1
|
Min XL, Liu HJ, Dou XK, Chen FX, Zhao Q, Zhao XH, Shi Y, Zhao QY, Sun SJ, Wang Z, Yu SH. Extracellular Vesicles from Neural Stem Cells Carry microRNA-16-5p to Reduce Corticosterone-induced Neuronal Injury in Depression Rats. Neuroscience 2024; 538:95-109. [PMID: 37778691 DOI: 10.1016/j.neuroscience.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE Depression is a common mental illness. Neural stem cell-derived extracellular vesicles (NSC-EVs) are involved in repairing neuronal injury. We estimated the mechanism of miR-16-5p in depression rats. METHODS EVs were extracted from NSCs. The depression rat model was established by corticosterone (CORT) induction and treated with NSC-EVs. The depression behavioral/pathological changes in rats were assessed using forced swimming test, open field test, sucrose consumption test and western blotting. The neuronal apoptosis in hippocampal tissue were detected. CORT-induced PC12 cell model was established. EV uptake by PC12 cells was measured and PC12 cell apoptosis was detected. The downstream targets of miR-16-5p were predicted and verified. The expressions of miR-16-5p and MYB in rats, PC12 cells, and EVs were measured. Functional rescue experiments were conducted to verify the role of miR-16-5p and MYB in PC12 cell apoptosis. RESULTS CORT induction increased neuronal apoptosis in hippocampal tissue and induced depression-like behaviors in rats, while NSC-EV treatment improved depression-like behaviors and apoptosis in rats. In PC12 cells, NSC-EVs decreased CORT-induced PC12 cell apoptosis. NSC-EVs carried miR-16-5p into PC12 cells. miR-16-5p knockdown in EVs partially reversed the inhibitory effects of NSC-EVs on CORT-induced PC12 cell apoptosis. miR-16-5p targeted to inhibit MYB to repress CORT-induced PC12 cell apoptosis. In vivo experiments further verified that NSC-EVs reduced neuronal injury in CORT-induced depression rats via the miR-16-5p/MYB axis. CONCLUSION NSC-EVs-mediated alleviation on neuronal injury by carrying miR-16-5p to target MYB was highly likely one of the mechanisms by which NSC-EVs mediated miR-16-5p in neuroprotection of depression rats.
Collapse
Affiliation(s)
- Xiao-Li Min
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Hai-Jing Liu
- Department of Acupuncture and Massage, Yunnan Traditional Chinese Medicine University, Kunming, China
| | - Xing-Kui Dou
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fei-Xiong Chen
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qing Zhao
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao-Hong Zhao
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ying Shi
- Department of Internal Medicine, Clinical Medicine School, Yunnan Traditional Chinese Medicine University, Kunming, China
| | - Qun-Yuan Zhao
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sheng-Jie Sun
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhen Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Si-Hang Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Hu HL, Khatri L, Santacruz M, Church E, Moore C, Huang TT, Chao MV. Confronting the loss of trophic support. Front Mol Neurosci 2023; 16:1179209. [PMID: 37456526 PMCID: PMC10338843 DOI: 10.3389/fnmol.2023.1179209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Classic experiments with peripheral sympathetic neurons established an absolute dependence upon NGF for survival. A forgotten problem is how these neurons become resistant to deprivation of trophic factors. The question is whether and how neurons can survive in the absence of trophic support. However, the mechanism is not understood how neurons switch their phenotype to lose their dependence on trophic factors, such as NGF and BDNF. Here, we approach the problem by considering the requirements for trophic support of peripheral sympathetic neurons and hippocampal neurons from the central nervous system. We developed cellular assays to assess trophic factor dependency for sympathetic and hippocampal neurons and identified factors that rescue neurons in the absence of trophic support. They include enhanced expression of a subunit of the NGF receptor (Neurotrophin Receptor Homolog, NRH) in sympathetic neurons and an increase of the expression of the glucocorticoid receptor in hippocampal neurons. The results are significant since levels and activity of trophic factors are responsible for many neuropsychiatric conditions. Resistance of neurons to trophic factor deprivation may be relevant to the underlying basis of longevity, as well as an important element in preventing neurodegeneration.
Collapse
Affiliation(s)
- Hui-Lan Hu
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY, United States
| | - Latika Khatri
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
| | - Marilyn Santacruz
- Department of Neuroscience, Pomona College, Claremont, CA, United States
| | - Emily Church
- Department of Neuroscience, Pomona College, Claremont, CA, United States
| | - Christopher Moore
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
| | - Tony T. Huang
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY, United States
| | - Moses V. Chao
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York Langone Medical Center, New York, NY, United States
- Department of Psychiatry, New York Langone Medical Center, New York, NY, United States
- Department of Neuroscience and Physiology, New York Langone Medical Center, New York, NY, United States
| |
Collapse
|
3
|
Zhao X, Dong R, Tang Z, Wang J, Wang C, Song Z, Ni B, Zhang L, He X, You Y. Circular RNA circLOC101928570 suppresses systemic lupus erythematosus progression by targeting the miR-150-5p/c-myb axis. J Transl Med 2022; 20:547. [DOI: 10.1186/s12967-022-03748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 11/02/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
Accumulating evidence supports the implication of circular RNAs (circRNAs) in systemic lupus erythematosus (SLE). However, little is known about the detailed mechanisms and roles of circRNAs in the pathogenesis of SLE.
Methods
Quantitative real-time PCR was used to determine the levels of circLOC101928570 and miR-150-5p in peripheral blood mononuclear cells of SLE. Overexpression and knockdown experiments were conducted to assess the effects of circLOC101928570. Fluorescence in situ hybridization, RNA immunoprecipitation, luciferase reporter assays, Western blot, flow cytometry analysis and enzyme-linked immunosorbent assay were used to investigate the molecular mechanisms underlying the function of circLOC101928570.
Results
The results showed that the level of circLOC101928570 was significantly downregulated in SLE and correlated with the systemic lupus erythematosus disease activity index. Functionally, circLOC101928570 acted as a miR-150-5p sponge to relieve the repressive effect on its target c-myb, which modulates the activation of immune inflammatory responses. CircLOC101928570 knockdown enhanced apoptosis. Moreover, circLOC101928570 promoted the transcriptional level of IL2RA by directly regulating the miR-150-5p/c-myb axis.
Conclusion
Overall, our findings demonstrated that circLOC101928570 played a critical role in SLE. The downregulation of circLOC101928570 suppressed SLE progression through the miR-150-5p/c-myb/IL2RA axis. Our findings identified that circLOC101928570 serves as a potential biomarker for the diagnosis and therapy of SLE.
Collapse
|
4
|
Characterizing and Targeting Genes Regulated by Transcription Factor MYBL2 in Lung Adenocarcinoma Cells. Cancers (Basel) 2022; 14:cancers14204979. [PMID: 36291764 PMCID: PMC9599349 DOI: 10.3390/cancers14204979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 01/16/2023] Open
Abstract
Overexpression of MYBL2 is associated with poor survival of lung adenocarcinoma patients, but the molecular mechanism by which it regulates transcription and carcinogenesis has not yet been elucidated. In this study, we performed ChIP-seq using an MYBL2-targeted antibody and discovered that MYBL2 primarily binds to the promoters of highly expressed genes in lung adenocarcinoma cells. Using a knockdown experiment of MYBL2 and global transcriptome profiling, we identified that over a thousand genes are dysregulated by MYBL2, and MYBL2 acts as a transcriptional activator in lung adenocarcinoma cells. Moreover, we revealed that the binding sites of FOXM1 are largely shared with MYBL2 binding sites, and genes involved in cell cycle phase transitions are regulated by these transcription factors. We furthermore investigated the effect of a previously reported FOXM1 inhibitor, FDI-6, in lung adenocarcinoma cells. We demonstrated that FDI-6 decreases the proliferation of lung adenocarcinoma cells and inhibits the activities of FOXM1 as well as MYBL2. Moreover, we found that genes involved in cell death and cell cycle are inhibited by FDI-6. Overall, our findings suggest that MYBL2 and FOXM1 activate cell cycle genes together, acting as oncogenic transcription factors in lung adenocarcinoma cells, and they are potential treatment targets for the disease.
Collapse
|
5
|
Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis. Nat Commun 2021; 12:6094. [PMID: 34667153 PMCID: PMC8526749 DOI: 10.1038/s41467-021-26234-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 09/14/2021] [Indexed: 11/09/2022] Open
Abstract
Zygotic genome activation (ZGA) initiates regionalized transcription underlying distinct cellular identities. ZGA is dependent upon dynamic chromatin architecture sculpted by conserved DNA-binding proteins. However, the direct mechanistic link between the onset of ZGA and the tissue-specific transcription remains unclear. Here, we have addressed the involvement of chromatin organizer Satb2 in orchestrating both processes during zebrafish embryogenesis. Integrative analysis of transcriptome, genome-wide occupancy and chromatin accessibility reveals contrasting molecular activities of maternally deposited and zygotically synthesized Satb2. Maternal Satb2 prevents premature transcription of zygotic genes by influencing the interplay between the pluripotency factors. By contrast, zygotic Satb2 activates transcription of the same group of genes during neural crest development and organogenesis. Thus, our comparative analysis of maternal versus zygotic function of Satb2 underscores how these antithetical activities are temporally coordinated and functionally implemented highlighting the evolutionary implications of the biphasic and bimodal regulation of landmark developmental transitions by a single determinant. Activation of the zygotic genome is a critical transition during development, though the link to tissue-specific gene regulation remains unclear. Here the authors demonstrate distinct functions for Satb2 before and after zygotic genome activation, highlighting the temporal coordination of these roles.
Collapse
|
6
|
Artificial intelligence and leukocyte epigenomics: Evaluation and prediction of late-onset Alzheimer's disease. PLoS One 2021; 16:e0248375. [PMID: 33788842 PMCID: PMC8011726 DOI: 10.1371/journal.pone.0248375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
We evaluated the utility of leucocyte epigenomic-biomarkers for Alzheimer’s Disease (AD) detection and elucidates its molecular pathogeneses. Genome-wide DNA methylation analysis was performed using the Infinium MethylationEPIC BeadChip array in 24 late-onset AD (LOAD) and 24 cognitively healthy subjects. Data were analyzed using six Artificial Intelligence (AI) methodologies including Deep Learning (DL) followed by Ingenuity Pathway Analysis (IPA) was used for AD prediction. We identified 152 significantly (FDR p<0.05) differentially methylated intragenic CpGs in 171 distinct genes in AD patients compared to controls. All AI platforms accurately predicted AD with AUCs ≥0.93 using 283,143 intragenic and 244,246 intergenic/extragenic CpGs. DL had an AUC = 0.99 using intragenic CpGs, with both sensitivity and specificity being 97%. High AD prediction was also achieved using intergenic/extragenic CpG sites (DL significance value being AUC = 0.99 with 97% sensitivity and specificity). Epigenetically altered genes included CR1L & CTSV (abnormal morphology of cerebral cortex), S1PR1 (CNS inflammation), and LTB4R (inflammatory response). These genes have been previously linked with AD and dementia. The differentially methylated genes CTSV & PRMT5 (ventricular hypertrophy and dilation) are linked to cardiovascular disease and of interest given the known association between impaired cerebral blood flow, cardiovascular disease, and AD. We report a novel, minimally invasive approach using peripheral blood leucocyte epigenomics, and AI analysis to detect AD and elucidate its pathogenesis.
