1
|
Ktena N, Spyridakos D, Georgilis A, Kalafatakis I, Thomoglou E, Kolaxi A, Nikoletopoulou V, Savvaki M, Karagogeos D. Disruption of Oligodendroglial Autophagy Leads to Myelin Morphological Deficits, Neuronal Apoptosis, and Cognitive Decline in Aged Mice. Glia 2025. [PMID: 40105013 DOI: 10.1002/glia.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
The aging central nervous system (CNS) is often marked by myelin degeneration, yet the underlying mechanisms remain elusive. This study delves into the previously unexplored role of autophagy in maintaining CNS myelin during aging. We generated the transgenic mouse line plpCreERT2; atg5f/f, enabling selective deletion of the core autophagic component Atg5 in oligodendrocytes (OLs) following tamoxifen administration in adulthood, while analysis was conducted on aged mice. Our findings reveal that oligodendroglial autophagy inactivation leads to significant alterations in myelin protein levels. Moreover, the ultrastructural analysis revealed pronounced myelin deficits and increased degeneration of axons, accompanied by apoptosis, as confirmed by immunohistochemistry. Behaviorally, aged knockout (cKO) mice exhibited marked deficits in learning and memory tasks, indicative of cognitive impairment. Additionally, we observed increased activation of microglia, suggesting an inflammatory response linked to the absence of autophagic activity in OLs. These results underscore the critical role of autophagy in OLs for the preservation of CNS myelin and axonal integrity during aging. Our study highlights autophagy as a vital mechanism for neural maintenance, offering potential therapeutic avenues for combating age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Niki Ktena
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology & Biotechnology-FORTH, Heraklion, Greece
| | | | - Alexandros Georgilis
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology & Biotechnology-FORTH, Heraklion, Greece
| | - Ilias Kalafatakis
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology & Biotechnology-FORTH, Heraklion, Greece
| | | | - Angeliki Kolaxi
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | | | - Maria Savvaki
- School of Medicine, University of Crete, Heraklion, Greece
| | - Domna Karagogeos
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology & Biotechnology-FORTH, Heraklion, Greece
| |
Collapse
|
2
|
Stys PK, Tsutsui S, Gafson AR, ‘t Hart BA, Belachew S, Geurts JJG. New views on the complex interplay between degeneration and autoimmunity in multiple sclerosis. Front Cell Neurosci 2024; 18:1426231. [PMID: 39161786 PMCID: PMC11330826 DOI: 10.3389/fncel.2024.1426231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024] Open
Abstract
Multiple sclerosis (MS) is a frequently disabling neurological disorder characterized by symptoms, clinical signs and imaging abnormalities that typically fluctuate over time, affecting any level of the CNS. Prominent lymphocytic inflammation, many genetic susceptibility variants involving immune pathways, as well as potent responses of the neuroinflammatory component to immunomodulating drugs, have led to the natural conclusion that this disease is driven by a primary autoimmune process. In this Hypothesis and Theory article, we discuss emerging data that cast doubt on this assumption. After three decades of therapeutic experience, what has become clear is that potent immune modulators are highly effective at suppressing inflammatory relapses, yet exhibit very limited effects on the later progressive phase of MS. Moreover, neuropathological examination of MS tissue indicates that degeneration, CNS atrophy, and myelin loss are most prominent in the progressive stage, when lymphocytic inflammation paradoxically wanes. Finally, emerging clinical observations such as "progression independent of relapse activity" and "silent progression," now thought to take hold very early in the course, together argue that an underlying "cytodegenerative" process, likely targeting the myelinating unit, may in fact represent the most proximal step in a complex pathophysiological cascade exacerbated by an autoimmune inflammatory overlay. Parallels are drawn with more traditional neurodegenerative disorders, where a progressive proteopathy with prion-like propagation of toxic misfolded species is now known to play a key role. A potentially pivotal contribution of the Epstein-Barr virus and B cells in this process is also discussed.
Collapse
Affiliation(s)
- Peter K. Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shigeki Tsutsui
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Arie R. Gafson
- Biogen Digital Health, Biogen, Cambridge, MA, United States
| | - Bert A. ‘t Hart
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| | - Shibeshih Belachew
- TheraPanacea, Paris, France
- Indivi (DBA of Healios AG), Basel, Switzerland
| | - Jeroen J. G. Geurts
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| |
Collapse
|
3
|
Hörner M, Popp S, Branchu J, Stevanin G, Darios F, Klebe S, Groh J, Martini R. Clinically approved immunomodulators ameliorate behavioral changes in a mouse model of hereditary spastic paraplegia type 11. Front Neurosci 2024; 18:1299554. [PMID: 38435059 PMCID: PMC10904495 DOI: 10.3389/fnins.2024.1299554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
We have previously demonstrated that neuroinflammation by the adaptive immune system acts as a robust and targetable disease amplifier in a mouse model of Spastic Paraplegia, type 11 (SPG11), a complicated form of Hereditary Spastic Paraplegia (HSP). While we identified an impact of neuroinflammation on distinct neuropathological changes and gait performance, neuropsychological features, typical and clinically highly relevant symptoms of complicated HSPs, were not addressed. Here we show that the corresponding SPG11 mouse model shows distinct behavioral abnormalities, particularly related to social behavior thus partially reflecting the neuropsychological changes in patients. We provide evidence that some behavioral abnormalities can be mitigated by genetic inactivation of the adaptive immune system. Translating this into a clinically applicable approach, we show that treatment with the established immunomodulators fingolimod or teriflunomide significantly attenuates distinct behavioral abnormalities, with the most striking effect on social behavior. This study links neuroinflammation to behavioral abnormalities in a mouse model of SPG11 and may thus pave the way for using immunomodulators as a treatment approach for SPG11 and possibly other complicated forms of HSP with neuropsychological involvement.
Collapse
Affiliation(s)
- Michaela Hörner
- Section of Developmental Neurobiology, Department of Neurology, University Hospital Würzburg, Würzburg, Germany
- Division of Neurodegenerative Diseases, Department of Neurology, Heidelberg University Hospital and Faculty of Medicine, Heidelberg, Germany
| | - Sandy Popp
- Section of Developmental Neurobiology, Department of Neurology, University Hospital Würzburg, Würzburg, Germany
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
- TSE Systems GmbH, Berlin, Germany
| | - Julien Branchu
- Institut du Cerveau – Paris Brain Institute, Inserm, Sorbonne Université, Paris, France
- EVerZom, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau – Paris Brain Institute, Inserm, Sorbonne Université, Paris, France
- INCIA, CNRS, EPHE, Université de Bordeaux, Bordeaux, France
| | - Frédéric Darios
- Institut du Cerveau – Paris Brain Institute, Inserm, Sorbonne Université, Paris, France
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Janos Groh
- Section of Developmental Neurobiology, Department of Neurology, University Hospital Würzburg, Würzburg, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Rudolf Martini
- Section of Developmental Neurobiology, Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Groh J, Abdelwahab T, Kattimani Y, Hörner M, Loserth S, Gudi V, Adalbert R, Imdahl F, Saliba AE, Coleman M, Stangel M, Simons M, Martini R. Microglia-mediated demyelination protects against CD8 + T cell-driven axon degeneration in mice carrying PLP defects. Nat Commun 2023; 14:6911. [PMID: 37903797 PMCID: PMC10616105 DOI: 10.1038/s41467-023-42570-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
Axon degeneration and functional decline in myelin diseases are often attributed to loss of myelin but their relation is not fully understood. Perturbed myelinating glia can instigate chronic neuroinflammation and contribute to demyelination and axonal damage. Here we study mice with distinct defects in the proteolipid protein 1 gene that develop axonal damage which is driven by cytotoxic T cells targeting myelinating oligodendrocytes. We show that persistent ensheathment with perturbed myelin poses a risk for axon degeneration, neuron loss, and behavioral decline. We demonstrate that CD8+ T cell-driven axonal damage is less likely to progress towards degeneration when axons are efficiently demyelinated by activated microglia. Mechanistically, we show that cytotoxic T cell effector molecules induce cytoskeletal alterations within myelinating glia and aberrant actomyosin constriction of axons at paranodal domains. Our study identifies detrimental axon-glia-immune interactions which promote neurodegeneration and possible therapeutic targets for disorders associated with myelin defects and neuroinflammation.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany.
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.
| | - Tassnim Abdelwahab
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Yogita Kattimani
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Michaela Hörner
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Department of Neurology, Section of Neurodegeneration, University Hospital Heidelberg, Heidelberg, Germany
| | - Silke Loserth
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Robert Adalbert
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary
- Institute of Health Sciences Education, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Michael Coleman
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Translational Medicine, Novartis Institute of Biomedical Research, Basel, Switzerland
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster of Systems Neurology, Munich, Germany
| | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Abdelwahab T, Stadler D, Knöpper K, Arampatzi P, Saliba AE, Kastenmüller W, Martini R, Groh J. Cytotoxic CNS-associated T cells drive axon degeneration by targeting perturbed oligodendrocytes in PLP1 mutant mice. iScience 2023; 26:106698. [PMID: 37182098 PMCID: PMC10172788 DOI: 10.1016/j.isci.2023.106698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Myelin defects lead to neurological dysfunction in various diseases and in normal aging. Chronic neuroinflammation often contributes to axon-myelin damage in these conditions and can be initiated and/or sustained by perturbed myelinating glia. We have previously shown that distinct PLP1 mutations result in neurodegeneration that is largely driven by adaptive immune cells. Here we characterize CD8+ CNS-associated T cells in myelin mutants using single-cell transcriptomics and identify population heterogeneity and disease-associated changes. We demonstrate that early sphingosine-1-phosphate receptor modulation attenuates T cell recruitment and neural damage, while later targeting of CNS-associated T cell populations is inefficient. Applying bone marrow chimerism and utilizing random X chromosome inactivation, we provide evidence that axonal damage is driven by cytotoxic, antigen specific CD8+ T cells that target mutant myelinating oligodendrocytes. These findings offer insights into neural-immune interactions and are of translational relevance for neurological conditions associated with myelin defects and neuroinflammation.
