1
|
Mercurio I, D’Abrosca G, della Valle M, Malgieri G, Fattorusso R, Isernia C, Russo L, Di Gaetano S, Pedone EM, Pirone L, Del Gatto A, Zaccaro L, Alberga D, Saviano M, Mangiatordi GF. Molecular interactions between a diphenyl scaffold and PED/PEA15: Implications for type II diabetes therapeutics targeting PED/PEA15 - Phospholipase D1 interaction. Comput Struct Biotechnol J 2024; 23:2001-2010. [PMID: 38770160 PMCID: PMC11103223 DOI: 10.1016/j.csbj.2024.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
In a recent study, we have identified BPH03 as a promising scaffold for the development of compounds aimed at modulating the interaction between PED/PEA15 (Phosphoprotein Enriched in Diabetes/Phosphoprotein Enriched in Astrocytes 15) and PLD1 (phospholipase D1), with potential applications in type II diabetes therapy. PED/PEA15 is known to be overexpressed in certain forms of diabetes, where it binds to PLD1, thereby reducing insulin-stimulated glucose transport. The inhibition of this interaction reestablishes basal glucose transport, indicating PED as a potential target of ligands capable to recover glucose tolerance and insulin sensitivity. In this study, we employ computational methods to provide a detailed description of BPH03 interaction with PED, evidencing the presence of a hidden druggable pocket within its PLD1 binding surface. We also elucidate the conformational changes that occur during PED interaction with BPH03. Moreover, we report new NMR data supporting the in-silico findings and indicating that BPH03 disrupts the PED/PLD1 interface displacing PLD1 from its interaction with PED. Our study represents a significant advancement toward the development of potential therapeutics for the treatment of type II diabetes.
Collapse
Affiliation(s)
- Ivan Mercurio
- Institute of Crystallography, CNR, Via Amendola 122/o, 70126 Bari, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gianluca D’Abrosca
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
- Institute of Crystallography, CNR, Via Vivaldi 43, 81100, Caserta, Italy
| | - Maria della Valle
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Emilia Maria Pedone
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Annarita Del Gatto
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Laura Zaccaro
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Domenico Alberga
- Institute of Crystallography, CNR, Via Amendola 122/o, 70126 Bari, Italy
| | - Michele Saviano
- Institute of Crystallography, CNR, Via Vivaldi 43, 81100, Caserta, Italy
| | | |
Collapse
|
2
|
Kim JH, Afridi R, Lee WH, Suk K. Analyzing the glial proteome in Alzheimer's disease. Expert Rev Proteomics 2023; 20:197-209. [PMID: 37724426 DOI: 10.1080/14789450.2023.2260955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/18/2023] [Indexed: 09/20/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, memory loss, and changes in behavior. Accumulating evidence indicates that dysfunction of glial cells, including astrocytes, microglia, and oligodendrocytes, may contribute to the development and progression of AD. Large-scale analysis of glial proteins sheds light on their roles in cellular processes and diseases. In AD, glial proteomics has been utilized to understand glia-based pathophysiology and identify potential biomarkers and therapeutic targets. AREA COVERED In this review, we provide an updated overview of proteomic analysis of glia in the context of AD. Additionally, we discuss current challenges in the field, involving glial complexity and heterogeneity, and describe some cutting-edge proteomic technologies to address them. EXPERT OPINION Unbiased comprehensive analysis of glial proteomes aids our understanding of the molecular and cellular mechanisms of AD pathogenesis. These investigations highlight the crucial role of glial cells and provide novel insights into the mechanisms of AD pathology. A deeper understanding of the AD-related glial proteome could offer a repertoire of potential biomarkers and therapeutics. Further technical advancement of glial proteomics will enable us to identify proteins within individual cells and specific cell types, thus significantly enhancing our comprehension of AD pathogenesis.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ruqayya Afridi
- Department of Pharmacology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Abstract
Stroke remains a leading cause of death and disability, with limited therapeutic options and suboptimal tools for diagnosis and prognosis. High throughput technologies such as proteomics generate large volumes of experimental data at once, thus providing an advanced opportunity to improve the status quo by facilitating identification of novel therapeutic targets and molecular biomarkers. Proteomics studies in animals are largely designed to decipher molecular pathways and targets altered in brain tissue after stroke, whereas studies in human patients primarily focus on biomarker discovery in biofluids and, more recently, in thrombi and extracellular vesicles. Here, we offer a comprehensive review of stroke proteomics studies conducted in both animal and human specimen and present our view on limitations, challenges, and future perspectives in the field. In addition, as a unique resource for the scientific community, we provide extensive lists of all proteins identified in proteomic studies as altered by stroke and perform postanalysis of animal data to reveal stroke-related cellular processes and pathways.
Collapse
Affiliation(s)
- Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (K.H.)
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University School of Medicine, Durham, NC (W.Y.)
| |
Collapse
|
4
|
Ikedife J, He J, Wei Y. PEA-15 engages in allosteric interactions using a common scaffold in a phosphorylation-dependent manner. Sci Rep 2022; 12:116. [PMID: 34997083 PMCID: PMC8742051 DOI: 10.1038/s41598-021-04099-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
Phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) is a death-effector domain (DED) containing protein involved in regulating mitogen-activated protein kinase and apoptosis pathways. In this molecular dynamics study, we examined how phosphorylation of the PEA-15 C-terminal tail residues, Ser-104 and Ser-116, allosterically mediates conformational changes of the DED and alters the binding specificity from extracellular-regulated kinase (ERK) to Fas-associated death domain (FADD) protein. We delineated that the binding interfaces between the unphosphorylated PEA-15 and ERK2 and between the doubly phosphorylated PEA-15 and FADD are similarly composed of a scaffold that includes both the DED and the C-terminal tail residues of PEA-15. While the unphosphorylated serine residues do not directly interact with ERK2, the phosphorylated Ser-116 engages in strong electrostatic interactions with arginine residues on FADD DED. Upon PEA-15 binding, FADD repositions its death domain (DD) relative to the DED, an essential conformational change to allow the death-inducing signaling complex (DISC) assembly.
Collapse
Affiliation(s)
- Joyce Ikedife
- Department of Chemistry, New Jersey City University, Jersey City, NJ, 07305, USA
| | - Jianlin He
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, Fujian, China
| | - Yufeng Wei
- Department of Chemistry, New Jersey City University, Jersey City, NJ, 07305, USA.
| |
Collapse
|
5
|
Fan X, Wang X, Liu XR, Li KX, Liu Y. Effects of ferulic acid on regulating the neurovascular unit: Implications for ischemic stroke treatment. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_76_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Farina B, Pirone L, D’Abrosca G, Della Valle M, Russo L, Isernia C, Sassano M, Del Gatto A, Di Gaetano S, Zaccaro L, Malgieri G, Pedone EM, Fattorusso R. Screening a Molecular Fragment Library to Modulate the PED/PEA15-Phospholipase D1 Interaction in Cellular Lysate Environments. ACS Chem Biol 2021; 16:2798-2807. [PMID: 34825823 DOI: 10.1021/acschembio.1c00688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The overexpression of PED/PEA15, the phosphoprotein enriched in diabetes/phosphoprotein enriched in the astrocytes 15 protein (here referred simply to as PED), observed in some forms of type II diabetes, reduces the transport of insulin-stimulated glucose by binding to the phospholipase D1 (PLD1). The inhibition of the PED/PLD1 interaction was shown to restore basal glucose transport, indicating PED as a pharmacological target for the development of drugs capable of improving insulin sensitivity and glucose tolerance. We here report the identification and selection of PED ligands by means of NMR screening of a library of small organic molecules, NMR characterization of the PED/PLD1 interaction in lysates of cells expressing PLD1, and modulation of such interactions using BPH03, the best selected ligand. Overall, we complement the available literature data by providing detailed information on the structural determinants of the PED/PLD1 interaction in a cellular lysate environment and indicate BPH03 as a precious scaffold for the development of novel compounds that are able to modulate such interactions with possible therapeutic applications in type II diabetes.
Collapse
Affiliation(s)
- Biancamaria Farina
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Luciano Pirone
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Gianluca D’Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania─L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Maria Della Valle
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania─L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania─L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania─L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Marica Sassano
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania─L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Annarita Del Gatto
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Sonia Di Gaetano
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Laura Zaccaro
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Gaetano Malgieri
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania─L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Emilia M. Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Roberto Fattorusso
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania─L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
7
|
PEA15 loss of function and defective cerebral development in the domestic cat. PLoS Genet 2020; 16:e1008671. [PMID: 33290415 DOI: 10.1371/journal.pgen.1008671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
Cerebral cortical size and organization are critical features of neurodevelopment and human evolution, for which genetic investigation in model organisms can provide insight into developmental mechanisms and the causes of cerebral malformations. However, some abnormalities in cerebral cortical proliferation and folding are challenging to study in laboratory mice due to the absence of gyri and sulci in rodents. We report an autosomal recessive allele in domestic cats associated with impaired cerebral cortical expansion and folding, giving rise to a smooth, lissencephalic brain, and that appears to be caused by homozygosity for a frameshift in PEA15 (phosphoprotein expressed in astrocytes-15). Notably, previous studies of a Pea15 targeted mutation in mice did not reveal structural brain abnormalities. Affected cats, however, present with a non-progressive hypermetric gait and tremors, develop dissociative behavioral defects and aggression with age, and exhibit profound malformation of the cerebrum, with a 45% average decrease in overall brain weight, and reduction or absence of the ectosylvian, sylvian and anterior cingulate gyrus. Histologically, the cerebral cortical layers are disorganized, there is substantial loss of white matter in tracts such as the corona radiata and internal capsule, but the cerebellum is relatively spared. RNA-seq and immunohistochemical analysis reveal astrocytosis. Fibroblasts cultured from affected cats exhibit increased TNFα-mediated apoptosis, and increased FGFb-induced proliferation, consistent with previous studies implicating PEA15 as an intracellular adapter protein, and suggesting an underlying pathophysiology in which increased death of neurons accompanied by increased proliferation of astrocytes gives rise to abnormal organization of neuronal layers and loss of white matter. Taken together, our work points to a new role for PEA15 in development of a complex cerebral cortex that is only apparent in gyrencephalic species.