Collapse
|
7
|
Iyer H, Wahul AB, P K A, Sawant BS, Kumar A. A BRD's (BiRD's) eye view of BET and BRPF bromodomains in neurological diseases. Rev Neurosci 2021; 32:403-426. [PMID: 33661583 DOI: 10.1515/revneuro-2020-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/11/2020] [Indexed: 01/18/2023]
Abstract
Neurological disorders (NLDs) are among the top leading causes for disability worldwide. Dramatic changes in the epigenetic topography of the brain and nervous system have been found in many NLDs. Histone lysine acetylation has prevailed as one of the well characterised epigenetic modifications in these diseases. Two instrumental components of the acetylation machinery are the evolutionarily conserved Bromodomain and PHD finger containing (BRPF) and Bromo and Extra terminal domain (BET) family of proteins, also referred to as acetylation 'readers'. Several reasons, including their distinct mechanisms of modulation of gene expression and their property of being highly tractable small molecule targets, have increased their translational relevance. Thus, compounds which demonstrated promising results in targeting these proteins have advanced to clinical trials. They have been established as key role players in pathologies of cancer, cardiac diseases, renal diseases and rheumatic diseases. In addition, studies implicating the role of these bromodomains in NLDs are gaining pace. In this review, we highlight the findings of these studies, and reason for the plausible roles of all BET and BRPF members in NLDs. A comprehensive understanding of their multifaceted functions would be radical in the development of therapeutic interventions.
Collapse
Affiliation(s)
- Harish Iyer
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Abhipradnya B Wahul
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Annapoorna P K
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bharvi S Sawant
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Arvind Kumar
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
8
|
Xia P, Liu Y, Chen J, Cheng Z. Cell Cycle Proteins as Key Regulators of Postmitotic Cell Death. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:641-650. [PMID: 31866779 PMCID: PMC6913832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cell cycle progression in dividing cells, characterized by faithful replication of the genomic materials and duplication of the original cell, is fundamental for growth and reproduction of all mammalian organisms. Functional maturation of postmitotic cells, however, requires cell cycle exit and terminal differentiation. In mature postmitotic cells, many cell cycle proteins remain to be expressed, or can be induced and reactivated in pathological conditions such as traumatic injury and degenerative diseases. Interestingly, elevated levels of cell cycle proteins in postmitotic cells often do not induce proliferation, but result in aberrant cell cycle reentry and cell death. At present, the cell cycle machinery is known predominantly for regulating cell cycle progression and cell proliferation, albeit accumulating evidence indicates that cell cycle proteins may also control cell death, especially in postmitotic tissues. Herein, we provide a brief summary of these findings and hope to highlight the connection between cell cycle reentry and postmitotic cell death. In addition, we also outline the signaling pathways that have been identified in cell cycle-related cell death. Advanced understanding of the molecular mechanisms underlying cell cycle-related death is of paramount importance because this knowledge can be applied to develop protective strategies against pathologies in postmitotic tissues. Moreover, a full-scope understanding of the cell cycle machinery will allow fine tuning to favor cell proliferation over cell death, thereby potentially promoting tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Zhaokang Cheng
- To whom all correspondence should be addressed: Zhaokang Cheng, PhD, Department of Pharmaceutical Sciences, Washington State University, PBS 423, 412 E. Spokane Falls Blvd. Spokane, WA 99202-2131; Tel: 509-358-7741,
| |
Collapse
|
9
|
Shen X, Zhao YF, Xu SQ, Wang L, Cao HM, Cao Y, Zhu Y, Wang Y, Liang ZQ. Cathepsin L induced PC-12 cell apoptosis via activation of B-Myb and regulation of cell cycle proteins. Acta Pharmacol Sin 2019; 40:1394-1403. [PMID: 31444477 DOI: 10.1038/s41401-019-0286-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/04/2019] [Indexed: 01/02/2023]
Abstract
Cathepsin L (CTSL), a cysteine protease, is responsible for the degradation of a variety of proteins. It is known to participate in neuronal apoptosis associated with abnormal cell cycle. However, the mechanisms underlying CTSL-induced cell apoptosis remain largely unclear. We reported here that rotenone caused an activation of CTSL expression in PC-12 cells, while knockdown of CTSL by small interfering RNAs or its inhibitor reduced the rotenone-induced cell cycle arrest and apoptosis. Moreover, elevation of CTSL and increased-apoptosis were accompanied by induction of B-Myb, a crucial cell cycle regulator. We found that B-Myb was increased in rotenone-treated PC-12 cells and knockdown of B-Myb ameliorated rotenone-stimulated cell apoptosis. Further analysis demonstrated that CTSL influenced the expression of B-Myb as suppression of CTSL activity led to a decreased B-Myb expression, whereas overexpression of CTSL resulted in B-Myb induction. Reduction of B-Myb in CTSL-overexpressing cells revealed that regulation of cell cycle-related proteins, including cyclin A and cyclin B1, through CTSL was mediated by the transcription factor B-Myb. In addition, we demonstrated that the B-Myb target, Bim, and its regulator, Egr-1, which was also associated with CTSL closely, were both involved in rotenone-induced apoptosis in PC-12 cells. Our data not only revealed the role of CTSL in rotenone-induced neuronal apoptosis, but also indicated the involvement of B-Myb in CTSL-related cell cycle regulation.
Collapse
|
10
|
Huang T, González YR, Qu D, Huang E, Safarpour F, Wang E, Joselin A, Im DS, Callaghan SM, Boonying W, Julian L, Dunwoodie SL, Slack RS, Park DS. The pro-death role of Cited2 in stroke is regulated by E2F1/4 transcription factors. J Biol Chem 2019; 294:8617-8629. [PMID: 30967472 DOI: 10.1074/jbc.ra119.007941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/25/2019] [Indexed: 11/06/2022] Open
Abstract
We previously reported that the cell cycle-related cyclin-dependent kinase 4-retinoblastoma (RB) transcriptional corepressor pathway is essential for stroke-induced cell death both in vitro and in vivo However, how this signaling pathway induces cell death is unclear. Previously, we found that the cyclin-dependent kinase 4 pathway activates the pro-apoptotic transcriptional co-regulator Cited2 in vitro after DNA damage. In the present study, we report that Cited2 protein expression is also dramatically increased following stroke/ischemic insult. Critically, utilizing conditional knockout mice, we show that Cited2 is required for neuronal cell death, both in culture and in mice after ischemic insult. Importantly, determining the mechanism by which Cited2 levels are regulated, we found that E2F transcription factor (E2F) family members participate in Cited2 regulation. First, E2F1 expression induced Cited2 transcription, and E2F1 deficiency reduced Cited2 expression. Moreover, determining the potential E2F-binding regions on the Cited2 gene regulatory sequence by ChIP analysis, we provide evidence that E2F1/4 proteins bind to this DNA region. A luciferase reporter assay to probe the functional outcomes of this interaction revealed that E2F1 activates and E2F4 inhibits Cited2 transcription. Moreover, we identified the functional binding motif for E2F1 in the Cited2 gene promoter by demonstrating that mutation of this site dramatically reduces E2F1-mediated Cited2 transcription. Finally, E2F1 and E2F4 regulated Cited2 expression in neurons after stroke-related insults. Taken together, these results indicate that the E2F-Cited2 regulatory pathway is critically involved in stroke injury.
Collapse
Affiliation(s)
- Tianwen Huang
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Neurology, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian, China
| | - Yasmilde Rodríguez González
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Dianbo Qu
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - En Huang
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Farzaneh Safarpour
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Eugene Wang
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Alvin Joselin
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Doo Soon Im
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Steve M Callaghan
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Wassamon Boonying
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Lisa Julian
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia; Faculties of Medicine and Science University of New South Wales, Kensington, New South Wales 2033, Australia
| | - Ruth S Slack
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - David S Park
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
11
|
Aygun N, Altungoz O. MYCN is amplified during S phase, and c‑myb is involved in controlling MYCN expression and amplification in MYCN‑amplified neuroblastoma cell lines. Mol Med Rep 2018; 19:345-361. [PMID: 30483774 PMCID: PMC6297758 DOI: 10.3892/mmr.2018.9686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/03/2018] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma derived from primitive sympathetic neural precursors is a common type of solid tumor in infants. MYCN proto-oncogene bHLH transcription factor (MYCN) amplification and 1p36 deletion are important factors associated with the poor prognosis of neuroblastoma. Expression levels of MYCN and c-MYB proto-oncogene transcription factor (c-myb) decline during the differentiation of neuroblastoma cells; E2F transcription factor 1 (E2F1) activates the MYCN promoter. However, the underlying mechanism of MYCN overexpression and amplification requires further investigation. In the present study, potential c-Myb target genes, and the effect of c-myb RNA interference (RNAi) on MYCN expression and amplification were investigated in MYCN-amplified neuroblastoma cell lines. The mRNA expression levels and MYCN gene copy number in five neuroblastoma cell lines were determined by quantitative polymerase chain reaction. In addition, variations in potential target gene expression and MYCN gene copy number between pre- and post-c-myb RNAi treatment groups in MYCN-amplified Kelly, IMR32, SIMA and MHH-NB-11 cell lines, normalized to those of non-MYCN-amplified SH-SY5Y, were examined. To determine the associations between gene expression levels and chromosomal aberrations, MYCN amplification and 1p36 alterations in interphases/metaphases were analyzed using fluorescence in situ hybridization. Statistical analyses revealed correlations between 1p36 alterations and the expression of c-myb, MYB proto-oncogene like 2 (B-myb) and cyclin dependent kinase inhibitor 1A (p21). Additionally, the results of the present study also demonstrated that c-myb may be associated with E2F1 and L3MBTL1 histone methyl-lysine binding protein (L3MBTL1) expression, and that E2F1 may contribute to MYCN, B-myb, p21 and chromatin licensing and DNA replication factor 1 (hCdt1) expression, but to the repression of geminin (GMNN). On c-myb RNAi treatment, L3MBTL1 expression was silenced, while GMNN was upregulated, indicating G2/M arrest. In addition, MYCN gene copy number increased following treatment with c-myb RNAi. Notably, the present study also reported a 43.545% sequence identity between upstream of MYCN and Drosophila melanogaster amplification control element 3, suggesting that expression and/or amplification mechanisms of developmentally-regulated genes may be evolutionarily conserved. In conclusion, c-myb may be associated with regulating MYCN expression and amplification. c-myb, B-myb and p21 may also serve a role against chromosome 1p aberrations. Together, it was concluded that MYCN gene is amplified during S phase, potentially via a replication-based mechanism.