Collapse
Affiliation(s)
- Tassnim Abdelwahab
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - David Stadler
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Konrad Knöpper
- Institute for Systems Immunology, University of Würzburg, Würzburg, Germany
| | | | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | | | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Locatelli G, Marques-Ferreira F, Katsoulas A, Kalaitzaki V, Krueger M, Ingold-Heppner B, Walthert S, Sankowski R, Prazeres da Costa O, Dolga A, Huber M, Gold M, Culmsee C, Waisman A, Bechmann I, Milchevskaya V, Prinz M, Tresch A, Becher B, Buch T. IGF1R expression by adult oligodendrocytes is not required in the steady-state but supports neuroinflammation. Glia 2023; 71:616-632. [PMID: 36394300 DOI: 10.1002/glia.24299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
In the central nervous system (CNS), insulin-like growth factor 1 (IGF-1) regulates myelination by oligodendrocyte (ODC) precursor cells and shows anti-apoptotic properties in neuronal cells in different in vitro and in vivo systems. Previous work also suggests that IGF-1 protects ODCs from cell death and enhances remyelination in models of toxin-induced and autoimmune demyelination. However, since evidence remains controversial, the therapeutic potential of IGF-1 in demyelinating CNS conditions is unclear. To finally shed light on the function of IGF1-signaling for ODCs, we deleted insulin-like growth factor 1 receptor (IGF1R) specifically in mature ODCs of the mouse. We found that ODC survival and myelin status were unaffected by the absence of IGF1R until 15 months of age, indicating that IGF-1 signaling does not play a major role in post-mitotic ODCs during homeostasis. Notably, the absence of IGF1R did neither affect ODC survival nor myelin status upon cuprizone intoxication or induction of experimental autoimmune encephalomyelitis (EAE), models for toxic and autoimmune demyelination, respectively. Surprisingly, however, the absence of IGF1R from ODCs protected against clinical neuroinflammation in the EAE model. Together, our data indicate that IGF-1 signaling is not required for the function and survival of mature ODCs in steady-state and disease.
Collapse
Affiliation(s)
- Giuseppe Locatelli
- Institute of Experimental Immunology, University of Zurich, Zurich.,Theodor Kocher Institute, University Bern, Bern, Switzerland
| | | | - Antonis Katsoulas
- Institute of Laboratory Animal Science, University of Zurich, Zurich
| | | | - Martin Krueger
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Barbara Ingold-Heppner
- Institute of Pathology, Campus Mitte, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | | | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olivia Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Amalia Dolga
- Institute for Pharmacology and Clinical Pharmacy, Philipps-Universität Marburg, Marburg, Germany.,Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Maike Gold
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Philipps-Universität Marburg, Marburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Vladislava Milchevskaya
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Achim Tresch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich
| | - Thorsten Buch
- Institute of Experimental Immunology, University of Zurich, Zurich.,Institute of Laboratory Animal Science, University of Zurich, Zurich.,Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| |
Collapse
|
7
|
Yang Z, Gong M, Yang C, Chen C, Zhang K. Applications of Induced Pluripotent Stem Cell-Derived Glia in Brain Disease Research and Treatment. Handb Exp Pharmacol 2023; 281:103-140. [PMID: 37735301 DOI: 10.1007/164_2023_697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Glia are integral components of neural networks and are crucial in both physiological functions and pathological processes of the brain. Many brain diseases involve glial abnormalities, including inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. Induced pluripotent stem cell (iPSC)-derived glia provide opportunities to study the contributions of glia in human brain diseases. These cells have been used for human disease modeling as well as generating new therapies. This chapter introduces glial involvement in brain diseases, then summarizes different methods of generating iPSC-derived glia disease models of these cells. Finally, strategies for treating disease using iPSC-derived glia are discussed. The goal of this chapter is to provide an overview and shed light on the applications of iPSC-derived glia in brain disease research and treatment.
Collapse
Affiliation(s)
- Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Mingyue Gong
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Chuanyan Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China.
| |
Collapse
|
8
|
Ktena N, Kaplanis SI, Kolotuev I, Georgilis A, Kallergi E, Stavroulaki V, Nikoletopoulou V, Savvaki M, Karagogeos D. Autophagic degradation of CNS myelin maintains axon integrity. Cell Stress 2022; 6:93-107. [PMID: 36478958 PMCID: PMC9707329 DOI: 10.15698/cst2022.12.274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 09/05/2023] Open
Abstract
(Macro)autophagy is a major lysosome-dependent degradation mechanism which engulfs, removes and recycles unwanted cytoplasmic material, including damaged organelles and toxic protein aggregates. Although a few studies implicate autophagy in CNS demyelinating pathologies, its role, particularly in mature oligodendrocytes and CNS myelin, remains poorly studied. Here, using both pharmacological and genetic inhibition of the autophagic machinery, we provide evidence that autophagy is an essential mechanism for oligodendrocyte maturation in vitro. Our study reveals that two core myelin proteins, namely proteolipid protein (PLP) and myelin basic protein (MBP) are incorporated into autophagosomes in oligodendrocytes, resulting in their degradation. Furthermore, we ablated atg5, a core gene of the autophagic machinery, specifically in myelinating glial cells in vivo by tamoxifen administration (plp-Cre ERT2 ; atg5 f/f ) and showed that myelin maintenance is perturbed, leading to PLP accumulation. Significant morphological defects in myelin membrane such as decompaction accompanied with increased axonal degeneration are observed. As a result, the mice exhibit behavioral deficits. In summary, our data highlight that the maintenance of adult myelin homeostasis in the CNS requires the involvement of a fully functional autophagic machinery.
Collapse
Affiliation(s)
- Niki Ktena
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Stefanos Ioannis Kaplanis
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Irina Kolotuev
- Electron Microscopy Facility (PME), University of Lausanne, Lausanne, Switzerland
| | | | - Emmanouela Kallergi
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Vasiliki Stavroulaki
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | | | - Maria Savvaki
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Domna Karagogeos
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| |
Collapse
|
9
|
Hörner M, Groh J, Klein D, Ilg W, Schöls L, Santos SD, Bergmann A, Klebe S, Cauhape M, Branchu J, El Hachimi KH, Stevanin G, Darios F, Martini R. CNS-associated T-lymphocytes in a mouse model of Hereditary Spastic Paraplegia type 11 (SPG11) are therapeutic targets for established immunomodulators. Exp Neurol 2022; 355:114119. [DOI: 10.1016/j.expneurol.2022.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
|
10
|
Kettwig M, Ternka K, Wendland K, Krüger DM, Zampar S, Schob C, Franz J, Aich A, Winkler A, Sakib MS, Kaurani L, Epple R, Werner HB, Hakroush S, Kitz J, Prinz M, Bartok E, Hartmann G, Schröder S, Rehling P, Henneke M, Boretius S, Alia A, Wirths O, Fischer A, Stadelmann C, Nessler S, Gärtner J. Interferon-driven brain phenotype in a mouse model of RNaseT2 deficient leukoencephalopathy. Nat Commun 2021; 12:6530. [PMID: 34764281 PMCID: PMC8586222 DOI: 10.1038/s41467-021-26880-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
Infantile-onset RNaseT2 deficient leukoencephalopathy is characterised by cystic brain lesions, multifocal white matter alterations, cerebral atrophy, and severe psychomotor impairment. The phenotype is similar to congenital cytomegalovirus brain infection and overlaps with type I interferonopathies, suggesting a role for innate immunity in its pathophysiology. To date, pathophysiological studies have been hindered by the lack of mouse models recapitulating the neuroinflammatory encephalopathy found in patients. In this study, we generated Rnaset2-/- mice using CRISPR/Cas9-mediated genome editing. Rnaset2-/- mice demonstrate upregulation of interferon-stimulated genes and concurrent IFNAR1-dependent neuroinflammation, with infiltration of CD8+ effector memory T cells and inflammatory monocytes into the grey and white matter. Single nuclei RNA sequencing reveals homeostatic dysfunctions in glial cells and neurons and provide important insights into the mechanisms of hippocampal-accentuated brain atrophy and cognitive impairment. The Rnaset2-/- mice may allow the study of CNS damage associated with RNaseT2 deficiency and may be used for the investigation of potential therapies.
Collapse
Affiliation(s)
- Matthias Kettwig
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.
| | - Katharina Ternka
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Kristin Wendland
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Dennis Manfred Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Silvia Zampar
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Charlotte Schob
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Jonas Franz
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Anne Winkler
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - M Sadman Sakib
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Robert Epple
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Samy Hakroush
- Institute of Pathology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Julia Kitz
- Institute of Pathology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany
- Unit of Experimental Immunology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany
| | - Simone Schröder
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Marco Henneke
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Susann Boretius
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| |
Collapse
|
11
|
Windrem MS, Schanz SJ, Zou L, Chandler-Militello D, Kuypers NJ, Nedergaard M, Lu Y, Mariani JN, Goldman SA. Human Glial Progenitor Cells Effectively Remyelinate the Demyelinated Adult Brain. Cell Rep 2021; 31:107658. [PMID: 32433967 DOI: 10.1016/j.celrep.2020.107658] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/14/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022] Open
Abstract
Neonatally transplanted human glial progenitor cells (hGPCs) can myelinate the brains of myelin-deficient shiverer mice, rescuing their phenotype and survival. Yet, it has been unclear whether implanted hGPCs are similarly able to remyelinate the diffusely demyelinated adult CNS. We, therefore, ask if hGPCs could remyelinate both congenitally hypomyelinated adult shiverers and normal adult mice after cuprizone demyelination. In adult shiverers, hGPCs broadly disperse and differentiate as myelinating oligodendrocytes after subcortical injection, improving both host callosal conduction and ambulation. Implanted hGPCs similarly remyelinate denuded axons after cuprizone demyelination, whether delivered before or after demyelination. RNA sequencing (RNA-seq) of hGPCs back from cuprizone-demyelinated brains reveals their transcriptional activation of oligodendrocyte differentiation programs, while distinguishing them from hGPCs not previously exposed to demyelination. These data indicate the ability of transplanted hGPCs to disperse throughout the adult CNS, to broadly myelinate regions of dysmyelination, and also to be recruited as myelinogenic oligodendrocytes later in life, upon demyelination-associated demand.
