1
|
Voorn RA, Sternbach M, Jarysta A, Rankovic V, Tarchini B, Wolf F, Vogl C. Slow kinesin-dependent microtubular transport facilitates ribbon synapse assembly in developing cochlear inner hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589153. [PMID: 38659872 PMCID: PMC11042220 DOI: 10.1101/2024.04.12.589153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Sensory synapses are characterized by electron-dense presynaptic specializations, so-called synaptic ribbons. In cochlear inner hair cells (IHCs), ribbons play an essential role as core active zone (AZ) organizers, where they tether synaptic vesicles, cluster calcium channels and facilitate the temporally-precise release of primed vesicles. While a multitude of studies aimed to elucidate the molecular composition and function of IHC ribbon synapses, the developmental formation of these signalling complexes remains largely elusive to date. To address this shortcoming, we performed long-term live-cell imaging of fluorescently-labelled ribbon precursors in young postnatal IHCs to track ribbon precursor motion. We show that ribbon precursors utilize the apico-basal microtubular (MT) cytoskeleton for targeted trafficking to the presynapse, in a process reminiscent of slow axonal transport in neurons. During translocation, precursor volume regulation is achieved by highly dynamic structural plasticity - characterized by regularly-occurring fusion and fission events. Pharmacological MT destabilization negatively impacted on precursor translocation and attenuated structural plasticity, whereas genetic disruption of the anterograde molecular motor Kif1a impaired ribbon volume accumulation during developmental maturation. Combined, our data thus indicate an essential role of the MT cytoskeleton and Kif1a in adequate ribbon synapse formation and structural maintenance.
Collapse
Affiliation(s)
- Roos Anouk Voorn
- Presynaptogenesis and Intracellular Transport in Hair Cells Junior Research Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Centre Goettingen, 37075 Goettingen, Germany
- Göttingen Graduate Centre for Neurosciences, Biophysics and Molecular Biosciences, 37075 Goettingen, Germany
- Collaborative Research Centre 889 ‘Cellular Mechanisms of Sensory Processing’, 37075 Goettingen, Germany
- Auditory Neuroscience Group, Institute of Physiology, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Michael Sternbach
- Campus Institute for Dynamics of Biological Networks, 37073 Goettingen, Germany
- Bernstein Centre for Computational Neuroscience, 37073 Goettingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Goettingen, Germany
| | | | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Restorative Cochlear Genomics Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, 37075 Göttingen, Germany
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor ME, USA
- Tufts University School of Medicine, Boston MA, USA
| | - Fred Wolf
- Campus Institute for Dynamics of Biological Networks, 37073 Goettingen, Germany
- Bernstein Centre for Computational Neuroscience, 37073 Goettingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Goettingen, Germany
- Institute for Dynamics of Complex Systems Georg-August-University, 37077 Goettingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Christian Vogl
- Presynaptogenesis and Intracellular Transport in Hair Cells Junior Research Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Centre Goettingen, 37075 Goettingen, Germany
- Collaborative Research Centre 889 ‘Cellular Mechanisms of Sensory Processing’, 37075 Goettingen, Germany
- Auditory Neuroscience Group, Institute of Physiology, Medical University Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
2
|
Zhai RG. The Architecture of the Presynaptic Release Site. ADVANCES IN NEUROBIOLOGY 2023; 33:1-21. [PMID: 37615861 DOI: 10.1007/978-3-031-34229-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The architecture of the presynaptic release site is exquisitely designed to facilitate and regulate synaptic vesicle exocytosis. With the identification of some of the building blocks of the active zone and the advent of super resolution imaging techniques, we are beginning to understand the morphological and functional properties of synapses in great detail. Presynaptic release sites consist of the plasma membrane, the cytomatrix, and dense projections. These three components are morphologically distinct but intimately connected with each other and with postsynaptic specializations, ensuring the fidelity of synaptic vesicle tethering, docking, and fusion, as well as signal detection. Although the morphology and molecular compositions of active zones may vary among species, tissues, and cells, global architectural design of the release sites is highly conserved.
Collapse
Affiliation(s)
- R Grace Zhai
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
3
|
Ciliary Proteins Repurposed by the Synaptic Ribbon: Trafficking Myristoylated Proteins at Rod Photoreceptor Synapses. Int J Mol Sci 2022; 23:ijms23137135. [PMID: 35806143 PMCID: PMC9266639 DOI: 10.3390/ijms23137135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022] Open
Abstract
The Unc119 protein mediates transport of myristoylated proteins to the photoreceptor outer segment, a specialized primary cilium. This transport activity is regulated by the GTPase Arl3 as well as by Arl13b and Rp2 that control Arl3 activation/inactivation. Interestingly, Unc119 is also enriched in photoreceptor synapses and can bind to RIBEYE, the main component of synaptic ribbons. In the present study, we analyzed whether the known regulatory proteins, that control the Unc119-dependent myristoylated protein transport at the primary cilium, are also present at the photoreceptor synaptic ribbon complex by using high-resolution immunofluorescence and immunogold electron microscopy. We found Arl3 and Arl13b to be enriched at the synaptic ribbon whereas Rp2 was predominantly found on vesicles distributed within the entire terminal. These findings indicate that the synaptic ribbon could be involved in the discharge of Unc119-bound lipid-modified proteins. In agreement with this hypothesis, we found Nphp3 (Nephrocystin-3), a myristoylated, Unc119-dependent cargo protein enriched at the basal portion of the ribbon in close vicinity to the active zone. Mutations in Nphp3 are known to be associated with Senior–Løken Syndrome 3 (SLS3). Visual impairment and blindness in SLS3 might thus not only result from ciliary dysfunctions but also from malfunctions of the photoreceptor synapse.
Collapse
|
4
|
Knodel MM, Dutta Roy R, Wittum G. Influence of T-Bar on Calcium Concentration Impacting Release Probability. Front Comput Neurosci 2022; 16:855746. [PMID: 35586479 PMCID: PMC9108211 DOI: 10.3389/fncom.2022.855746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
The relation of form and function, namely the impact of the synaptic anatomy on calcium dynamics in the presynaptic bouton, is a major challenge of present (computational) neuroscience at a cellular level. The Drosophila larval neuromuscular junction (NMJ) is a simple model system, which allows studying basic effects in a rather simple way. This synapse harbors several special structures. In particular, in opposite to standard vertebrate synapses, the presynaptic boutons are rather large, and they have several presynaptic zones. In these zones, different types of anatomical structures are present. Some of the zones bear a so-called T-bar, a particular anatomical structure. The geometric form of the T-bar resembles the shape of the letter “T” or a table with one leg. When an action potential arises, calcium influx is triggered. The probability of vesicle docking and neurotransmitter release is superlinearly proportional to the concentration of calcium close to the vesicular release site. It is tempting to assume that the T-bar causes some sort of calcium accumulation and hence triggers a higher release probability and thus enhances neurotransmitter exocytosis. In order to study this influence in a quantitative manner, we constructed a typical T-bar geometry and compared the calcium concentration close to the active zones (AZs). We compared the case of synapses with and without T-bars. Indeed, we found a substantial influence of the T-bar structure on the presynaptic calcium concentrations close to the AZs, indicating that this anatomical structure increases vesicle release probability. Therefore, our study reveals how the T-bar zone implies a strong relation between form and function. Our study answers the question of experimental studies (namely “Wichmann and Sigrist, Journal of neurogenetics 2010”) concerning the sense of the anatomical structure of the T-bar.
Collapse
Affiliation(s)
- Markus M. Knodel
- Goethe Center for Scientific Computing (GCSC), Goethe Universität Frankfurt, Frankfurt, Germany
- *Correspondence: Markus M. Knodel ; orcid.org/0000-0001-8739-0803
| | | | - Gabriel Wittum
- Goethe Center for Scientific Computing (GCSC), Goethe Universität Frankfurt, Frankfurt, Germany
- Applied Mathematics and Computational Science, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Ebke LA, Sinha S, Pauer GJT, Hagstrom SA. Photoreceptor Compartment-Specific TULP1 Interactomes. Int J Mol Sci 2021; 22:ijms22158066. [PMID: 34360830 PMCID: PMC8348715 DOI: 10.3390/ijms22158066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
Photoreceptors are highly compartmentalized cells with large amounts of proteins synthesized in the inner segment (IS) and transported to the outer segment (OS) and synaptic terminal. Tulp1 is a photoreceptor-specific protein localized to the IS and synapse. In the absence of Tulp1, several OS-specific proteins are mislocalized and synaptic vesicle recycling is impaired. To better understand the involvement of Tulp1 in protein trafficking, our approach in the current study was to physically isolate Tulp1-containing photoreceptor compartments by serial tangential sectioning of retinas and to identify compartment-specific Tulp1 binding partners by immunoprecipitation followed by liquid chromatography tandem mass spectrometry. Our results indicate that Tulp1 has two distinct interactomes. We report the identification of: (1) an IS-specific interaction between Tulp1 and the motor protein Kinesin family member 3a (Kif3a), (2) a synaptic-specific interaction between Tulp1 and the scaffold protein Ribeye, and (3) an interaction between Tulp1 and the cytoskeletal protein microtubule-associated protein 1B (MAP1B) in both compartments. Immunolocalization studies in the wild-type retina indicate that Tulp1 and its binding partners co-localize to their respective compartments. Our observations are compatible with Tulp1 functioning in protein trafficking in multiple photoreceptor compartments, likely as an adapter molecule linking vesicles to molecular motors and the cytoskeletal scaffold.