Collapse
Affiliation(s)
- Nevim Aygun
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Oguz Altungoz
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| |
Collapse
|
12
|
MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis. Cell Death Dis 2017. [PMID: 28640249 PMCID: PMC5520903 DOI: 10.1038/cddis.2017.244] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Limitless cell proliferation, evasion from apoptosis, dedifferentiation, metastatic spread and therapy resistance: all these properties of a cancer cell contribute to its malignant phenotype and affect patient outcome. MYBL2 (alias B-Myb) is a transcription factor of the MYB transcription factor family and a physiological regulator of cell cycle progression, cell survival and cell differentiation. When deregulated in cancer cells, MYBL2 mediates the deregulation of these properties. In fact, MYBL2 is overexpressed and associated with poor patient outcome in numerous cancer entities. MYBL2 and players of its downstream transcriptional network can be used as prognostic and/or predictive biomarkers as well as potential therapeutic targets to offer less toxic and more specific anti-cancer therapies in future. In this review, we summarize current knowledge on the physiological roles of MYBL2 and highlight the impact of its deregulation on cancer initiation and progression.
Collapse
|
13
|
Koleck TA, Bender CM, Clark BZ, Ryan CM, Ghotkar P, Brufsky A, McAuliffe PF, Rastogi P, Sereika SM, Conley YP. An exploratory study of host polymorphisms in genes that clinically characterize breast cancer tumors and pretreatment cognitive performance in breast cancer survivors. BREAST CANCER (DOVE MEDICAL PRESS) 2017; 9:95-110. [PMID: 28424560 PMCID: PMC5344452 DOI: 10.2147/bctt.s123785] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PURPOSE Inspired by the hypothesis that heterogeneity in the biology of breast cancers at the cellular level may account for cognitive dysfunction symptom variability in survivors, the current study explored relationships between host single-nucleotide polymorphisms (SNPs) in 25 breast cancer-related candidate genes (AURKA, BAG1, BCL2, BIRC5, CCNB1, CD68, CENPA, CMC2, CTSL2, DIAPH3, ERBB2, ESR1, GRB7, GSTM1, MELK, MKI67, MMP11, MYBL2, NDC80, ORC6, PGR, RACGAP1, RFC4, RRM2, and SCUBE2), identified from clinically relevant prognostic multigene-expression profiles for breast cancer, and pretreatment cognitive performance. PATIENTS AND METHODS The sample (n=220) was comprised of 138 postmenopausal women newly diagnosed with early stage breast cancer and 82 postmenopausal age- and education-matched healthy controls without breast cancer. Cognitive performance was assessed after primary surgery but prior to initiation of adjuvant chemotherapy and/or hormonal therapy using a comprehensive battery of neuropsychological tests encompassing eight cognitive function composite domains: attention, concentration, executive function, mental flexibility, psychomotor speed, verbal memory, visual memory, and visual working memory. In total, 131 SNPs were included in the analysis. Standard and robust multiple linear regression modeling was used to examine relationships between each domain and the presence or absence of one or more minor alleles for each SNP. Genetic risk/protection scores (GRSs) were calculated for each domain to evaluate the collective effect of possession of multiple risk/protective alleles. RESULTS With the exception of CMC2, MMP11, and RACGAP1, significant (P<0.05) SNP main effect and/or SNP by future prescribed treatment group interactions were observed for every gene between at least one domain and one or more SNPs. All GRSs were found to be significantly (P<0.001) associated with each respective domain score. CONCLUSION Associations between host SNPs and computed GRSs and variability in pretreatment cognitive function performance support the study hypothesis, and warrant further investigations to identify biomarkers for breast cancer-related cognitive dysfunction.
Collapse
Affiliation(s)
- Theresa A Koleck
- School of Nursing, University of Pittsburgh, Pittsburgh, PA
- School of Nursing, Columbia University, New York, NY
| | | | - Beth Z Clark
- Division of Gynecologic Pathology, Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC)
- School of Medicine
| | - Christopher M Ryan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Puja Ghotkar
- School of Nursing, University of Pittsburgh, Pittsburgh, PA
| | - Adam Brufsky
- School of Medicine
- Division of Hematology/Oncology, Magee-Womens Hospital of UPMC
- University of Pittsburgh Cancer Institute
| | - Priscilla F McAuliffe
- School of Medicine
- University of Pittsburgh Cancer Institute
- Division of Breast Surgical Oncology, Magee-Womens Hospital of UPMC
| | - Priya Rastogi
- School of Medicine
- Division of Hematology/Oncology, Magee-Womens Hospital of UPMC
| | - Susan M Sereika
- School of Nursing, University of Pittsburgh, Pittsburgh, PA
- Department of Biostatistics
- Department of Epidemiology
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Hwang JY, Lee J, Oh CK, Kang HW, Hwang IY, Um JW, Park HC, Kim S, Shin JH, Park WY, Darnell RB, Um HD, Chung KC, Kim K, Oh YJ. Proteolytic degradation and potential role of onconeural protein cdr2 in neurodegeneration. Cell Death Dis 2016; 7:e2240. [PMID: 27253404 PMCID: PMC5143381 DOI: 10.1038/cddis.2016.151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/21/2016] [Accepted: 05/05/2016] [Indexed: 12/11/2022]
Abstract
Cerebellar degeneration-related protein 2 (cdr2) is expressed in the central nervous system, and its ectopic expression in tumor cells of patients with gynecological malignancies elicits immune responses by cdr2-specific autoantibodies and T lymphocytes, leading to neurological symptoms. However, little is known about the regulation and function of cdr2 in neurodegenerative diseases. Because we found that cdr2 is highly expressed in the midbrain, we investigated the role of cdr2 in experimental models of Parkinson's disease (PD). We found that cdr2 levels were significantly reduced after stereotaxic injection of 1-methyl-4-phenylpyridinium (MPP(+)) into the striatum. cdr2 levels were also decreased in the brains of post-mortem PD patients. Using primary cultures of mesencephalic neurons and MN9D cells, we confirmed that MPP(+) reduces cdr2 in tyrosine hydroxylase-positive dopaminergic neuronal cells. The MPP(+)-induced decrease of cdr2 was primarily caused by calpain- and ubiquitin proteasome system-mediated degradation, and cotreatment with pharmacological inhibitors of these enzymes or overexpression of calcium-binding protein rendered cells less vulnerable to MPP(+)-mediated cytotoxicity. Consequently, overexpression of cdr2 rescued cells from MPP(+)-induced cytotoxicity, whereas knockdown of cdr2 accelerated toxicity. Collectively, our findings provide insights into the novel regulatory mechanism and potentially protective role of onconeural protein during dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- J-Y Hwang
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - J Lee
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - C-K Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - H W Kang
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - I-Y Hwang
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - J W Um
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - H C Park
- Graduate School of Medicine, Korea University, Ansan 425-707, Gyeonggi-do, Korea
| | - S Kim
- Graduate School of Medicine, Korea University, Ansan 425-707, Gyeonggi-do, Korea
| | - J-H Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Gyeonggi-do, Korea
| | - W-Y Park
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Gyeonggi-do, Korea
| | - R B Darnell
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - H-D Um
- Division of Radiation Cancer Biology, Korean Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - K C Chung
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - K Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea
| | - Y J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| |
Collapse
|
15
|
Lee HY, Tae HJ, Cho GS, Kim IH, Cho JH, Park JH, Ahn JH, Chen BH, Shin BN, Won MH, Park CW, Cho JH, Seo JY, Lee JC. Effect of ischemic preconditioning on the expression of c-myb in the CA1 region of the gerbil hippocampus after ischemia/reperfusion injury. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:624-31. [PMID: 27482343 PMCID: PMC4951601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES In the present study, we investigated the effect of ischemic preconditioning (IPC) on c-myb immunoreactivity as well as neuronal damage/death after a subsequent lethal transient ischemia in gerbils. MATERIALS AND METHODS IPC was subjected to a 2 min sublethal ischemia and a lethal transient ischemia was given 5 min transient ischemia. The animals in all of the groups were given recovery times of 1 day, 2 days and 5 days and we examined change in c-myb immunoreactivity as well as neuronal damage/death in the hippocampus induced by a lethal transient ischemia. RESULTS A lethal transient ischemia induced a significant loss of cells in the stratum pyramidale (SP) of the hippocampal CA1 region at 5 days post-ischemia, and this insult showed that c-myb immunoreactivity in cells of the SP of the CA1 region was significantly decreased at 2 days post-ischemia and disappeared at 5 days post-ischemia. However, IPC effectively prevented the neuronal loss in the SP and showed that c-myb immunoreactivity was constitutively maintained in the SP after a lethal transient ischemia. CONCLUSION Our results show that a lethal transient ischemia significantly decreased c-myb immunoreactivity in the SP of the CA1 region and that IPC well preserved c-myb immunoreactivity in the SP of the CA1 region. We suggest that the maintenance of c-myb might be related with IPC-mediated neuroprotection after a lethal ischemic insult.