Collapse
Affiliation(s)
- Martha S Windrem
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven J Schanz
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lisa Zou
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nicholas J Kuypers
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Yuan Lu
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John N Mariani
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark; Neuroscience Center, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
12
|
Groh J, Berve K, Martini R. Immune modulation attenuates infantile neuronal ceroid lipofuscinosis in mice before and after disease onset. Brain Commun 2021; 3:fcab047. [PMID: 33977263 PMCID: PMC8098642 DOI: 10.1093/braincomms/fcab047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/27/2020] [Accepted: 01/26/2021] [Indexed: 12/26/2022] Open
Abstract
Targeting neuroinflammation in models for infantile and juvenile forms of neuronal ceroid lipofuscinosis (NCL, CLN disease) with the clinically established immunomodulators fingolimod and teriflunomide significantly attenuates the neurodegenerative phenotype when applied preventively, i.e. before the development of substantial neural damage and clinical symptoms. Here, we show that in a mouse model for the early onset and rapidly progressing CLN1 form, more complex clinical phenotypes like disturbed motor coordination and impaired visual acuity are also ameliorated by immunomodulation. Moreover, we show that the disease outcome can be attenuated even when fingolimod and teriflunomide treatment starts after disease onset, i.e. when neurodegeneration is ongoing and clinical symptoms are detectable. In detail, treatment with either drug led to a reduction in T-cell numbers and microgliosis in the CNS, although not to the same extent as upon preventive treatment. Pharmacological immunomodulation was accompanied by a reduction of axonal damage, neuron loss and astrogliosis in the retinotectal system and by reduced brain atrophy. Accordingly, the frequency of myoclonic jerks and disturbed motor coordination were attenuated. Overall, disease alleviation was remarkably substantial upon therapeutic treatment with both drugs, although less robust than upon preventive treatment. To test the relevance of putative immune-independent mechanisms of action in this model, we treated CLN1 mice lacking mature T- and B-lymphocytes. Immunodeficient CLN1 mice showed, as previously reported, an improved neurological phenotype in comparison with genuine CLN1 mice which could not be further alleviated by either of the drugs, reflecting a predominantly immune-related therapeutic mechanism of action. The present study supports and strengthens our previous view that repurposing clinically approved immunomodulators may alleviate the course of CLN1 disease in human patients, even though diagnosis usually occurs when symptoms have already emerged.
Collapse
Affiliation(s)
- Janos Groh
- Section of Developmental Neurobiology, Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Kristina Berve
- Section of Developmental Neurobiology, Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Rudolf Martini
- Section of Developmental Neurobiology, Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
13
|
Duncan GJ, Simkins TJ, Emery B. Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. Front Cell Dev Biol 2021; 9:653101. [PMID: 33763430 PMCID: PMC7982542 DOI: 10.3389/fcell.2021.653101] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
The myelination of axons by oligodendrocytes is a highly complex cell-to-cell interaction. Oligodendrocytes and axons have a reciprocal signaling relationship in which oligodendrocytes receive cues from axons that direct their myelination, and oligodendrocytes subsequently shape axonal structure and conduction. Oligodendrocytes are necessary for the maturation of excitatory domains on the axon including nodes of Ranvier, help buffer potassium, and support neuronal energy metabolism. Disruption of the oligodendrocyte-axon unit in traumatic injuries, Alzheimer's disease and demyelinating diseases such as multiple sclerosis results in axonal dysfunction and can culminate in neurodegeneration. In this review, we discuss the mechanisms by which demyelination and loss of oligodendrocytes compromise axons. We highlight the intra-axonal cascades initiated by demyelination that can result in irreversible axonal damage. Both the restoration of oligodendrocyte myelination or neuroprotective therapies targeting these intra-axonal cascades are likely to have therapeutic potential in disorders in which oligodendrocyte support of axons is disrupted.
Collapse
Affiliation(s)
- Greg J. Duncan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Tyrell J. Simkins
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Vollum Institute, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, VA Portland Health Care System, Portland, OR, United States
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
14
|
Gruenenfelder FI, McLaughlin M, Griffiths IR, Garbern J, Thomson G, Kuzman P, Barrie JA, McCulloch ML, Penderis J, Stassart R, Nave KA, Edgar JM. Neural stem cells restore myelin in a demyelinating model of Pelizaeus-Merzbacher disease. Brain 2020; 143:1383-1399. [PMID: 32419025 PMCID: PMC7462093 DOI: 10.1093/brain/awaa080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/20/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Pelizaeus-Merzbacher disease is a fatal X-linked leukodystrophy caused by mutations in the PLP1 gene, which is expressed in the CNS by oligodendrocytes. Disease onset, symptoms and mortality span a broad spectrum depending on the nature of the mutation and thus the degree of CNS hypomyelination. In the absence of an effective treatment, direct cell transplantation into the CNS to restore myelin has been tested in animal models of severe forms of the disease with failure of developmental myelination, and more recently, in severely affected patients with early disease onset due to point mutations in the PLP1 gene, and absence of myelin by MRI. In patients with a PLP1 duplication mutation, the most common cause of Pelizaeus-Merzbacher disease, the pathology is poorly defined because of a paucity of autopsy material. To address this, we examined two elderly patients with duplication of PLP1 in whom the overall syndrome, including end-stage pathology, indicated a complex disease involving dysmyelination, demyelination and axonal degeneration. Using the corresponding Plp1 transgenic mouse model, we then tested the capacity of transplanted neural stem cells to restore myelin in the context of PLP overexpression. Although developmental myelination and axonal coverage by endogenous oligodendrocytes was extensive, as assessed using electron microscopy (n = 3 at each of four end points) and immunostaining (n = 3 at each of four end points), wild-type neural precursors, transplanted into the brains of the newborn mutants, were able to effectively compete and replace the defective myelin (n = 2 at each of four end points). These data demonstrate the potential of neural stem cell therapies to restore normal myelination and protect axons in patients with PLP1 gene duplication mutation and further, provide proof of principle for the benefits of stem cell transplantation for other fatal leukodystrophies with 'normal' developmental myelination.
Collapse
Affiliation(s)
- Fredrik I Gruenenfelder
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Mark McLaughlin
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Ian R Griffiths
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - James Garbern
- Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Gemma Thomson
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Peter Kuzman
- Department of Neuropathology, University Clinic Leipzig, D-04103 Leipzig, Germany
| | - Jennifer A Barrie
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Maj-Lis McCulloch
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jacques Penderis
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Ruth Stassart
- Department of Neuropathology, University Clinic Leipzig, D-04103 Leipzig, Germany
| | - Klaus-Armin Nave
- Max Planck Institute for Experimental Medicine, D-37075 Goettingen, Germany
| | - Julia M Edgar
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.,Max Planck Institute for Experimental Medicine, D-37075 Goettingen, Germany
| |
Collapse
|
15
|
Lüningschrör P, Slotta C, Heimann P, Briese M, Weikert UM, Massih B, Appenzeller S, Sendtner M, Kaltschmidt C, Kaltschmidt B. Absence of Plekhg5 Results in Myelin Infoldings Corresponding to an Impaired Schwann Cell Autophagy, and a Reduced T-Cell Infiltration Into Peripheral Nerves. Front Cell Neurosci 2020; 14:185. [PMID: 32733205 PMCID: PMC7358705 DOI: 10.3389/fncel.2020.00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation and dysregulation of the immune system are hallmarks of several neurodegenerative diseases. An activated immune response is considered to be the cause of myelin breakdown in demyelinating disorders. In the peripheral nervous system (PNS), myelin can be degraded in an autophagy-dependent manner directly by Schwann cells or by macrophages, which are modulated by T-lymphocytes. Here, we show that the NF-κB activator Pleckstrin homology containing family member 5 (Plekhg5) is involved in the regulation of both Schwann cell autophagy and recruitment of T-lymphocytes in peripheral nerves during motoneuron disease. Plekhg5-deficient mice show defective axon/Schwann cell units characterized by myelin infoldings in peripheral nerves. Even at late stages, Plekhg5-deficient mice do not show any signs of demyelination and inflammation. Using RNAseq, we identified a transcriptional signature for an impaired immune response in sciatic nerves, which manifested in a reduced number of CD4+ and CD8+ T-cells. These findings identify Plekhg5 as a promising target to impede myelin breakdown in demyelinating PNS disorders.
Collapse
Affiliation(s)
- Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Carsten Slotta
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany.,Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | - Peter Heimann
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ulrich M Weikert
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Bita Massih
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Silke Appenzeller
- Core Unit Systems Medicine, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | | | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany.,Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
16
|
Woodley PK, Min Q, Li Y, Mulvey NF, Parkinson DB, Dun XP. Distinct VIP and PACAP Functions in the Distal Nerve Stump During Peripheral Nerve Regeneration. Front Neurosci 2019; 13:1326. [PMID: 31920495 PMCID: PMC6920234 DOI: 10.3389/fnins.2019.01326] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/26/2019] [Indexed: 12/29/2022] Open
Abstract
Vasoactive Intestinal Peptide (VIP) and Pituitary Adenylyl Cyclase Activating Peptide (PACAP) are regeneration-associated neuropeptides, which are up-regulated by neurons following peripheral nerve injury. So far, they have only been studied for their roles as autocrine signals for both neuronal survival and axon outgrowth during peripheral nerve regeneration. In this report, we examined VIP and PACAP's paracrine effects on Schwann cells and macrophages in the distal nerve stump during peripheral nerve regeneration. We show that VPAC1, VPAC2, and PAC1 are all up-regulated in the mouse distal nerve following peripheral nerve injury and are highly expressed in Schwann cells and macrophages within the distal sciatic nerve. We further investigated the effect of VIP and PACAP on cultured rat Schwann cells, and found that VIP and PACAP can not only promote myelin gene expression in Schwann cells but can also inhibit the release of pro-inflammatory cytokines by Schwann cells. Furthermore, we show that VIP and PACAP inhibit the release of pro-inflammatory cytokines and enhance anti-inflammatory cytokine expression in sciatic nerve explants. Our results provide evidence that VIP and PACAP could have important functions in the distal nerve stump following injury to promote remyelination and regulate the inflammatory response. Thus, VIP and PACAP receptors appear as important targets to promote peripheral nerve repair following injury.