Collapse
Affiliation(s)
- Lindsey A. Ebke
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (L.A.E.); (S.S.); (G.J.T.P.)
| | - Satyabrata Sinha
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (L.A.E.); (S.S.); (G.J.T.P.)
| | - Gayle J. T. Pauer
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (L.A.E.); (S.S.); (G.J.T.P.)
| | - Stephanie A. Hagstrom
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (L.A.E.); (S.S.); (G.J.T.P.)
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Correspondence:
| |
Collapse
|
6
|
Functional compartmentalization of photoreceptor neurons. Pflugers Arch 2021; 473:1493-1516. [PMID: 33880652 DOI: 10.1007/s00424-021-02558-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Retinal photoreceptors are neurons that convert dynamically changing patterns of light into electrical signals that are processed by retinal interneurons and ultimately transmitted to vision centers in the brain. They represent the essential first step in seeing without which the remainder of the visual system is rendered moot. To support this role, the major functions of photoreceptors are segregated into three main specialized compartments-the outer segment, the inner segment, and the pre-synaptic terminal. This compartmentalization is crucial for photoreceptor function-disruption leads to devastating blinding diseases for which therapies remain elusive. In this review, we examine the current understanding of the molecular and physical mechanisms underlying photoreceptor functional compartmentalization and highlight areas where significant knowledge gaps remain.
Collapse
|
7
|
Burger CA, Jiang D, Mackin RD, Samuel MA. Development and maintenance of vision's first synapse. Dev Biol 2021; 476:218-239. [PMID: 33848537 DOI: 10.1016/j.ydbio.2021.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022]
Abstract
Synapses in the outer retina are the first information relay points in vision. Here, photoreceptors form synapses onto two types of interneurons, bipolar cells and horizontal cells. Because outer retina synapses are particularly large and highly ordered, they have been a useful system for the discovery of mechanisms underlying synapse specificity and maintenance. Understanding these processes is critical to efforts aimed at restoring visual function through repairing or replacing neurons and promoting their connectivity. We review outer retina neuron synapse architecture, neural migration modes, and the cellular and molecular pathways that play key roles in the development and maintenance of these connections. We further discuss how these mechanisms may impact connectivity in the retina.
Collapse
Affiliation(s)
- Courtney A Burger
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danye Jiang
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert D Mackin
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Thoreson WB. Transmission at rod and cone ribbon synapses in the retina. Pflugers Arch 2021; 473:1469-1491. [PMID: 33779813 DOI: 10.1007/s00424-021-02548-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
Light-evoked voltage responses of rod and cone photoreceptor cells in the vertebrate retina must be converted to a train of synaptic vesicle release events for transmission to downstream neurons. This review discusses the processes, proteins, and structures that shape this critical early step in vision, focusing on studies from salamander retina with comparisons to other experimental animals. Many mechanisms are conserved across species. In cones, glutamate release is confined to ribbon release sites although rods are also capable of release at non-ribbon sites. The role of non-ribbon release in rods remains unclear. Release from synaptic ribbons in rods and cones involves at least three vesicle pools: a readily releasable pool (RRP) matching the number of membrane-associated vesicles along the ribbon base, a ribbon reserve pool matching the number of additional vesicles on the ribbon, and an enormous cytoplasmic reserve. Vesicle release increases in parallel with Ca2+ channel activity. While the opening of only a few Ca2+ channels beneath each ribbon can trigger fusion of a single vesicle, sustained release rates in darkness are governed by the rate at which the RRP can be replenished. The number of vacant release sites, their functional status, and the rate of vesicle delivery in turn govern replenishment. Along with an overview of the mechanisms of exocytosis and endocytosis, we consider specific properties of ribbon-associated proteins and pose a number of remaining questions about this first synapse in the visual system.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Truhlsen Eye Institute, Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
9
|
Voorn RA, Vogl C. Molecular Assembly and Structural Plasticity of Sensory Ribbon Synapses-A Presynaptic Perspective. Int J Mol Sci 2020; 21:E8758. [PMID: 33228215 PMCID: PMC7699581 DOI: 10.3390/ijms21228758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
In the mammalian cochlea, specialized ribbon-type synapses between sensory inner hair cells (IHCs) and postsynaptic spiral ganglion neurons ensure the temporal precision and indefatigability of synaptic sound encoding. These high-through-put synapses are presynaptically characterized by an electron-dense projection-the synaptic ribbon-which provides structural scaffolding and tethers a large pool of synaptic vesicles. While advances have been made in recent years in deciphering the molecular anatomy and function of these specialized active zones, the developmental assembly of this presynaptic interaction hub remains largely elusive. In this review, we discuss the dynamic nature of IHC (pre-) synaptogenesis and highlight molecular key players as well as the transport pathways underlying this process. Since developmental assembly appears to be a highly dynamic process, we further ask if this structural plasticity might be maintained into adulthood, how this may influence the functional properties of a given IHC synapse and how such plasticity could be regulated on the molecular level. To do so, we take a closer look at other ribbon-bearing systems, such as retinal photoreceptors and pinealocytes and aim to infer conserved mechanisms that may mediate these phenomena.
Collapse
MESH Headings
- Alcohol Oxidoreductases/genetics
- Alcohol Oxidoreductases/metabolism
- Animals
- Co-Repressor Proteins/genetics
- Co-Repressor Proteins/metabolism
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Cytoskeleton/metabolism
- Cytoskeleton/ultrastructure
- Gene Expression Regulation, Developmental
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/ultrastructure
- Hair Cells, Vestibular/metabolism
- Hair Cells, Vestibular/ultrastructure
- Mechanotransduction, Cellular
- Mice
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuronal Plasticity/genetics
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Rats
- Synapses/metabolism
- Synapses/ultrastructure
- Synaptic Transmission/genetics
- Synaptic Vesicles/metabolism
- Synaptic Vesicles/ultrastructure
Collapse
Affiliation(s)
- Roos Anouk Voorn
- Presynaptogenesis and Intracellular Transport in Hair Cells Junior Research Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany;
- Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, 37075 Goettingen, Germany
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”, 37075 Goettingen, Germany
| | - Christian Vogl
- Presynaptogenesis and Intracellular Transport in Hair Cells Junior Research Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany;
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”, 37075 Goettingen, Germany
| |
Collapse
|
10
|
Joseph NF, Grinman E, Swarnkar S, Puthanveettil SV. Molecular Motor KIF3B Acts as a Key Regulator of Dendritic Architecture in Cortical Neurons. Front Cell Neurosci 2020; 14:521199. [PMID: 33192305 PMCID: PMC7604319 DOI: 10.3389/fncel.2020.521199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/09/2020] [Indexed: 01/08/2023] Open
Abstract
Neurons require a well-coordinated intercellular transport system to maintain their normal cellular function and morphology. The kinesin family of proteins (KIFs) fills this role by regulating the transport of a diverse array of cargos in post-mitotic cells. On the other hand, in mitotic cells, KIFs facilitate the fidelity of the cellular division machinery. Though certain mitotic KIFs function in post-mitotic neurons, little is known about them. We studied the role of a mitotic KIF (KIF3B) in neuronal architecture. We find that the RNAi mediated knockdown of KIF3B in primary cortical neurons resulted in an increase in spine density; the number of thin and mushroom spines; and dendritic branching. Consistent with the change in spine density, we observed a specific increase in the distribution of the excitatory post-synaptic protein, PSD-95 in KIF3B knockdown neurons. Interestingly, overexpression of KIF3B produced a reduction in spine density, in particular mushroom spines, and a decrease in dendritic branching. These studies suggest that KIF3B is a key determinant of cortical neuron morphology and that it functions as an inhibitory constraint on structural plasticity, further illuminating the significance of mitotic KIFs in post-mitotic neurons.