Collapse
|
8
|
Affiliation(s)
- Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
9
|
Mattei JC, Bouvier-Labit C, Barets D, Macagno N, Chocry M, Chibon F, Morando P, Rochwerger RA, Duffaud F, Olschwang S, Salas S, Jiguet-Jiglaire C. Pan Aurora Kinase Inhibitor: A Promising Targeted-Therapy in Dedifferentiated Liposarcomas With Differential Efficiency Depending on Sarcoma Molecular Profile. Cancers (Basel) 2020; 12:E583. [PMID: 32138169 PMCID: PMC7139289 DOI: 10.3390/cancers12030583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022] Open
Abstract
Soft tissue sarcoma (STS) are rare and aggressive tumours. Their classification includes numerous histological subtypes of frequent poor prognosis. Liposarcomas (LPS) are the most frequent type among them, and the aggressiveness and deep localization of dedifferentiated LPS are linked to high levels of recurrence. Current treatments available today lead to five-year overall survival has remained stuck around 60%-70% for the past three decades. Here, we highlight a correlation between Aurora kinasa A (AURKA) and AURKB mRNA overexpression and a low metastasis - free survival. AURKA and AURKB expression analysis at genomic and protein level on a 9-STS cell lines panel highlighted STS heterogeneity, especially in LPS subtype. AURKA and AURKB inhibition by RNAi and drug targeting with AMG 900, a pan Aurora Kinase inhibitor, in four LPS cell lines reduces cell survival and clonogenic proliferation, inducing apoptosis and polyploidy. When combined with doxorubicin, the standard treatment in STS, aurora kinases inhibitor can be considered as an enhancer of standard treatment or as an independent drug. Kinome analysis suggested its effect was linked to the inhibition of the MAP-kinase pathway, with differential drug resistance profiles depending on molecular characteristics of the tumor. Aurora Kinase inhibition by AMG 900 could be a promising therapy in STS.
Collapse
Affiliation(s)
- Jean Camille Mattei
- Aix-Marseille University, Inserm, MMG, 13005 Marseille, France; (J.C.M.); (C.B.-L.); (R.A.R.); (F.D.); (S.O.); (S.S.)
- APHM, Hôpital Nord, Service d'Orthopédie et traumatologie, 13015 Marseille, France
| | - Corinne Bouvier-Labit
- Aix-Marseille University, Inserm, MMG, 13005 Marseille, France; (J.C.M.); (C.B.-L.); (R.A.R.); (F.D.); (S.O.); (S.S.)
- APHM, Hôpital de la Timone, Service d’Anatomie Pathologique et de Neuropathologie, 13005 Marseille, France; (D.B.); (N.M.)
| | - Doriane Barets
- APHM, Hôpital de la Timone, Service d’Anatomie Pathologique et de Neuropathologie, 13005 Marseille, France; (D.B.); (N.M.)
| | - Nicolas Macagno
- APHM, Hôpital de la Timone, Service d’Anatomie Pathologique et de Neuropathologie, 13005 Marseille, France; (D.B.); (N.M.)
| | - Mathieu Chocry
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France; (M.C.); (P.M.)
| | | | - Philippe Morando
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France; (M.C.); (P.M.)
| | - Richard Alexandre Rochwerger
- Aix-Marseille University, Inserm, MMG, 13005 Marseille, France; (J.C.M.); (C.B.-L.); (R.A.R.); (F.D.); (S.O.); (S.S.)
- APHM, Hôpital Nord, Service d'Orthopédie et traumatologie, 13015 Marseille, France
| | - Florence Duffaud
- Aix-Marseille University, Inserm, MMG, 13005 Marseille, France; (J.C.M.); (C.B.-L.); (R.A.R.); (F.D.); (S.O.); (S.S.)
- APHM, Hôpital de la Timone, Service d’Oncologie adulte, 13005 Marseille, France
| | - Sylviane Olschwang
- Aix-Marseille University, Inserm, MMG, 13005 Marseille, France; (J.C.M.); (C.B.-L.); (R.A.R.); (F.D.); (S.O.); (S.S.)
- APHM, Hôpital de la Timone, Département de Génétique Médicale, 13005 Marseille, France
- Ramsay Générale de Santé, Hôpital Clairval, Institut de Cancérologie, 13005 Marseille, France
| | - Sébastien Salas
- Aix-Marseille University, Inserm, MMG, 13005 Marseille, France; (J.C.M.); (C.B.-L.); (R.A.R.); (F.D.); (S.O.); (S.S.)
- APHM, Hôpital de la Timone, Service d’Oncologie adulte, 13005 Marseille, France
| | - Carine Jiguet-Jiglaire
- APHM, Hôpital de la Timone, Service d’Anatomie Pathologique et de Neuropathologie, 13005 Marseille, France; (D.B.); (N.M.)
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France; (M.C.); (P.M.)
- APHM, Centre de Ressources Biologiques, 13005 Marseille, France
| |
Collapse
|
10
|
Validation of mouse phosphoprotein enriched in astrocyte 15 (mPEA15) expressing transgenic pig as a potential model in diabetes translational research. 3 Biotech 2020; 10:34. [PMID: 31988828 DOI: 10.1007/s13205-019-2021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022] Open
Abstract
The present study aimed to investigate the characteristics of mPEA15 expressing transgenic pig (TG pig) as a potential model for diabetes. Expression analysis confirmed the ubiquitous expression of mPEA15 in TG pigs at F4. Oral glucose tolerance test results showed that restoration of normal glucose levels was significantly delayed in the TG pigs when compared with that in the wild-type pigs (WT pigs). Primary skeletal muscle cells isolated from TG pigs demonstrated reduced glucose uptake and reduced GLUT4 translocation to the plasma membrane in response to insulin treatment. Combined, these results suggest that mPEA15 expressing pigs has a glucose intolerance and insulin resistance which are known to mediate the pathophysiology of type 2 diabetes mellitus. Thus, mPEA15 transgenic pigs would serve as a promising model for diabetes translational research.
Collapse
|
11
|
Kim JE, Kang TC. PKC, AKT and ERK1/2-Mediated Modulations of PARP1, NF-κB and PEA15 Activities Distinctly Regulate Regional Specific Astroglial Responses Following Status Epilepticus. Front Mol Neurosci 2019; 12:180. [PMID: 31396050 PMCID: PMC6667551 DOI: 10.3389/fnmol.2019.00180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/09/2019] [Indexed: 01/04/2023] Open
Abstract
Status epilepticus (SE, a prolonged seizure activity) leads to reactive astrogliosis and astroglial apoptosis in the regional specific manners, independent of hemodynamics. Poly(ADP-ribose) polymerase-1 (PARP1) activity is relevant to these distinct astroglial responses. Since various regulatory signaling molecules beyond PARP1 activity may be involved in the distinct astroglial response to SE, it is noteworthy to explore the roles of protein kinases in PARP1-mediated reactive astrogliosis and astroglial apoptosis following SE, albeit at a lesser extent. In the present study, inhibitions of protein kinase C (PKC), AKT and extracellular signal-related kinases 1/2 (ERK1/2), but not calcium/calmodulin-dependent protein kinase II (CaMKII), attenuated CA1 reactive astrogliosis accompanied by reducing PARP1 activity following SE, respectively. However, inhibition of AKT and ERK1/2 deteriorated SE-induced dentate astroglial loss concomitant with the diminished PARP1 activity. Following SE, PKC- and AKT inhibitors diminished phosphoprotein enriched in astrocytes of 15 kDa (PEA15)-S104 and -S116 phosphorylations in CA1 astrocytes, but not in dentate astrocytes, respectively. Inhibitors of PKC, AKT and ERK1/2 also abrogated SE-induced nuclear factor-κB (NF-κB)-S311 and -S468 phosphorylations in CA1 astrocytes. In contrast, both AKT and ERK1/2 inhibitors enhanced NF-κB-S468 phosphorylation in dentate astrocytes. Furthermore, PARP1 inhibitor aggravated dentate astroglial loss following SE. AKT inhibition deteriorated dentate astroglial loss and led to CA1 astroglial apoptosis following SE, which were ameliorated by AKT activation. These findings suggest that activities of PARP1, PEA15 and NF-κB may be distinctly regulated by PKC, AKT and ERK1/2, which may be involved in regional specific astroglial responses following SE.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
12
|
Crespo-Flores SL, Cabezas A, Hassan S, Wei Y. PEA-15 C-Terminal Tail Allosterically Modulates Death-Effector Domain Conformation and Facilitates Protein-Protein Interactions. Int J Mol Sci 2019; 20:ijms20133335. [PMID: 31284641 PMCID: PMC6651876 DOI: 10.3390/ijms20133335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022] Open
Abstract
Phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) exerts its regulatory roles on several critical cellular pathways through protein–protein interactions depending on its phosphorylation states. It can either inhibit the extracellular signal-regulated kinase (ERK) activities when it is dephosphorylated or block the assembly of death-inducing signaling complex (DISC) and the subsequent activation of apoptotic initiator, caspase-8, when it is phosphorylated. Due to the important roles of PEA-15 in regulating these pathways that lead to opposite cellular outcomes (cell proliferation vs. cell death), we proposed a phosphostasis (phosphorylation homeostasis) model, in which the phosphorylation states of the protein are vigorously controlled and regulated to maintain a delicate balance. The phosphostasis gives rise to the protective cellular functions of PEA-15 to preserve optimum cellular conditions. In this article, using advanced multidimensional nuclear magnetic resonance (NMR) techniques combined with a novel chemical shift (CS)-Rosetta algorithm for de novo protein structural determination, we report a novel conformation of PEA-15 death-effector domain (DED) upon interacting with ERK2. This new conformation is modulated by the irregularly structured C-terminal tail when it first recognizes and binds to ERK2 at the d-peptide recruitment site (DRS) in an allosteric manner, and is facilitated by the rearrangement of the surface electrostatic and hydrogen-bonding interactions on the DED. In this ERK2-bound conformation, three of the six helices (α2, α3, and α4) comprising the DED reorient substantially in comparison to the free-form structure, exposing key residues on the other three helices that directly interact with ERK2 at the DEF-docking site (docking site for ERK, FxF) and the activation loop. Additionally, we provide evidence that the phosphorylation of the C-terminal tail leads to a distinct conformation of DED, allowing efficient interactions with Fas-associated death domain (FADD) protein at the DISC. Our results substantiate the allosteric regulatory roles of the C-terminal tail in modulating DED conformation and facilitating protein–protein interactions of PEA-15.
