as a useful symptom for the differential diagnosis and follow-up of disease. The neuropathological correlations and the changes in neurotransmitter systems related with olfactory dysfunction in the neurodegenerative diseases are also described.
Collapse
|
32
|
Volume Conduction Coupling of Whisker-Evoked Cortical LFP in the Mouse Olfactory Bulb. Cell Rep 2018; 21:919-925. [PMID: 29069599 DOI: 10.1016/j.celrep.2017.09.094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/14/2017] [Accepted: 09/27/2017] [Indexed: 11/23/2022] Open
Abstract
Local field potentials (LFPs) are an important measure of brain activity and have been used to address various mechanistic and behavioral questions. We revealed a prominent whisker-evoked LFP signal in the olfactory bulb and investigated its physiology. This signal, dependent on barrel cortex activation and highly correlated with its local activity, represented a pure volume conduction signal that was sourced back to the activity in the ventro-lateral orbitofrontal cortex, located a few millimeters away. Thus, we suggest that special care should be taken when acquiring and interpreting LFP data.
Collapse
|
33
|
Vaaga CE, Westbrook GL. Distinct temporal filters in mitral cells and external tufted cells of the olfactory bulb. J Physiol 2018; 595:6349-6362. [PMID: 28791713 DOI: 10.1113/jp274608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS The release probability of the odorant receptor neuron (ORN) is reportedly one of the highest in the brain and is predicted to impose a transient temporal filter on postsynaptic cells. Mitral cells responded to high frequency ORN stimulation with sustained transmission, whereas external tufted cells responded transiently. The release probability of ORNs (0.7) was equivalent across mitral and external tufted cells and could be explained by a single pool of slowly recycling vesicles. The sustained response in mitral cells resulted from dendrodendritic amplification in mitral cells, which was blocked by NMDA and mGluR1 receptor antagonists, converting mitral cell responses to transient response profiles. Our results suggest that although the afferent ORN synapse shows strong synaptic depression, dendrodendritic circuitry in mitral cells produces robust amplification of brief afferent input, and thus the relative strength of axodendritic and dendrodendritic input determines the postsynaptic response profile. ABSTRACT Short-term synaptic plasticity is a critical regulator of neural circuits, and largely determines how information is temporally processed. In the olfactory bulb, afferent olfactory receptor neurons respond to increasing concentrations of odorants with barrages of action potentials, and their terminals have an extraordinarily high release probability. These features suggest that during naturalistic stimuli, afferent input to the olfactory bulb is subject to strong synaptic depression, presumably truncating the postsynaptic response to afferent stimuli. To examine this issue, we used single glomerular stimulation in mouse olfactory bulb slices to measure the synaptic dynamics of afferent-evoked input at physiological stimulus frequencies. In cell-attached recordings, mitral cells responded to high frequency stimulation with sustained responses, whereas external tufted cells responded transiently. Consistent with previous reports, olfactory nerve terminals onto both cell types had a high release probability (0.7), from a single pool of slowly recycling vesicles, indicating that the distinct responses of mitral and external tufted cells to high frequency stimulation did not originate presyaptically. Rather, distinct temporal response profiles in mitral cells and external tufted cells could be attributed to slow dendrodendritic responses in mitral cells, as blocking this slow current in mitral cells converted mitral cell responses to a transient response profile, typical of external tufted cells. Our results suggest that despite strong axodendritic synaptic depression, the balance of axodendritic and dendrodendritic circuitry in external tufted cells and mitral cells, respectively, tunes the postsynaptic responses to high frequency, naturalistic stimulation.