Collapse
Affiliation(s)
- Nadine F Joseph
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States.,Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | - Eddie Grinman
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States.,Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | - Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | | |
Collapse
|
11
|
Chou VT, Johnson SA, Van Vactor D. Synapse development and maturation at the drosophila neuromuscular junction. Neural Dev 2020; 15:11. [PMID: 32741370 PMCID: PMC7397595 DOI: 10.1186/s13064-020-00147-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Synapses are the sites of neuron-to-neuron communication and form the basis of the neural circuits that underlie all animal cognition and behavior. Chemical synapses are specialized asymmetric junctions between a presynaptic neuron and a postsynaptic target that form through a series of diverse cellular and subcellular events under the control of complex signaling networks. Once established, the synapse facilitates neurotransmission by mediating the organization and fusion of synaptic vesicles and must also retain the ability to undergo plastic changes. In recent years, synaptic genes have been implicated in a wide array of neurodevelopmental disorders; the individual and societal burdens imposed by these disorders, as well as the lack of effective therapies, motivates continued work on fundamental synapse biology. The properties and functions of the nervous system are remarkably conserved across animal phyla, and many insights into the synapses of the vertebrate central nervous system have been derived from studies of invertebrate models. A prominent model synapse is the Drosophila melanogaster larval neuromuscular junction, which bears striking similarities to the glutamatergic synapses of the vertebrate brain and spine; further advantages include the simplicity and experimental versatility of the fly, as well as its century-long history as a model organism. Here, we survey findings on the major events in synaptogenesis, including target specification, morphogenesis, and the assembly and maturation of synaptic specializations, with a emphasis on work conducted at the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Vivian T Chou
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth A Johnson
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
13
|
Chakrabarti R, Wichmann C. Nanomachinery Organizing Release at Neuronal and Ribbon Synapses. Int J Mol Sci 2019; 20:E2147. [PMID: 31052288 PMCID: PMC6539712 DOI: 10.3390/ijms20092147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 11/17/2022] Open
Abstract
A critical aim in neuroscience is to obtain a comprehensive view of how regulated neurotransmission is achieved. Our current understanding of synapses relies mainly on data from electrophysiological recordings, imaging, and molecular biology. Based on these methodologies, proteins involved in a synaptic vesicle (SV) formation, mobility, and fusion at the active zone (AZ) membrane have been identified. In the last decade, electron tomography (ET) combined with a rapid freezing immobilization of neuronal samples opened a window for understanding the structural machinery with the highest spatial resolution in situ. ET provides significant insights into the molecular architecture of the AZ and the organelles within the presynaptic nerve terminal. The specialized sensory ribbon synapses exhibit a distinct architecture from neuronal synapses due to the presence of the electron-dense synaptic ribbon. However, both synapse types share the filamentous structures, also commonly termed as tethers that are proposed to contribute to different steps of SV recruitment and exocytosis. In this review, we discuss the emerging views on the role of filamentous structures in SV exocytosis gained from ultrastructural studies of excitatory, mainly central neuronal compared to ribbon-type synapses with a focus on inner hair cell (IHC) ribbon synapses. Moreover, we will speculate on the molecular entities that may be involved in filament formation and hence play a crucial role in the SV cycle.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
- Collaborative Research Center 1286 "Quantitative Synaptology", 37099 Göttingen, Germany.
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
14
|
Pangrsic T, Vogl C. Balancing presynaptic release and endocytic membrane retrieval at hair cell ribbon synapses. FEBS Lett 2018; 592:3633-3650. [PMID: 30251250 DOI: 10.1002/1873-3468.13258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 11/07/2022]
Abstract
The timely and reliable processing of auditory and vestibular information within the inner ear requires highly sophisticated sensory transduction pathways. On a cellular level, these demands are met by hair cells, which respond to sound waves - or alterations in body positioning - by releasing glutamate-filled synaptic vesicles (SVs) from their presynaptic active zones with unprecedented speed and exquisite temporal fidelity, thereby initiating the auditory and vestibular pathways. In order to achieve this, hair cells have developed anatomical and molecular specializations, such as the characteristic and name-giving 'synaptic ribbons' - presynaptically anchored dense bodies that tether SVs prior to release - as well as other unique or unconventional synaptic proteins. The tightly orchestrated interplay between these molecular components enables not only ultrafast exocytosis, but similarly rapid and efficient compensatory endocytosis. So far, the knowledge of how endocytosis operates at hair cell ribbon synapses is limited. In this Review, we summarize recent advances in our understanding of the SV cycle and molecular anatomy of hair cell ribbon synapses, with a focus on cochlear inner hair cells.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, University Medical Center Göttingen, Germany
| | - Christian Vogl
- Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, University Medical Center Göttingen, Germany
| |
Collapse
|
15
|
Zhao YQ, Mu DL, Wang D, Han YL, Hou CC, Zhu JQ. Analysis of the function of KIF3A and KIF3B in the spermatogenesis in Boleophthalmus pectinirostris. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:769-788. [PMID: 29511984 DOI: 10.1007/s10695-017-0461-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/18/2017] [Indexed: 06/08/2023]
Abstract
Spermatogenesis represents one of the most complicated morphological transformation procedures. During this process, the assembly and maintenance of the flagella and intracellular transport of membrane-bound organelles required KIF3A and KIF3B. Our main goal was to test KIF3A and KIF3B location during spermatogenesis of Boleophthalmus pectinirostris. We cloned complete cDNA of KIF3A/3B from the testis of B. pectinirostris by PCR and rapid amplification of cDNA ends (RACE). The predicted secondary and tertiary structures of B. pectinirostris KIF3A/3B contained three domains: (a) the head region, (b) the stalk region, and (c) the tail region. Real-time quantitative PCR (qPCR) results revealed that KIF3A and KIF3B mRNA were presented in all the tissues examined, with the highest expression seen in the testis. In situ hybridization (ISH) showed that KIF3A and KIF3B were distributed in the periphery of the nuclear in the spermatocyte and the early spermatid. In the late spermatid and mature sperm, the KIF3A and KIF3B mRNA were gradually gathered to one side where the flagella formed. Immunofluorescence (IF) showed that KIF3A, tubulin, and mitochondria were co-localized in different stages during spermiogenesis in B. pectinirostris. The temporal and spatial expression dynamics of KIF3A/3B indicate that KIF3A and KIF3B might be involved in flagellar assembly and maintenance at the mRNA and protein levels. Moreover, these proteins may transport the mitochondria resulting in flagellum formation in B. pectinirostris.
Collapse
Affiliation(s)
- Yong-Qiang Zhao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Dan-Li Mu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Di Wang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Ying-Li Han
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China.
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China.
| |
Collapse
|
16
|
Hunter DD, Manglapus MK, Bachay G, Claudepierre T, Dolan MW, Gesuelli KA, Brunken WJ. CNS synapses are stabilized trans-synaptically by laminins and laminin-interacting proteins. J Comp Neurol 2017; 527:67-86. [PMID: 29023785 DOI: 10.1002/cne.24338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 01/05/2023]
Abstract
The retina expresses several laminins in the outer plexiform layer (OPL), where they may provide an extracellular scaffold for synapse stabilization. Mice with a targeted deletion of the laminin β2 gene (Lamb2) exhibit retinal disruptions: photoreceptor synapses in the OPL are disorganized and the retinal physiological response is attenuated. We hypothesize that laminins are required for proper trans-synaptic alignment. To test this, we compared the distribution, expression, association and modification of several pre- and post-synaptic elements in wild-type and Lamb2-null retinae. A potential laminin receptor, integrin α3, is at the presynaptic side of the wild-type OPL. Another potential laminin receptor, dystroglycan, is at the post-synaptic side of the wild-type OPL. Integrin α3 and dystroglycan can be co-immunoprecipitated with the laminin β2 chain, demonstrating that they may bind laminins. In the absence of the laminin β2 chain, the expression of many pre-synaptic components (bassoon, kinesin, among others) is relatively undisturbed although their spatial organization and anchoring to the membrane is disrupted. In contrast, in the Lamb2-null, β-dystroglycan (β-DG) expression is altered, co-localization of β-DG with dystrophin and the glutamate receptor mGluR6 is disrupted, and the post-synaptic bipolar cell components mGluR6 and GPR179 become dissociated, suggesting that laminins mediate scaffolding of post-synaptic components. In addition, although pikachurin remains associated with β-DG, pikachurin is no longer closely associated with mGluR6 or α-DG in the Lamb2-null. These data suggest that laminins act as links among pre- and post-synaptic laminin receptors and α-DG and pikachurin in the synaptic space to maintain proper trans-synaptic alignment.
Collapse
Affiliation(s)
- Dale D Hunter
- Department of Anatomy and Cellular Biology, Tufts University and Tufts Center for Vision Research, Boston, Massachusetts.,Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| | - Mary K Manglapus
- Department of Anatomy and Cellular Biology, Tufts University and Tufts Center for Vision Research, Boston, Massachusetts
| | - Galina Bachay
- Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| | - Thomas Claudepierre
- Department of Anatomy and Cellular Biology, Tufts University and Tufts Center for Vision Research, Boston, Massachusetts
| | - Michael W Dolan
- Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| | - Kelly-Ann Gesuelli
- Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| | - William J Brunken
- Department of Anatomy and Cellular Biology, Tufts University and Tufts Center for Vision Research, Boston, Massachusetts.,Department of Ophthalmology and the SUNY Eye Institute, Upstate Medical University, Syracuse, New York
| |
Collapse
|
17
|
Zhao YQ, Yang HY, Zhang DD, Han YL, Hou CC, Zhu JQ. Dynamic transcription and expression patterns of KIF3A and KIF3B genes during spermiogenesis in the shrimp, Palaemon carincauda. Anim Reprod Sci 2017; 184:59-77. [PMID: 28689636 DOI: 10.1016/j.anireprosci.2017.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/29/2017] [Accepted: 06/22/2017] [Indexed: 01/20/2023]
Abstract
Spermiogenesis is a highly ordered and complex process in the male germ cell differentiation. The microtubule-based motor proteins KIF3A and KIF3B are required for the progression of the stages of spermiogenesis. In this study, the main goal was to determine whether KIF3A and KIF3B have a key role in spermiogenesis in Palaemon carincauda. The complete cDNA of KIF3A/3B from the testis of P. carincauda was cloned by using PCR and rapid amplification of cDNA ends (RACE). The predicted secondary and tertiary structures of KIF3A/3B contained three domains which were the: a) head region, b) stalk region, and c) tail region. Real-time quantitative PCR (qPCR) results revealed that KIF3A and KIF3B mRNAs were obtained for all the tissues examined, with the greatest gene expression in the testis. In situ hybridization indicated the KIF3A and KIF3B mRNAs were distributed in the periphery of the nuclear in the early spermatid of spermiogenesis. In the middle and late spermatid stages, KIF3A and KIF3B mRNAs were gradually upregulated and assembled to one side where acrosome biogenesis begins. In the mature sperm, KIF3A and KIF3B mRNAs were distributed in the acrosome cap and spike. Immunofluorescence studies indicated that KIF3A, tubulin, mitochondria, and Golgi were co-localized in different stages during spermiogenesis in P. carincauda. The temporal and spatial gene expression dynamics of KIF3A/3B indicate that KIF3A and KIF3B proteins may be involved in acrosome formation and nucleus shaping. Moreover, these proteins can transport the mitochondria and Golgi that facilitate acrosome formation in P. carincauda.