Collapse
Affiliation(s)
- Patricia K Woodley
- Faculty of Health: Medicine, Dentistry and Human Sciences, Plymouth, United Kingdom
| | - Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Yankun Li
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Nina F Mulvey
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - David B Parkinson
- Faculty of Health: Medicine, Dentistry and Human Sciences, Plymouth, United Kingdom
| | - Xin-Peng Dun
- Faculty of Health: Medicine, Dentistry and Human Sciences, Plymouth, United Kingdom.,School of Pharmacy, Hubei University of Science and Technology, Xianning, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
17
|
Kim D, Park Y. Molecular mechanism for the multiple sclerosis risk variant rs17594362. Hum Mol Genet 2019; 28:3600-3609. [PMID: 31509193 PMCID: PMC6927461 DOI: 10.1093/hmg/ddz216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/31/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is known as an autoimmune demyelinating disease of the central nervous system. However, its cause remains elusive. Given previous studies suggesting that dysfunctional oligodendrocytes (OLs) may trigger MS, we tested whether single nucleotide polymorphisms (SNPs) associated with MS affect OL enhancers, potentially increasing MS risk by dysregulating gene expression of OL lineage cells. We found that two closely spaced OL enhancers, which are 3 Kb apart on chromosome 13, overlap two MS SNPs in linkage disequilibrium-rs17594362 and rs12429256. Our data revealed that the two MS SNPs significantly up-regulate the associated OL enhancers, which we have named as Rgcc-E1 and Rgcc-E2. Analysis of Hi-C data and epigenome editing experiments shows that Rgcc is the primary target of Rgcc-E1 and Rgcc-E2. Collectively, these data indicate that the molecular mechanism of rs17594362 and rs12429256 is to induce Rgcc overexpression by potentiating the enhancer activity of Rgcc-E1 and Rgcc-E2. Importantly, the dosage of the rs17594362/rs12429256 risk allele is positively correlated with the expression level of Rgcc in the human population, confirming our molecular mechanism. Our study also suggests that Rgcc overexpression in OL lineage cells may be a key cellular mechanism of rs17594362 and rs12429256 for MS.
Collapse
Affiliation(s)
- Dongkyeong Kim
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Yungki Park
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
18
|
Li H, Okada H, Suzuki S, Sakai K, Izumi H, Matsushima Y, Ichinohe N, Goto YI, Okada T, Inoue K. Gene suppressing therapy for Pelizaeus-Merzbacher disease using artificial microRNA. JCI Insight 2019; 4:125052. [PMID: 31092737 DOI: 10.1172/jci.insight.125052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/17/2019] [Indexed: 11/17/2022] Open
Abstract
Copy number increase or decrease of certain dosage-sensitive genes may cause genetic diseases with distinct phenotypes, conceptually termed genomic disorders. The most common cause of Pelizaeus-Merzbacher disease (PMD), an X-linked hypomyelinating leukodystrophy, is genomic duplication encompassing the entire proteolipid protein 1 (PLP1) gene. Although the exact molecular and cellular mechanisms underlying PLP1 duplication, which causes severe hypomyelination in the central nervous system, remain largely elusive, PLP1 overexpression is likely the fundamental cause of this devastating disease. Here, we investigated if adeno-associated virus-mediated (AAV-mediated) gene-specific suppression may serve as a potential cure for PMD by correcting quantitative aberrations in gene products. We developed an oligodendrocyte-specific Plp1 gene suppression therapy using artificial microRNA under the control of human CNP promoter in a self-complementary AAV (scAAV) platform. A single direct brain injection achieved widespread oligodendrocyte-specific Plp1 suppression in the white matter of WT mice. AAV treatment in Plp1-transgenic mice, a PLP1 duplication model, ameliorated cytoplasmic accumulation of Plp1, preserved mature oligodendrocytes from degradation, restored myelin structure and gene expression, and improved survival and neurological phenotypes. Together, our results provide evidence that AAV-mediated gene suppression therapy can serve as a potential cure for PMD resulting from PLP1 duplication and possibly for other genomic disorders.
Collapse
Affiliation(s)
- Heng Li
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hironori Okada
- Department of Molecular and Medical Genetics, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Sadafumi Suzuki
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhisa Sakai
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hitomi Izumi
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yukiko Matsushima
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Okada
- Department of Molecular and Medical Genetics, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
19
|
Bijland S, Thomson G, Euston M, Michail K, Thümmler K, Mücklisch S, Crawford CL, Barnett SC, McLaughlin M, Anderson TJ, Linington C, Brown ER, Kalkman ER, Edgar JM. An in vitro model for studying CNS white matter: functional properties and experimental approaches. F1000Res 2019; 8:117. [PMID: 31069065 PMCID: PMC6489523 DOI: 10.12688/f1000research.16802.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2019] [Indexed: 12/23/2022] Open
Abstract
The normal development and maintenance of CNS white matter, and its responses to disease and injury, are defined by synergies between axons, oligodendrocytes, astrocytes and microglia, and further influenced by peripheral components such as the gut microbiome and the endocrine and immune systems. Consequently, mechanistic insights, therapeutic approaches and safety tests rely ultimately on in vivo models and clinical trials. However, in vitro models that replicate the cellular complexity of the CNS can inform these approaches, reducing costs and minimising the use of human material or experimental animals; in line with the principles of the 3Rs. Using electrophysiology, pharmacology, time-lapse imaging, and immunological assays, we demonstrate that murine spinal cord-derived myelinating cell cultures recapitulate spinal-like electrical activity and innate CNS immune functions, including responses to disease-relevant myelin debris and pathogen associated molecular patterns (PAMPs). Further, we show they are (i) amenable to siRNA making them suitable for testing gene-silencing strategies; (ii) can be established on microelectrode arrays (MEAs) for electrophysiological studies; and (iii) are compatible with multi-well microplate formats for semi-high throughput screens, maximising information output whilst further reducing animal use. We provide protocols for each of these. Together, these advances increase the utility of this in vitro tool for studying normal and pathological development and function of white matter, and for screening therapeutic molecules or gene targets for diseases such as multiple sclerosis, motor neuron disease or spinal cord injury, whilst avoiding in vivo approaches on experimental animals.
Collapse
Affiliation(s)
- Silvia Bijland
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Gemma Thomson
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Matthew Euston
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Kyriakos Michail
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Katja Thümmler
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Steve Mücklisch
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Colin L Crawford
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Mark McLaughlin
- School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - T James Anderson
- School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Christopher Linington
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Euan R Brown
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Eric R Kalkman
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Julia M Edgar
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
20
|
Lüders KA, Nessler S, Kusch K, Patzig J, Jung RB, Möbius W, Nave KA, Werner HB. Maintenance of high proteolipid protein level in adult central nervous system myelin is required to preserve the integrity of myelin and axons. Glia 2019; 67:634-649. [PMID: 30637801 DOI: 10.1002/glia.23549] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
Proteolipid protein (PLP) is the most abundant integral membrane protein in central nervous system (CNS) myelin. Expression of the Plp-gene in oligodendrocytes is not essential for the biosynthesis of myelin membranes but required to prevent axonal pathology. This raises the question whether the exceptionally high level of PLP in myelin is required later in life, or whether high-level PLP expression becomes dispensable once myelin has been assembled. Both models require a better understanding of the turnover of PLP in myelin in vivo. Thus, we generated and characterized a novel line of tamoxifen-inducible Plp-mutant mice that allowed us to determine the rate of PLP turnover after developmental myelination has been completed, and to assess the possible impact of gradually decreasing amounts of PLP for myelin and axonal integrity. We found that 6 months after targeting the Plp-gene the abundance of PLP in CNS myelin was about halved, probably reflecting that myelin is slowly turned over in the adult brain. Importantly, this reduction by 50% was sufficient to cause the entire spectrum of neuropathological changes previously associated with the developmental lack of PLP, including myelin outfoldings, lamellae splittings, and axonal spheroids. In comparison to axonopathy and gliosis, the infiltration of cytotoxic T-cells was temporally delayed, suggesting a corresponding chronology also in the genetic disorders of PLP-deficiency. High-level abundance of PLP in myelin throughout adult life emerges as a requirement for the preservation of white matter integrity.