Collapse
Affiliation(s)
- Christopher E Vaaga
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA.,Neuroscience Graduate Program, Oregon Health and Science University, Portland, OR, USA
| | - Gary L Westbrook
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
34
|
Inhalation Frequency Controls Reformatting of Mitral/Tufted Cell Odor Representations in the Olfactory Bulb. J Neurosci 2018; 38:2189-2206. [PMID: 29374137 DOI: 10.1523/jneurosci.0714-17.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 12/17/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
In mammals, olfactory sensation depends on inhalation, which controls activation of sensory neurons and temporal patterning of central activity. Odor representations by mitral and tufted (MT) cells, the main output from the olfactory bulb (OB), reflect sensory input as well as excitation and inhibition from OB circuits, which may change as sniff frequency increases. To test the impact of sampling frequency on MT cell odor responses, we obtained whole-cell recordings from MT cells in anesthetized male and female mice while varying inhalation frequency via tracheotomy, allowing comparison of inhalation-linked responses across cells. We characterized frequency effects on MT cell responses during inhalation of air and odorants using inhalation pulses and also "playback" of sniffing recorded from awake mice. Inhalation-linked changes in membrane potential were well predicted across frequency from linear convolution of 1 Hz responses; and, as frequency increased, near-identical temporal responses could emerge from depolarizing, hyperpolarizing, or multiphasic MT responses. However, net excitation was not well predicted from 1 Hz responses and varied substantially across MT cells, with some cells increasing and others decreasing in spike rate. As a result, sustained odorant sampling at higher frequencies led to increasing decorrelation of the MT cell population response pattern over time. Bulk activation of sensory inputs by optogenetic stimulation affected MT cells more uniformly across frequency, suggesting that frequency-dependent decorrelation emerges from odor-specific patterns of activity in the OB network. These results suggest that sampling behavior alone can reformat early sensory representations, possibly to optimize sensory perception during repeated sampling.SIGNIFICANCE STATEMENT Olfactory sensation in mammals depends on inhalation, which increases in frequency during active sampling of olfactory stimuli. We asked how inhalation frequency can shape the neural coding of odor information by recording from projection neurons of the olfactory bulb while artificially varying odor sampling frequency in the anesthetized mouse. We found that sampling an odor at higher frequencies led to diverse changes in net responsiveness, as measured by action potential output, that were not predicted from low-frequency responses. These changes led to a reorganization of the pattern of neural activity evoked by a given odorant that occurred preferentially during sustained, high-frequency inhalation. These results point to a novel mechanism for modulating early sensory representations solely as a function of sampling behavior.
Collapse
|
35
|
Iwata R, Kiyonari H, Imai T. Mechanosensory-Based Phase Coding of Odor Identity in the Olfactory Bulb. Neuron 2017; 96:1139-1152.e7. [PMID: 29216451 DOI: 10.1016/j.neuron.2017.11.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/13/2017] [Accepted: 11/06/2017] [Indexed: 11/17/2022]
Abstract
Mitral and tufted (M/T) cells in the olfactory bulb produce rich temporal patterns of activity in response to different odors. However, it remains unknown how these temporal patterns are generated and how they are utilized in olfaction. Here we show that temporal patterning effectively discriminates between the two sensory modalities detected by olfactory sensory neurons (OSNs): odor and airflow-driven mechanical signals. Sniff-induced mechanosensation generates glomerulus-specific oscillatory activity in M/T cells, whose phase was invariant across airflow speed. In contrast, odor stimulation caused phase shifts (phase coding). We also found that odor-evoked phase shifts are concentration invariant and stable across multiple sniff cycles, contrary to the labile nature of rate coding. The loss of oscillatory mechanosensation impaired the precision and stability of phase coding, demonstrating its role in olfaction. We propose that phase, not rate, coding is a robust encoding strategy of odor identity and is ensured by airflow-induced mechanosensation in OSNs.
Collapse
Affiliation(s)
- Ryo Iwata
- Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Takeshi Imai
- Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
36
|
Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei. J Neurosci 2017; 36:6820-35. [PMID: 27335411 DOI: 10.1523/jneurosci.3667-15.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 05/17/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Serotonergic neurons in the brainstem raphe nuclei densely innervate the olfactory bulb (OB), where they can modulate the initial representation and processing of olfactory information. Serotonergic modulation of sensory responses among defined OB cell types is poorly characterized in vivo Here, we used cell-type-specific expression of optical reporters to visualize how raphe stimulation alters sensory responses in two classes of GABAergic neurons of the mouse OB glomerular layer, periglomerular (PG) and short axon (SA) cells, as well as mitral/tufted (MT) cells carrying OB output to piriform cortex. In PG and SA cells, brief (1-4 s) raphe stimulation elicited a large increase in the magnitude of responses linked to inhalation of ambient air, as well as modest increases in the magnitude of odorant-evoked responses. Near-identical effects were observed when the optical reporter of glutamatergic transmission iGluSnFR was expressed in PG and SA cells, suggesting enhanced excitatory input to these neurons. In contrast, in MT cells imaged from the dorsal OB, raphe stimulation elicited a strong increase in resting GCaMP fluorescence with only a slight enhancement of inhalation-linked responses to odorant. Finally, optogenetically stimulating raphe serotonergic afferents in the OB had heterogeneous effects on presumptive MT cells recorded extracellularly, with an overall modest increase in resting and odorant-evoked responses during serotonergic afferent stimulation. These results suggest that serotonergic afferents from raphe dynamically modulate olfactory processing through distinct effects on multiple OB targets, and may alter the degree to which OB output is shaped by inhibition during behavior. SIGNIFICANCE STATEMENT Modulation of the circuits that process sensory information can profoundly impact how information about the external world is represented and perceived. This study investigates how the serotonergic system modulates the initial processing of olfactory information by the olfactory bulb, an obligatory relay between sensory neurons and cortex. We find that serotonergic projections from the raphe nuclei to the olfactory bulb dramatically enhance the responses of two classes of inhibitory interneurons to sensory input, that this effect is mediated by increased glutamatergic drive onto these neurons, and that serotonergic afferent activation alters the responses of olfactory bulb output neurons in vivo These results elucidate pathways by which neuromodulatory systems can dynamically regulate brain circuits during behavior.