Collapse
Affiliation(s)
- Yong-Qiang Zhao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Hai-Yan Yang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Dan-Dan Zhang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Ying-Li Han
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China.
| |
Collapse
|
18
|
Lee JS, Kim HG, Jeon CJ. Identification of synaptic pattern of NMDA receptor subunits upon direction-selective retinal ganglion cells in developing and adult mouse retina. Acta Histochem 2017; 119:495-507. [PMID: 28545760 DOI: 10.1016/j.acthis.2017.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 04/30/2017] [Accepted: 05/05/2017] [Indexed: 11/25/2022]
Abstract
Direction selectivity of the retina is a unique mechanism and critical function of eyes for surviving. Direction-selective retinal ganglion cells (DS RGCs) strongly respond to preferred directional stimuli, but rarely respond to the opposite or null directional stimuli. These DS RGCs are sensitive to glutamate, which is secreted from bipolar cells. Using immunocytochemistry, we studied with the distributions of N-methyl-d-aspartate (NMDA) receptor subunits on the dendrites of DS RGCs in the developing and adult mouse retina. DS RGCs were injected with Lucifer yellow for identification of dendritic morphology. The triple-labeled images of dendrites, kinesin II, and NMDA receptor subunits were visualized using confocal microscopy and were reconstructed from high-resolution confocal images. Although our results revealed that the synaptic pattern of NMDA receptor subunits on dendrites of DS RGCs was not asymmetric in developing and adult mouse retina, they showed the anatomical connectivity of NMDA glutamatergic synapses onto DS RGCs and the developmental formation of the direction selectivity in the mouse retina. Through the comprehensive interpretation of the direction-selective neural circuit, this study, therefore, implies that the direction selectivity may be generated by the asymmetry of the excitatory glutamatergic inputs and the inhibitory inputs onto DS RGCs.
Collapse
|
19
|
Abstract
Abstract
Vision begins in highly specialized light-sensing neurons, the rod and cone photoreceptors. Their task is to absorb photons, transduce the physical stimulus into neuronal signals, transmit the signals to the parallel signal processing pathways of the subsequent retinal network with the highest possible fidelity and continuously adapt to changes in stimulus intensities. If you imagine a pitch-black night with only a few photons hitting the retina and being absorbed by the photoreceptors and a bright sunny day with the photoreceptors being bombarded by billions of photons, you realize that a photoreceptor faces two fundamental challenges: it has to detect the light signal with the greatest sensitivity, e.g. a single photon leads to a change in the membrane potential of a rod photoreceptor and, at the same time, encode light intensities covering a broad dynamic range of several orders of magnitude. To fulfill these demands, photoreceptors have developed separate, structurally and functionally specialized compartments, which are the topic of this article: the outer segment for signal transduction and the terminal with its highly complex ribbon synapse for signal transmission.
Collapse
|
20
|
Abstract
The primary cilium, a hair-like sensory organelle found on most mammalian cells, has gained recent attention within the field of neuroscience. Although neural primary cilia have been known to play a role in embryonic central nervous system patterning, we are just beginning to appreciate their importance in the mature organism. After several decades of investigation and controversy, the neural primary cilium is emerging as an important regulator of neuroplasticity in the healthy adult central nervous system. Further, primary cilia have recently been implicated in disease states such as cancer and epilepsy. Intriguingly, while primary cilia are expressed throughout the central nervous system, their structure, receptors, and signaling pathways vary by anatomical region and neural cell type. These differences likely bear relevance to both their homeostatic and neuropathological functions, although much remains to be uncovered. In this review, we provide a brief historical overview of neural primary cilia and highlight several key advances in the field over the past few decades. We then set forth a proposed research agenda to fill in the gaps in our knowledge regarding how the primary cilium functions and malfunctions in nervous tissue, with the ultimate goal of targeting this sensory structure for neural repair following injury.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Medical Scientist Training Program, Stony Brook University, Stony Brook, NY, USA.,Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Qiaojie Xiong
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
21
|
Raghupathy RK, Zhang X, Alhasani RH, Zhou X, Mullin M, Reilly J, Li W, Liu M, Shu X. Abnormal photoreceptor outer segment development and early retinal degeneration in kif3a mutant zebrafish. Cell Biochem Funct 2016; 34:429-40. [PMID: 27470972 DOI: 10.1002/cbf.3205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport.
Collapse
Affiliation(s)
| | - Xun Zhang
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Reem H Alhasani
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Xinzhi Zhou
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | - James Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Wenchang Li
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
22
|
Bodaleo FJ, Gonzalez-Billault C. The Presynaptic Microtubule Cytoskeleton in Physiological and Pathological Conditions: Lessons from Drosophila Fragile X Syndrome and Hereditary Spastic Paraplegias. Front Mol Neurosci 2016; 9:60. [PMID: 27504085 PMCID: PMC4958632 DOI: 10.3389/fnmol.2016.00060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022] Open
Abstract
The capacity of the nervous system to generate neuronal networks relies on the establishment and maintenance of synaptic contacts. Synapses are composed of functionally different presynaptic and postsynaptic compartments. An appropriate synaptic architecture is required to provide the structural basis that supports synaptic transmission, a process involving changes in cytoskeletal dynamics. Actin microfilaments are the main cytoskeletal components present at both presynaptic and postsynaptic terminals in glutamatergic synapses. However, in the last few years it has been demonstrated that microtubules (MTs) transiently invade dendritic spines, promoting their maturation. Nevertheless, the presence and functions of MTs at the presynaptic site are still a matter of debate. Early electron microscopy (EM) studies revealed that MTs are present in the presynaptic terminals of the central nervous system (CNS) where they interact with synaptic vesicles (SVs) and reach the active zone. These observations have been reproduced by several EM protocols; however, there is empirical heterogeneity in detecting presynaptic MTs, since they appear to be both labile and unstable. Moreover, increasing evidence derived from studies in the fruit fly neuromuscular junction proposes different roles for MTs in regulating presynaptic function in physiological and pathological conditions. In this review, we summarize the main findings that support the presence and roles of MTs at presynaptic terminals, integrating descriptive and biochemical analyses, and studies performed in invertebrate genetic models.
Collapse
Affiliation(s)
- Felipe J Bodaleo
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO)Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO)Santiago, Chile; The Buck Institute for Research on Aging, NovatoCA, USA
| |
Collapse
|
23
|
Abstract
The first synapses transmitting visual information contain an unusual organelle, the ribbon, which is involved in the transport and priming of vesicles to be released at the active zone. The ribbon is one of many design features that allow efficient refilling of the active zone, which in turn enables graded changes in membrane potential to be transmitted using a continuous mode of neurotransmitter release. The ribbon also plays a key role in supplying vesicles for rapid and transient bursts of release that signal fast changes, such as the onset of light. We increasingly understand how the physiological properties of ribbon synapses determine basic transformations of the visual signal and, in particular, how the process of refilling the active zone regulates the gain and adaptive properties of the retinal circuit. The molecular basis of ribbon function is, however, far from clear.
Collapse
Affiliation(s)
- Leon Lagnado
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom;
| | - Frank Schmitz
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Medical School Saarland University, Homburg/Saar, Germany;
| |
Collapse
|
24
|
Kwon OJ, Lee JS, Kim HG, Jeon CJ. Identification of Synaptic Patterns of NMDA Receptor Subtypes Upon Direction-Selective Rabbit Retinal Ganglion Cells. Curr Eye Res 2015; 41:832-43. [PMID: 26287656 DOI: 10.3109/02713683.2015.1056378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The objective of this study was to identify anisotropies that contribute to the directional preference of direction-selective retinal ganglion cells (DS RGCs) in the rabbit retina. We investigated the distributions of N-methyl-d-aspartate receptor 1 (NMDAR1), NMDAR2A and NMDAR2B receptor subunits in the dendritic arbors of rabbit DS RGCs. METHODS The distributions of the NMDAR subunits on the DS RGCs were determined using immunocytochemistry. DS RGCs were injected with Lucifer yellow, and the cells were identified by their characteristic morphology. The triple-labeled images of dendrites, kinesin II and NMDARs were visualized using confocal microscopy and were reconstructed from high-resolution confocal images. RESULTS We found no evidence of asymmetry in any of the NMDAR subunits examined on the dendritic arbors of both the ON and OFF layers of DS RGCs. CONCLUSIONS Our results indicate that direction selectivity appears to lie in the neuronal circuitry afferent to the DS RGCs.