Collapse
Affiliation(s)
- Katja A Lüders
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
21
|
Groh J, Hörner M, Martini R. Teriflunomide attenuates neuroinflammation-related neural damage in mice carrying human PLP1 mutations. J Neuroinflammation 2018; 15:194. [PMID: 29970109 PMCID: PMC6031103 DOI: 10.1186/s12974-018-1228-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genetically caused neurological disorders of the central nervous system (CNS) are mostly characterized by poor or even fatal clinical outcome and few or no causative treatments are available. Often, these disorders are associated with low-grade, disease-promoting inflammation, another feature shared by progressive forms of multiple sclerosis (PMS). We previously generated two mouse lines carrying distinct mutations in the oligodendrocytic PLP1 gene that have initially been identified in patients diagnosed with MS. These mutations cause a loss of PLP function leading to a histopathological and clinical phenotype common to both PMS and genetic CNS disorders, like hereditary spastic paraplegias. Importantly, neuroinflammation promotes disease progression in these models, suggesting that pharmacological modulation of inflammation might ameliorate disease outcome. METHODS We applied teriflunomide, an approved medication for relapsing-remitting MS targeting activated T-lymphocytes, in the drinking water (10 mg/kg body weight/day). Experimental long-term treatment of PLP mutant mice was non-invasively monitored by longitudinal optical coherence tomography and by rotarod analysis. Immunomodulatory effects were subsequently analyzed by flow cytometry and immunohistochemistry and treatment effects regarding neural damage, and neurodegeneration were assessed by histology and immunohistochemistry. RESULTS Preventive treatment with teriflunomide attenuated the increase in number of CD8+ cytotoxic effector T cells and fostered the proliferation of CD8+ CD122+ PD-1+ regulatory T cells in the CNS. This led to an amelioration of axonopathic features and neuron loss in the retinotectal system, also reflected by reduced thinning of the innermost retinal composite layer in longitudinal studies and ameliorated clinical outcome upon preventive long-term treatment. Treatment of immune-incompetent PLP mutants did not provide evidence for a direct, neuroprotective effect of the medication. When treatment was terminated, no rebound of neuroinflammation occurred and histopathological improvement was preserved for at least 75 days without treatment. After disease onset, teriflunomide halted ongoing axonal perturbation and enabled a recovery of dendritic arborization by surviving ganglion cells. However, neither neuron loss nor clinical features were ameliorated, likely due to already advanced neurodegeneration before treatment onset. CONCLUSIONS We identify teriflunomide as a possible medication not only for PMS but also for inflammation-related genetic diseases of the nervous system for which causal treatment options are presently lacking.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080, Wuerzburg, Germany.
| | - Michaela Hörner
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080, Wuerzburg, Germany
| | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080, Wuerzburg, Germany.
| |
Collapse
|
22
|
Groh J, Friedman HC, Orel N, Ip CW, Fischer S, Spahn I, Schäffner E, Hörner M, Stadler D, Buttmann M, Varallyay C, Solymosi L, Sendtner M, Peterson AC, Martini R. Pathogenic inflammation in the CNS of mice carrying human PLP1 mutations. Hum Mol Genet 2018; 25:4686-4702. [PMID: 28173160 DOI: 10.1093/hmg/ddw296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/12/2016] [Accepted: 08/21/2016] [Indexed: 01/03/2023] Open
Abstract
Progressive forms of multiple sclerosis lead to chronic disability, substantial decline in quality of life and reduced longevity. It is often suggested that they occur independently of inflammation. Here we investigated the disease progression in mouse models carrying PLP1 point mutations previously found in patients displaying clinical features of multiple sclerosis. These mouse models show loss-of-function of PLP1 associated with neuroinflammation; the latter leading to clinically relevant axonal degeneration, neuronal loss and brain atrophy as demonstrated by inactivation of the recombination activating gene 1. Moreover, these pathological hallmarks were substantially amplified when we attenuated immune regulation by inactivation of the programmed cell death-1 gene. Our observations support the view that primary oligodendroglial abnormalities can evoke pathogenically relevant neuroinflammation that drives neurodegeneration, as observed in some forms of multiple sclerosis but also in other, genetically-mediated neurodegenerative disorders of the human nervous system. As many potent immunomodulatory drugs have emerged during the last years, it is tempting to consider immunomodulation as a treatment option not only for multiple sclerosis, but also for so far non-treatable, genetically-mediated disorders of the nervous system accompanied by pathogenic neuroinflammation.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Hana C Friedman
- Laboratory of Developmental Biology, Ludmer Research and Training Building, McGill University, Montreal, QC, Canada
| | - Nadiya Orel
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Stefan Fischer
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Irene Spahn
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Erik Schäffner
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Michaela Hörner
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - David Stadler
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Mathias Buttmann
- Department of Neurology, Multiple Sclerosis and Neuroimmunology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Csanad Varallyay
- Division of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - László Solymosi
- Division of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Alan C Peterson
- Laboratory of Developmental Biology, Ludmer Research and Training Building, McGill University, Montreal, QC, Canada
| | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| |
Collapse
|
23
|
Lüders KA, Patzig J, Simons M, Nave KA, Werner HB. Genetic dissection of oligodendroglial and neuronalPlp1function in a novel mouse model of spastic paraplegia type 2. Glia 2017; 65:1762-1776. [DOI: 10.1002/glia.23193] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Katja A. Lüders
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Julia Patzig
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Mikael Simons
- Cellular Neuroscience; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Hauke B. Werner
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| |
Collapse
|
24
|
Lepka K, Volbracht K, Bill E, Schneider R, Rios N, Hildebrandt T, Ingwersen J, Prozorovski T, Lillig CH, van Horssen J, Steinman L, Hartung HP, Radi R, Holmgren A, Aktas O, Berndt C. Iron-sulfur glutaredoxin 2 protects oligodendrocytes against damage induced by nitric oxide release from activated microglia. Glia 2017; 65:1521-1534. [PMID: 28618115 DOI: 10.1002/glia.23178] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
Demyelinated brain lesions, a hallmark of autoimmune neuroinflammatory diseases like multiple sclerosis, result from oligodendroglial cell damage. Activated microglia are considered a major source of nitric oxide and subsequent peroxynitrite-mediated damage of myelin. Here, we provide biochemical and biophysical evidence that the oxidoreductase glutaredoxin 2 inhibits peroxynitrite formation by transforming nitric oxide into dinitrosyl-diglutathionyl-iron-complexes. Glutaredoxin 2 levels influence both survival rates of primary oligodendrocyte progenitor cells and preservation of myelin structure in cerebellar organotypic slice cultures challenged with activated microglia or nitric oxide donors. Of note, glutaredoxin 2-mediated protection is not linked to its enzymatic activity as oxidoreductase, but to the disassembly of its uniquely coordinated iron-sulfur cluster using glutathione as non-protein ligand. The protective effect of glutaredoxin 2 is connected to decreased protein carbonylation and nitration. In line, brain lesions of mice suffering from experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, show decreased glutaredoxin 2 expression and increased nitrotyrosine formation indicating that this type of protection is missing in the inflamed central nervous system. Our findings link inorganic biochemistry to neuroinflammation and identify glutaredoxin 2 as a protective factor against neuroinflammation-mediated myelin damage. Thus, improved availability of glutathione-coordinated iron-sulfur clusters emerges as a potential therapeutic approach in inflammatory demyelination.
Collapse
Affiliation(s)
- Klaudia Lepka
- Department of Neurology, Medical Faculty, Heinrich-Heine Universität, Düsseldorf, 40225, Germany
| | - Katrin Volbracht
- Department of Neurology, Medical Faculty, Heinrich-Heine Universität, Düsseldorf, 40225, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, 45470, Germany
| | - Reiner Schneider
- Department of Neurology, Medical Faculty, Heinrich-Heine Universität, Düsseldorf, 40225, Germany
| | - Natalia Rios
- Departmento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, CP 11800, Uruguay
| | - Thomas Hildebrandt
- Department of Neurology, Medical Faculty, Heinrich-Heine Universität, Düsseldorf, 40225, Germany
| | - Jens Ingwersen
- Department of Neurology, Medical Faculty, Heinrich-Heine Universität, Düsseldorf, 40225, Germany
| | - Timur Prozorovski
- Department of Neurology, Medical Faculty, Heinrich-Heine Universität, Düsseldorf, 40225, Germany
| | - Christopher Horst Lillig
- Universitätsmedizin Greifswald, Institute for Medical Biochemistry and Molecular Biology, Greifswald, 17475, Germany
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, MB, 1007, The Netherlands
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, 94305-5316, USA
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine Universität, Düsseldorf, 40225, Germany
| | - Rafael Radi
- Departmento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, CP 11800, Uruguay
| | - Arne Holmgren
- Department for Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine Universität, Düsseldorf, 40225, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine Universität, Düsseldorf, 40225, Germany
| |
Collapse
|
25
|
Groh J, Martini R. Neuroinflammation as modifier of genetically caused neurological disorders of the central nervous system: Understanding pathogenesis and chances for treatment. Glia 2017; 65:1407-1422. [PMID: 28568966 DOI: 10.1002/glia.23162] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022]
Abstract
Genetically caused neurological disorders of the central nervous system (CNS) are usually orphan diseases with poor or even fatal clinical outcome and few or no treatments that will improve longevity or at least quality of life. Neuroinflammation is common to many of these disorders, despite the fact that a plethora of distinct mutations and molecular changes underlie the disorders. In this article, data from corresponding animal models are analyzed to define the roles of innate and adaptive inflammation as modifiers and amplifiers of disease. We describe both common and distinct patterns of neuroinflammation in genetically mediated CNS disorders and discuss the contrasting mechanisms that lead to adverse versus neuroprotective effects. Moreover, we identify the juxtaparanode as a neuroanatomical compartment commonly associated with inflammatory cells and ongoing axonopathic changes, in models of diverse diseases. The identification of key immunological effector pathways that amplify neuropathic features should lead to realistic possibilities for translatable therapeutic interventions using existing immunomodulators. Moreover, evidence emerges that neuroinflammation is not only able to modify primary neural damage-related symptoms but also may lead to unexpected clinical outcomes such as neuropsychiatric syndromes.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str. 11, Würzburg, D-97080, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str. 11, Würzburg, D-97080, Germany
| |
Collapse
|
26
|
Fingolimod and Teriflunomide Attenuate Neurodegeneration in Mouse Models of Neuronal Ceroid Lipofuscinosis. Mol Ther 2017; 25:1889-1899. [PMID: 28506594 PMCID: PMC5542710 DOI: 10.1016/j.ymthe.2017.04.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
CLN diseases are rare lysosomal storage diseases characterized by progressive axonal degeneration and neuron loss in the CNS, manifesting in disability, blindness, and premature death. We have previously demonstrated that, in animal models of infantile and juvenile forms of CLN disease (CLN1 and CLN3, respectively), secondary neuroinflammation in the CNS substantially amplifies neural damage, opening the possibility that immunomodulatory treatment might improve disease outcome. First, we recapitulated the inflammatory phenotype, originally seen in mice in autopsies of CLN patients. We then treated mouse models of CLN1 and CLN3 disease with the clinically approved immunomodulatory compounds fingolimod (0.5 mg/kg/day) and teriflunomide (10 mg/kg/day) by consistent supply in the drinking water for 5 months. The treatment was well tolerated and reduced T cell numbers and microgliosis in the CNS of both models. Moreover, axonal damage, neuron loss, retinal thinning, and brain atrophy were substantially attenuated in both models, along with reduced frequency of myoclonic jerks in Ppt1−/− mice. Based on these findings, and because side effects were not detected, we suggest that clinically approved immune modulators such as fingolimod and teriflunomide may be suitable to attenuate progression of CLN1 and CLN3 disease and, possibly, other orphan diseases with pathogenically relevant neuroinflammation.