Collapse
|
37
|
Roland B, Deneux T, Franks KM, Bathellier B, Fleischmann A. Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex. eLife 2017; 6:e26337. [PMID: 28489003 PMCID: PMC5438249 DOI: 10.7554/elife.26337] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/29/2017] [Indexed: 11/18/2022] Open
Abstract
Olfactory perception and behaviors critically depend on the ability to identify an odor across a wide range of concentrations. Here, we use calcium imaging to determine how odor identity is encoded in olfactory cortex. We find that, despite considerable trial-to-trial variability, odor identity can accurately be decoded from ensembles of co-active neurons that are distributed across piriform cortex without any apparent spatial organization. However, piriform response patterns change substantially over a 100-fold change in odor concentration, apparently degrading the population representation of odor identity. We show that this problem can be resolved by decoding odor identity from a subpopulation of concentration-invariant piriform neurons. These concentration-invariant neurons are overrepresented in piriform cortex but not in olfactory bulb mitral and tufted cells. We therefore propose that distinct perceptual features of odors are encoded in independent subnetworks of neurons in the olfactory cortex.
Collapse
Affiliation(s)
- Benjamin Roland
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Paris, France
| | - Thomas Deneux
- Unité de Neuroscience, Information et Complexité, Centre National de la Recherche Scientifique, UPR 3293, Gif-sur-Yvette, France
| | - Kevin M Franks
- Department of Neurobiology, Duke University, Durham, United States
| | - Brice Bathellier
- Unité de Neuroscience, Information et Complexité, Centre National de la Recherche Scientifique, UPR 3293, Gif-sur-Yvette, France
| | - Alexander Fleischmann
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Paris, France
| |
Collapse
|
38
|
Colby SM, Kabilan S, Jacob RE, Kuprat AP, Einstein DR, Corley RA. Comparison of realistic and idealized breathing patterns in computational models of airflow and vapor dosimetry in the rodent upper respiratory tract. Inhal Toxicol 2016; 28:192-202. [PMID: 26986954 DOI: 10.3109/08958378.2016.1150367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CONTEXT Computational fluid dynamics (CFD) simulations of airflows coupled with physiologically based pharmacokinetic (PBPK) modeling of respiratory tissue doses of airborne materials have traditionally used either steady-state inhalation or a sinusoidal approximation of the breathing cycle for airflow simulations despite their differences from normal breathing patterns. OBJECTIVE Evaluate the impact of realistic breathing patterns, including sniffing, on predicted nasal tissue concentrations of a reactive vapor that targets the nose in rats as a case study. MATERIALS AND METHODS Whole-body plethysmography measurements from a free-breathing rat were used to produce profiles of normal breathing, sniffing and combinations of both as flow inputs to CFD/PBPK simulations of acetaldehyde exposure. RESULTS For the normal measured ventilation profile, modest reductions in time- and tissue depth-dependent areas under the curve (AUC) acetaldehyde concentrations were predicted in the wet squamous, respiratory and transitional epithelium along the main airflow path, while corresponding increases were predicted in the olfactory epithelium, especially the most distal regions of the ethmoid turbinates, versus the idealized profile. The higher amplitude/frequency sniffing profile produced greater AUC increases over the idealized profile in the olfactory epithelium, especially in the posterior region. CONCLUSIONS The differences in tissue AUCs at known lesion-forming regions for acetaldehyde between normal and idealized profiles were minimal, suggesting that sinusoidal profiles may be used for this chemical and exposure concentration. However, depending upon the chemical, exposure system and concentration and the time spent sniffing, the use of realistic breathing profiles, including sniffing, could become an important modulator for local tissue dose predictions.