Collapse
Affiliation(s)
| | - Andres Cabezas
- Department of Chemistry, New Jersey City University, Jersey City, NJ 07305-1596, USA
| | - Sherouk Hassan
- Department of Chemistry, New Jersey City University, Jersey City, NJ 07305-1596, USA
| | - Yufeng Wei
- Department of Chemistry, New Jersey City University, Jersey City, NJ 07305-1596, USA.
| |
Collapse
|
13
|
Park JY, Kang TC. The differential roles of PEA15 phosphorylations in reactive astrogliosis and astroglial apoptosis following status epilepticus. Neurosci Res 2018; 137:11-22. [PMID: 29438777 DOI: 10.1016/j.neures.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/27/2018] [Accepted: 02/09/2018] [Indexed: 11/17/2022]
Abstract
Up to this day, the roles of PEA15 expression and its phosphorylation in seizure-related events have not been still unclear. In the present study, we found that PEA15 was distinctly phosphorylated in reactive astrocytes and apoptotic astrocytes in the rat hippocampus following LiCl-pilocarpine-induced status epilepticus (SE, a prolonged seizure activity). PEA15-serine (S) 104 phosphorylation was up-regulated in reactive astrocytes following SE, although PEA15 expression and its S116 phosphorylation were unaltered. Bisindolylmaleimide (BIM), a protein kinase C (PKC) inhibitor, attenuated SE-induced reactive astrogliosis, but phorbol 12-myristate 13-acetate (PMA, a PKC activator) aggravated it. Unlike reactive astrocytes, PEA15-S116 phosphorylation was reduced in apoptotic astrocytes. However, PEA15 expression and its S104 phosphorylation were unchanged in apoptotic astrocyte. Neither BIM nor PMA affected SE-induced astroglial apoptosis. PEA15 expression and its phosphorylations were not relevant to SE-induced CA1 neuronal death. These findings indicate that PEA15-S104 and S116 phosphorylations may play a role in reactive astrogliosis and prevention of astroglial apoptosis, respectively. Therefore, we suggest that the selective manipulation of PEA15 phosphorylations may regulate apoptotic and/or proliferative signals in astrocytes.
Collapse
Affiliation(s)
- Jin-Young Park
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
14
|
Im JY, Kim BK, Lee JY, Park SH, Ban HS, Jung KE, Won M. DDIAS suppresses TRAIL-mediated apoptosis by inhibiting DISC formation and destabilizing caspase-8 in cancer cells. Oncogene 2017; 37:1251-1262. [DOI: 10.1038/s41388-017-0025-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/16/2017] [Accepted: 09/27/2017] [Indexed: 11/09/2022]
|
15
|
Greig FH, Kennedy S, Gibson G, Ramos JW, Nixon GF. PEA-15 (Phosphoprotein Enriched in Astrocytes 15) Is a Protective Mediator in the Vasculature and Is Regulated During Neointimal Hyperplasia. J Am Heart Assoc 2017; 6:JAHA.117.006936. [PMID: 28893763 PMCID: PMC5634313 DOI: 10.1161/jaha.117.006936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Neointimal hyperplasia following angioplasty occurs via vascular smooth muscle cell proliferation. The mechanisms involved are not fully understood but include mitogen-activated protein kinases ERK1/2 (extracellular signal-regulated kinases 1 and 2). We recently identified the intracellular mediator PEA-15 (phosphoprotein enriched in astrocytes 15) in vascular smooth muscle cells as a regulator of ERK1/2-dependent proliferation in vitro. PEA-15 acts as a cytoplasmic anchor for ERK1/2, preventing nuclear localization and thereby reducing ERK1/2-dependent gene expression. The aim of the current study was to examine the role of PEA-15 in neointimal hyperplasia in vivo. METHOD AND RESULTS Mice deficient in PEA-15 or wild-type mice were subjected to wire injury of the carotid artery. In uninjured arteries from PEA-15-deficient mice, ERK1/2 had increased nuclear translocation and increased basal ERK1/2-dependent transcription. Following wire injury, arteries from PEA-15-deficient mice developed neointimal hyperplasia at an increased rate compared with wild-type mice. This occurred in parallel with an increase in a proliferative marker and vascular smooth muscle cell proliferation. In wild-type mice, PEA-15 expression was decreased in vascular smooth muscle cells at an early stage before any increase in intima:media ratio. This regulation of PEA-15 expression following injury was also observed in an ex vivo human model of hyperplasia. CONCLUSIONS These results indicate, for the first time, a novel protective role for PEA-15 against inappropriate vascular proliferation. PEA-15 expression may also be repressed during vascular injury, suggesting that maintenance of PEA-15 expression is a novel therapeutic target in vascular disease.
Collapse
Affiliation(s)
- Fiona H Greig
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, United Kingdom
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - George Gibson
- Department of Cardiothoracic Surgery, Aberdeen Royal Hospital, Aberdeen, United Kingdom
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Centre University of Hawaii at Mānoa, Honolulu, HI
| | - Graeme F Nixon
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, United Kingdom
| |
Collapse
|
16
|
Tang Y, Wang XW, Liu ZH, Sun YM, Tang YX, Zhou DH. Chaperone-mediated autophagy substrate proteins in cancer. Oncotarget 2017; 8:51970-51985. [PMID: 28881704 PMCID: PMC5584305 DOI: 10.18632/oncotarget.17583] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/07/2017] [Indexed: 01/10/2023] Open
Abstract
All intracellular proteins undergo continuous synthesis and degradation. Chaperone-mediated autophagy (CMA) is necessary to maintain cellular homeostasis through turnover of cytosolic proteins (substrate proteins). This degradation involves a series of substrate proteins including both cancer promoters and suppressors. Since activating or inhibiting CMA pathway to treat cancer is still debated, targeting to the CMA substrate proteins provides a novel direction. We summarize the cancer-associated substrate proteins which are degraded by CMA. Consequently, CMA substrate proteins catalyze the glycolysis which contributes to the Warburg effect in cancer cells. The fact that the degradation of substrate proteins based on the CMA can be altered by posttranslational modifications such as phosphorylation or acetylation. In conclusion, targeting to CMA substrate proteins develops into a new anticancer therapeutic approach.
Collapse
Affiliation(s)
- Ying Tang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiong-Wen Wang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhan-Hua Liu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yun-Ming Sun
- Department of Gynecology and Obstetrics, Maternal and Child Health Hospital of Zhoushan, Zhoushan 316000, China
| | - Yu-Xin Tang
- Department of Gynecology and Obstetrics, Maternal and Child Health Hospital of Zhoushan, Zhoushan 316000, China
| | - Dai-Han Zhou
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
17
|
Fiory F, Spinelli R, Raciti GA, Parrillo L, D'esposito V, Formisano P, Miele C, Beguinot F. Targetting PED/PEA-15 for diabetes treatment. Expert Opin Ther Targets 2017; 21:571-581. [PMID: 28395542 DOI: 10.1080/14728222.2017.1317749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION PED/PEA-15 is an ubiquitously expressed protein, involved in the regulation of proliferation and apoptosis. It is commonly overexpressed in Type 2 Diabetes (T2D) and in different T2D-associated comorbidities, including cancer and certain neurodegenerative disorders. Areas covered: In mice, Ped/Pea-15 overexpression impairs glucose tolerance and, in combination with high fat diets, further promotes insulin resistance and T2D. It also controls β-cell mass, altering caspase-3 activation and the expression of pro- and antiapoptotic genes. These changes are mediated by PED/PEA-15-PLD1 binding. Overexpression of PLD1 D4 domain specifically blocks Ped/Pea-15-PLD1 interaction, reverting the effect of Ped/Pea-15 in vivo. D4α, a D4 N-terminal peptide, is able to displace Ped/Pea-15-PLD1 binding, but features greater stability in vivo compared to the entire D4 peptide. Here, we review early mechanistic studies on PED/PEA-15 relevance in apoptosis before focusing on its role in cancer and T2D. Finally, we describe potential therapeutic opportunities for T2D based on PED/PEA-15 targeting. Expert opinion: T2D is a major problem for public health and economy. Thus, the identification of new molecules with pharmacological activity for T2D represents an urgent need. Further studies with D4α will help to identify smaller pharmacologically active peptides and innovative molecules of potential pharmacological interest for T2D treatment.
Collapse
Affiliation(s)
- Francesca Fiory
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Rosa Spinelli
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Gregory Alexander Raciti
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Luca Parrillo
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Vittoria D'esposito
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Pietro Formisano
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Claudia Miele
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Francesco Beguinot
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| |
Collapse
|
18
|
Sung JH, Koh PO. Hyperglycemia aggravates decreases of PEA-15 and its two phosphorylated forms in cerebral ischemia. J Vet Med Sci 2017; 79:654-660. [PMID: 28216548 PMCID: PMC5383193 DOI: 10.1292/jvms.16-0437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Diabetes is a metabolic health disorder and an important risk factor for stroke. Phosphoprotein enriched in astrocytes 15 (PEA-15) is a multifunctional protein modulating cell proliferation, survival, apoptosis and glucose metabolism. This study investigated whether diabetes modulates the expression of PEA-15 and two phosphorylated forms (Ser 104 and Ser 116) in middle cerebral artery occlusion (MCAO)-induced brain injury. Male Sprague-Dawley rats were administrated with streptozotocin (40 mg/kg) and were underwent right middle cerebral artery occlusion (MCAO) 4 weeks after streptozotocin injection. Brain tissues were collected 24 hr after MCAO and stained using triphenyltetrazolium chloride. Western blot analysis was performed to elucidate the expression of PEA-15 and two phosphorylated forms (Ser 104 and Ser 116) in right cerebral cortex. Infarct volume during MCAO injury was severely increased in diabetic animals compared to non-diabetic animals. We identified the decrease in PEA-15 in animals that underwent MCAO using proteomic approach. PEA-15 expression during MCAO was strongly decreased in diabetic animals compared to non-diabetic animals. Western blots analysis confirmed that diabetes exacerbated the decrease in PEA-15 expression after MCAO. Moreover, decrease in expression of phospho-PEA-15 (Ser 104 and Ser 116) was greater in diabetic than in non-diabetic animals. These results suggested that a diabetic condition may aggravate brain damage through decreasing expression of PEA-15 and phospho-PEA-15 (Ser 104 and Ser 116) in ischemic brain injury.
Collapse
Affiliation(s)
- Jin-Hee Sung
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | | |
Collapse
|
19
|
Huang KC, Yang J, Ng MC, Ng SK, Welch WR, Muto MG, Berkowitz RS, Ng SW. Cyclin A1 expression and paclitaxel resistance in human ovarian cancer cells. Eur J Cancer 2016; 67:152-163. [PMID: 27669502 PMCID: PMC5080661 DOI: 10.1016/j.ejca.2016.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/30/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The development of intrinsic and acquired resistance to antineoplastic agents is a major obstacle to successful chemotherapy in ovarian cancers. Identification and characterisation of chemoresponse-associated biomarkers are of paramount importance for novel therapeutic development. METHODS Global RNA expression profiles were obtained by high-throughput microarray analysis. Cell cycle, proliferation rate, and paclitaxel sensitivity of ovarian cancer cells harbouring cyclin A1-inducible expression construct were compared with and without tetracycline induction, as well as when the cyclin A1 expression was suppressed by short inhibiting RNA (siRNA). Cellular senescence was evaluated by β-galactosidase activity staining. RESULTS Global RNA expression profiling and subsequent correlation studies of gene expression level and drug response has identified that elevated expression of cyclin A1 (CCNA1) was significantly associated with cellular resistance to paclitaxel, doxorubicin and 5-fluorouracil. The role of cyclin A1 in paclitaxel resistance was confirmed in ovarian cancer cells that harbour an inducible cyclin A1 expression construct, which showed reduced paclitaxel-mediated growth inhibition and apoptosis when cyclin A1 expression was induced, whereas downregulation of cyclin A1 expression in the same cell lines using cyclin A1-specific siRNAs sensitised the cells to paclitaxel toxicity. However, ovarian cancer cells with ectopic expression of cyclin A1 demonstrated slowdown of proliferation and senescence-associated β-galactosidase activity. CONCLUSIONS Our profiling and correlation studies have identified cyclin A1 as one chemoresistance-associated biomarker in ovarian cancer. The results of the characterisation studies suggest that cyclin A1 functions as an oncogene that controls proliferative and survival activities in tumourigenesis and chemoresistance of ovarian cancer.