Collapse
Affiliation(s)
- Oh-Ju Kwon
- a Department of Optometry , Busan Institute of Science and Technology , Busan , South Korea and.,b Department of Biology , School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University , Daegu , South Korea
| | - Jun-Seok Lee
- b Department of Biology , School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University , Daegu , South Korea
| | - Hang-Gu Kim
- b Department of Biology , School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University , Daegu , South Korea
| | - Chang-Jin Jeon
- b Department of Biology , School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University , Daegu , South Korea
| |
Collapse
|
25
|
Guo J, Higginbotham H, Li J, Nichols J, Hirt J, Ghukasyan V, Anton ES. Developmental disruptions underlying brain abnormalities in ciliopathies. Nat Commun 2015. [PMID: 26206566 PMCID: PMC4515781 DOI: 10.1038/ncomms8857] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Primary cilia are essential conveyors of signals underlying major cell functions. Cerebral cortical progenitors and neurons have a primary cilium. The significance of cilia function for brain development and function is evident in the plethora of developmental brain disorders associated with human ciliopathies. Nevertheless, the role of primary cilia function in corticogenesis remains largely unknown. Here we delineate the functions of primary cilia in the construction of cerebral cortex and their relevance to ciliopathies, using an shRNA library targeting ciliopathy genes known to cause brain disorders, but whose roles in brain development are unclear. We used the library to query how ciliopathy genes affect distinct stages of mouse cortical development, in particular neural progenitor development, neuronal migration, neuronal differentiation and early neuronal connectivity. Our results define the developmental functions of ciliopathy genes and delineate disrupted developmental events that are integrally related to the emergence of brain abnormalities in ciliopathies. Primary cilia are essential conveyors of signals underlying major cellular functions but their role in brain development is not completely understood. Here the authors compiled a shRNA library targeting ciliopathy genes known to cause brain disorders, and used it to query how ciliopathy genes affect distinct stages of mouse cortical development.
Collapse
Affiliation(s)
- Jiami Guo
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Holden Higginbotham
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Jingjun Li
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Jackie Nichols
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Josua Hirt
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Vladimir Ghukasyan
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
26
|
Wichmann C, Moser T. Relating structure and function of inner hair cell ribbon synapses. Cell Tissue Res 2015; 361:95-114. [PMID: 25874597 PMCID: PMC4487357 DOI: 10.1007/s00441-014-2102-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/18/2014] [Indexed: 01/28/2023]
Abstract
In the mammalian cochlea, sound is encoded at synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs). Each SGN receives input from a single IHC ribbon-type active zone (AZ) and yet SGNs indefatigably spike up to hundreds of Hz to encode acoustic stimuli with submillisecond precision. Accumulating evidence indicates a highly specialized molecular composition and structure of the presynapse, adapted to suit these high functional demands. However, we are only beginning to understand key features such as stimulus-secretion coupling, exocytosis mechanisms, exo-endocytosis coupling, modes of endocytosis and vesicle reformation, as well as replenishment of the readily releasable pool. Relating structure and function has become an important avenue in addressing these points and has been applied to normal and genetically manipulated hair cell synapses. Here, we review some of the exciting new insights gained from recent studies of the molecular anatomy and physiology of IHC ribbon synapses.
Collapse
Affiliation(s)
- C. Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University Medical Center Göttingen, Göttingen, Germany
| | - T. Moser
- Collaborative Research Center 889, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany
| |
Collapse
|
27
|
Oh EC, Vasanth S, Katsanis N. Metabolic regulation and energy homeostasis through the primary Cilium. Cell Metab 2015; 21:21-31. [PMID: 25543293 PMCID: PMC4370781 DOI: 10.1016/j.cmet.2014.11.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/19/2014] [Accepted: 11/20/2014] [Indexed: 02/07/2023]
Abstract
Obesity and diabetes represent a significant healthcare concern. In contrast to genome-wide association studies that, some exceptions notwithstanding, have offered modest clues about pathomechanism, the dissection of rare disorders in which obesity represents a core feature have highlighted key molecules and structures critical to energy regulation. Here we focus on the primary cilium, an organelle whose roles in energy homeostasis have been underscored by the high incidence of obesity and type II diabetes in patients and mouse mutants with compromised ciliary function. We discuss recent evidence linking ciliary dysfunction to metabolic defects and we explore the contribution of neuronal and nonneuronal cilia to these phenotypes.
Collapse
Affiliation(s)
- Edwin C Oh
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Shivakumar Vasanth
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
28
|
Abstract
Little is known regarding the identity of the population of proteins that are transported and localized to synapses. Here we describe a new approach that involves the isolation and systematic proteomic characterization of molecular motor kinesins to identify the populations of proteins transported to synapses. We used this approach to identify and compare proteins transported to synapses by kinesin (Kif) complexes Kif5C and Kif3A in the mouse hippocampus and prefrontal cortex. Approximately 40-50% of the protein cargos identified in our proteomics analysis of kinesin complexes are known synaptic proteins. We also found that the identity of kinesins and where they are expressed determine what proteins they transport. Our results reveal a previously unappreciated role of kinesins in regulating the composition of synaptic proteome.
Collapse
|
29
|
Wheway G, Parry DA, Johnson CA. The role of primary cilia in the development and disease of the retina. Organogenesis 2014; 10:69-85. [PMID: 24162842 PMCID: PMC4049897 DOI: 10.4161/org.26710] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 02/07/2023] Open
Abstract
The normal development and function of photoreceptors is essential for eye health and visual acuity in vertebrates. Mutations in genes encoding proteins involved in photoreceptor development and function are associated with a suite of inherited retinal dystrophies, often as part of complex multi-organ syndromic conditions. In this review, we focus on the role of the photoreceptor outer segment, a highly modified and specialized primary cilium, in retinal health and disease. We discuss the many defects in the structure and function of the photoreceptor primary cilium that can cause a class of inherited conditions known as ciliopathies, often characterized by retinal dystrophy and degeneration, and highlight the recent insights into disease mechanisms.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Section of Ophthalmology and Neurosciences; Leeds Institute of Molecular Medicine; The University of Leeds; Leeds, United Kingdom
| | - David A Parry
- Section of Genetics; Leeds Institute of Molecular Medicine; The University of Leeds; Leeds, United Kingdom
| | - Colin A Johnson
- Section of Ophthalmology and Neurosciences; Leeds Institute of Molecular Medicine; The University of Leeds; Leeds, United Kingdom
| |
Collapse
|
30
|
Regus-Leidig H, Ott C, Löhner M, Atorf J, Fuchs M, Sedmak T, Kremers J, Fejtová A, Gundelfinger ED, Brandstätter JH. Identification and immunocytochemical characterization of Piccolino, a novel Piccolo splice variant selectively expressed at sensory ribbon synapses of the eye and ear. PLoS One 2013; 8:e70373. [PMID: 23936420 PMCID: PMC3735604 DOI: 10.1371/journal.pone.0070373] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/17/2013] [Indexed: 02/03/2023] Open
Abstract
Piccolo is one of the largest cytomatrix proteins present at active zones of chemical synapses, where it is suggested to play a role in recruiting and integrating molecules relevant for both synaptic vesicle exo- and endocytosis. Here we examined the retina of a Piccolo-mutant mouse with a targeted deletion of exon 14 in the Pclo gene. Piccolo deficiency resulted in its profound loss at conventional chemical amacrine cell synapses but retinal ribbon synapses were structurally and functionally unaffected. This led to the identification of a shorter, ribbon-specific Piccolo variant, Piccolino, present in retinal photoreceptor cells, bipolar cells, as well as in inner hair cells of the inner ear. By RT-PCR analysis and the generation of a Piccolino-specific antibody we show that non-splicing of intron 5/6 leads to premature translation termination and generation of the C-terminally truncated protein specifically expressed at active zones of ribbon synapse containing cell types. With in situ proximity ligation assays we provide evidence that this truncation leads to the absence of interaction sites for Bassoon, Munc13, and presumably also ELKS/CAST, RIM2, and the L-type Ca2+ channel which exist in the full-length Piccolo at active zones of conventional chemical synapses. The putative lack of interactions with proteins of the active zone suggests a function of Piccolino at ribbon synapses of sensory neurons different from Piccolo’s function at conventional chemical synapses.
Collapse
Affiliation(s)
- Hanna Regus-Leidig
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Corinna Ott
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Martina Löhner
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jenny Atorf
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - Michaela Fuchs
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Tina Sedmak
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - Anna Fejtová
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
| | - Eckart D. Gundelfinger
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
| | - Johann H. Brandstätter
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
31
|
Pearring JN, Salinas RY, Baker SA, Arshavsky VY. Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retin Eye Res 2013; 36:24-51. [PMID: 23562855 DOI: 10.1016/j.preteyeres.2013.03.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 01/24/2023]
Abstract
Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins.