Collapse
|
27
|
Abstract
Diseases of glia, including astrocytes and oligodendrocytes, are among the most prevalent and disabling, yet least appreciated, conditions in neurology. In recent years, it has become clear that besides the overtly glial disorders of oligodendrocyte loss and myelin failure, such as the leukodystrophies and inflammatory demyelinations, a number of neurodegenerative and psychiatric disorders may also be causally linked to glial dysfunction and derive from astrocytic as well as oligodendrocytic pathology. The relative contribution of glial dysfunction to many of these disorders may be so great as to allow their treatment by the delivery of allogeneic glial progenitor cells, the precursors to both astroglia and myelin-producing oligodendrocytes. Given the development of new methods for producing and isolating these cells from pluripotent stem cells, both the myelin disorders and appropriate glial-based neurodegenerative conditions may now be compelling targets for cell-based therapy. As such, glial cell-based therapies may offer potential benefit to a broader range of diseases than ever before contemplated, including disorders such as Huntington's disease and the motor neuron degeneration of amyotrophic lateral sclerosis, which have traditionally been considered neuronal in nature.
Collapse
|
28
|
Marteyn A, Baron-Van Evercooren A. Is involvement of inflammation underestimated in Pelizaeus-Merzbacher disease? J Neurosci Res 2016; 94:1572-1578. [PMID: 27661457 DOI: 10.1002/jnr.23931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 11/11/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating leukodystrophy resulting from proteolipid protein 1 gene (PLP1) mutations leading to oligodendrocyte loss. While neuroinflammation has recently become a common feature and actor in neurodegenerative diseases, the involvement of inflammation in PMD physiopathology is still highly debated despite evidence for strong astrogliosis and microglial cell activation. Activation of the innate immune system, and more particularly, of microglia and astrocytes, is mostly associated with the deleterious role of neuroinflammation. However, in diseases such as multiple sclerosis, microglia appear beneficial for repair based on their role in myelin debris removal or recruitment and differentiation of oligodendrocyte progenitor cells. In this review, we will discuss recent published data in terms of their relevance to the role of microglia in PMD evolution, and of their impact on the improvement of therapeutic approaches combining immunomodulation and cell therapy to promote optimal recovery. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Antoine Marteyn
- INSERM, U1127, F-75013, Paris, France.,CNRS, UMR 7225, F-75013, Paris, France.,Université Pierre et Marie Curie-Paris 6, UMR_S 1127, F-75013, Paris, France.,Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Anne Baron-Van Evercooren
- INSERM, U1127, F-75013, Paris, France. .,CNRS, UMR 7225, F-75013, Paris, France. .,Université Pierre et Marie Curie-Paris 6, UMR_S 1127, F-75013, Paris, France. .,Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France.
| |
Collapse
|
29
|
Groh J, Ribechini E, Stadler D, Schilling T, Lutz MB, Martini R. Sialoadhesin promotes neuroinflammation-related disease progression in two mouse models of CLN disease. Glia 2016; 64:792-809. [PMID: 26775238 DOI: 10.1002/glia.22962] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/13/2023]
Abstract
CLN diseases are mostly fatal lysosomal storage diseases that lead to neurodegeneration in the CNS. We have previously shown that CD8+ T-lymphocytes contribute to axonal perturbation and neuron loss in the CNS of Ppt1(-/-) mice, a model of CLN1 disease. We now investigated the role of the inflammation-related cell adhesion molecule sialoadhesin (Sn) in Ppt1(-/-) and Cln3(-/-) mice, a model of the most frequent form, CLN3 disease. Microglia/macrophages in the CNS of both models showed an upregulation of Sn and markers for proinflammatory M1 polarization and antigen presentation. Sn+ microglia/macrophages associated with SMI32+ axonal spheroids and CD8+ T-lymphocytes. To analyze their pathogenic impact, we crossbred both models with Sn-deficient mice and scored axonal degeneration and neuronal integrity using immunohistochemistry, electron microscopy and optical coherence tomography. Degenerative alterations in the retinotectal pathway of Ppt1(-/-)Sn(-/-) and Cln3(-/-)Sn(-/-) mice were significantly reduced. Ppt1(-/-)Sn(-/-) mice also showed a substantially improved clinical phenotype and extended lifespan, attenuated numbers of M1-polarized microglia/macrophages and reduced expression levels of proinflammatory cytokines. This was accompanied by an increased frequency of CD8+CD122+ T-lymphocytes in the CNS of Ppt1(-/-)Sn(-/-) mice, the regulatory phenotype of which was demonstrated by impaired survival of CD8+CD122- effector T-lymphocytes in co-culture experiments. We show for the first time that increased Sn expression on microglia/macrophages contributes to neural perturbation in two distinct models of CLN disease. Our data also indicate that a rarely described CD8+CD122+ T-cell population can regulate the corresponding diseases. These studies provide insights into CLN pathogenesis and may guide in designing immuno-regulatory treatment strategies.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Eliana Ribechini
- Institute of Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - David Stadler
- Department of Neurology, Developmental Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Tim Schilling
- Department of Neurology, Developmental Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Manfred B Lutz
- Institute of Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
30
|
Marteyn A, Sarrazin N, Yan J, Bachelin C, Deboux C, Santin MD, Gressens P, Zujovic V, Baron-Van Evercooren A. Modulation of the Innate Immune Response by Human Neural Precursors Prevails over Oligodendrocyte Progenitor Remyelination to Rescue a Severe Model of Pelizaeus-Merzbacher Disease. Stem Cells 2015; 34:984-96. [PMID: 26676415 DOI: 10.1002/stem.2263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/15/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) results from an X-linked misexpression of proteolipid protein 1 (PLP1). This leukodystrophy causes severe hypomyelination with progressive inflammation, leading to neurological dysfunctions and shortened life expectancy. While no cure exists for PMD, experimental cell-based therapy in the dysmyelinated shiverer model suggested that human oligodendrocyte progenitor cells (hOPCs) or human neural precursor cells (hNPCs) are promising candidates to treat myelinopathies. However, the fate and restorative advantages of human NPCs/OPCs in a relevant model of PMD has not yet been addressed. Using a model of Plp1 overexpression, resulting in demyelination with progressive inflammation, we compared side-by-side the therapeutic benefits of intracerebrally grafted hNPCs and hOPCs. Our findings reveal equal integration of the donor cells within presumptive white matter tracks. While the onset of exogenous remyelination was earlier in hOPCs-grafted mice than in hNPC-grafted mice, extended lifespan occurred only in hNPCs-grafted animals. This improved survival was correlated with reduced neuroinflammation (microglial and astrocytosis loads) and microglia polarization toward M2-like phenotype followed by remyelination. Thus modulation of neuroinflammation combined with myelin restoration is crucial to prevent PMD pathology progression and ensure successful rescue of PMD mice. These findings should help to design novel therapeutic strategies combining immunomodulation and stem/progenitor cell-based therapy for disorders associating hypomyelination with inflammation as observed in PMD.
Collapse
Affiliation(s)
- Antoine Marteyn
- INSERM, U1127, Institut du Cerveau et de la Moelle épinière, Paris Cedex 13, France.,Université Pierre et Marie Curie-Paris 6, UMR_S 1127, Paris, France.,CNRS, UMR 7225, Paris, France
| | - Nadège Sarrazin
- INSERM, U1127, Institut du Cerveau et de la Moelle épinière, Paris Cedex 13, France.,Université Pierre et Marie Curie-Paris 6, UMR_S 1127, Paris, France.,CNRS, UMR 7225, Paris, France
| | - Jun Yan
- INSERM, U1141, F-75019, Paris, France.,Univerité Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France
| | - Corinne Bachelin
- INSERM, U1127, Institut du Cerveau et de la Moelle épinière, Paris Cedex 13, France.,Université Pierre et Marie Curie-Paris 6, UMR_S 1127, Paris, France.,CNRS, UMR 7225, Paris, France
| | - Cyrille Deboux
- INSERM, U1127, Institut du Cerveau et de la Moelle épinière, Paris Cedex 13, France.,Université Pierre et Marie Curie-Paris 6, UMR_S 1127, Paris, France.,CNRS, UMR 7225, Paris, France
| | - Mathieu D Santin
- INSERM, U1127, Institut du Cerveau et de la Moelle épinière, Paris Cedex 13, France.,Université Pierre et Marie Curie-Paris 6, UMR_S 1127, Paris, France.,CNRS, UMR 7225, Paris, France.,CENIR, Centre de NeuroImagerie de Recherche, ICM, Hôpital Pitié-Salpêtrière, Paris, France
| | - Pierre Gressens
- INSERM, U1141, F-75019, Paris, France.,Univerité Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France
| | - Violetta Zujovic
- INSERM, U1127, Institut du Cerveau et de la Moelle épinière, Paris Cedex 13, France.,Université Pierre et Marie Curie-Paris 6, UMR_S 1127, Paris, France.,CNRS, UMR 7225, Paris, France
| | - Anne Baron-Van Evercooren
- INSERM, U1127, Institut du Cerveau et de la Moelle épinière, Paris Cedex 13, France.,Université Pierre et Marie Curie-Paris 6, UMR_S 1127, Paris, France.,CNRS, UMR 7225, Paris, France
| |
Collapse
|
31
|
Traka M, Podojil JR, McCarthy DP, Miller SD, Popko B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci 2015; 19:65-74. [PMID: 26656646 DOI: 10.1038/nn.4193] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022]
Abstract
Although multiple sclerosis is a common neurological disorder, the origin of the autoimmune response against myelin, which is the characteristic feature of the disease, remains unclear. To investigate whether oligodendrocyte death could cause this autoimmune response, we examined the oligodendrocyte ablation Plp1-CreER(T);ROSA26-eGFP-DTA (DTA) mouse model. Approximately 30 weeks after recovering from oligodendrocyte loss and demyelination, DTA mice develop a fatal secondary disease characterized by extensive myelin and axonal loss. Strikingly, late-onset disease was associated with increased numbers of T lymphocytes in the CNS and myelin oligodendrocyte glycoprotein (MOG)-specific T cells in lymphoid organs. Transfer of T cells derived from DTA mice to naive recipients resulted in neurological defects that correlated with CNS white matter inflammation. Furthermore, immune tolerization against MOG ameliorated symptoms. Overall, these data indicate that oligodendrocyte death is sufficient to trigger an adaptive autoimmune response against myelin, suggesting that a similar process can occur in the pathogenesis of multiple sclerosis.