Collapse
Affiliation(s)
- Kuan-Chun Huang
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Boston, MA 02115, USA
| | - Junzheng Yang
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Boston, MA 02115, USA
| | - Michelle C Ng
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shu-Kay Ng
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Meadowbrook, Australia
| | - William R Welch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael G Muto
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Boston, MA 02115, USA
| | - Ross S Berkowitz
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Boston, MA 02115, USA
| | - Shu-Wing Ng
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Astrogliosis: An integral player in the pathogenesis of Alzheimer's disease. Prog Neurobiol 2016; 144:121-41. [PMID: 26797041 DOI: 10.1016/j.pneurobio.2016.01.001] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/10/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease is the main cause of dementia in the elderly and begins with a subtle decline in episodic memory followed by a more general decline in overall cognitive abilities. Though the exact trigger for this cascade of events remains unknown the presence of the misfolded amyloid-beta protein triggers reactive gliosis, a prominent neuropathological feature in the brains of Alzheimer's patients. The cytoskeletal and morphological changes of astrogliosis are its evident features, while changes in oxidative stress defense, cholesterol metabolism, and gene transcription programs are less manifest. However, these latter molecular changes may underlie a disruption in homeostatic regulation that keeps the brain environment balanced. Astrocytes in Alzheimer's disease show changes in glutamate and GABA signaling and recycling, potassium buffering, and in cholinergic, purinergic, and calcium signaling. Ultimately the dysregulation of homeostasis maintained by astrocytes can have grave consequences for the stability of microcircuits within key brain regions. Specifically, altered inhibition influenced by astrocytes can lead to local circuit imbalance with farther reaching consequences for the functioning of larger neuronal networks. Healthy astrocytes have a role in maintaining and modulating normal neuronal communication, synaptic physiology and energy metabolism, astrogliosis interferes with these functions. This review considers the molecular and functional changes occurring during astrogliosis in Alzheimer's disease, and proposes that astrocytes are key players in the development of dementia.
Collapse
|
21
|
Exler RE, Guo X, Chan D, Livne-Bar I, Vicic N, Flanagan JG, Sivak JM. Biomechanical insult switches PEA-15 activity to uncouple its anti-apoptotic function and promote erk mediated tissue remodeling. Exp Cell Res 2016; 340:283-94. [DOI: 10.1016/j.yexcr.2015.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/27/2015] [Accepted: 11/21/2015] [Indexed: 11/15/2022]
|
22
|
Álvaro-Bartolomé M, García-Sevilla JA. The neuroplastic index p-FADD/FADD and phosphoprotein PEA-15, interacting at GABAA receptor, are upregulated in brain cortex during midazolam-induced hypnosis in mice. Eur Neuropsychopharmacol 2015; 25:2131-44. [PMID: 26282360 DOI: 10.1016/j.euroneuro.2015.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 12/22/2022]
Abstract
Fas-associated death domain (FADD) adaptor is involved in the signaling of metabotropic G protein-coupled receptors, whose agonists stimulate its phosphoryaltion (p) increasing p-FADD/FADD ratio in brain. Whether FADD might also participate in the activation of dissimilar receptors such as the ligand-gated ion channels is not known. This study investigated the role of FADD and phosphoprotein-enriched in astrocytes of 15 kDa (PEA-15, a FADD partner) in the activation of γ-aminobutyric acid-A (GABAA) receptor, which mediates the hypnotic effect of midazolam. The main findings revealed that during the time course of midazolam (60 mg/kg)-induced hypnosis in mice (about 2 h) p-FADD (and p-FADD/FADD ratio) as well as p-PEA (and its phosphorylating Akt1 kinase) were markedly increased (36-80%) in brain cortex, and these effects were partially (only p-FADD) or fully prevented by flumazenil (a neutral allosteric ligand) and FG 7142 (a partial negative allosteric ligand) acting at GABAA receptors. The upregulation of cortical p-FADD/FADD was exclusively observed in the nucleus (up to 2.8-fold), where the transciption factor NF-κB was also increased (up to 46%), and that of p-PEA/p-Akt1 only in the cytosol (up to 53%), suggesting that p-FADD/p-PEA/p-Akt1 are involved in sleep-induced neuroplasticity. Repeated treatment with midazolam (60 mg/kg, 4 days) induced behavioral (prolonged sleep latency and reduced sleeping time) and neurochemical (reduced p-FADD/p-PEA contents) tolerance. These findings indicated that p-FADD/p-PEA are novel molecules in GABAA receptor signaling and that cortical p-PEA and p-FADD, working in tandem, are involved in the complex molecular processes leading to the hypnotic effect of midazolam in mice.
Collapse
Affiliation(s)
- María Álvaro-Bartolomé
- Laboratorio de Neurofarmacología, IUNICS-IdISPa, Universitat de les Illes Balears, Palma de Mallorca Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - Jesús A García-Sevilla
- Laboratorio de Neurofarmacología, IUNICS-IdISPa, Universitat de les Illes Balears, Palma de Mallorca Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain.
| |
Collapse
|
23
|
Kerbrat S, Vingert B, Junier MP, Castellano F, Renault-Mihara F, Dos Reis Tavares S, Surenaud M, Noizat-Pirenne F, Boczkowski J, Guellaën G, Chneiweiss H, Le Gouvello S. Absence of the Adaptor Protein PEA-15 Is Associated with Altered Pattern of Th Cytokines Production by Activated CD4+ T Lymphocytes In Vitro, and Defective Red Blood Cell Alloimmune Response In Vivo. PLoS One 2015; 10:e0136885. [PMID: 26317969 PMCID: PMC4552951 DOI: 10.1371/journal.pone.0136885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/10/2015] [Indexed: 01/08/2023] Open
Abstract
TCR-dependent and costimulation signaling, cell division, and cytokine environment are major factors driving cytokines expression induced by CD4+ T cell activation. PEA-15 15 (Protein Enriched in Astrocyte / 15kDa) is an adaptor protein that regulates death receptor-induced apoptosis and proliferation signaling by binding to FADD and relocating ERK1/2 to the cytosol, respectively. By using PEA-15-deficient mice, we examined the role of PEA-15 in TCR-dependent cytokine production in CD4+ T cells. TCR-stimulated PEA-15-deficient CD4+ T cells exhibited defective progression through the cell cycle associated with impaired expression of cyclin E and phosphoRb, two ERK1/2-dependent proteins of the cell cycle. Accordingly, expression of the division cycle-dependent cytokines IL-2 and IFNγ, a Th1 cytokine, was reduced in stimulated PEA-15-deficient CD4+ T cells. This was associated with abnormal subcellular compartmentalization of activated ERK1/2 in PEA-15-deficient T cells. Furthermore, in vitro TCR-dependent differentiation of naive CD4+ CD62L+ PEA-15-deficient T cells was associated with a lower production of the Th2 cytokine, IL-4, whereas expression of the Th17-associated molecule IL4I1 was enhanced. Finally, a defective humoral response was shown in PEA-15-deficient mice in a model of red blood cell alloimmunization performed with Poly IC, a classical adjuvant of Th1 response in vivo. Collectively, our data suggest that PEA-15 contributes to the specification of the cytokine pattern of activated Th cells, thus highlighting a potential new target to interfere with T cell functional polarization and subsequent immune response.
Collapse
Affiliation(s)
- Stéphane Kerbrat
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
| | - Benoit Vingert
- Inserm U955, Créteil, France
- Etablissement Français du Sang, Créteil, France
| | - Marie-Pierre Junier
- Inserm, U1130, Neuroscience Paris Seine, IBPS, Paris, France
- Université Pierre et Marie Curie, UM119, Neuroscience Paris Seine, IBPS, Paris, France
- CNRS, UMR8246, Neuroscience Paris Seine, IBPS, Paris, France
| | - Flavia Castellano
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Pôle de Biologie-Pathologie, Créteil, France
| | - François Renault-Mihara
- Inserm, U1130, Neuroscience Paris Seine, IBPS, Paris, France
- Université Pierre et Marie Curie, UM119, Neuroscience Paris Seine, IBPS, Paris, France
- CNRS, UMR8246, Neuroscience Paris Seine, IBPS, Paris, France
| | - Silvina Dos Reis Tavares
- Inserm, U1130, Neuroscience Paris Seine, IBPS, Paris, France
- Université Pierre et Marie Curie, UM119, Neuroscience Paris Seine, IBPS, Paris, France
- CNRS, UMR8246, Neuroscience Paris Seine, IBPS, Paris, France
| | | | - France Noizat-Pirenne
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
- Etablissement Français du Sang, Créteil, France
| | - Jorge Boczkowski
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
| | - Georges Guellaën
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
| | - Hervé Chneiweiss
- Inserm, U1130, Neuroscience Paris Seine, IBPS, Paris, France
- Université Pierre et Marie Curie, UM119, Neuroscience Paris Seine, IBPS, Paris, France
- CNRS, UMR8246, Neuroscience Paris Seine, IBPS, Paris, France
- * E-mail: (SLG); (HC)
| | - Sabine Le Gouvello
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Pôle de Biologie-Pathologie, Créteil, France
- * E-mail: (SLG); (HC)
| |
Collapse
|
24
|
On the Quest of Cellular Functions of PEA-15 and the Therapeutic Opportunities. Pharmaceuticals (Basel) 2015; 8:455-73. [PMID: 26263999 PMCID: PMC4588177 DOI: 10.3390/ph8030455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/18/2015] [Accepted: 07/24/2015] [Indexed: 02/03/2023] Open
Abstract
Phosphoprotein enriched in astrocytes, 15 KDa (PEA-15), a ubiquitously expressed small protein in all mammals, is known for decades for its potent interactions with various protein partners along distinct biological pathways. Most notable interacting partners of PEA-15 include extracellular signal-regulated kinase 1 and 2 (ERK1/2) in the mitogen activated protein kinase (MAPK) pathway, the Fas-associated death domain (FADD) protein involving in the formation of the death-inducing signaling complex (DISC), and the phospholipase D1 (PLD1) affecting the insulin sensitivity. However, the actual cellular functions of PEA-15 are still mysterious, and the question why this protein is expressed in almost all cell and tissue types remains unanswered. Here we synthesize the most recent structural, biological, and clinical studies on PEA-15 with emphases on its anti-apoptotic, anti-proliferative, and anti-inflammative properties, and propose a converged protective role of PEA-15 that maintains the balance of death and survival in different cell types. Under conditions that this delicate balance is unsustainable, PEA-15 may become pathological and lead to various diseases, including cancers and diabetes. Targeting PEA-15 interactions, or the use of PEA-15 protein as therapeutics, may provide a wider window of opportunities to treat these diseases.