Collapse
Affiliation(s)
- Jillian N Pearring
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
32
|
Broekhuis JR, Leong WY, Jansen G. Regulation of cilium length and intraflagellar transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:101-38. [PMID: 23445809 DOI: 10.1016/b978-0-12-407697-6.00003-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Primary cilia are highly conserved sensory organelles that extend from the surface of almost all vertebrate cells. The importance of cilia is evident from their involvement in many diseases, called ciliopathies. Primary cilia contain a microtubular axoneme that is used as a railway for transport of both structural components and signaling proteins. This transport machinery is called intraflagellar transport (IFT). Cilia are dynamic organelles whose presence on the cell surface, morphology, length and function are highly regulated. It is clear that the IFT machinery plays an important role in this regulation. However, it is not clear how, for example environmental cues or cell fate decisions are relayed to modulate IFT and cilium morphology or function. This chapter presents an overview of molecules that have been shown to regulate cilium length and IFT. Several examples where signaling modulates IFT and cilium function are used to discuss the importance of these systems for the cell and for understanding of the etiology of ciliopathies.
Collapse
|
33
|
Lv C, Gould TJ, Bewersdorf J, Zenisek D. High-resolution optical imaging of zebrafish larval ribbon synapse protein RIBEYE, RIM2, and CaV 1.4 by stimulation emission depletion microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:745-752. [PMID: 22832038 PMCID: PMC3709260 DOI: 10.1017/s1431927612000268] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The synaptic ribbon is a unique presynaptic structure with an intricate morphology in photoreceptors. Because of the resolution limit in conventional fluorescence microscopy, investigating ribbon protein locations has been challenging, especially in the early development stages of model animals. Here, we used stimulated emission depletion microscopy, a super-resolution imaging technique, to look at retina sections in 4 days post-fertilization (dpf) zebrafish. We observed that in photoreceptor cells, RIBEYE and RIM2 are expressed along the synaptic ribbon, with RIM2 consistently located inside of the horseshoe-shaped synaptic ribbon structure with RIBEYE located on the outside. The L-type calcium channel subunit, CACNA1F, exhibited small spot-like staining beneath the RIM2 and RIBEYE structures. Using morpholino antisense oligonucleotides to knock down RIBEYE expression, we observed fewer and shorter ribbons in the photoreceptor outer plexiform layers of 4 dpf fish retina as well as a reduction in RIM2 expression. The clustering of CACNA1F in these blind fish was no longer observed, but instead showed a diffuse expression in the photoreceptor terminal.
Collapse
Affiliation(s)
- Caixia Lv
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Travis J. Gould
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David Zenisek
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Ophthalmology and Visual Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
34
|
The dynamic architecture of photoreceptor ribbon synapses: cytoskeletal, extracellular matrix, and intramembrane proteins. Vis Neurosci 2012; 28:453-71. [PMID: 22192503 DOI: 10.1017/s0952523811000356] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rod and cone photoreceptors possess ribbon synapses that assist in the transmission of graded light responses to second-order bipolar and horizontal cells of the vertebrate retina. Proper functioning of the synapse requires the juxtaposition of presynaptic release sites immediately adjacent to postsynaptic receptors. In this review, we focus on the synaptic, cytoskeletal, and extracellular matrix proteins that help to organize photoreceptor ribbon synapses in the outer plexiform layer. We examine the proteins that foster the clustering of release proteins, calcium channels, and synaptic vesicles in the presynaptic terminals of photoreceptors adjacent to their postsynaptic contacts. Although many proteins interact with one another in the presynaptic terminal and synaptic cleft, these protein-protein interactions do not create a static and immutable structure. Instead, photoreceptor ribbon synapses are remarkably dynamic, exhibiting structural changes on both rapid and slow time scales.
Collapse
|
35
|
Abstract
Vision is the most important of the senses for humans, and the retina is the first stage in the processing of light signals in the visual system. In the retina, highly specialized light-sensing neurons, the rod and cone photoreceptors, convert light into neural signals. These signals are extensively processed and filtered in the subsequent retinal network before transmitted to the higher visual centres in the brain, where the perception of viewed objects and scenes is finally constructed. A key feature of signal processing in the mammalian retina is parallel processing. Visual information is segregated in parallel pathways already at the rod and cone photoreceptor terminals, which provide multiple output synapses for the faithful encoding and transfer of the visual signals to the post-receptoral retinal network. This review aims at highlighting the current knowledge about the structural and functional pre- and post-synaptic specializations of rod and cone photoreceptor ribbon synapses, which belong to the most complex chemical synapses in the central nervous system.
Collapse
Affiliation(s)
- H Regus-Leidig
- Animal Physiology, Department of Biology, University of Erlangen-Nuremberg, Germany
| | | |
Collapse
|
36
|
Muresan V, Muresan Z. Unconventional functions of microtubule motors. Arch Biochem Biophys 2012; 520:17-29. [PMID: 22306515 PMCID: PMC3307959 DOI: 10.1016/j.abb.2011.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 11/21/2022]
Abstract
With the functional characterization of proteins advancing at fast pace, the notion that one protein performs different functions - often with no relation to each other - emerges as a novel principle of how cells work. Molecular motors are no exception to this new development. Here, we provide an account on recent findings revealing that microtubule motors are multifunctional proteins that regulate many cellular processes, in addition to their main function in transport. Some of these functions rely on their motor activity, but others are independent of it. Of the first category, we focus on the role of microtubule motors in organelle biogenesis, and in the remodeling of the cytoskeleton, especially through the regulation of microtubule dynamics. Of the second category, we discuss the function of microtubule motors as static anchors of the cargo at the destination, and their participation in regulating signaling cascades by modulating interactions between signaling proteins, including transcription factors. We also review atypical forms of transport, such as the cytoplasmic streaming in the oocyte, and the movement of cargo by microtubule fluctuations. Our goal is to provide an overview of these unexpected functions of microtubule motors, and to incite future research in this expanding field.
Collapse
Affiliation(s)
- Virgil Muresan
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, U.S.A
| | - Zoia Muresan
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, U.S.A
| |
Collapse
|
37
|
Abstract
Synaptic ribbons are specialized organelles that hold vesicles close to the active zone of sensory synapses, but their function is mysterious. Acute disruption of the ribbon complex using light has now revealed that it has a role in priming synaptic vesicles for fusion.
Collapse
Affiliation(s)
- Ilaria Pelassa
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | |
Collapse
|
38
|
Lee JG, Lee KP, Jeon CJ. Synaptic Pattern of KA1 and KA2 upon the Direction-Selective Ganglion Cells in Developing and Adult Mouse Retina. Acta Histochem Cytochem 2012; 45:35-45. [PMID: 22489103 PMCID: PMC3317494 DOI: 10.1267/ahc.11043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/01/2011] [Indexed: 11/22/2022] Open
Abstract
The detection of image motion is important to vision. Direction-selective retinal ganglion cells (DS-RGCs) respond strongly to stimuli moving in one direction of motion and are strongly inhibited by stimuli moving in the opposite direction. In this article, we investigated the distributions of kainate glutamate receptor subtypes KA1 and KA2 on the dendritic arbors of DS-RGCs in developing (5, 10) days postnatal (PN) and adult mouse retina to search for anisotropies. The distribution of kainate receptor subtypes on the DS-RGCs was determined using antibody immunocytochemistry. To identify their characteristic morphology, DS-RGCs were injected with Lucifer yellow. The triple-labeled images of dendrites, kinesin II, and receptors were visualized by confocal microscopy and were reconstructed from high-resolution confocal images. We found no evidence of asymmetry in any of the kainate receptor subunits examined on the dendritic arbors of both the On and Off layers of DS-RGCs in all periods of developing and adult stage that would predict direction selectivity.
Collapse
Affiliation(s)
- Jee-Geon Lee
- Department of Biology, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Kyoung-Pil Lee
- Department of Biology, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Chang-Jin Jeon
- Department of Biology, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| |
Collapse
|
39
|
Lin Y, Jones BW, Liu A, Vazquéz-Chona FR, Lauritzen JS, Ferrell WD, Marc RE. Rapid glutamate receptor 2 trafficking during retinal degeneration. Mol Neurodegener 2012; 7:7. [PMID: 22325330 PMCID: PMC3296582 DOI: 10.1186/1750-1326-7-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 02/10/2012] [Indexed: 01/03/2023] Open
Abstract
Background Retinal degenerations, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), are characterized by photoreceptor loss and anomalous remodeling of the surviving retina that corrupts visual processing and poses a barrier to late-stage therapeutic interventions in particular. However, the molecular events associated with retinal remodeling remain largely unknown. Given our prior evidence of ionotropic glutamate receptor (iGluR) reprogramming in retinal degenerations, we hypothesized that the edited glutamate receptor 2 (GluR2) subunit and its trafficking may be modulated in retinal degenerations. Results Adult albino Balb/C mice were exposed to intense light for 24 h to induce light-induced retinal degeneration (LIRD). We found that prior to the onset of photoreceptor loss, protein levels of GluR2 and related trafficking proteins, including glutamate receptor-interacting protein 1 (GRIP1) and postsynaptic density protein 95 (PSD-95), were rapidly increased. LIRD triggered neuritogenesis in photoreceptor survival regions, where GluR2 and its trafficking proteins were expressed in the anomalous dendrites. Immunoprecipitation analysis showed interaction between KIF3A and GRIP1 as well as PSD-95, suggesting that KIF3A may mediate transport of GluR2 and its trafficking proteins to the novel dendrites. However, in areas of photoreceptor loss, GluR2 along with its trafficking proteins nearly vanished in retracted retinal neurites. Conclusions All together, LIRD rapidly triggers GluR2 plasticity, which is a potential mechanism behind functionally phenotypic revisions of retinal neurons and neuritogenesis during retinal degenerations.