Collapse
Affiliation(s)
- Hui Young Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, South Korea
| | - Geum-Sil Cho
- Pharmacology & Toxicology Department, Shinpoong Pharmaceutical Co., Ltd., Ansan 425-100, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Chan Woo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Jeong Yeol Seo
- Department of Emergency Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea,Corresponding author: Jae-Chul Lee. Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea. Tel: +82-33-250-8891; Fax: +82-33-256-1614;
| |
Collapse
|
16
|
Tokarz P, Kaarniranta K, Blasiak J. Role of the Cell Cycle Re-Initiation in DNA Damage Response of Post-Mitotic Cells and Its Implication in the Pathogenesis of Neurodegenerative Diseases. Rejuvenation Res 2016. [DOI: 10.1089/rej.2015.1717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Paulina Tokarz
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, Lodz, Poland
| |
Collapse
|
17
|
Liu YY, Wang GP, Peng Z, Guo JY, Wu Q, Xie J, Gong SS. E2F1-CDK1 pathway activation in kanamycin-induced spiral ganglion cell apoptosis and the protective effect of CR8. Neurosci Lett 2016; 617:247-53. [DOI: 10.1016/j.neulet.2016.02.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/09/2016] [Accepted: 02/18/2016] [Indexed: 02/07/2023]
|
18
|
Iyirhiaro GO, Zhang Y, Estey C, O'Hare MJ, Safarpour F, Parsanejad M, Wang S, Abdel-Messih E, Callaghan SM, During MJ, Slack RS, Park DS. Regulation of ischemic neuronal death by E2F4-p130 protein complexes. J Biol Chem 2014; 289:18202-13. [PMID: 24828495 DOI: 10.1074/jbc.m114.574145] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inappropriate activation of cell cycle proteins, in particular cyclin D/Cdk4, is implicated in neuronal death induced by various pathologic stresses, including DNA damage and ischemia. Key targets of Cdk4 in proliferating cells include members of the E2F transcription factors, which mediate the expression of cell cycle proteins as well as death-inducing genes. However, the presence of multiple E2F family members complicates our understanding of their role in death. We focused on whether E2F4, an E2F member believed to exhibit crucial control over the maintenance of a differentiated state of neurons, may be critical in ischemic neuronal death. We observed that, in contrast to E2F1 and E2F3, which sensitize to death, E2F4 plays a crucial protective role in neuronal death evoked by DNA damage, hypoxia, and global ischemic insult both in vitro and in vivo. E2F4 occupies promoter regions of proapoptotic factors, such as B-Myb, under basal conditions. Following stress exposure, E2F4-p130 complexes are lost rapidly along with the presence of E2F4 at E2F-containing B-Myb promoter sites. In contrast, the presence of E2F1 at B-Myb sites increases with stress. Furthermore, B-Myb and C-Myb expression increases with ischemic insult. Taken together, we propose a model by which E2F4 plays a protective role in neurons from ischemic insult by forming repressive complexes that prevent prodeath factors such as Myb from being expressed.
Collapse
Affiliation(s)
- Grace O Iyirhiaro
- From the Department of Cellular and Molecular Medicine and Neuroscience, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada and
| | - Yi Zhang
- From the Department of Cellular and Molecular Medicine and Neuroscience, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada and
| | - Carmen Estey
- From the Department of Cellular and Molecular Medicine and Neuroscience, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada and
| | - Michael J O'Hare
- From the Department of Cellular and Molecular Medicine and Neuroscience, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada and
| | - Farzaneh Safarpour
- From the Department of Cellular and Molecular Medicine and Neuroscience, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada and
| | - Mohammad Parsanejad
- From the Department of Cellular and Molecular Medicine and Neuroscience, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada and
| | - Suzi Wang
- From the Department of Cellular and Molecular Medicine and Neuroscience, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada and
| | - Elizabeth Abdel-Messih
- From the Department of Cellular and Molecular Medicine and Neuroscience, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada and
| | - Steve M Callaghan
- From the Department of Cellular and Molecular Medicine and Neuroscience, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada and
| | - Matthew J During
- the Department of Molecular Virology, Immunology, and Medical Genetics, Neurological Surgery, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Ruth S Slack
- From the Department of Cellular and Molecular Medicine and Neuroscience, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada and
| | - David S Park
- From the Department of Cellular and Molecular Medicine and Neuroscience, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada and
| |
Collapse
|
19
|
Kristiansen M, Ham J. Programmed cell death during neuronal development: the sympathetic neuron model. Cell Death Differ 2014; 21:1025-35. [PMID: 24769728 PMCID: PMC4207485 DOI: 10.1038/cdd.2014.47] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/05/2014] [Accepted: 03/13/2014] [Indexed: 01/08/2023] Open
Abstract
Developing sympathetic neurons of the superior cervical ganglion are one of the best studied models of neuronal apoptosis. These cells require nerve growth factor (NGF) for survival at the time that they innervate their final target tissues during late embryonic and early postnatal development. In the absence of NGF, developing sympathetic neurons die by apoptosis in a transcription-dependent manner. Molecular studies of sympathetic neuron apoptosis began in the 1980s. We now know that NGF withdrawal activates the mitochondrial (intrinsic) pathway of apoptosis in sympathetic neurons cultured in vitro, and the roles of caspases, Bcl-2 (B-cell CLL/lymphoma 2) family proteins and XIAP (X-linked inhibitor of apoptosis protein) have been extensively studied. Importantly, a considerable amount has also been learned about the intracellular signalling pathways and transcription factors that regulate programmed cell death in sympathetic neurons. In this article, we review the key papers published in the past few years, covering all aspects of apoptosis regulation in sympathetic neurons and focusing, in particular, on how signalling pathways and transcription factors regulate the cell death programme. We make some comparisons with other models of neuronal apoptosis and describe possible future directions for the field.
Collapse
Affiliation(s)
- M Kristiansen
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - J Ham
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
20
|
CR8, a novel inhibitor of CDK, limits microglial activation, astrocytosis, neuronal loss, and neurologic dysfunction after experimental traumatic brain injury. J Cereb Blood Flow Metab 2014; 34:502-13. [PMID: 24398934 PMCID: PMC3948132 DOI: 10.1038/jcbfm.2013.228] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/08/2013] [Accepted: 12/02/2013] [Indexed: 11/08/2022]
Abstract
Central nervous system injury causes a marked increase in the expression of cell cycle-related proteins. In this study, we show that cell cycle activation (CCA) is detected in mature neurons at 24 hours after rat lateral fluid percussion (LFP)-induced traumatic brain injury (TBI), as reflected by increased expression of cyclin G1, phosphorylated retinoblastoma (phospho-Rb), E2F1 and proliferating cell nuclear antigen (PCNA). These changes were associated with progressive cortical, hippocampal, and thalamic neuronal loss and microglial and astrocyte activation. Notably, we detected 5-bromo-2'-deoxyuridine (BrdU)-positive neurons, microglia, and astrocytes at 7 days, but not at 24 hours, suggesting that cell cycle reaches the S phase in these cell types at the latter time point. A delayed systemic post-LFP administration at 3 hours of CR8--a potent second-generation cyclin-dependent kinase (CDK) inhibitor--reduced CCA; cortical, hippocampal, and thalamic neuronal loss; and cortical microglial and astrocyte activation. Furthermore, CR8 treatment attenuated sensorimotor and cognitive deficits, alleviated depressive-like symptoms, and decreased lesion volume. These findings underscore the contribution of CCA to progressive neurodegeneration and chronic neuroinflammation following TBI, and demonstrate the neuroprotective potential of cell cycle inhibition in a clinically relevant experimental TBI model.
Collapse
|
21
|
Akhter R, Sanphui P, Biswas SC. The essential role of p53-up-regulated modulator of apoptosis (Puma) and its regulation by FoxO3a transcription factor in β-amyloid-induced neuron death. J Biol Chem 2014; 289:10812-10822. [PMID: 24567336 DOI: 10.1074/jbc.m113.519355] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neurodegeneration underlies the pathology of Alzheimer disease (AD). The molecules responsible for such neurodegeneration in AD brain are mostly unknown. Recent findings indicate that the BH3-only proteins of the Bcl-2 family play an essential role in various cell death paradigms, including neurodegeneration. Here we report that Puma (p53-up-regulated modulator of apoptosis), an important member of the BH3-only protein family, is up-regulated in neurons upon toxic β-amyloid 1-42 (Aβ(1-42)) exposure both in vitro and in vivo. Down-regulation of Puma by specific siRNA provides significant protection against neuron death induced by Aβ(1-42). We further demonstrate that the activation of p53 and inhibition of PI3K/Akt pathways induce Puma. The transcription factor FoxO3a, which is activated when PI3K/Akt signaling is inhibited, directly binds with the Puma gene and induces its expression upon exposure of neurons to oligomeric Aβ(1-42). Moreover, Puma cooperates with another BH3-only protein, Bim, which is already implicated in AD. Our results thus suggest that Puma is activated by both p53 and PI3K/Akt/FoxO3a pathways and cooperates with Bim to induce neuron death in response to Aβ(1-42).
Collapse
Affiliation(s)
- Rumana Akhter
- Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Priyankar Sanphui
- Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
22
|
Gu A, Ji G, Yan L, Zhou Y. The 8-oxoguanine DNA glycosylase 1 (ogg1) decreases the vulnerability of the developing brain to DNA damage. DNA Repair (Amst) 2013; 12:1094-104. [DOI: 10.1016/j.dnarep.2013.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/17/2013] [Accepted: 08/27/2013] [Indexed: 12/17/2022]
|
23
|
Ovejero-Benito MC, Frade JM. Brain-derived neurotrophic factor-dependent cdk1 inhibition prevents G2/M progression in differentiating tetraploid neurons. PLoS One 2013; 8:e64890. [PMID: 23741412 PMCID: PMC3669015 DOI: 10.1371/journal.pone.0064890] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/19/2013] [Indexed: 11/28/2022] Open
Abstract
Neurodegeneration is often associated with DNA synthesis in neurons, the latter usually remaining for a long time as tetraploid cells before dying by apoptosis. The molecular mechanism preventing G2/M transition in these neurons remains unknown, but it may be reminiscent of the mechanism that maintains tetraploid retinal ganglion cells (RGCs) in a G2-like state during normal development, thus preventing their death. Here we show that this latter process, known to depend on brain-derived neurotrophic factor (BDNF), requires the inhibition of cdk1 by TrkB. We demonstrate that a subpopulation of chick RGCs previously shown to become tetraploid co-expresses TrkB and cdk1 in vivo. By using an in vitro system that recapitulates differentiation and cell cycle re-entry of chick retinal neurons we show that BDNF, employed at concentrations specific for the TrkB receptor, reduces the expression of cdk1 in TrkB-positive, differentiating neurons. In this system, BDNF also inhibits the activity of both endogenous cdk1 and exogenously-expressed cdk1/cyclin B1 complex. This inhibition correlates with the phosphorylation of cdk1 at Tyr15, an effect that can be prevented with K252a, a tyrosine kinase inhibitor commonly used to prevent the activity of neurotrophins through their Trk receptors. The effect of BDNF on cdk1 activity is Tyr15-specific since BDNF cannot prevent the activity of a constitutively active form of cdk1 (Tyr15Phe) when expressed in differentiating retinal neurons. We also show that BDNF-dependent phosphorylation of cdk1 at Tyr15 could not be blocked with MK-1775, a Wee1-selective inhibitor, indicating that Tyr15 phosphorylation in cdk1 does not seem to occur through the canonical mechanism observed in proliferating cells. We conclude that the inhibition of both expression and activity of cdk1 through a BDNF-dependent mechanism contributes to the maintenance of tetraploid RGCs in a G2-like state.