Collapse
|
25
|
Estradiol attenuates down-regulation of PEA-15 and its two phosphorylated forms in ischemic brain injury. Lab Anim Res 2015; 31:40-5. [PMID: 25806082 PMCID: PMC4371476 DOI: 10.5625/lar.2015.31.1.40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/21/2014] [Accepted: 01/07/2015] [Indexed: 12/29/2022] Open
Abstract
Estradiol exerts a neuroprotective effect against focal cerebral ischemic injury through the inhibition of apoptotic signals. Phosphoprotein enriched in astrocytes 15 (PEA-15) is mainly expressed in brain that perform anti-apoptotic functions. This study investigated whether estradiol modulates the expression of PEA-15 and two phosphorylated forms of PEA-15 (Ser 104 and Ser 116) in middle cerebral artery occlusion (MCAO)-induced injury and glutamate exposure-induced neuronal cell death. Adult female rats were ovariectomized to remove endogenous estradiol and treated with vehicle or estradiol prior to MCAO. Focal cerebral ischemia was induced by MCAO and cerebral cortices were collected 24 h after MCAO. Western blot analysis indicated that estradiol prevents the MCAO-induced decrease in PEA-15, phospho-PEA-15 (Ser 104), phospho-PEA-15 (Ser 116). Glutamate exposure induced a reduction in PEA-15, phospho-PEA-15 (Ser 104), phospho-PEA-15 (Ser 116) in cultured neurons, whereas estradiol treatment attenuated the glutamate toxicity-induced decrease in the expression of these proteins. It has been known that phosphorylation of PEA-15 is an important step in carrying out its anti-apoptotic function. Thus, these findings suggest that the regulation of PEA-15 phosphorylation by estradiol contributes to the neuroprotective function of estradiol in ischemic brain injury.
Collapse
|
26
|
Huang Z, Ichihara S, Oikawa S, Chang J, Zhang L, Hu S, Huang H, Ichihara G. Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane. Toxicol Appl Pharmacol 2015; 282:151-60. [PMID: 25448045 DOI: 10.1016/j.taap.2014.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022]
Abstract
1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn(2+))-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p<0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn(2+)-Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhenlie Huang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300, PR China; Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Sahoko Ichihara
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Jie Chang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan
| | - Lingyi Zhang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Shijie Hu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300, PR China
| | - Hanlin Huang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300, PR China.
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan.
| |
Collapse
|
27
|
Othman N, Nagoor NH. The role of microRNAs in the regulation of apoptosis in lung cancer and its application in cancer treatment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:318030. [PMID: 24999473 PMCID: PMC4068038 DOI: 10.1155/2014/318030] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/20/2014] [Indexed: 02/07/2023]
Abstract
Lung cancer remains to be one of the most common and serious types of cancer worldwide. While treatment is available, the survival rate of this cancer is still critically low due to late stage diagnosis and high frequency of drug resistance, thus highlighting the pressing need for a greater understanding of the molecular mechanisms involved in lung carcinogenesis. Studies in the past years have evidenced that microRNAs (miRNAs) are critical players in the regulation of various biological functions, including apoptosis, which is a process frequently evaded in cancer progression. Recently, miRNAs were demonstrated to possess proapoptotic or antiapoptotic abilities through the targeting of oncogenes or tumor suppressor genes. This review examines the involvement of miRNAs in the apoptotic process of lung cancer and will also touch on the promising evidence supporting the role of miRNAs in regulating sensitivity to anticancer treatment.
Collapse
Affiliation(s)
- Norahayu Othman
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noor Hasima Nagoor
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Greig FH, Nixon GF. Phosphoprotein enriched in astrocytes (PEA)-15: a potential therapeutic target in multiple disease states. Pharmacol Ther 2014; 143:265-74. [PMID: 24657708 PMCID: PMC4127788 DOI: 10.1016/j.pharmthera.2014.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphoprotein enriched in astrocytes-15 (PEA-15) is a cytoplasmic protein that sits at an important junction in intracellular signalling and can regulate diverse cellular processes, such as proliferation and apoptosis, dependent upon stimulation. Regulation of these processes occurs by virtue of the unique interaction of PEA-15 with other signalling proteins. PEA-15 acts as a cytoplasmic tether for the mitogen-activated protein kinases, extracellular signal-regulated kinase 1/2 (ERK1/2) preventing nuclear localisation. In order to release ERK1/2, PEA-15 requires to be phosphorylated via several potential pathways. PEA-15 (and its phosphorylation state) therefore regulates many ERK1/2-dependent processes, including proliferation, via regulating ERK1/2 nuclear translocation. In addition, PEA-15 contains a death effector domain (DED) which allows interaction with other DED-containing proteins. PEA-15 can bind the DED-containing apoptotic adaptor molecule, Fas-associated death domain protein (FADD) which is also dependent on the phosphorylation status of PEA-15. PEA-15 binding of FADD can inhibit apoptosis as bound FADD cannot participate in the assembly of apoptotic signalling complexes. Through these protein–protein interactions, PEA-15-regulated cellular effects have now been investigated in a number of disease-related studies. Changes in PEA-15 expression and regulation have been observed in diabetes mellitus, cancer, neurological disorders and the cardiovascular system. These changes have been suggested to contribute to the pathology related to each of these disease states. As such, new therapeutic targets based around PEA-15 and its associated interactions are now being uncovered and could provide novel avenues for treatment strategies in multiple diseases.
Collapse
Affiliation(s)
- Fiona H Greig
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Graeme F Nixon
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
29
|
Reactive astrocytes associated with plaques in TgCRND8 mouse brain and in human Alzheimer brain express phosphoprotein enriched in astrocytes (PEA-15). FEBS Lett 2013; 587:2448-54. [DOI: 10.1016/j.febslet.2013.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/30/2013] [Accepted: 06/06/2013] [Indexed: 01/02/2023]
|
30
|
Funke V, Lehmann-Koch J, Bickeböller M, Benner A, Tagscherer KE, Grund K, Pfeifer M, Herpel E, Schirmacher P, Chang-Claude J, Brenner H, Hoffmeister M, Roth W. The PEA-15/PED protein regulates cellular survival and invasiveness in colorectal carcinomas. Cancer Lett 2013; 335:431-40. [PMID: 23481023 DOI: 10.1016/j.canlet.2013.02.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/20/2013] [Accepted: 02/27/2013] [Indexed: 11/16/2022]
Abstract
The PEA-15/PED (phosphoprotein enriched in astrocytes 15kD/phosphoprotein enriched in diabetes) protein is a multifunctional phosphoprotein involved in various signaling pathways which determine survival, proliferation, and migration of cancer cells. Here, we investigated the expression and cellular functions of PEA-15 in colorectal carcinoma (CRC). PEA-15 is expressed in the majority of human CRC, predominantly in well differentiated tumor areas. A tissue microarray analysis of 1262 human CRC specimens from the DACHS study showed that PEA-15 expression is significantly associated with a low pT stadium as defined by limited invasion into the bowel wall. Moreover, patients with PEA-15-positive CRC exhibited a significantly longer tumor-specific survival time. To investigate the functional relevance of PEA-15 expression on a cellular level, we over-expressed PEA-15 in several CRC cell lines. Increased expression of PEA-15 resulted in a strong inhibition of clonogenicity, proliferation, and invasiveness of CRC cells. These effects were associated with a PEA-15-dependent down-regulation of integrin αvβ5 as well as with elevated levels of the phosphorylated MAP kinase ERK1/2. Moreover, expression of PEA-15 resulted in significant protection from cell death induced by cytotoxic drugs (5-FU, cisplatin), by the death ligand TRAIL, or by serum withdrawal. In conclusion, the PEA-15 protein regulates invasiveness, proliferation, and apoptosis resistance in CRC cells. PEA-15 might play an important role in chemoresistance, progression and metastasis in CRC.
Collapse
Affiliation(s)
- Verena Funke
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Formisano P, Ragno P, Pesapane A, Alfano D, Alberobello AT, Rea VEA, Giusto R, Rossi FW, Beguinot F, Rossi G, Montuori N. PED/PEA-15 interacts with the 67 kD laminin receptor and regulates cell adhesion, migration, proliferation and apoptosis. J Cell Mol Med 2012; 16:1435-46. [PMID: 21895963 PMCID: PMC3823213 DOI: 10.1111/j.1582-4934.2011.01411.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes-15 kD (PED/PEA-15) is an anti-apoptotic protein whose expression is increased in several human cancers. In addition to apoptosis, PED/PEA-15 is involved in the regulation of other major cellular functions, including cell adhesion, migration, proliferation and glucose metabolism. To further understand the functions of this protein, we performed a yeast two-hybrid screening using PED/PEA-15 as a bait and identified the 67 kD high-affinity laminin receptor (67LR) as an interacting partner. 67 kD laminin receptor is a non-integrin cell-surface receptor for the extracellular matrix (ECM), derived from the dimerization of a 37 kD cytosolic precursor (37LRP). The 67LR is highly expressed in human cancers and widely recognized as a molecular marker of metastatic aggressiveness. The molecular interaction of PED/PEA-15 with 67LR was confirmed by pull-down experiments with recombinant His-tagged 37LRP on lysates of PED/PEA-15 transfected HEK-293 cells. Further, overexpressed or endogenous PED/PEA-15 was co-immunoprecipitated with 67LR in PED/PEA-15-transfected HEK-293 cells and in U-373 glioblastoma cells, respectively. PED/PEA-15 overexpression significantly increased 67LR-mediated HEK-293 cell adhesion and migration to laminin that, in turn, determined PED/PEA-15 phosphorylation both in Ser-104 and Ser-116, thus enabling cell proliferation and resistance to apoptosis. PED/PEA-15 ability to induce cell responses to ECM-derived signals through interaction with 67LR may be of crucial importance for tumour cell survival in a poor microenvironment, thus favouring the metastatic spread and colonization.