Collapse
Affiliation(s)
- Maria Traka
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, Illinois, USA
| | - Joseph R Podojil
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Derrick P McCarthy
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Popko
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
32
|
Wasseff SK, Scherer SS. Activated immune response in an inherited leukodystrophy disease caused by the loss of oligodendrocyte gap junctions. Neurobiol Dis 2015; 82:86-98. [PMID: 26051537 PMCID: PMC4640986 DOI: 10.1016/j.nbd.2015.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/30/2015] [Accepted: 05/27/2015] [Indexed: 01/11/2023] Open
Abstract
Oligodendrocyte:oligodendrocyte (O:O) gap junction (GJ) coupling is a widespread and essential feature of the CNS, and is mediated by connexin47 (Cx47) and Cx32. Loss of function mutations affecting Cx47 results in a severe leukodystrophy, Pelizeus-Merzbacher-like disease (also known as Hypomyelinating Leukodystrophy 2), which can be reproduced in mice lacking both Cx47 and Cx32. Here we report the gene expression profile of the cerebellum--an affected brain region--in mice lacking both Cx47 and Cx32. Of the 43,174 mRNA probes examined, we find decreased expression of 23 probes (corresponding to 23 genes) and increased expression of 545 probes (corresponding to 348 genes). Many of the genes with reduced expression map to oligodendrocytes, and two of them (Fa2h and Ugt8a) are involved in the synthesis of myelin lipids. Many of the genes with increased expression map to lymphocytes and microglia, and involved in leukotrienes/prostaglandins synthesis and chemokines/cytokines interactions and signaling pathways. In accord, immunostaining showed T- and B-cells in the cerebella of mutant mice as well as activated microglia and astrocytes. Thus, in addition to the loss of GJ coupling, there is a prominent immune response in mice lacking both Cx47 and Cx32.
Collapse
Affiliation(s)
- Sameh K Wasseff
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, 450 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA USA 19104-6077.
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, 450 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA USA 19104-6077.
| |
Collapse
|
33
|
Lymphocytes reduce nigrostriatal deficits in the 6-hydroxydopamine mouse model of Parkinson's disease. J Neural Transm (Vienna) 2015; 122:1633-43. [PMID: 26290125 DOI: 10.1007/s00702-015-1444-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/12/2015] [Indexed: 11/25/2022]
Abstract
Neuroinflammation is a well-known neuropathological feature of Parkinson's disease (PD), but it remains controversial whether it is causal or consequential to neurodegeneration. While the role of microglia in the pathogenesis has been thoroughly investigated in human and different rodent models, data concerning the impact of the adaptive immune system on the pathogenesis of PD are still rare, although lymphocyte populations were found in brain tissue of PD patients and have been implicated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated neurodegeneration in mice. To test the hypothesis that the adaptive immune system contributes to the progression of PD in the murine 6-hydroxydopamine (6-OHDA) model, we performed unilateral 6-OHDA injection into the medial forebrain bundle and compared wild-type mice with recombination activating gene-1 deficient mice (RAG-1(-/-)), that lack mature lymphocytes. After 6-OHDA injection, immune-deficient mice moved significantly slower and less often than wild-type mice. Rotarod analysis displayed a shorter latency to fall in RAG-1(-/-) mice. Immunohistochemical analysis in wild-type mice demonstrated a higher CD8+ T cell density in the ipsilesional striatum compared to sham-operated animals. Cell counts of tyrosine hydroxylase positive dopaminergic neurons of the substantia nigra in immune compromised mice were significantly reduced compared to wild-type mice. Wild type bone marrow reconstitution into RAG-1(-/-) recipients rescued the clinical deterioration as well as the neurodegeneration in RAG-1(-/-) deficient recipients ameliorated clinical symptoms and neurodegeneration after 6-OHDA treatment. Our data indicate that lymphocytes reduce the clinical and neuropathological impact of 6-OHDA lesioning and thus may play a protective role in this toxic mouse model of PD.
Collapse
|
34
|
Allahyari RV, Garcia ADR. Triggering Reactive Gliosis In Vivo by a Forebrain Stab Injury. J Vis Exp 2015:e52825. [PMID: 26167674 DOI: 10.3791/52825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Following injury to the CNS, astrocytes undergo a broad range of biochemical, morphological, and molecular changes collectively referred to as reactive astrogliosis. Reactive astrocytes exert both inflammatory and protective effects that inhibit and promote, respectively, neural repair. The mechanisms underlying the diverse functional properties of reactive astrogliosis are not well understood. Achieving a greater understanding of these mechanisms is critical to developing therapeutic strategies to treat the injured CNS. Here we demonstrate a method to trigger reactive astrogliosis in the adult mouse forebrain using a forebrain stab lesion. This lesion model is simple, reliable, and requires only a stereotaxic device and a scalpel blade to produce the injury. The use of stab lesions as an injury model in the forebrain is well established and amenable to studies addressing a broad range of neuropathological outcomes, such as neuronal degeneration, neuroinflammation, and disruptions in the blood brain barrier (BBB). Thus, the forebrain stab injury model serves as a powerful tool that can be applied for a broad range of studies on the CNS response to trauma.
Collapse
|
35
|
Abstract
Myelination of axons in the nervous system of vertebrates enables fast, saltatory impulse propagation, one of the best-understood concepts in neurophysiology. However, it took a long while to recognize the mechanistic complexity both of myelination by oligodendrocytes and Schwann cells and of their cellular interactions. In this review, we highlight recent advances in our understanding of myelin biogenesis, its lifelong plasticity, and the reciprocal interactions of myelinating glia with the axons they ensheath. In the central nervous system, myelination is also stimulated by axonal activity and astrocytes, whereas myelin clearance involves microglia/macrophages. Once myelinated, the long-term integrity of axons depends on glial supply of metabolites and neurotrophic factors. The relevance of this axoglial symbiosis is illustrated in normal brain aging and human myelin diseases, which can be studied in corresponding mouse models. Thus, myelinating cells serve a key role in preserving the connectivity and functions of a healthy nervous system.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany; ,
| | | |
Collapse
|
36
|
Hirano T, Murata T, Hayashi T. Physiological significance of recombination-activating gene 1 in neuronal death, especially optic neuropathy. FEBS J 2014; 282:129-41. [PMID: 25312244 DOI: 10.1111/febs.13109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/28/2014] [Accepted: 10/10/2014] [Indexed: 12/20/2022]
Abstract
Although the transcription factor nuclear factor-κB (NF-κB) is known to regulate cell death and survival, its precise role in cell death within the central nervous system remains unknown. We previously reported that mice with a homozygous deficiency for NF-κBp50 spontaneously develop optic neuropathy. The aim of the present study was to demonstrate the expression and activation of the proapoptotic factor(s) that mediate optic neuropathy in p50-deficient mice. Recombination-activating gene (Rag) 1 is known to activate the recombination of immunoglobulin V(D)J. In this study, experiments with genetically engineered mice revealed the involvement of Rag1 expression in apoptosis of Brn3a-positive retinal ganglion cells, and also demonstrated the specific effect of p50 deficiency on the activation of Rag1 gene transcription. Furthermore, genetic analysis of murine neuronal stem-like cells clarified the biological significance of Rag1 in N-methyl-D-aspartate-induced neuronal apoptosis. We also detected the apoptosis-regulating factors Bax and cleaved caspase 3, 8 and 9 in HEK293 cells transfected-molecule of Rag1, and a human histological examination revealed the expression of Rag1 in retinal ganglion cells. The results of the present study indicate that Rag1 plays a role in optic neuropathy as a proapoptotic candidate in p50-deficient mice. This finding may lead to new therapeutic targets in optic neuropathy.