Collapse
Affiliation(s)
- Sean M Colby
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Senthil Kabilan
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Richard E Jacob
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Andrew P Kuprat
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | | |
Collapse
|
39
|
Lüscher Dias T, Fernandes Golino H, Oliveira VEMD, Dutra Moraes MF, Schenatto Pereira G. c-Fos expression predicts long-term social memory retrieval in mice. Behav Brain Res 2016; 313:260-271. [DOI: 10.1016/j.bbr.2016.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/26/2016] [Accepted: 07/18/2016] [Indexed: 11/30/2022]
|
40
|
Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse. Neural Plast 2016; 2016:9124986. [PMID: 27747107 PMCID: PMC5056313 DOI: 10.1155/2016/9124986] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/13/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs), occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs) mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS) protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts ("single-sniff paradigm") can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and "single-sniff paradigm"-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse.
Collapse
|
41
|
Weiss T, Shushan S, Ravia A, Hahamy A, Secundo L, Weissbrod A, Ben-Yakov A, Holtzman Y, Cohen-Atsmoni S, Roth Y, Sobel N. From Nose to Brain: Un-Sensed Electrical Currents Applied in the Nose Alter Activity in Deep Brain Structures. Cereb Cortex 2016; 26:4180-4191. [PMID: 27591145 PMCID: PMC5066827 DOI: 10.1093/cercor/bhw222] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 05/16/2016] [Accepted: 06/27/2016] [Indexed: 01/02/2023] Open
Abstract
Rules linking patterns of olfactory receptor neuron activation in the nose to activity patterns in the brain and ensuing odor perception remain poorly understood. Artificially stimulating olfactory neurons with electrical currents and measuring ensuing perception may uncover these rules. We therefore inserted an electrode into the nose of 50 human volunteers and applied various currents for about an hour in each case. This induced assorted non-olfactory sensations but never once the perception of odor. To validate contact with the olfactory path, we used functional magnetic resonance imaging to measure resting-state brain activity in 18 subjects before and after un-sensed stimulation. We observed stimulation-induced neural decorrelation specifically in primary olfactory cortex, implying contact with the olfactory path. These results suggest that indiscriminate olfactory activation does not equate with odor perception. Moreover, this effort serendipitously uncovered a novel path for minimally invasive brain stimulation through the nose.
Collapse
Affiliation(s)
- Tali Weiss
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sagit Shushan
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Otolaryngology-Head and Neck Surgery, Edith Wolfson Medical Center, Holon 58100, Israel
| | - Aharon Ravia
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avital Hahamy
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lavi Secundo
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aharon Weissbrod
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aya Ben-Yakov
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Holtzman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Smadar Cohen-Atsmoni
- Department of Otolaryngology-Head and Neck Surgery, Edith Wolfson Medical Center, Holon 58100, Israel
| | - Yehudah Roth
- Department of Otolaryngology-Head and Neck Surgery, Edith Wolfson Medical Center, Holon 58100, Israel
| | - Noam Sobel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
42
|
Significance of sniffing pattern during the acquisition of an olfactory discrimination task. Behav Brain Res 2016; 312:341-54. [PMID: 27343936 DOI: 10.1016/j.bbr.2016.06.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 11/24/2022]
Abstract
Active sampling of olfactory environment consists of sniffing in rodents. The importance of sniffing dynamics is well established at the neuronal and behavioral levels. Patterns of sniffing have been shown to be modulated by the physicochemical properties of odorants, particularly concentration and sorption. Sniffing is also heavily impacted by higher processing related to the behavioral context, emotion and attentional demand. However, how the pattern of sniffing evolves over the course of learning of an experimental olfactory conditioning is still poorly understood. We tested this question by monitoring sniffing activity, using a whole-body plethysmograph, on rats performing a two-alternative choice odor discrimination task. We followed sniff variations at different learning stages (naïve, well-trained, expert). We found that during the acquisition of an odor discrimination task, rats acquired a global sniffing pattern, independent of the odor pair used. This pattern consists of a longer sampling duration, a higher sniffing frequency, and a larger amplitude. In parallel, subtle differences of sniffing between the two odors of a pair were also observed. This sniffing behavior was not only associated with a better and faster acquisition of the discrimination task but was also transferred to other odor sets and refined after a long-term pause so as to reduce the sampling duration and maintain a specific sniffing frequency. Our results provide additional arguments that sniffing is a complex sensorimotor act that is strongly affected by olfactory learning.