Collapse
Affiliation(s)
- Pietro Formisano
- Department of Cellular and Molecular Biology and Pathology, Federico II University, Naples, taly
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Santello M, Volterra A. TNFα in synaptic function: switching gears. Trends Neurosci 2012; 35:638-47. [DOI: 10.1016/j.tins.2012.06.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/18/2012] [Accepted: 06/04/2012] [Indexed: 01/17/2023]
|
33
|
Twomey EC, Cordasco DF, Wei Y. Profound conformational changes of PED/PEA-15 in ERK2 complex revealed by NMR backbone dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1382-93. [PMID: 22820249 DOI: 10.1016/j.bbapap.2012.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/30/2012] [Accepted: 07/05/2012] [Indexed: 01/09/2023]
Abstract
PED/PEA-15 is a small, non-catalytic, DED containing protein that is widely expressed in different tissues and highly conserved among mammals. PED/PEA-15 has been found to interact with several protein targets in various pathways, including FADD and procaspase-8 (apoptosis), ERK1/2 (cell cycle entry), and PLD1/2 (diabetes). In this research, we have studied the PED/PEA-15 in a complex with ERK2, a MAP kinase, using NMR spectroscopic techniques. MAP Kinase signaling pathways are involved in the regulation of many cellular functions, including cell proliferation, differentiation, apoptosis and survival. ERK1/2 are activated by a variety of external stimuli, including growth factors, hormones and neurotransmitters. Inactivated ERK2 is primarily found in the cytosol. Once the ERK/MAPK cascade is initiated, ERK2 is phosphorylated and stimulated, allowing it to redistribute in the cell nucleus and act as a transcription factor. Previous studies have shown that PED/PEA-15 complexes with ERK2 in the cytoplasm and prevents redistribution into the nucleus. Although the NMR structure and dynamics of PED/PEA-15 in the free form have been documented recently, no detailed structural and dynamic information for the ERK2-bound form is available. Here we report NMR chemical shift perturbation and backbone dynamic studies at the fast ps-ns timescale of PED/PEA-15, in its free form and in the complex with ERK2. These analyses characterize motions and conformational changes involved in ERK2 recognition and binding that orchestrate the reorganization of the DED and immobilization of the C-terminal tail. A new induced fit binding model for PED/PEA-15 is proposed.
Collapse
Affiliation(s)
- Edward C Twomey
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | | | | |
Collapse
|
34
|
Koh PO. Gingko biloba Extract (EGb 761) Attenuates the Focal Cerebral Ischemic Injury-Induced Decrease in Astrocytic Phosphoprotein PEA-15 Levels. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 39:971-9. [DOI: 10.1142/s0192415x11009342] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
EGb 761 is an extract of Gingko biloba that is neuroprotective against focal cerebral ischemic injury. PEA-15 (phosphoprotein enriched in astrocytes 15) modulates cell proliferation and apoptosis. In this study, we investigated whether EGb 761 regulates the expression of PEA-15 and two phosphorylated forms of PEA-15 (Ser 104 and Ser 116) in middle cerebral artery occlusion (MCAO)-induced injury. Adult male rats were treated with vehicle or EGb 761 (100 mg/kg) prior to MCAO and cerebral cortices were collected 24 h after MCAO. A reduction in expression of PEA-15 and its phosphorylated forms induced by MCAO injury was detected using a proteomic approach. EGb 761 pretreatment prevented the ischemic injury-induced decrease in PEA-15 expression. Western blot analysis demonstrated that EGb 761 attenuates the injury-induced reduction in PEA-15, phospho-PEA-15 (Ser 104), phospho-PEA-15 (Ser 116). Phosphorylation of PEA-15 influences its anti-apoptotic function; a decrease in PEA-15 phosphorylation induces apoptotic cell death. The maintenance of PEA-15 phosphorylation by EGb 761 pretreatment during cerebral ischemic injury indicates that EGb 761 is a neuroprotective against cerebral ischemic injury.
Collapse
Affiliation(s)
- Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, South Korea
| |
Collapse
|
35
|
Lee S, Bae YS. Monomeric and dimeric models of ERK2 in conjunction with studies on cellular localization, nuclear translocation, and in vitro analysis. Mol Cells 2012; 33:325-34. [PMID: 22450690 PMCID: PMC3887802 DOI: 10.1007/s10059-012-0023-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 11/24/2022] Open
Abstract
Extracellular signal-regulated protein kinase 2 (ERK2) plays many vital roles in cellular signal regulation. Phosphorylation of ERK2 leads to propagation and execution of various extracellular stimuli, which influence cellular responses to stress. The final response of the ERK2 signaling pathway is determined by localization and duration of active ERK2 at specific target cell compartments through protein-protein interactions of ERK2 with various cytoplasmic and nuclear substrates, scaffold proteins, and anchoring counterparts. In this respect, dimerization of phosphorylated ERK2 has been suggested to be a part of crucial regulating mechanism in various protein-protein interactions. After the report of putative dimeric structure of active ERK2 (Canagarajah et al., 1997), dimeric model was employed to explain many in vivo and in vitro experimental results. But more recently, many reports have been presented questioning the validity of dimer hypothesis of active ERK2. In this review, we summarize the various in vitro and in vivo studies concerning the Monomeric or the dimeric forms of ERK2 and the validity of the dimer hypothesis.
Collapse
Affiliation(s)
- Sunbae Lee
- Division of Life Sciences, Center for Cell Signal.ing Research, Ewha Womans University, Seoul 120-750, Korea.
| | | |
Collapse
|
36
|
Koh PO. Ferulic acid prevents the cerebral ischemic injury-induced decreases of astrocytic phosphoprotein PEA-15 and its two phosphorylated forms. Neurosci Lett 2012; 511:101-5. [PMID: 22306184 DOI: 10.1016/j.neulet.2012.01.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/07/2012] [Accepted: 01/19/2012] [Indexed: 11/25/2022]
Abstract
Ferulic acid protects neuronal cells against focal cerebral ischemic injury through its anti-oxidative and anti-inflammatory effects. Phosphoprotein enriched in astrocytes 15 (PEA-15) is known to modulate various cellular processes including cell proliferation, apoptosis, and survival. This study was investigated whether ferulic acid can regulate the levels of PEA-15 and its two phosphorylated forms (Ser 104 and Ser 116) in a cerebral ischemic injury model and in neuronal cells exposed to glutamate. A middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemic injury. Adult male rats were immediately treated with vehicle or ferulic acid (100 mg/kg) at the beginning of the MCAO, and then cerebral cortices were collected 24h after MCAO. The decrease in PEA-15 level after ischemic injury was detected using a proteomic approach. Ferulic acid administration prevented the ischemic injury-induced decrease of PEA-15 level. Moreover, Western blot analysis clearly confirmed that ferulic acid attenuates the ischemic injury-induced decreases in PEA-15, phospho-PEA-15 (Ser 104), and phospho-PEA-15 (Ser 116) levels. Glutamate exposure induced significant reductions in the levels of PEA-15 and the two phospho-PEA-15 (Ser 104 and Ser 116) in cultured hippocampal neuron, while pretreatment with ferulic acid prevented the glutamate toxicity-induced decreases in these proteins levels. The decrease of phospho-PEA-15 protein level indicates that the anti-apoptotic function of PEA-15 was being inhibited. Thus, these results suggest that ferulic acid protects neuronal cells against ischemic injury by maintenance of phospho-PEA-15 protein levels.
Collapse
Affiliation(s)
- Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea.
| |
Collapse
|
37
|
Mitochondrial hexokinase II (HKII) and phosphoprotein enriched in astrocytes (PEA15) form a molecular switch governing cellular fate depending on the metabolic state. Proc Natl Acad Sci U S A 2012; 109:1518-23. [PMID: 22233811 DOI: 10.1073/pnas.1108225109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The metabolic state of a cell is a key determinant in the decision to live and proliferate or to die. Consequently, balanced energy metabolism and the regulation of apoptosis are critical for the development and maintenance of differentiated organisms. Hypoxia occurs physiologically during development or exercise and pathologically in vascular disease, tumorigenesis, and inflammation, interfering with homeostatic metabolism. Here, we show that the hypoxia-inducible factor (HIF)-1-regulated glycolytic enzyme hexokinase II (HKII) acts as a molecular switch that determines cellular fate by regulating both cytoprotection and induction of apoptosis based on the metabolic state. We provide evidence for a direct molecular interactor of HKII and show that, together with phosphoprotein enriched in astrocytes (PEA15), HKII inhibits apoptosis after hypoxia. In contrast, HKII accelerates apoptosis in the absence of PEA15 and under glucose deprivation. HKII both protects cells from death during hypoxia and functions as a sensor of glucose availability during normoxia, inducing apoptosis in response to glucose depletion. Thus, HKII-mediated apoptosis may represent an evolutionarily conserved altruistic mechanism to eliminate cells during metabolic stress to the advantage of a multicellular organism.
Collapse
|
38
|
Abstract
Melatonin functions as a free-radical scavenger and has a neuroprotective effect against ischemic brain damage. PEA-15 (phosphoprotein enriched in astrocytes 15) regulates various cellular processes including cell proliferation and apoptosis. In this study, we investigated whether melatonin regulates the levels of PEA-15 and the two phosphorylated forms of PEA-15 (Ser 104 and Ser 116) in a middle cerebral artery occlusion (MCAO)-induced injury model and neuronal cells exposed to glutamate. Adult male rats were treated with vehicle or melatonin (5 mg/kg) prior to MCAO, and cerebral cortex tissues were collected 24 h after MCAO. PEA-15 levels after ischemic brain injury were monitored using a proteomic approach. Melatonin pretreatment prevented the ischemic injury-induced reduction in PEA-15 levels. Moreover, Western blot analysis demonstrated that melatonin attenuated the ischemic injury-induced reduction in PEA-15, phospho-PEA-15 (Ser 104), and phospho-PEA-15 (Ser 116) levels. Neuronal cells exposed to glutamate showed decreased expression of PEA-15, phospho-PEA-15 (Ser 104), and phospho-PEA-15 (Ser 116), while melatonin pretreatment prevented the glutamate toxicity-induced decreases in the levels of these proteins. The reduction in the levels of phospho-PEA-15 proteins indicates the inhibition of anti-apoptotic function of PEA-15. Together, in vivo and in vitro results suggest that melatonin protects neurons against ischemic injury by maintaining levels of phospho-PEA-15 proteins.