Collapse
Affiliation(s)
- María C. Ovejero-Benito
- Department of Molecular, Cellular, and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José M. Frade
- Department of Molecular, Cellular, and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| |
Collapse
|
24
|
Nerve growth factor-induced cell cycle reentry in newborn neurons is triggered by p38MAPK-dependent E2F4 phosphorylation. Mol Cell Biol 2012; 32:2722-37. [PMID: 22586272 DOI: 10.1128/mcb.00239-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cumulative evidence indicates that activation of cyclin D-dependent kinase 4/6 (cdk4/6) represents a major trigger of cell cycle reentry and apoptosis in vertebrate neurons. We show here the existence of another mechanism triggering cell cycle reentry in differentiating chick retinal neurons (DCRNs), based on phosphorylation of E2F4 by p38(MAPK). We demonstrate that the activation of p75(NTR) by nerve growth factor (NGF) induces nuclear p38(MAPK) kinase activity, which leads to Thr phosphorylation and subsequent recruitment of E2F4 to the E2F-responsive cdc2 promoter. Inhibition of p38(MAPK), but not of cdk4/6, specifically prevents NGF-dependent cell cycle reentry and apoptosis in DCRNs. Moreover, a constitutively active form of chick E2F4 (Thr261Glu/Thr263Glu) stimulates G(1)/S transition and apoptosis, even after inhibition of p38(MAPK) activity. In contrast, a dominant-negative E2F4 form (Thr261Ala/Thr263Ala) prevents NGF-induced cell cycle reactivation and cell death in DCRNs. These results indicate that NGF-induced cell cycle reentry in neurons depends on the activation of a novel, cdk4/6-independent pathway that may participate in neurodegeneration.
Collapse
|
25
|
Kabadi SV, Stoica BA, Loane DJ, Byrnes KR, Hanscom M, Cabatbat RM, Tan MT, Faden AI. Cyclin D1 gene ablation confers neuroprotection in traumatic brain injury. J Neurotrauma 2012; 29:813-27. [PMID: 21895533 DOI: 10.1089/neu.2011.1980] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cell cycle activation (CCA) is one of the principal secondary injury mechanisms following brain trauma, and it leads to neuronal cell death, microglial activation, and neurological dysfunction. Cyclin D1 (CD1) is a key modulator of CCA and is upregulated in neurons and microglia following traumatic brain injury (TBI). In this study we subjected CD1-wild-type (CD1(+/+)) and knockout (CD1(-/-)) mice to controlled cortical impact (CCI) injury to evaluate the role of CD1 in post-traumatic neurodegeneration and neuroinflammation. As early as 24 h post-injury, CD1(+/+) mice showed markers of CCA in the injured hemisphere, including increased CD1, E2F1, and proliferating cell nuclear antigen (PCNA), as well as increased Fluoro-Jade B staining, indicating neuronal degeneration. Progressive neuronal loss in the hippocampus was observed through 21 days post-injury in these mice, which correlated with a decline in cognitive function. Microglial activation in the injured hemisphere peaked at 7 days post-injury, with sustained increases at 21 days. In contrast, CD1(-/-) mice showed reduced CCA and neurodegeneration at 24 h, as well as improved cognitive function, attenuated hippocampal neuronal cell loss, decreased lesion volume, and cortical microglial activation at 21 days post-injury. These findings indicate that CD1-dependent CCA plays a significant role in the neuroinflammation, progressive neurodegeneration, and related neurological dysfunction resulting from TBI. Our results further substantiate the proposed role of CCA in post-traumatic secondary injury, and suggest that inhibition of CD1 may be a key therapeutic target for TBI.
Collapse
Affiliation(s)
- Shruti V Kabadi
- Center for Shock, Trauma and Anesthesiology Research (STAR), Department of Anesthesiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Folch J, Junyent F, Verdaguer E, Auladell C, Pizarro JG, Beas-Zarate C, Pallàs M, Camins A. Role of Cell Cycle Re-Entry in Neurons: A Common Apoptotic Mechanism of Neuronal Cell Death. Neurotox Res 2011; 22:195-207. [DOI: 10.1007/s12640-011-9277-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/02/2011] [Accepted: 09/13/2011] [Indexed: 01/24/2023]
|
27
|
Yuan Z, Yao L, Li M, Liu S, He W, Lu Y. Opposing roles for E2F1 in survival and death of cerebellar granule neurons. Neurosci Lett 2011; 499:164-9. [PMID: 21641965 DOI: 10.1016/j.neulet.2011.05.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 11/30/2022]
Abstract
The transcription factor E2F1 is upregulated when cerebellar granular neurons (CGNs) undergo apoptosis under potassium deprivation. In this study, we examined the effects of E2F1 upregulation on the survival and death of CGNs isolated from C57 mice and Sprague-Dawley (SD) rats. Plasmid- and adenovirus-mediated expression of E2F1 dose-dependently induced apoptosis in mouse CGNs but unexpectedly failed to induce apoptosis in rat CGNs. Caspase 3, a marker for neuronal apoptosis, was significantly activated by ectopic E2F1 expression in mouse CGNs but not in rat CGNs. Furthermore, overexpression of E2F1 significantly promoted apoptotic progression in mouse CGNs following potassium deprivation but attenuated apoptosis in rat CGNs, whereas E2F1 lacking DNA binding ability (E2F1-M132) lost its pro-apoptotic role in mouse CGNs and anti-apoptotic role in rat CGNs. Together, our results demonstrated that upregulation of E2F1 by potassium deprivation promotes apoptosis in C57 mouse CGNs but antagonizes apoptosis in SD rat CGNs, suggesting opposing roles for E2F1 in regulating CGN fate.
Collapse
Affiliation(s)
- Zhongmin Yuan
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| | | | | | | | | | | |
Collapse
|
28
|
Bian Z, Li L, Cui J, Zhang H, Liu Y, Zhang CY, Zen K. Role of miR-150-targeting c-Myb in colonic epithelial disruption during dextran sulphate sodium-induced murine experimental colitis and human ulcerative colitis. J Pathol 2011; 225:544-53. [PMID: 21590770 DOI: 10.1002/path.2907] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/12/2011] [Accepted: 01/30/2011] [Indexed: 12/11/2022]
Abstract
Chronic inflammatory bowel diseases (IBDs) are associated with differential expression of genes involved in inflammation and tissue remodelling. We surveyed the expression profile of apoptosis-related microRNAs by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) in a dextran sulphate sodium (DSS) murine model of colitis. We found that miR-150 was strongly elevated, whereas c-Myb, a transcription factor and a target gene of miR-150, was significantly reduced in colon tissue after DSS treatment. Interestingly, elevation of miR-150 and down-regulation of c-Myb were also observed in human colon with active ulcerative colitis compared to the normal colon. Supporting the observation of DSS treatment inducing colonic cell apoptosis, Bcl-2, an anti-apoptotic protein known to be regulated by c-Myb, was reduced in colon tissue of DSS-treated mice. Furthermore, forced expression of pre-miR-150 in colonic epithelial HT29 cells strongly elevated miR-150 levels and decreased c-Myb and Bcl-2 levels, thus enhancing cell apoptosis induced by serum deprivation. Together, the present study presents the first evidence that miR-150 and its targeting of c-Myb may serve as a new mechanism underlying the colonic epithelial disruption in DSS-induced murine experimental colitis and in active human IBD.
Collapse
Affiliation(s)
- Zhen Bian
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Seong HA, Manoharan R, Ha H. B-MYB positively regulates serine-threonine kinase receptor-associated protein (STRAP) activity through direct interaction. J Biol Chem 2010; 286:7439-56. [PMID: 21148321 DOI: 10.1074/jbc.m110.184382] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Serine-threonine kinase receptor-associated protein (STRAP) functions as a regulator of both TGF-β and p53 signaling. However, the regulatory mechanism of STRAP activity is not understood. In this study, we report that B-MYB is a new STRAP-interacting protein, and that an amino-terminal DNA-binding domain and an area (amino acids 373-468) between the acidic and conserved regions of B-MYB mediate the B-MYB·STRAP interaction. Functionally, B-MYB enhances STRAP-mediated inhibition of TGF-β signaling pathways, such as apoptosis and growth inhibition, by modulating complex formation between the TGF-β receptor and SMAD3 or SMAD7. Furthermore, coexpression of B-MYB results in a dose-dependent increase in STRAP-mediated stimulation of p53-induced apoptosis and cell cycle arrest via direct interaction. Confocal microscopy showed that B-MYB prevents the normal translocation of SMAD3 in response to TGF-β1 and stimulates p53 nuclear translocation. These results suggest that B-MYB acts as a positive regulator of STRAP.
Collapse
Affiliation(s)
- Hyun-A Seong
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | |
Collapse
|
30
|
Abstract
Developmental and pathological death of neurons requires activation of a defined pathway of cell cycle proteins. However, it is unclear how this pathway is regulated and whether it is relevant in vivo. A screen for transcripts robustly induced in cultured neurons by DNA damage identified Sertad1, a Cdk4 (cyclin-dependent kinase 4) activator. Sertad1 is also induced in neurons by nerve growth factor (NGF) deprivation and Abeta (beta-amyloid). RNA interference-mediated downregulation of Sertad1 protects neurons in all three death models. Studies of NGF withdrawal indicate that Sertad1 is required to initiate the apoptotic cell cycle pathway since its knockdown blocks subsequent pathway events. Finally, we find that Sertad1 expression is required for developmental neuronal death in the cerebral cortex. Sertad1 thus appears to be essential for neuron death in trophic support deprivation in vitro and in vivo and in models of DNA damage and Alzheimer's disease. It may therefore be a suitable target for therapeutic intervention.