Collapse
|
43
|
Oettl LL, Ravi N, Schneider M, Scheller MF, Schneider P, Mitre M, da Silva Gouveia M, Froemke RC, Chao MV, Young WS, Meyer-Lindenberg A, Grinevich V, Shusterman R, Kelsch W. Oxytocin Enhances Social Recognition by Modulating Cortical Control of Early Olfactory Processing. Neuron 2016; 90:609-21. [PMID: 27112498 DOI: 10.1016/j.neuron.2016.03.033] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 02/17/2016] [Accepted: 03/15/2016] [Indexed: 11/19/2022]
Abstract
Oxytocin promotes social interactions and recognition of conspecifics that rely on olfaction in most species. The circuit mechanisms through which oxytocin modifies olfactory processing are incompletely understood. Here, we observed that optogenetically induced oxytocin release enhanced olfactory exploration and same-sex recognition of adult rats. Consistent with oxytocin's function in the anterior olfactory cortex, particularly in social cue processing, region-selective receptor deletion impaired social recognition but left odor discrimination and recognition intact outside a social context. Oxytocin transiently increased the drive of the anterior olfactory cortex projecting to olfactory bulb interneurons. Cortical top-down recruitment of interneurons dynamically enhanced the inhibitory input to olfactory bulb projection neurons and increased the signal-to-noise of their output. In summary, oxytocin generates states for optimized information extraction in an early cortical top-down network that is required for social interactions with potential implications for sensory processing deficits in autism spectrum disorders.
Collapse
Affiliation(s)
- Lars-Lennart Oettl
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Namasivayam Ravi
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Miriam Schneider
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Max F Scheller
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Peggy Schneider
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Mariela Mitre
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Miriam da Silva Gouveia
- Schaller Research Group on Neuropeptides, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Moses V Chao
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - W Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Valery Grinevich
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; Schaller Research Group on Neuropeptides, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Roman Shusterman
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Wolfgang Kelsch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany.
| |
Collapse
|
44
|
Genovese F, Thews M, Möhrlen F, Frings S. Properties of an optogenetic model for olfactory stimulation. J Physiol 2016; 594:3501-16. [PMID: 26857095 DOI: 10.1113/jp271853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/22/2016] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS In olfactory research it is difficult to deliver stimuli with defined intensity and duration to olfactory sensory neurons. Expression of channelrhodopsin 2 (ChR2) in olfactory sensory neurons provides a means to activate these neurons with light flashes. Appropriate mouse models are available. The present study explores the suitability of an established olfactory marker protein (OMP)/ChR2-yellow fluorescent protein (YFP) mouse model for ex vivo experimentation. Expression of ChR2 in sensory neurons of the main olfactory epithelium, the septal organ and vomeronasal organ is characterized. Expression pattern of ChR2 in olfactory receptor neurons and the properties of light responses indicate that light stimulation does not impact on signal transduction in the chemosensory cilia. Light-induced electro-olfactograms are characterized with light flashes of different intensities, durations and frequencies. The impact of light-induced afferent stimulation on the olfactory bulb is examined with respect to response amplitude, polarity and low-pass filtering. ABSTRACT For the examination of sensory processing, it is helpful to deliver stimuli in precisely defined temporal and spatial patterns with accurate control of stimulus intensity. This is challenging in experiments with the mammalian olfactory system because airborne odorants have to be transported into the intricate sensory structures of the nose and must dissolve in mucus to be detected by sensory neurons. Defined and reproducible activity can be generated in olfactory sensory neurons that express the light-gated ion channel channelrhodopsin 2 (ChR2). The neurons can be stimulated by light flashes in a controlled fashion by this optogenetic approach. Here we examined the application of an olfactory marker protein (OMP)/ChR2-yellow fluorescent protein (YFP) model for ex vivo exploration of the olfactory epithelium and the olfactory bulb of the mouse. We studied the expression patterns of ChR2 in the main olfactory system, the vomeronasal system, and the septal organ, and we found that ChR2 is absent from the sensory cilia of olfactory sensory neurons. In the olfactory epithelium, we characterized light-induced electro-olfactograms with respect to peripheral encoding of stimulus intensity, stimulus duration and stimulus frequency. In acute slices of the olfactory bulb, we identified specific aspects of the ChR2-induced input signal, concerning its dynamic range, its low-pass filter property and its response to prolonged stimulation. Our study describes the performance of the OMP/ChR2-YFP model for ex vivo experimentation on the peripheral olfactory system and documents its versatility and its limitations for olfactory research.