Collapse
Affiliation(s)
- Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea.
| |
Collapse
|
39
|
Mor E, Cabilly Y, Goldshmit Y, Zalts H, Modai S, Edry L, Elroy-Stein O, Shomron N. Species-specific microRNA roles elucidated following astrocyte activation. Nucleic Acids Res 2011; 39:3710-23. [PMID: 21247879 PMCID: PMC3089466 DOI: 10.1093/nar/gkq1325] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 11/14/2010] [Accepted: 11/14/2010] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that play a central role in regulation of gene expression by binding to target genes. Many miRNAs were associated with the function of the central nervous system (CNS) in health and disease. Astrocytes are the CNS most abundant glia cells, providing support by maintaining homeostasis and by regulating neuronal signaling, survival and synaptic plasticity. Astrocytes play a key role in repair of brain insults, as part of local immune reactivity triggered by inflammatory or pathological conditions. Thus, astrocyte activation, or astrogliosis, is an important outcome of the innate immune response, which can be elicited by endotoxins such as lipopolysaccharide (LPS) and cytokines such as interferon-gamma (IFN-γ). The involvement of miRNAs in inflammation and stress led us to hypothesize that astrogliosis is mediated by miRNA function. In this study, we compared the miRNA regulatory layer expressed in primary cultured astrocyte derived from rodents (mice) and primates (marmosets) brains upon exposure to LPS and IFN-γ. We identified subsets of differentially expressed miRNAs some of which are shared with other immunological related systems while others, surprisingly, are mouse and rat specific. Of interest, these specific miRNAs regulate genes involved in the tumor necrosis factor-alpha (TNF-α) signaling pathway, indicating a miRNA-based species-specific regulation. Our data suggests that miRNA function is more significant in the mechanisms governing astrocyte activation in rodents compared to primates.
Collapse
Affiliation(s)
- Eyal Mor
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Yuval Cabilly
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Yona Goldshmit
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Harel Zalts
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Shira Modai
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Liat Edry
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Orna Elroy-Stein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
40
|
Choi SG, Ruf-Zamojski F, Pincas H, Roysam B, Sealfon SC. Characterization of a MAPK scaffolding protein logic gate in gonadotropes. Mol Endocrinol 2011; 25:1027-39. [PMID: 21436256 DOI: 10.1210/me.2010-0387] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the pituitary gonadotropes, both protein kinase C (PKC) and MAPK/ERK signaling cascades are activated by GnRH. Phosphoprotein-enriched in astrocytes 15 (PEA-15) is a cytosolic ERK scaffolding protein, which is expressed in LβT2 gonadotrope cells. Pharmacological inhibition of PKC and small interfering RNA-mediated silencing of Gαq/11 revealed that GnRH induces accumulation of phosphorylated PEA-15 in a PKC-dependent manner. To investigate the potential role of PEA-15 in GnRH signaling, we examined the regulation of ERK subcellular localization and the activation of ribosomal S6 kinase, a substrate of ERK. Results obtained by cellular fractionation/Western blot analysis and immunohistochemistry revealed that GnRH-induced accumulation of phosphorylated ERK in the nucleus was attenuated when PEA-15 expression was reduced. Conversely, in the absence of GnRH stimulation, PEA-15 anchors ERK in the cytosol. Our data suggest that GnRH-induced nuclear translocation of ERK requires its release from PEA-15, which occurs upon PEA-15 phosphorylation by PKC. Additional gene-silencing experiments in GnRH-stimulated cells demonstrated that ribosomal S6 kinase activation was dependent on both PEA-15 and PKC. Furthermore, small interfering RNA-mediated knockdown of PEA-15 caused a reduction in GnRH-stimulated expression of early response genes Egr2 and c-Jun, as well as gonadotropin FSHβ-subunit gene expression. PEA-15 knockdown increased LHβ and common α-glycoprotein subunit mRNAs, suggesting a possible role in differential regulation of gonadotropin subunit gene expression. We propose that PEA-15 represents a novel point of convergence of the PKC and MAPK/ERK pathways under GnRH stimulation. PKC, ERK, and PEA-15 form an AND logic gate that shapes the response of the gonadotrope cell to GnRH.
Collapse
Affiliation(s)
- Soon Gang Choi
- Center for Translational Systems Biology and Department of Neurology, Mount Sinai School of Medicine, Annenberg 14-94, Box 1137, One Gustave L. Levy Place, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
41
|
Hunter I, Mascall KS, Ramos JW, Nixon GF. A phospholipase Cγ1-activated pathway regulates transcription in human vascular smooth muscle cells. Cardiovasc Res 2011; 90:557-64. [PMID: 21285289 DOI: 10.1093/cvr/cvr039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS Growth factor-induced repression of smooth muscle (SM) cell marker genes is an integral part of vascular SM (VSM) cell proliferation. This is partly regulated via translocation of extracellular signal-regulated kinase 1/2 (ERK1/2) to the nucleus which activates the transcription factor Elk-1. The mediators involved in ERK1/2 nuclear translocation in VSM cells are unknown. The aim of this study is to examine the mechanisms which regulate growth factor-induced nuclear translocation of ERK1/2 and gene expression in VSM cells. METHODS AND RESULTS In cultured human VSM cells, phospholipase C (PLC)γ1 expression was required for platelet-derived growth factor (PDGF)-induced ERK1/2 nuclear translocation, Elk-1 phosphorylation, and subsequent repression of SM α-actin gene expression. The mechanisms of a role for PLCγ1 in ERK1/2 nuclear localization were further examined by investigating interacting proteins. The ERK1/2-binding phosphoprotein, protein enriched in astrocytes-15 (PEA-15), was phosphorylated by PDGF and this phosphorylation required activation of PLCγ1. In cells pre-treated with PEA-15 siRNA, ERK1/2 distribution significantly increased in the nucleus and resulted in decreased SM α-actin expression and increased VSM cell proliferation. Overexpression of PEA-15 increased ERK1/2 localization in the cytoplasm. The regulatory role of PEA-15 phosphorylation was assessed. In VSM cells overexpressing a non-phosphorylatable form of PEA-15, PDGF-induced ERK1/2 nuclear localization was inhibited. CONCLUSION These results suggest that PEA-15 phosphorylation by PLCγ1 is required for PDGF-induced ERK1/2 nuclear translocation. This represents an important level of phenotypic control by directly affecting Elk-1-dependent transcription and ultimately SM cell marker protein expression in VSM cells.
Collapse
Affiliation(s)
- Irene Hunter
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | |
Collapse
|
42
|
Choi K, Ni L, Jonakait GM. Fas ligation and tumor necrosis factor α activation of murine astrocytes promote heat shock factor-1 activation and heat shock protein expression leading to chemokine induction and cell survival. J Neurochem 2010; 116:438-48. [PMID: 21114495 DOI: 10.1111/j.1471-4159.2010.07124.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Death-inducing ligands tumor necrosis factor alpha (TNFα) and Fas ligand (FasL) do not kill cultured astrocytes; instead they induce a variety of chemokines including macrophage-inflammatory protein-1α/CC chemokine ligand 3 (CCL3), monocyte chemoattractant protein-1 (CC CCL-2), macrophage-inflammatory protein-2/CXC chemokine ligand 2 (CXCL2, a murine homologue of interleukin 8), and interferon-induced protein of 10 kDa (CXCL10). Induction is enhanced by protein synthesis inhibition suggesting the existence of endogenous inhibitors. ERK, NF-κB, heat shock factor-1 (HSF-1) and heat shock proteins were examined for their possible roles in signal transduction. Inhibition of ERK activation by PD98059 partially inhibited expression of all but FasL-induced CXCL10. Although inhibition of NF-κB DNA binding inhibited chemokine induction, PD98059 did not inhibit TNFα-induced NF-κB DNA binding suggesting that ERK serves an NF-κB-independent pathway. Heat shock itself induced astrocytic chemokine expression; both TNFα and FasL induced HSF-1 DNA binding and Hsp72 production; and Hsp72-induced chemokine expression. Inhibition of either HSF-1 binding with quercetin or heat shock protein synthesis with KNK437 compromised chemokine induction without compromising cell survival. These data suggest that the induction of heat shock proteins via HSF-1 contribute to the TNFα- and FasL-induced expression of chemokines in astrocytes.
Collapse
Affiliation(s)
- Kuicheon Choi
- Federated Department of Biological Sciences, New Jersey Institute of Technology/Rutgers University, Newark, New Jersey 07102, USA
| | | | | |
Collapse
|
43
|
Farina B, Pirone L, Russo L, Viparelli F, Doti N, Pedone C, Pedone EM, Fattorusso R. NMR backbone dynamics studies of human PED/PEA-15 outline protein functional sites. FEBS J 2010; 277:4229-40. [PMID: 20825483 DOI: 10.1111/j.1742-4658.2010.07812.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PED/PEA-15 (phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes) is a ubiquitously expressed protein and a key regulator of cell growth and glucose metabolism. PED/PEA-15 mediates both homotypic and heterotypic interactions and is constituted by an N-terminal canonical death effector domain and a C-terminal tail. In the present study, the backbone dynamics of PED/PEA-15 via (15)N R(1) and R(2) and steady-state [(1)H]-(15)N NOE measurements is reported. The dynamic parameters were analyzed using both Lipari-Szabo model-free formalism and a reduced spectral density mapping approach. The results obtained define a polar and charged surface of the death effector domain characterized by internal motions in the micro- to millisecond timescale, which is crucial for the multiple heterotypic functional protein-protein interactions in which PED/PEA-15 is involved. The present study contributes to a better understanding of the molecular basis of the PED/PEA-15 functional interactions and provides a more detailed surface for the design and development of PED/PEA-15 binders.
Collapse
|
44
|
Watanabe Y, Yamasaki F, Kajiwara Y, Saito T, Nishimoto T, Bartholomeusz C, Ueno NT, Sugiyama K, Kurisu K. Expression of phosphoprotein enriched in astrocytes 15 kDa (PEA-15) in astrocytic tumors: a novel approach of correlating malignancy grade and prognosis. J Neurooncol 2010; 100:449-57. [DOI: 10.1007/s11060-010-0201-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
|
45
|
Incoronato M, Garofalo M, Urso L, Romano G, Quintavalle C, Zanca C, Iaboni M, Nuovo G, Croce CM, Condorelli G. miR-212 increases tumor necrosis factor-related apoptosis-inducing ligand sensitivity in non-small cell lung cancer by targeting the antiapoptotic protein PED. Cancer Res 2010; 70:3638-46. [PMID: 20388802 DOI: 10.1158/0008-5472.can-09-3341] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PED/PEA-15 (PED) is a death effector domain family member of 15 kDa with a broad antiapoptotic function found overexpressed in a number of different human tumors, including lung cancer. To date, the mechanisms that regulate PED expression are unknown. Therefore, we address this point by the identification of microRNAs that in non-small cell lung cancer (NSCLC) modulate PED levels. In this work, we identify miR-212 as a negative regulator of PED expression. We also show that ectopic expression of this miR increases tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell death in NSCLC cells. In contrast, inhibition of endogenous miR-212 by use of antago-miR results in increase of PED protein expression and resistance to TRAIL treatment. Besides, in NSCLC, we show both in vitro and in vivo that PED and miR-212 expressions are inversely correlated, that is, PED is upregulated and miR-212 is rarely expressed. In conclusion, these findings suggest that miR-212 should be considered as a tumor suppressor because it negatively regulates the antiapoptotic protein PED and regulates TRAIL sensitivity.