Collapse
|
31
|
Gomez-Smith M, Qin Z, Zhou X, Schock SC, Chen HH. LIM domain only 4 protein promotes granulocyte colony-stimulating factor-induced signaling in neurons. Cell Mol Life Sci 2009; 67:949-57. [PMID: 19997957 DOI: 10.1007/s00018-009-0223-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 11/06/2009] [Accepted: 11/23/2009] [Indexed: 11/25/2022]
Abstract
Granulocyte colony-stimulating factor (GCSF) is currently in clinical trials to treat neurodegenerative diseases and stroke. Here, we tested whether LIM domain only 4 protein (LMO4), a hypoxia-inducible gene that protects neurons from ischemic injury, could modulate the neuroprotective effect of GCSF. We showed that GCSF treatment acetylates and phosphorylates Stat3, activates expression of a Stat3-dependent anti-apoptotic gene, p27, and increases neuron survival from ischemic injury. LMO4 participates in Stat3 signaling in hepatocytes and associates with histone deacetylase 2 (HDAC2) in cancer cells. In the absence of LMO4, GCSF fails to rescue neurons from ischemic insults. In wild-type neurons, inhibition of HDAC promoted Stat3 acetylation and the antiapoptotic effect of GCSF. In LMO4 null cortical neurons, expression of wild-type but not HDAC-interaction-deficient LMO4 restored GCSF-induced Stat3 acetylation and p27 expression. Thus, our results indicate that LMO4 enhances GCSF-induced Stat3 signaling in neurons, in part by sequestering HDAC.
Collapse
|
32
|
Zhang Y, Parsanejad M, Huang E, Qu D, Aleyasin H, Rousseaux MWC, Gonzalez YR, Cregan SP, Slack RS, Park DS. Pim-1 kinase as activator of the cell cycle pathway in neuronal death induced by DNA damage. J Neurochem 2009; 112:497-510. [PMID: 19895669 DOI: 10.1111/j.1471-4159.2009.06476.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
DNA damage is a critical component of neuronal death underlying neurodegenerative diseases and injury. Neuronal death evoked by DNA damage is characterized by inappropriate activation of multiple cell cycle components. However, the mechanism regulating this activation is not fully understood. We demonstrated previously that the cell division cycle (Cdc) 25A phosphatase mediates the activation of cyclin-dependent kinases and neuronal death evoked by the DNA damaging agent camptothecin. We also showed that Cdc25A activation is blocked by constitutive checkpoint kinase 1 activity under basal conditions in neurons. Presently, we report that an additional factor is central to regulation of Cdc25A phosphatase in neuronal death. In a gene array screen, we first identified Pim-1 as a potential factor up-regulated following DNA damage. We confirmed the up-regulation of Pim-1 transcript, protein and kinase activity following DNA damage. This induction of Pim-1 is regulated by the nuclear factor kappa beta (NF-kappaB) pathway as Pim-1 expression and activity are significantly blocked by siRNA-mediated knockdown of NF-kappaB or NF-kappaB pharmacological inhibitors. Importantly, Pim-1 activity is critical for neuronal death in this paradigm and its deficiency blocks camptothecin-mediated neuronal death. It does so by activating Cdc25A with consequent activation of cyclin D1-associated kinases. Taken together, our results demonstrate that Pim-1 kinase plays a central role in DNA damage-evoked neuronal death by regulating aberrant neuronal cell cycle activation.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nuutinen T, Suuronen T, Kauppinen A, Salminen A. Clusterin: a forgotten player in Alzheimer's disease. ACTA ACUST UNITED AC 2009; 61:89-104. [PMID: 19651157 DOI: 10.1016/j.brainresrev.2009.05.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 11/16/2022]
Abstract
Clusterin, also known as apolipoprotein J, is a versatile chaperone molecule which contains several amphipathic and coiled-coil alpha-helices, typical characteristics of small heat shock proteins. In addition, clusterin has three large intrinsic disordered regions, so-called molten globule domains, which can stabilize stressed protein structures. Twenty years ago, it was demonstrated that the expression of clusterin was clearly increased in Alzheimer's disease (AD). Later it was observed that clusterin can bind amyloid-beta peptides and prevent their fibrillization. Clusterin is also involved in the clearance of amyloid-beta peptides and fibrils by binding to megalin receptors and enhancing their endocytosis within glial cells. Clusterin is a complement inhibitor and can suppress complement activation observed in AD. Clusterin is also present in lipoprotein particles and regulates cholesterol and lipid metabolism of brain which is disturbed in AD. Clusterin is a stress-induced chaperone which is normally secreted but in conditions of cellular stress, it can be transported to cytoplasm where it can bind to Bax protein and inhibit neuronal apoptosis. Clusterin can also bind to Smad2/3 proteins and potentiate the neuroprotective TGFbeta signaling. An alternative splicing can produce a variant isoform of clusterin which can be translocated to nuclei where it induces apoptosis. The role of nuclear clusterin in AD needs to be elucidated. We will review here the extensive literature linking clusterin to AD and examine the recent progress in clusterin research with the respect to AD pathology. Though clusterin can be viewed as a multipotent guardian of brain, it is unable to prevent the progressive neuropathology in chronic AD.
Collapse
Affiliation(s)
- Tapio Nuutinen
- Department of Neuroscience and Neurology, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | |
Collapse
|
34
|
Cell Cycle Activation and CNS Injury. Neurotox Res 2009; 16:221-37. [PMID: 19526282 DOI: 10.1007/s12640-009-9050-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/26/2009] [Accepted: 03/26/2009] [Indexed: 12/28/2022]
|
35
|
CITED2 signals through peroxisome proliferator-activated receptor-gamma to regulate death of cortical neurons after DNA damage. J Neurosci 2008; 28:5559-69. [PMID: 18495890 DOI: 10.1523/jneurosci.1014-08.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA damage is an important initiator of neuronal apoptosis and activates signaling events not yet fully defined. Using the camptothecin-induced DNA damage model in neurons, we previously showed that cyclin D1-associated cell cycle cyclin-dependent kinases (Cdks) (Cdk4/6) and p53 activation are two major events leading to activation of the mitochondrial apoptotic pathway. With gene array analyses, we detected upregulation of Cited2, a CBP (cAMP response element-binding protein-binding protein)/p300 interacting transactivator, in response to DNA damage. This upregulation was confirmed by reverse transcription-PCR and Western blot. CITED2 was functionally important because CITED2 overexpression promotes death, whereas CITED2 deficiency protects. Cited2 upregulation is upstream of the mitochondrial death pathway (BAX, Apaf1, or cytochrome c release) and appears to be independent of p53. However, inhibition of the Cdk4 blocked Cited2 induction. The Cited2 prodeath mechanism does not involve Bmi-1 or p53. Instead, Cited2 activates peroxisome proliferator-activated receptor-gamma (PPARgamma), an activity that we demonstrate is critical for DNA damage-induced death. These results define a novel neuronal prodeath pathway in which Cdk4-mediated regulation of Cited2 activates PPARgamma and consequently caspase.
Collapse
|
36
|
Pulse inhibition of histone deacetylases induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic p21(waf1/cip1) in cell cycle-independent neuroprotection. J Neurosci 2008; 28:163-76. [PMID: 18171934 DOI: 10.1523/jneurosci.3200-07.2008] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors are currently in human clinical trials as antitumor drugs because of their ability to induce cell dysfunction and death in cancer cells. The toxic effects of HDAC inhibitors are also apparent in cortical neurons in vitro, despite the ability of these agents to induce significant protection in the cells they do not kill. Here we demonstrate that pulse exposure of cortical neurons (2 h) in an in vitro model of oxidative stress results in durable neuroprotection without toxicity. Protection was associated with transcriptional upregulation of the cell cycle inhibitor, p21(waf1/cip1), both in this model and in an in vivo model of permanent ischemia. Transgenic overexpression of p21(waf1/cip1) in neurons can mimic the protective effect of HDAC inhibitors against oxidative stress-induced toxicity, including death induced by glutathione depletion or peroxide addition. The protective effect of p21(waf1/cip1) in the context of oxidative stress appears to be unrelated to its ability to act in the nucleus to inhibit cell cycle progression. However, although p21(waf1/cip1) is sufficient for neuroprotection, it is not necessary for HDAC inhibitor neuroprotection, because these agents can completely protect neurons cultured from p21(waf1/cip1)-null mice. Together these findings demonstrate (1) that pulse inhibition of HDACs in cortical neurons can induce neuroprotection without apparent toxicity; (2) that p21(waf1/cip1) is sufficient but not necessary to mimic the protective effects of HDAC inhibition; and (3) that oxidative stress in this model induces neuronal cell death via cell cycle-independent pathways that can be inhibited by a cytosolic, noncanonical action of p21(waf1/cip1).
Collapse
|
37
|
A Drosophila gain-of-function screen for candidate genes involved in steroid-dependent neuroendocrine cell remodeling. Genetics 2008; 178:883-901. [PMID: 18245346 DOI: 10.1534/genetics.107.082487] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The normal functioning of neuroendocrine systems requires that many neuropeptidergic cells change, to alter transmitter identity and concentration, electrical properties, and cellular morphology in response to hormonal cues. During insect metamorphosis, a pulse of circulating steroids, ecdysteroids, governs the dramatic remodeling of larval neurons to serve adult-specific functions. To identify molecular mechanisms underlying metamorphic remodeling, we conducted a neuropeptidergic cell-targeted, gain-of-function genetic screen. We screened 6097 lines. Each line permitted Gal4-regulated transcription of flanking genes. A total of 58 lines, representing 51 loci, showed defects in neuropeptide-mediated developmental transitions (ecdysis or wing expansion) when crossed to the panneuropeptidergic Gal4 driver, 386Y-Gal4. In a secondary screen, we found 29 loci that produced wing expansion defects when crossed to a crustacean cardioactive peptide (CCAP)/bursicon neuron-specific Gal4 driver. At least 14 loci disrupted the formation or maintenance of adult-specific CCAP/bursicon cell projections during metamorphosis. These include components of the insulin and epidermal growth factor signaling pathways, an ecdysteroid-response gene, cabut, and an ubiquitin-specific protease gene, fat facets, with known functions in neuronal development. Several additional genes, including three micro-RNA loci and two factors related to signaling by Myb-like proto-oncogenes, have not previously been implicated in steroid signaling or neuronal remodeling.