Collapse
Affiliation(s)
- Federica Genovese
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Marion Thews
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Frank Möhrlen
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Stephan Frings
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
45
|
Huston SJ, Stopfer M, Cassenaer S, Aldworth ZN, Laurent G. Neural Encoding of Odors during Active Sampling and in Turbulent Plumes. Neuron 2015; 88:403-18. [PMID: 26456047 DOI: 10.1016/j.neuron.2015.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/11/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022]
Abstract
Sensory inputs are often fluctuating and intermittent, yet animals reliably utilize them to direct behavior. Here we ask how natural stimulus fluctuations influence the dynamic neural encoding of odors. Using the locust olfactory system, we isolated two main causes of odor intermittency: chaotic odor plumes and active sampling behaviors. Despite their irregularity, chaotic odor plumes still drove dynamic neural response features including the synchronization, temporal patterning, and short-term plasticity of spiking in projection neurons, enabling classifier-based stimulus identification and activating downstream decoders (Kenyon cells). Locusts can also impose odor intermittency through active sampling movements with their unrestrained antennae. Odors triggered immediate, spatially targeted antennal scanning that, paradoxically, weakened individual neural responses. However, these frequent but weaker responses were highly informative about stimulus location. Thus, not only are odor-elicited dynamic neural responses compatible with natural stimulus fluctuations and important for stimulus identification, but locusts actively increase intermittency, possibly to improve stimulus localization.
Collapse
Affiliation(s)
- Stephen J Huston
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Mark Stopfer
- National Institutes of Health, NICHD, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - Stijn Cassenaer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zane N Aldworth
- National Institutes of Health, NICHD, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Max-von-Laue-Strasse 4, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
46
|
Zak JD. A computational framework for temporal sharpening of stimulus input in the olfactory system. J Neurophysiol 2015; 115:1749-51. [PMID: 26334019 DOI: 10.1152/jn.00785.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/31/2015] [Indexed: 11/22/2022] Open
Abstract
The olfactory bulb glomerulus is a dense amalgamation of many unique and interconnected cell types. The mechanisms by which these neurons transform incoming information from the sensory periphery have been extensively studied but often with conflicting findings. A recent study by Carey et al. (J Neurophysiol 113: 3 112-3129, 2015) details the computational framework for parallel modes of temporal refinement of stimulus input to the olfactory system mediated by local neurons within individual glomeruli.
Collapse
Affiliation(s)
- Joseph D Zak
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
47
|
Li G, Linster C, Cleland TA. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells. J Neurophysiol 2015; 114:3177-200. [PMID: 26334007 DOI: 10.1152/jn.00324.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/01/2015] [Indexed: 01/19/2023] Open
Abstract
Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Psychology, Cornell University, Ithaca, New York;
| | - Christiane Linster
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | | |
Collapse
|
48
|
Respiratory modulation of spontaneous subthreshold synaptic activity in olfactory bulb granule cells recorded in awake, head-fixed mice. J Neurosci 2015; 35:8758-67. [PMID: 26063910 DOI: 10.1523/jneurosci.0311-15.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the firing patterns of principal neurons in the olfactory bulb are known to be modulated strongly by respiration even under basal conditions, less is known about whether inhibitory local circuit activity in the olfactory bulb (OB) is modulated phasically. The diverse phase preferences of principal neurons in the OB and olfactory cortex that innervate granule cells (GCs) may interfere and prevent robust respiratory coupling, as suggested by recent findings. Using whole-cell recording, we examined the spontaneous, subthreshold membrane potential of GCs in the OBs of awake head-fixed mice. We found that, during periods of basal respiration, the synaptic input to GCs was strongly phase modulated, leading to a phase preference in the average, cycle-normalized membrane potential. Subthreshold phase tuning was heterogeneous in both mitral and tufted cells (MTCs) and GCs but relatively constant within each GC during periods of increased respiratory frequency. The timing of individual EPSPs in GC recordings also was phase modulated with the phase preference imparted by large-amplitude EPSPs, with fast kinetics often matching the phase tuning of the average membrane potential. These results suggest that activity in a subset of excitatory afferents to GCs, presumably including cortical feedback projections and other sources of large-amplitude unitary EPSPs, function to provide a timing signal linked to respiration. The phase preference we find in the membrane potential may provide a mechanism to dynamically modulate recurrent and lateral dendrodendritic inhibition of MTCs and to selective engage a subpopulation of interneurons based on the alignment of their phase tuning relative to sensory-driven MTC discharges.