Collapse
|
46
|
Pastorino S, Renganathan H, Caliva MJ, Filbert EL, Opoku-Ansah J, Sulzmaier FJ, Gawecka JE, Werlen G, Shaw AS, Ramos JW. The death effector domain protein PEA-15 negatively regulates T-cell receptor signaling. FASEB J 2010; 24:2818-28. [PMID: 20354143 DOI: 10.1096/fj.09-144295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PEA-15 is a death effector domain-containing phosphoprotein that binds ERK and restricts it to the cytoplasm. PEA-15 also binds to FADD and thereby blocks apoptosis induced by death receptors. Abnormal expression of PEA-15 is associated with type II diabetes and some cancers; however, its physiological function remains unclear. To determine the function of PEA-15 in vivo, we used C57BL/6 mice in which the PEA-15 coding region was deleted. We thereby found that PEA-15 regulates T-cell proliferation. PEA-15-null mice did not have altered thymic or splenic lymphocyte cellularity or differentiation. However, PEA-15 deficient T cells had increased CD3/CD28-induced nuclear translocation of ERK and increased activation of IL-2 transcription and secretion in comparison to control wild-type littermates. Indeed, activation of the T-cell receptor in wild-type mice caused PEA-15 release of ERK. In contrast, overexpression of PEA-15 in Jurkat T cells blocked nuclear translocation of ERK and IL-2 transcription. Finally, PEA-15-null T cells showed increased IL-2 dependent proliferation on stimulation. No differences in T cell susceptibility to apoptosis were found. Thus, PEA-15 is a novel player in T-cell homeostasis. As such this work may have far reaching implications in understanding how the immune response is controlled.
Collapse
Affiliation(s)
- Sandra Pastorino
- Natural Products and Cancer Biology Program, Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
García Samartino C, Delpino MV, Pott Godoy C, Di Genaro MS, Pasquevich KA, Zwerdling A, Barrionuevo P, Mathieu P, Cassataro J, Pitossi F, Giambartolomei GH. Brucella abortus induces the secretion of proinflammatory mediators from glial cells leading to astrocyte apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1323-1338. [PMID: 20093491 PMCID: PMC2830821 DOI: 10.2353/ajpath.2010.090503] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/12/2009] [Indexed: 01/18/2023]
Abstract
Central nervous system (CNS) invasion by bacteria of the genus Brucella results in an inflammatory disorder called neurobrucellosis. In this study we present in vivo and in vitro evidence that B. abortus and its lipoproteins activate the innate immunity of the CNS, eliciting an inflammatory response that leads to astrogliosis, a characteristic feature of neurobrucellosis. Intracranial injection of heat-killed B. abortus (HKBA) or outer membrane protein 19 (Omp19), a B. abortus lipoprotein model, induced astrogliosis in mouse striatum. Moreover, infection of astrocytes and microglia with B. abortus induced the secretion of interleukin (IL)-6, IL-1beta, tumor necrosis factor (TNF)-alpha, macrophage chemoattractant protein-1, and KC (CXCL1). HKBA also induced these inflammatory mediators, suggesting the involvement of a structural component of the bacterium. Accordingly, Omp19 induced the same cytokine and chemokine secretion pattern. B. abortus infection induced astrocyte, but not microglia, apoptosis. Indeed, HKBA and Omp19 elicited not only astrocyte apoptosis but also proliferation, two features observed during astrogliosis. Apoptosis induced by HKBA and L-Omp19 was completely suppressed in cells of TNF receptor p55-/- mice or when the general caspase inhibitor Z-VAD-FMK was added to cultures. Hence, TNF-alpha signaling via TNF receptor (TNFR) 1 through the coupling of caspases determines apoptosis. Our results provide proof of the principle that Brucella lipoproteins could be key virulence factors in neurobrucellosis and that astrogliosis might contribute to neurobrucellosis pathogenesis.
Collapse
Affiliation(s)
- Clara García Samartino
- Instituto de Estudios de la Inmunidad Humoral (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. Victoria Delpino
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - María Silvia Di Genaro
- Instituto de Investigaciones Biológicas—San Luis (CONICET), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Karina A. Pasquevich
- Instituto de Estudios de la Inmunidad Humoral (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Astrid Zwerdling
- Instituto de Estudios de la Inmunidad Humoral (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Barrionuevo
- Instituto de Estudios de la Inmunidad Humoral (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Juliana Cassataro
- Instituto de Estudios de la Inmunidad Humoral (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Guillermo H. Giambartolomei
- Instituto de Estudios de la Inmunidad Humoral (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
48
|
A new caspase-8 isoform caspase-8s increased sensitivity to apoptosis in Jurkat cells. J Biomed Biotechnol 2010; 2009:930462. [PMID: 20150972 PMCID: PMC2817811 DOI: 10.1155/2009/930462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/25/2009] [Accepted: 10/23/2009] [Indexed: 12/23/2022] Open
Abstract
Caspase-8 is a key initiator of death receptor-induced apoptosis. Here we report a novel short isoform of caspase-8 (caspase-8s), which encodes the first (Death Effector Domain) DED and part of the second DED, missing the C-terminal caspase domain. In vivo binding assays showed that transfected caspase-8s bound to (Fas-associated death domain protein) FADD, the adaptor protein in (death-induced signal complex) DISC. To investigate the potential effects of caspase-8s on cell apoptosis, Jurkat cells were stably transfected with caspase-8s. Overexpression of caspase-8s increased sensitivity to the apoptotic stimuli, Fas-agonistic antibody CH11. These results suggest that caspase-8s may act as a promoter of apoptosis through binding to FADD and is involved in the regulation of apoptosis. In addition, the results also indicate that the first DED was an important structure mediating combination between caspase-8 and FADD.
Collapse
|
49
|
Haling JR, Wang F, Ginsberg MH. Phosphoprotein enriched in astrocytes 15 kDa (PEA-15) reprograms growth factor signaling by inhibiting threonine phosphorylation of fibroblast receptor substrate 2alpha. Mol Biol Cell 2009; 21:664-73. [PMID: 20032303 PMCID: PMC2820429 DOI: 10.1091/mbc.e09-08-0659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Changes in expression of PEA-15 contribute to diabetes, tumor invasion, and cellular senescence. PEA-15 increases activation of the ERK MAP kinase pathway; the present study shows that it does so by interfering with ERK1/2 phosphorylation of FRS2, terminator of downstream signaling from FGF receptors. Changes in cellular expression of phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) are linked to insulin resistance, tumor cell invasion, and cellular senescence; these changes alter the activation of the extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway. Here, we define the mechanism whereby increased PEA-15 expression promotes and sustains ERK1/2 activation. PEA-15 binding prevented ERK1/2 membrane recruitment and threonine phosphorylation of fibroblast receptor substrate 2α (FRS2α), a key link in fibroblast growth factor (FGF) receptor activation of ERK1/2. This reduced threonine phosphorylation led to increased FGF-induced tyrosine phosphorylation of FRS2α, thereby enhancing downstream signaling. Conversely, short hairpin RNA-mediated depletion of endogenous PEA-15 led to reduced FRS2α tyrosine phosphorylation. Thus, PEA-15 interrupts a negative feedback loop that terminates growth factor receptor signaling downstream of FRS2α. This is the dominant mechanism by which PEA-15 activates ERK1/2 because genetic deletion of FRS2α blocked the capacity of PEA-15 to activate the MAP kinase pathway. Thus, PEA-15 prevents ERK1/2 localization to the plasma membrane, thereby inhibiting ERK1/2-dependent threonine phosphorylation of FRS2α to promote activation of the ERK1/2 MAP kinase pathway.
Collapse
Affiliation(s)
- Jacob R Haling
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0726, USA
| | | | | |
Collapse
|
50
|
Oriente F, Iovino S, Cassese A, Romano C, Miele C, Troncone G, Balletta M, Perfetti A, Santulli G, Iaccarino G, Valentino R, Beguinot F, Formisano P. Overproduction of phosphoprotein enriched in diabetes (PED) induces mesangial expansion and upregulates protein kinase C-beta activity and TGF-beta1 expression. Diabetologia 2009; 52:2642-52. [PMID: 19789852 DOI: 10.1007/s00125-009-1528-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 08/05/2009] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS Overproduction of phosphoprotein enriched in diabetes (PED, also known as phosphoprotein enriched in astrocytes-15 [PEA-15]) is a common feature of type 2 diabetes and impairs insulin action in cultured cells and in mice. Nevertheless, the potential role of PED in diabetic complications is still unknown. METHODS We studied the effect of PED overproduction and depletion on kidney function in animal and cellular models. RESULTS Transgenic mice overexpressing PED (PEDTg) featured age-dependent increases of plasma creatinine levels and urinary volume, accompanied by expansion of the mesangial area, compared with wild-type littermates. Serum and kidney levels of TGF-beta1 were also higher in 6- and 9-month-old PEDTg. Overexpression of PED in human kidney 2 cells significantly increased TGF-beta1 levels, SMAD family members (SMAD)2/3 phosphorylation and fibronectin production. Opposite results were obtained following genetic silencing of PED in human kidney 2 cells by antisense oligonucleotides. Inhibition of phospholipase D and protein kinase C-beta by 2-butanol and LY373196 respectively reduced TGF-beta1, SMAD2/3 phosphorylation and fibronectin production. Moreover, inhibition of TGF-beta1 receptor activity and SMAD2/3 production by SB431542 and antisense oligonucleotides respectively reduced fibronectin secretion by about 50%. TGF-beta1 circulating levels were significantly reduced in Ped knockout mice and positively correlated with PED content in peripheral blood leucocytes of type 2 diabetic patients. CONCLUSIONS/INTERPRETATION These data indicate that PED regulates fibronectin production via phospholipase D/protein kinase C-beta and TGF-beta1/SMAD pathways in kidney cells. Raised PED levels may therefore contribute to the abnormal accumulation of extracellular matrix and renal dysfunction in diabetes.
Collapse
MESH Headings
- Actins/genetics
- Animals
- Astrocytes/metabolism
- Blood Pressure
- DNA Primers
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/physiopathology
- Diabetic Nephropathies/epidemiology
- Fatty Acids, Nonesterified/blood
- Fibronectins/genetics
- Gene Expression Regulation
- Heart Rate
- Humans
- Insulin/blood
- Kidney/physiology
- Kidney Failure, Chronic/etiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phenotype
- Phosphoproteins/biosynthesis
- Phosphoproteins/genetics
- Protein Kinase C/genetics
- Protein Kinase C beta
- Reverse Transcriptase Polymerase Chain Reaction
- Smad2 Protein/genetics
- Transforming Growth Factor beta1/genetics
- Up-Regulation
Collapse
Affiliation(s)
- F Oriente
- Department of Cellular and Molecular Biology and Pathology, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|