Collapse
|
38
|
Biswas SC, Shi Y, Sproul A, Greene LA. Pro-apoptotic Bim induction in response to nerve growth factor deprivation requires simultaneous activation of three different death signaling pathways. J Biol Chem 2007; 282:29368-74. [PMID: 17702754 DOI: 10.1074/jbc.m702634200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bim is a pro-apoptotic member of the Bcl-2 family that is induced and contributes to neuron death in response to nerve growth factor (NGF) deprivation. Past work has revealed that Bim is downstream of multiple independent transcriptional pathways in neurons, including those culminating in activation of the c-Jun, FoxO, and Myb transcription factors. This study addresses the issue of whether the three signaling pathways are redundant with respect to Bim induction or whether they act cooperatively. Examination of the proximal Bim promoter reveals binding sites for FoxO, Mybs, and, as shown here, c-Jun. We find that mutation of any one of these types of sites abolishes induction of a Bim promoter-driven reporter in response to NGF deprivation. Moreover, down-regulation of either c-Jun, FoxOs, or Mybs by short hairpin RNAs blocks induction of Bim promoter-reporter activity triggered by withdrawal of NGF. This was the case for reporters driven by either the proximal promoter or a promoter that also includes additional regulatory elements in the first intron of the Bim gene. Such short hairpin RNAs also suppressed the induction of endogenous Bim protein. These findings thus indicate that the Bim promoter acts as a coincidence detector that optimally responds to the simultaneous activation of three different pro-apoptotic transcriptional pathways. Such a mechanism provides a "fail-safe" that prevents neurons from dying by accidental activation of any single pathway. It also permits neurons to utilize individual pathways such as JNK signaling for other purposes without risk of demise.
Collapse
Affiliation(s)
- Subhas C Biswas
- Department of Pathology, Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | |
Collapse
|
39
|
Verdaguer E, Susana GDA, Clemens A, Pallàs M, Camins A. Implication of the transcription factor E2F-1 in the modulation of neuronal apoptosis. Biomed Pharmacother 2007; 61:390-9. [PMID: 17178208 DOI: 10.1016/j.biopha.2006.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 11/07/2006] [Indexed: 02/05/2023] Open
Abstract
Neurodegenerative diseases as Alzheimer's disease, Parkinson's disease and other neurological disorders remain major problem worldwide since is currently no effective treatment. Thus, studying the mechanisms involved in neuronal apoptotic pathways is imperative if drugs that might stop or delay these disease processes are to be synthesized. In recent years it has become evident that mitochondria are key component of the neuronal apoptotic route. In addition to mitochondria, other intracellular components have been implicated in this process. Thus, DNA damage and re-entry into the cell cycle may constitute a common pathway in apoptosis in neurological diseases. The implication of cell cycle in neurodegenerative disorders is supported by data on the brain of patients who showed an increase in cell cycle protein expression. Indeed, studies performed in neuronal cell preparations indicate that re-entry into the cell cycle and, more specifically, an increase in the expression of E2F-1 transcription role of DNA damage/repair as a potential mechanism in cell cycle re-entry. In this context, ataxia telangiectasia mutated protein could be the enzyme responsible for neuronal apoptosis activation. Furthermore, the potential routes involved in E2F-1 induced apoptosis, p53-dependent and p53-independent, are similarly reviewed. Under this hypothesis, multiple pathways have been suggested, including the route of caspases. Finally, given the increasing experimental data on the neuroprotective and antiapoptotic effects of cyclin dependent kinase CDK inhibitory drugs, including flavopiridol, their application for the treatment of neurological disorders is proposed.
Collapse
Affiliation(s)
- Ester Verdaguer
- Departament de Farmacologia i Toxicologia, IIBB-CSIC, IDIBAPS, Rossello 161, Planta 6, 08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
40
|
Tang Y, Zhang YQ, Huang Z. Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2007; 4:365-81. [PMID: 17666757 DOI: 10.1109/tcbb.2007.70224] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Extracting a subset of informative genes from microarray expression data is a critical data preparation step in cancer classification and other biological function analyses. Though many algorithms have been developed, the Support Vector Machine - Recursive Feature Elimination (SVM-RFE) algorithm is one of the best gene feature selection algorithms. It assumes that a smaller "filter-out" factor in the SVM-RFE, which results in a smaller number of gene features eliminated in each recursion, should lead to extraction of a better gene subset. Because the SVM-RFE is highly sensitive to the "filter-out" factor, our simulations have shown that this assumption is not always correct and that the SVM-RFE is an unstable algorithm. To select a set of key gene features for reliable prediction of cancer types or subtypes and other applications, a new two-stage SVM-RFE algorithm has been developed. It is designed to effectively eliminate most of the irrelevant, redundant and noisy genes while keeping information loss small at the first stage. A fine selection for the final gene subset is then performed at the second stage. The two-stage SVM-RFE overcomes the instability problem of the SVM-RFE to achieve better algorithm utility. We have demonstrated that the two-stage SVM-RFE is significantly more accurate and more reliable than the SVM-RFE and three correlation-based methods based on our analysis of three publicly available microarray expression datasets. Furthermore, the two-stage SVM-RFE is computationally efficient because its time complexity is O(d*log(2)d}, where d is the size of the original gene set.
Collapse
Affiliation(s)
- Yuchun Tang
- Secure Computing Corporation, GA 30022, USA.
| | | | | |
Collapse
|
41
|
Padmanabhan J, Brown K, Shelanski ML. Cell cycle inhibition and retinoblastoma protein overexpression prevent Purkinje cell death in organotypic slice cultures. Dev Neurobiol 2007; 67:818-26. [PMID: 17443827 DOI: 10.1002/dneu.20394] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purkinje cells are vulnerable to a number of physical, chemical, and genetic insults during development and maturity. Normal development of these cells depends on the cell-cell interactions between granule and astroglial cell populations. Apoptotic death in Purkinje neurons had been shown to be associated with cell cycle activation, and new DNA synthesis is associated with Purkinje cell death in staggerer and lurcher mutant mice. Here using an in vitro organotypic slice culture model from 9 (P9) and 4 days (P4) old postnatal rats we show that the cyclin dependent kinase (cdk) inhibitors (roscovitine, olomoucine, and flavopiridol) protect the Purkinje cells from cell death. The results are more pronounced in the cerebellar sections from P4 rats. Analysis of Purkinje neurons in sections from P4 rats after 1 week of culturing showed that while there were very limited calbindin positive neurons in the untreated sections the cdk inhibitor treated sections had a notably higher number. Although treatment with cdk inhibitors inhibited Purkinje cell loss significantly, the morphology of these neurons was abnormal, with stunted dendrites and axons. Since the retinoblastoma protein (Rb) is the major pocket protein involved in determining the differentiated state of neurons we examined the effect of over-expressing Rb in the organotypic cultures. Rb overexpression significantly inhibited the Purkinje cell death and these neurons maintained their normal morphology. Thus our studies show that the cell death in Purkinje neurons observed in organotypic cultures is cell cycle dependent and the optimal survival requires Rb.
Collapse
Affiliation(s)
- Jaya Padmanabhan
- Department of Pathology, Taub Center for the Study of Alzheimer's Disease and Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA. 10032
| | | | | |
Collapse
|
42
|
Herrup K, Yang Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci 2007; 8:368-78. [PMID: 17453017 DOI: 10.1038/nrn2124] [Citation(s) in RCA: 368] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Adult CNS neurons are typically described as permanently postmitotic but there is probably nothing permanent about the neuronal cell cycle arrest. Rather, it appears that these highly differentiated cells must constantly keep their cell cycle in check. Relaxation of this vigilance leads to the initiation of a cell cycle and entrance into an altered and vulnerable state, often leading to death. There is evidence that neurons which are at risk of neurodegeneration are also at risk of re-initiating a cell cycle process that involves the expression of cell cycle proteins and DNA replication. Failure of cell cycle regulation might be a root cause of several neurodegenerative disorders and a final common pathway for others.
Collapse
Affiliation(s)
- Karl Herrup
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
43
|
Espada L, Udapudi B, Podlesniy P, Fabregat I, Espinet C, Tauler A. Apoptotic action of E2F1 requires glycogen synthase kinase 3-β activity in PC12 cells. J Neurochem 2007; 102:2020-2028. [PMID: 17555552 DOI: 10.1111/j.1471-4159.2007.04686.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Both E2F1 and GSK3beta have been described as essential targets in neuronal apoptosis. Previous studies have demonstrated that GSK3beta binds to E2F1 in vivo. We wanted to investigate whether these proteins could share a common apoptotic signal pathway in neuronal cells. With this intention, we developed a PC12 ER-E2F1 stable cell line in which E2F1 activity was dependent on the presence of 4-hydroxitamoxifen. E2F1 activation produced apoptosis in naive and post-mitotic cells; serum and nerve growth factor respectively protected them from E2F1 apoptotic stimuli. The presence of specific GSK3beta inhibitors SB216763 and LiCl completely protected cells from apoptosis induced by E2F1 activation. In addition, knocked down GSK3beta experiments by small interference RNAs have demonstrated that a reduction of GSK3beta protein levels can lower the apoptotic effect of E2F1. Finally, we demonstrated that the apoptotic effect of E2F1 is not due to the regulation of GSK3beta activity, and that the inhibitory effect of GSK3beta inhibitor SB216763 on E2F1 induced apoptosis could be due to an alteration in the E2F1-regulated transcription gene pattern. In summary, we have demonstrated that the apoptotic action of E2F1 requires GSK3beta activity.
Collapse
Affiliation(s)
- Lilia Espada
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalunya, SpainLaboratori de Neuropatologia Molecular, Departament de Ciències Mèdiques Básiques, Universitat de Lleida, Lleida, Catalunya, SpainCentre d'Oncologia Molecular, Institut de Recerca Oncologica-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet, Barcelona, Catalunya, Spain
| | - Basavaraj Udapudi
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalunya, SpainLaboratori de Neuropatologia Molecular, Departament de Ciències Mèdiques Básiques, Universitat de Lleida, Lleida, Catalunya, SpainCentre d'Oncologia Molecular, Institut de Recerca Oncologica-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet, Barcelona, Catalunya, Spain
| | - Petar Podlesniy
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalunya, SpainLaboratori de Neuropatologia Molecular, Departament de Ciències Mèdiques Básiques, Universitat de Lleida, Lleida, Catalunya, SpainCentre d'Oncologia Molecular, Institut de Recerca Oncologica-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet, Barcelona, Catalunya, Spain
| | - Isabel Fabregat
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalunya, SpainLaboratori de Neuropatologia Molecular, Departament de Ciències Mèdiques Básiques, Universitat de Lleida, Lleida, Catalunya, SpainCentre d'Oncologia Molecular, Institut de Recerca Oncologica-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet, Barcelona, Catalunya, Spain
| | - Carme Espinet
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalunya, SpainLaboratori de Neuropatologia Molecular, Departament de Ciències Mèdiques Básiques, Universitat de Lleida, Lleida, Catalunya, SpainCentre d'Oncologia Molecular, Institut de Recerca Oncologica-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet, Barcelona, Catalunya, Spain
| | - Albert Tauler
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalunya, SpainLaboratori de Neuropatologia Molecular, Departament de Ciències Mèdiques Básiques, Universitat de Lleida, Lleida, Catalunya, SpainCentre d'Oncologia Molecular, Institut de Recerca Oncologica-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet, Barcelona, Catalunya, Spain
| |
Collapse
|
44
|
Nowak K, Killmer K, Gessner C, Lutz W. E2F-1 regulates expression of FOXO1 and FOXO3a. ACTA ACUST UNITED AC 2007; 1769:244-52. [PMID: 17482685 DOI: 10.1016/j.bbaexp.2007.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/28/2007] [Accepted: 04/02/2007] [Indexed: 12/13/2022]
Abstract
E2F and FOXO transcription factors both play a role in neuronal apoptosis. In addition, both E2F-induced apoptosis and FOXO function are inhibited by the kinase Akt. We therefore tested whether FOXO is downstream of E2F-1 during neuronal apoptosis. We found that expression of endogenous FOXO1 and FOXO3a is induced by E2F-1. The presence of putative E2F binding sites in the promoters of both genes suggested that FOXO genes are direct targets of E2F-1. Indeed, a 4-hydroxytamoxifen activated E2F-1-ER fusion protein induced FOXO expression in the presence of cycloheximide. Moreover, E2F-1 activated the FOXO1 promoter in transient reporter assays, and E2F-1-ER as well as endogenous E2F bound to the FOXO1 promoter in vivo. Yet, E2F-1-mediated apoptosis of differentiated PC12 cells after withdrawal of NGF was not accompanied by changes in FOXO expression, indicating that no transcriptional induction of FOXO occurs during E2F-1-dependent neuronal apoptosis. In summary, our data identify E2F-1 as a first transcription factor regulating FOXO expression, providing a link between E2F and FOXO proteins in the control of cell fate.