Collapse
|
49
|
Sparse coding and lateral inhibition arising from balanced and unbalanced dendrodendritic excitation and inhibition. J Neurosci 2015; 34:13701-13. [PMID: 25297097 DOI: 10.1523/jneurosci.1834-14.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The precise mechanism by which synaptic excitation and inhibition interact with each other in odor coding through the unique dendrodendritic synaptic microcircuits present in olfactory bulb is unknown. Here a scaled-up model of the mitral-granule cell network in the rodent olfactory bulb is used to analyze dendrodendritic processing of experimentally determined odor patterns. We found that the interaction between excitation and inhibition is responsible for two fundamental computational mechanisms: (1) a balanced excitation/inhibition in strongly activated mitral cells, leading to a sparse representation of odorant input, and (2) an unbalanced excitation/inhibition (inhibition dominated) in surrounding weakly activated mitral cells, leading to lateral inhibition. These results suggest how both mechanisms can carry information about the input patterns, with optimal level of synaptic excitation and inhibition producing the highest level of sparseness and decorrelation in the network response. The results suggest how the learning process, through the emergent development of these mechanisms, can enhance odor representation of olfactory bulb.
Collapse
|
50
|
Pérez de los Cobos Pallarés F, Stanić D, Farmer D, Dutschmann M, Egger V. An arterially perfused nose-olfactory bulb preparation of the rat. J Neurophysiol 2015; 114:2033-42. [PMID: 26108959 DOI: 10.1152/jn.01048.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/18/2015] [Indexed: 11/22/2022] Open
Abstract
A main feature of the mammalian olfactory bulb network is the presence of various rhythmic activities, in particular, gamma, beta, and theta oscillations, with the latter coupled to the respiratory rhythm. Interactions between those oscillations as well as the spatial distribution of network activation are likely to determine olfactory coding. Here, we describe a novel semi-intact perfused nose-olfactory bulb-brain stem preparation in rats with both a preserved olfactory epithelium and brain stem, which could be particularly suitable for the study of oscillatory activity and spatial odor mapping within the olfactory bulb, in particular, in hitherto inaccessible locations. In the perfused olfactory bulb, we observed robust spontaneous oscillations, mostly in the theta range. Odor application resulted in an increase in oscillatory power in higher frequency ranges, stimulus-locked local field potentials, and excitation or inhibition of individual bulbar neurons, similar to odor responses reported from in vivo recordings. Thus our method constitutes the first viable in situ preparation of a mammalian system that uses airborne odor stimuli and preserves these characteristic features of odor processing. This preparation will allow the use of highly invasive experimental procedures and the application of techniques such as patch-clamp recording, high-resolution imaging, and optogenetics within the entire olfactory bulb.
Collapse
Affiliation(s)
- Fernando Pérez de los Cobos Pallarés
- Systems Neurobiology, Department of Biology II, Ludwigs-Maximilians-Universität München, Martinsried, Germany; Neurophysiology, Zoological Institute, Regensburg University, Regensburg, Germany; and
| | - Davor Stanić
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Victoria, Melbourne, Victoria, Australia
| | - David Farmer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Victoria, Melbourne, Victoria, Australia
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Victoria, Melbourne, Victoria, Australia
| | - Veronica Egger
- Systems Neurobiology, Department of Biology II, Ludwigs-Maximilians-Universität München, Martinsried, Germany; Neurophysiology, Zoological Institute, Regensburg University, Regensburg, Germany; and
| |
Collapse
|