Collapse
Affiliation(s)
- Yanhua Lin
- Department of Ophthalmology, John A, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Mukhopadhyay B, Nam SC, Choi KW. Kinesin II is required for cell survival and adherens junction positioning in Drosophila photoreceptors. Genesis 2011; 48:522-30. [PMID: 20506262 DOI: 10.1002/dvg.20642] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photoreceptor morphogenesis requires specific and coordinated localization of junctional markers at different stages of development. Here, we provide evidence that Drosophila Klp64D, a homolog of Kif3A motor subunit of the heterotrimeric Kinesin II complex, is essential for viability of developing photoreceptors and localization of junctional proteins. Genetic analysis of mutant clones shows that absence of Klp64D protein in early larval eye disc does not affect initial differentiation, but results in abnormal nuclear position in differentiating photoreceptors. These cells eventually die in the pupal stage, indicating klp64D's role in cell viability. The function of Klp64D protein is cell type specific because the p35 cell death inhibitor can rescue cell death in cone cells but not photoreceptors. In contrast to early induction of mutant clones, late induction during third instar larval stage just prior to pupation allows survival of single- or few-celled clones of klp64D mutant cells. Analysis of these lately induced clones shows that Klp64D function is essential for Bazooka (Par-3 homolog) and Armadillo localization to the adherens junction (AJ) in pupal photoreceptors. These findings suggest that Kinesin II complex plays a cell type-specific function in the localization of AJ and cell polarity proteins in the developing retina, thereby contributing to photoreceptor morphogenesis.
Collapse
Affiliation(s)
- Bibhash Mukhopadhyay
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
41
|
Abstract
Sensory synapses of the visual and auditory systems must faithfully encode a wide dynamic range of graded signals, and must be capable of sustained transmitter release over long periods of time. Functionally and morphologically, these sensory synapses are unique: their active zones are specialized in several ways for sustained, rapid vesicle exocytosis, but their most striking feature is an organelle called the synaptic ribbon, which is a proteinaceous structure that extends into the cytoplasm at the active zone and tethers a large pool of releasable vesicles. But precisely how does the ribbon function to support tonic release at these synapses? Recent genetic and biophysical advances have begun to open the 'black box' of the synaptic ribbon with some surprising findings and promise to resolve its function in vision and hearing.
Collapse
Affiliation(s)
- Gary Matthews
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794-5230, USA.
| | | |
Collapse
|
42
|
Won J, Marín de Evsikova C, Smith RS, Hicks WL, Edwards MM, Longo-Guess C, Li T, Naggert JK, Nishina PM. NPHP4 is necessary for normal photoreceptor ribbon synapse maintenance and outer segment formation, and for sperm development. Hum Mol Genet 2010; 20:482-96. [PMID: 21078623 DOI: 10.1093/hmg/ddq494] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nephronophthisis (NPHP) is an autosomal recessive kidney disease that is often associated with vision and/or brain defects. To date, 11 genes are known to cause NPHP. The gene products, while structurally unrelated, all localize to cilia or centrosomes. Although mouse models of NPHP are available for 9 of the 11 genes, none has been described for nephronophthisis 4 (Nphp4). Here we report a novel, chemically induced mutant, nmf192, that bears a nonsense mutation in exon 4 of Nphp4. Homozygous mutant Nphp4(nmf192/nmf192) mice do not exhibit renal defects, phenotypes observed in human patients bearing mutations in NPHP4, but they do develop severe photoreceptor degeneration and extinguished rod and cone ERG responses by 9 weeks of age. Photoreceptor outer segments (OS) fail to develop properly, and some OS markers mislocalize to the inner segments and outer nuclear layer in the Nphp4(nmf192/nmf192) mutant retina. Despite NPHP4 localization to the transition zone in the connecting cilia (CC), the CC appear to be normal in structure and ciliary transport function is partially retained. Likewise, synaptic ribbons develop normally but then rapidly degenerate by P14. Finally, Nphp4(nmf192/nmf192) male mutants are sterile and show reduced sperm motility and epididymal sperm counts. Although Nphp4(nmf192/nmf192) mice fail to recapitulate the kidney phenotype of NPHP, they will provide a valuable tool to further elucidate how NPHP4 functions in the retina and male reproductive organs.
Collapse
Affiliation(s)
- Jungyeon Won
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Contini M, Lin B, Kobayashi K, Okano H, Masland RH, Raviola E. Synaptic input of ON-bipolar cells onto the dopaminergic neurons of the mouse retina. J Comp Neurol 2010; 518:2035-50. [PMID: 20394057 PMCID: PMC2943350 DOI: 10.1002/cne.22320] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the retina, dopamine fulfills a crucial role in neural adaptation to photopic illumination, but the pathway that carries cone signals to the dopaminergic amacrine (DA) cells was controversial. We identified the site of ON-cone bipolar input onto DA cells in transgenic mice in which both types of catecholaminergic amacrine (CA) cells were labeled with green fluorescent protein or human placental alkaline phosphatase (PLAP). In confocal Z series of retinal whole mounts stained with antibodies to tyrosine hydroxylase (TH), DA cells gave rise to varicose processes that descended obliquely through the scleral half of the inner plexiform layer (IPL) and formed a loose, tangential plexus in the middle of this layer. Comparison with the distribution of the dendrites of type 2 CA cells and examination of neurobiotin-injected DA cells proved that their vitreal processes were situated in stratum S3 of the IPL. Electron microscope demonstration of PLAP activity showed that bipolar cell endings in S3 established ribbon synapses onto a postsynaptic dyad in which one or both processes were labeled by a precipitate of lead phosphate and therefore belonged to DA cells. In places, the postsynaptic DA cell processes returned a reciprocal synapse onto the bipolar endings. Confocal images of sections stained with antibodies to TH, kinesin Kif3a, which labels synaptic ribbons, and glutamate or GABA(A) receptors, confirmed that ribbon-containing endings made glutamatergic synapses onto DA cells processes in S3 and received from them GABAergic synapses. The presynaptic ON-bipolar cells most likely belonged to the CB3 (type 5) variety.
Collapse
Affiliation(s)
- Massimo Contini
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Bin Lin
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Fukushima Medical University School of Medicine, Hikarigaoka, Fukushima 960-1295, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Richard H. Masland
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| | - Elio Raviola
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
44
|
Hamanaka Y, Meinertzhagen IA. Immunocytochemical localization of synaptic proteins to photoreceptor synapses of Drosophila melanogaster. J Comp Neurol 2010; 518:1133-55. [PMID: 20127822 DOI: 10.1002/cne.22268] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The location of proteins that contribute to synaptic function has been widely studied in vertebrate synapses, far more than at model synapses of the genetically manipulable fruit fly, Drosophila melanogaster. Drosophila photoreceptor terminals have been extensively exploited to characterize the actions of synaptic genes, and their distinct and repetitive synaptic ultrastructure is anatomically well suited for such studies. Synaptic release sites include a bipartite T-bar ribbon, comprising a platform surmounting a pedestal. So far, little is known about the composition and precise location of proteins at either the T-bar ribbon or its associated synaptic organelles, knowledge of which is required to understand many details of synaptic function. We studied the localization of candidate proteins to pre- or postsynaptic organelles, by using immuno-electron microscopy with the pre-embedding method, after first validating immunolabeling by confocal microscopy. We used monoclonal antibodies against Bruchpilot, epidermal growth factor receptor pathway substrate clone 15 (EPS-15), and cysteine string protein (CSP), all raised against a fly head homogenate, as well as sea urchin kinesin (antibody SUK4) and Discs large (DLG). All these antibodies labeled distinct synaptic structures in photoreceptor terminals in the first optic neuropil, the lamina, as did rabbit anti-DPAK (Drosophila p21 activated kinase) and anti-Dynamin. Validating reports from light microscopy, immunoreactivity to Bruchpilot localized to the edge of the platform, and immunoreactivity to SUK4 localized to the pedestal of the T-bar ribbon. Anti-DLG recognized the photoreceptor head of capitate projections, invaginating organelles from surrounding glia. For synaptic vesicles, immunoreactivity to EPS-15 localized to sites of endocytosis, and anti-CSP labeled vesicles lying close to the T-bar ribbon. These results provide markers for synaptic sites, and a basis for further functional studies.