Collapse
Affiliation(s)
- Katrin Nowak
- Institute of Molecular Biology and Tumor Research (IMT), Emil-Mannkopff-Strasse 2, 35033 Marburg, Germany
| | | | | | | |
Collapse
|
45
|
Byrnes KR, Faden AI. Role of Cell Cycle Proteins in CNS Injury. Neurochem Res 2007; 32:1799-807. [PMID: 17404835 DOI: 10.1007/s11064-007-9312-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 02/08/2007] [Indexed: 12/29/2022]
Abstract
Following trauma or ischemia to the central nervous system (CNS), there is a marked increase in the expression of cell cycle-related proteins. This up-regulation is associated with apoptosis of post-mitotic cells, including neurons and oligodendrocytes, both in vitro and in vivo. Cell cycle activation also induces proliferation of astrocytes and microglia, contributing to the glial scar and microglial activation with release of inflammatory factors. Treatment with cell cycle inhibitors in CNS injury models inhibits glial scar formation and neuronal cell death, resulting in substantially decreased lesion volumes and improved behavioral recovery. Here we critically review the role of cell cycle pathways in the pathophysiology of experimental stroke, traumatic brain injury and spinal cord injury, and discuss the potential of cell cycle inhibitors as neuroprotective agents.
Collapse
Affiliation(s)
- Kimberly R Byrnes
- Department of Neuroscience, Georgetown University Medical Center, Room EP16A, New Research Building, 3970 Reservoir Rd., NW, Washington, DC 20057, USA.
| | | |
Collapse
|
46
|
Hwang IK, Moon SM, Yoo KY, Li H, Kwon HD, Hwang HS, Choi SK, Lee BH, Kim JD, Won MH. c-Myb immunoreactivity, protein and mRNA levels significantly increase in the aged hippocampus proper in gerbils. Neurochem Res 2007; 32:1091-7. [PMID: 17401667 DOI: 10.1007/s11064-006-9278-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 12/28/2006] [Indexed: 11/28/2022]
Abstract
Myb genes are a family of transcription factors and have been implicated in the control of the proliferation and differentiation of normal and transformed cells. c-Myb is the best characterized member of the myb family. In the present study, we investigated age-dependent changes of c-myb immunoreactivity, its protein and mRNA level in the hippocampus proper (CA1-3 regions) at various age stages in gerbils. In the postnatal month 1 (PM 1) group, c-myb immunoreactivity was detected in non-pyramidal neurons of the strata oriens and radiatum as well as in pyramidal neurons of the stratum pyramidale. At PM 3, c-myb immunoreactivity and its protein level were similar to those at PM 1. Thereafter, c-myb immunoreactivity and its protein level were increased with time. In the PM 24 group, c-myb immunoreactivity, its protein and mRNA levels were highest. These results suggest that the significant increase of c-myb immunoreactivity, protein and mRNA levels in the aged hippocampus may be associated with neuronal aging.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Biswas SC, Shi Y, Vonsattel JPG, Leung CL, Troy CM, Greene LA. Bim is elevated in Alzheimer's disease neurons and is required for beta-amyloid-induced neuronal apoptosis. J Neurosci 2007; 27:893-900. [PMID: 17251431 PMCID: PMC6672914 DOI: 10.1523/jneurosci.3524-06.2007] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The molecules that mediate neuron death in Alzheimer's disease (AD) are largely unknown. We report that beta-amyloid (Abeta), a death-promoting peptide implicated in the pathophysiology of AD, induces the proapoptotic protein Bcl-2 interacting mediator of cell death (Bim) in cultured hippocampal and cortical neurons. We further find that Bim is an essential mediator of Abeta-induced neurotoxicity. Our examination of postmortem AD human brains additionally reveals upregulation of Bim in vulnerable entorhinal cortical neurons, but not in cerebellum, a region usually unaffected by AD. Accumulating evidence links inappropriate induction/activation of cell cycle-related proteins to AD, but their roles in the disease have been unclear. We find that the cell cycle molecule cyclin-dependent kinase 4 (cdk4) and its downstream effector B-myb, are required for Abeta-dependent Bim induction and death in cultured neurons. Moreover, neurons that overexpress Bim in AD brains also show elevated levels of the cell cycle-related proteins cdk4 and phospho-Rb. Our observations indicate that Bim is a proapoptotic effector of Abeta and of dysregulated cell cycle proteins in AD and identify both Bim and cell cycle elements as potential therapeutic targets.
Collapse
Affiliation(s)
- Subhas C Biswas
- Department of Pathology, Center for Neurobiology and Behavior and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Greene LA, Liu DX, Troy CM, Biswas SC. Cell cycle molecules define a pathway required for neuron death in development and disease. Biochim Biophys Acta Mol Basis Dis 2006; 1772:392-401. [PMID: 17229557 PMCID: PMC1885990 DOI: 10.1016/j.bbadis.2006.12.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 12/07/2006] [Accepted: 12/11/2006] [Indexed: 12/26/2022]
Abstract
We review here evidence defining a molecular pathway that includes cell cycle-related molecules and that appears to play a required role in neuron death during normal development as well as in disease and trauma. The pathway starts with inappropriate activation of cyclin dependent kinase 4 (Cdk4) in neurons which leads to hyper-phosphorylation of the pRb family member p130. This in turn results in dissociation of p130 and its associated chromatin modifiers Suv39H1 and HDAC1 from the transcription factor E2F4. Dissociation of this complex results in de-repression of genes with E2F binding sites including those encoding the transcription factors B- and C-Myb. Once elevated in neurons, B- and C-Myb proteins bind to the promoter for the pro-apoptotic BH3-only protein Bim and promote its induction. Bim then interacts with the core cellular apoptotic machinery, leading to caspase activation and apoptotic death. This pathway is supported by a variety of observations and experimental findings that implicate it as a required element for neuron loss in development and in many nervous system traumas and disorders. The components of this pathway appear to represent potential therapeutic targets for prevention of disease-associated neuron death.
Collapse
Affiliation(s)
- Lloyd A Greene
- Department of Pathology and Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
49
|
Hwang IK, Yoo KY, Cho BM, Hwang HS, Kim SM, Oh SM, Choi SK, Hwang DY, Won MH, Moon SM. The pattern of E2F1 and c-myb immunoreactivities in the CA1 region is different from those in the CA2/3 region of the gerbil hippocampus induced by transient ischemia. J Neurol Sci 2006; 247:192-201. [PMID: 16782130 DOI: 10.1016/j.jns.2006.05.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 05/02/2006] [Accepted: 05/04/2006] [Indexed: 11/26/2022]
Abstract
In this study, we examined transient ischemia-induced changes in transcription factor E2F1 and c-myb expressions in the gerbil hippocampus after 5 min of transient forebrain ischemia. E2F1 immunoreactivity significantly increased in the CA1 region 6-12 h after ischemia/reperfusion. c-myb immunoreactivity increased mainly in CA1 pyramidal cells with time by 12 h after ischemia. Thereafter, E2F1 and c-myb immunoreactivities significantly decreased compared to those in the 12 h post-ischemic group. Four days after ischemia/reperfusion, E2F1 and c-myb immunoreactivities were detected in non-pyramidal cells. Ten days after ischemia, c-myb immunoreactivity increased again: at this time, astrocytes as well as non-pyramidal cells showed E2F1 and c-myb immunoreactivities. In the CA2/3 region, E2F1 and c-myb immunoreactivities mainly changed in non-pyramidal cells, and 10 days after ischemia, c-myb immunoreactivity was not expressed in astrocytes. In conclusion, E2F1 and c-myb significantly alter in pyramidal cells and express in astrocytes in the gerbil hippocampal CA1 region after transient ischemia. These results indicate that E2F1 and c-myb in the CA1 region after ischemic damage may be associated with delayed neuronal death.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The inappropriate expression/activation of cell-cycle-related molecules is associated with neuron death in many experimental paradigms and human neuropathologic conditions. However, the means whereby this links to the core apoptotic machinery in neurons have been unclear. Here, we show that the pro-apoptotic Bcl-2 homology 3 domain-only molecule Bcl-2 interacting mediator of cell death (Bim) is a target of a cell-cycle-related apoptotic pathway in neuronal cells. Induction of Bim in NGF-deprived cells requires expression and activity of cyclin-dependent kinase 4 (cdk4) and consequent de-repression of E2 promoter binding factor (E2F)-regulated genes including members of the myb transcription factor family. The Bim promoter contains two myb binding sites, mutation of which abolishes induction of a Bim promoter-driven reporter by NGF deprivation or E2F-dependent gene de-repression. NGF deprivation significantly increases endogenous levels of C-myb and its occupancy of the endogenous Bim promoter. These findings support a model in which apoptotic stimuli lead to cdk4 activation, consequent de-repression of E2F-regulated mybs, and induction of pro-apoptotic Bim.
Collapse
Affiliation(s)
- Subhas C Biswas
- Department of Pathology, Center for Neurobiology and Behavior, Taub Center for Alzheimer's Disease Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|