Collapse
Affiliation(s)
- Yoshitaka Hamanaka
- Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
45
|
Sedmak T, Wolfrum U. Intraflagellar transport molecules in ciliary and nonciliary cells of the retina. J Cell Biol 2010; 189:171-86. [PMID: 20368623 PMCID: PMC2854383 DOI: 10.1083/jcb.200911095] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 03/09/2010] [Indexed: 12/24/2022] Open
Abstract
The assembly and maintenance of cilia require intraflagellar transport (IFT), a process mediated by molecular motors and IFT particles. Although IFT is a focus of current intense research, the spatial distribution of individual IFT proteins remains elusive. In this study, we analyzed the subcellular localization of IFT proteins in retinal cells by high resolution immunofluorescence and immunoelectron microscopy. We report that IFT proteins are differentially localized in subcompartments of photoreceptor cilia and in defined periciliary target domains for cytoplasmic transport, where they are associated with transport vesicles. IFT20 is not in the IFT core complex in photoreceptor cilia but accompanies Golgi-based sorting and vesicle trafficking of ciliary cargo. Moreover, we identify a nonciliary IFT system containing a subset of IFT proteins in dendrites of retinal neurons. Collectively, we provide evidence to implicate the differential composition of IFT systems in cells with and without primary cilia, thereby supporting new functions for IFT beyond its well-established role in cilia.
Collapse
Affiliation(s)
- Tina Sedmak
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University Mainz, D-55099 Mainz, Germany
| | | |
Collapse
|
46
|
Lui L, Levinson JN, Noël G, Handrigan GR, Richman JM, El-Husseini A, Moukhles H. Synaptic localization of neuroligin 2 in the rodent retina: comparative study with the dystroglycan-containing complex. J Neurosci Res 2010; 88:837-49. [PMID: 19859968 DOI: 10.1002/jnr.22258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several recent studies have shown that neuroligin 2 (NL2), a component of the cell adhesion neurexins-neuroligins complex, is localized postsynaptically at hippocampal and other inhibitory synapses throughout the brain. Other studies have shown that components of the dystroglycan complex are also localized at a subset of inhibitory synapses and are coexpressed with NL2 in brain. These data prompted us to undertake a comparative study between the localization of NL2 and the dystroglycan complex in the rodent retina. First, we determined that NL2 mRNA is expressed both in the inner and in the outer nuclear layers. Second, we found that NL2 is localized both in the inner and in the outer synaptic plexiform layers. In the latter, the horseshoe-shaped pattern of NL2 and its extensive colocalization with RIM2, a component of the presynaptic active zone at ribbon synapses, argue that NL2 is localized presynaptically at photoreceptor terminals. Third, comparison of NL2 and the dystroglycan complex distribution patterns reveals that, despite their coexpression in the outer plexiform layer, they are spatially segregated within distinct domains of the photoreceptor terminals, where NL2 is selectively associated with the active zone and the dystroglycan complex is distally distributed in the lateral regions. Finally, we report that the dystroglycan deficiency in the mdx(3cv) mouse does not alter NL2 localization in the outer plexiform layer. These data show that the NL2- and dystroglycan-containing complexes are differentially localized in the presynaptic photoreceptor terminals and suggest that they may serve distinct functions in retina.
Collapse
Affiliation(s)
- Leona Lui
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Ribbon synapses in the retina and inner ear maintain tonic neurotransmitter release at high rates to transduce a broad bandwidth of stimulus intensities. In ribbon synapses, synaptic vesicles can be released by a slow, sustained mode and by fast, synchronous mechanisms. The high release rates require structural and functional specializations. The synaptic ribbon is the key structural specialization of ribbon synapses. Synaptic ribbons are large, electron-dense structures that immobilize numerous synaptic vesicles next to presynaptic release sites. A main component of synaptic ribbons is the protein RIBEYE that has the capability to build the scaffold of the synaptic ribbon via multiple RIBEYE-RIBEYE interactions. A modular assembly model of synaptic ribbons has been proposed in which synaptic ribbons are formed from individual RIBEYE subunits. The scaffold of the synaptic ribbon provides a docking site for RIBEYE-associated proteins that could execute specific synaptic ribbon functions. Multiple functions have been assigned to synaptic ribbons including roles in exocytosis, endocytosis, and synaptic membrane trafficking. Recent studies demonstrated the importance of synaptic ribbons for fast, synchronous release and emphasized the need of a tight and efficient coupling between presynaptic Ca(2+) signaling and exocytosis. The present review summarizes recent advances on structure and function of synaptic ribbons.
Collapse
Affiliation(s)
- Frank Schmitz
- Department of Neuroanatomy, Saarland University, Medical School, Homburg/Saar, Germany.
| |
Collapse
|
48
|
Absence of functional active zone protein Bassoon affects assembly and transport of ribbon precursors during early steps of photoreceptor synaptogenesis. Eur J Cell Biol 2010; 89:468-75. [PMID: 20188438 DOI: 10.1016/j.ejcb.2009.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/15/2009] [Accepted: 12/18/2009] [Indexed: 11/22/2022] Open
Abstract
The retinal photoreceptor ribbon synapse is a structurally and functionally unique type of chemical synapse, specialized for tonic release of neurotransmitter in the dark. It is characterized by the presynaptic ribbon, an electron-dense organelle at the active zone, which is covered by hundreds of synaptic vesicles. Recently we showed that photoreceptor ribbon complexes are assembled from non-membranous, spherical densities--the precursor spheres--during the first two postnatal weeks of photoreceptor synaptogenesis. A core component of the precursor spheres and a key player in attaching the ribbon to the active zone is the presynaptic cytomatrix protein Bassoon. In this study, we examined in a comprehensive light and electron microscopic analysis whether Bassoon plays a role in the formation of the precursor spheres using Bassoon mutant mice lacking functional Bassoon. We report that developing Bassoon mutant photoreceptors contain fewer and smaller precursor spheres and that transport of precursor spheres to nascent synapses is delayed compared to wild-type controls. Moreover, western blot analyses of homogenates from postnatal day 0 (P0) to P14 Bassoon mutant retinae exhibit lower RIBEYE and Piccolo protein levels compared to the wild type, indicating elevated protein degradation in the absence of Bassoon. Our findings reveal a novel function of Bassoon in the early formation and delivery of precursor spheres to nascent ribbon synaptic sites in addition to its known role in ribbon anchoring during later stages of photoreceptor ribbon synaptogenesis.
Collapse
|
49
|
Dumitrescu ON, Pucci FG, Wong KY, Berson DM. Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells. J Comp Neurol 2009; 517:226-44. [PMID: 19731338 DOI: 10.1002/cne.22158] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A key principle of retinal organization is that distinct ON and OFF channels are relayed by separate populations of bipolar cells to different sublaminae of the inner plexiform layer (IPL). ON bipolar cell axons have been thought to synapse exclusively in the inner IPL (the ON sublamina) onto dendrites of ON-type amacrine and ganglion cells. However, M1 melanopsin-expressing ganglion cells and dopaminergic amacrine (DA) cells apparently violate this dogma. Both are driven by ON bipolar cells, but their dendrites stratify in the outermost IPL, within the OFF sublamina. Here, in the mouse retina, we show that some ON cone bipolar cells make ribbon synapses in the outermost OFF sublayer, where they costratify with and contact the dendrites of M1 and DA cells. Whole-cell recording and dye filling in retinal slices indicate that type 6 ON cone bipolars provide some of this ectopic ON channel input. Imaging studies in dissociated bipolar cells show that these ectopic ribbon synapses are capable of vesicular release. There is thus an accessory ON sublayer in the outer IPL.
Collapse
Affiliation(s)
- Olivia N Dumitrescu
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | | | | | | |
Collapse
|
50
|
Katsumata O, Ohara N, Tamaki H, Niimura T, Naganuma H, Watanabe M, Sakagami H. IQ-ArfGEF/BRAG1 is associated with synaptic ribbons in the mouse retina. Eur J Neurosci 2009; 30:1509-16. [PMID: 19811534 DOI: 10.1111/j.1460-9568.2009.06943.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
IQ-ArfGEF/BRAG1 is a guanine nucleotide exchange factor for ADP ribosylation factors (Arfs), which are implicated in membrane trafficking and actin cytoskeleton dynamics. In this study, we examined the immunohistochemical localization of IQ-ArfGEF/BRAG1 in the adult mouse retina using light and electron microscopy. IQ-ArfGEF/BRAG1 was distributed in a punctate manner and colocalized well with RIBEYE in both the outer and inner plexiform layers. Immunoelectron microscopic analysis showed that IQ-ArfGEF/BRAG1 was localized at the synaptic ribbons of photoreceptors. When heterologously expressed in HeLa cells, IQ-ArfGEF/BRAG1 was recruited to RIBEYE-containing clusters and formed an immunoprecipitable complex with RIBEYE. Furthermore, immunoprecipitation analysis showed that anti-IQ-ArfGEF/BRAG1 antibody efficiently pulled down RIBEYE from retinal lysates. These findings indicate that IQ-ArfGEF/BRAG1 is a novel component of retinal synaptic ribbons and forms a protein complex with RIBEYE.
Collapse
Affiliation(s)
- Osamu Katsumata
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | | | | | |
Collapse
|