Collapse
Affiliation(s)
- Takao Hirano
- Department of Ophthalmology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan; Department of Immunology and Infectious Disease, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | | | | |
Collapse
|
37
|
Maire CL, Ramkissoon S, Hayashi M, Haidar S, Ramkissoon L, DiTomaso E, Ligon KL. Pten loss in Olig2 expressing neural progenitor cells and oligodendrocytes leads to interneuron dysplasia and leukodystrophy. Stem Cells 2014; 32:313-26. [PMID: 24395742 DOI: 10.1002/stem.1590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/19/2013] [Accepted: 09/05/2013] [Indexed: 11/07/2022]
Abstract
Therapeutic modulation of phosphatidylinositol 3-kinase (PI3K)/PTEN signaling is currently being explored for multiple neurological indications including brain tumors and seizure disorders associated with cortical malformations. The effects of PI3K/PTEN signaling are highly cell context dependent but the function of this pathway in specific subsets of neural stem/progenitor cells generating oligodendroglial lineage cells has not been fully studied. To address this, we created Olig2-cre:Pten(fl/fl) mice that showed a unique pattern of Pten loss and PI3K activation in Olig2-lineage cells. Olig2-cre:Pten(fl/fl) animals progressively developed central nervous system white matter hypermyelination by 3 weeks of age leading to later onset leukodystrophy, chronic neurodegeneration, and death by 9 months. In contrast, during immediate postnatal development, oligodendroglia were unaffected but abnormal and accelerated differentiation of lateral subventricular zone stem cells produced calretinin-positive interneuron dysplasia. Neural stem cells isolated from Olig2-cre:Pten(fl/fl) mice also exhibited accelerated differentiation and proliferation into calretinin-positive interneurons and oligodendrocytes indicating such effects are cell autonomous. Opposition of the pathway by treatment of human primary neural progenitor cells (NPCs) with the PI3K inhibitor, NVP-BKM120, blocked in vitro differentiation of neurons and oligodendroglia indicating PI3K/PTEN effects on NPCs can be bidirectional. In summary, our results suggest Pten is a developmental rheostat regulating interneuron and oligodendroglial differentiation and support testing of PI3K modulating drugs as treatment for developmental and myelination disorders. However, such agents may need to be administered at ages that minimize potential effects on early stem/progenitor cell development.
Collapse
Affiliation(s)
- Cécile L Maire
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Kashi VP, Ortega SB, Karandikar NJ. Neuroantigen-specific autoregulatory CD8+ T cells inhibit autoimmune demyelination through modulation of dendritic cell function. PLoS One 2014; 9:e105763. [PMID: 25144738 PMCID: PMC4140828 DOI: 10.1371/journal.pone.0105763] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/24/2014] [Indexed: 01/29/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a well-established murine model of multiple sclerosis, an immune-mediated demyelinating disorder of the central nervous system (CNS). We have previously shown that CNS-specific CD8+ T cells (CNS-CD8+) ameliorate EAE, at least in part through modulation of CNS-specific CD4+ T cell responses. In this study, we show that CNS-CD8+ also modulate the function of CD11c+ dendritic cells (DC), but not other APCs such as CD11b+ monocytes or B220+ B cells. DC from mice receiving either myelin oligodendrocyte glycoprotein-specific CD8+ (MOG-CD8+) or proteolipid protein-specific CD8+ (PLP-CD8+) T cells were rendered inefficient in priming T cell responses from naïve CD4+ T cells (OT-II) or supporting recall responses from CNS-specific CD4+ T cells. CNS-CD8+ did not alter DC subset distribution or MHC class II and CD86 expression, suggesting that DC maturation was not affected. However, the cytokine profile of DC from CNS-CD8+ recipients showed lower IL-12 and higher IL-10 production. These functions were not modulated in the absence of immunization with CD8-cognate antigen, suggesting an antigen-specific mechanism likely requiring CNS-CD8-DC interaction. Interestingly, blockade of IL-10 in vitro rescued CD4+ proliferation and in vivo expression of IL-10 was necessary for the suppression of EAE by MOG-CD8+. These studies demonstrate a complex interplay between CNS-specific CD8+ T cells, DC and pathogenic CD4+ T cells, with important implications for therapeutic interventions in this disease.
Collapse
Affiliation(s)
- Venkatesh P. Kashi
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sterling B. Ortega
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nitin J. Karandikar
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Barrette B, Nave KA, Edgar JM. Molecular triggers of neuroinflammation in mouse models of demyelinating diseases. Biol Chem 2014; 394:1571-81. [PMID: 23959664 DOI: 10.1515/hsz-2013-0219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/15/2013] [Indexed: 12/20/2022]
Abstract
Myelinating cells wrap axons with multi-layered myelin sheaths for rapid impulse propagation. Dysfunctions of oligodendrocytes or Schwann cells are often associated with neuroinflammation, as observed in animal models of leukodystrophies and peripheral neuropathies, respectively. The neuroinflammatory response modulates the pathological changes, including demyelination and axonal injury, but also remyelination and repair. Here we discuss different immune mechanisms as well as factors released or exposed by myelinating glia in disease conditions. The spectrum of inflammatory mediators varies with different myelin disorders and has a major impact on the beneficial or detrimental role of immune cells in keeping nervous system integrity.
Collapse
|
40
|
Clinically relevant intronic splicing enhancer mutation in myelin proteolipid protein leads to progressive microglia and astrocyte activation in white and gray matter regions of the brain. J Neuroinflammation 2013; 10:146. [PMID: 24314267 PMCID: PMC3906979 DOI: 10.1186/1742-2094-10-146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/27/2013] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Mutations in proteolipid protein (PLP), the most abundant myelin protein in the CNS, cause the X-linked dysmyelinating leukodystrophies, Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia type 2 (SPG2). Point mutations, deletion, and duplication of the PLP1 gene cause PMD/SPG2 with varying clinical presentation. Deletion of an intronic splicing enhancer (ISEdel) within intron 3 of the PLP1 gene is associated with a mild form of PMD. Clinical and preclinical studies have indicated that mutations in myelin proteins, including PLP, can induce neuroinflammation, but the temporal and spatial onset of the reactive glia response in a clinically relevant mild form of PMD has not been defined. METHODS A PLP-ISEdel knockin mouse was used to examine the behavioral and neuroinflammatory consequences of a deletion within intron 3 of the PLP gene, at two time points (two and four months old) early in the pathological progression. Mice were characterized functionally using the open field task, elevated plus maze, and nesting behavior. Quantitative neuropathological analysis was for markers of astrocytes (GFAP), microglia (IBA1, CD68, MHCII) and axons (APP). The Aperio ScanScope was used to generate a digital, high magnification photomicrograph of entire brain sections. These digital slides were used to quantify the immunohistochemical staining in ten different brain regions to assess the regional heterogeneity in the reactive astrocyte and microglial response. RESULTS The PLP-ISEdel mice exhibited behavioral deficits in the open field and nesting behavior at two months, which did not worsen by four months of age. A marker of axonal injury (APP) increased from two months to four months of age. Striking was the robust reactive astrocyte and microglia response which was also progressive. In the two-month-old mice, the astrocyte and microglia reactivity was most apparent in white matter rich regions of the brain. By four months of age the gliosis had become widespread and included both white as well as gray matter regions of the brain. CONCLUSIONS Our results indicate, along with other preclinical models of PMD, that an early reactive glia response occurs following mutations in the PLP gene, which may represent a potentially clinically relevant, oligodendrocyte-independent therapeutic target for PMD.
Collapse
|
41
|
Göbel K, Wedell JH, Herrmann AM, Wachsmuth L, Pankratz S, Bittner S, Budde T, Kleinschnitz C, Faber C, Wiendl H, Meuth SG. 4-Aminopyridine ameliorates mobility but not disease course in an animal model of multiple sclerosis. Exp Neurol 2013; 248:62-71. [PMID: 23748135 DOI: 10.1016/j.expneurol.2013.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/22/2013] [Accepted: 05/25/2013] [Indexed: 01/21/2023]
Abstract
Neuropathological changes following demyelination in multiple sclerosis (MS) lead to a reorganization of axolemmal channels that causes conduction changes including conduction failure. Pharmacological modulation of voltage-sensitive potassium channels (K(V)) has been found to improve conduction in experimentally induced demyelination and produces symptomatic improvement in MS patients. Here we used an animal model of autoimmune inflammatory neurodegeneration, namely experimental autoimmune encephalomyelitis (EAE), to test the influence of the K(V)-inhibitor 4-aminopyridine (4-AP) on various disease and immune parameters as well as mobility in MOG₃₅₋₅₅ immunized C57Bl/6 mice. We challenged the hypothesis that 4-AP exerts relevant immunomodulatory or neuroprotective properties. Neither prophylactic nor therapeutic treatment with 4-AP altered disease incidence or disease course of EAE. Histopathological signs of demyelination and neuronal damage as well as MRI imaging of brain volume changes were unaltered. While application of 4-AP significantly reduced the standing outward current of stimulated CD4(+) T cells compared to controls, it failed to impact intracellular calcium concentrations in these cells. Compatibly, KV channel inhibition neither influenced CD4(+) T cell effector functions (proliferation, IL17 or IFNγ production). Importantly however, despite equal disease severity scores 4-AP treated animals showed improved mobility as assessed by 2 independent methods, 1) foot print and 2) rotarod analysis (0.332 ± 0.03, n=7 versus 0.399 ± 0.08, n=14, p<0.001, respectively). Our data suggest that 4-AP while having no apparent immunomodulatory or direct neuroprotective effects, significantly ameliorates conduction abnormalities thereby improving gait and coordination. Improvement of mobility in this experimental model supports trial data and clinical experience with 4-AP in the symptomatic treatment of MS.
Collapse
Affiliation(s)
- Kerstin Göbel
- University of Muenster, Department of Neurology, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Stys PK. Pathoetiology of multiple sclerosis: are we barking up the wrong tree? F1000PRIME REPORTS 2013; 5:20. [PMID: 23755367 PMCID: PMC3673225 DOI: 10.12703/p5-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite a century of intensive investigation, the underlying cause of multiple sclerosis has eluded us. It is clear that there exists a prominent progressive degenerative phenotype together with an important autoimmune inflammatory component, and careful histopathological examination always shows, to a greater or lesser degree, concomitant degeneration/demyelination and adaptive T cell-dependent immune responses. Given this picture, it is difficult, if not impossible, to definitively say whether degeneration or autoimmunity is the initiator of the disease. In this review, I put forward the evidence for and against both models and speculate that, in contrast to the accepted view, it is equally likely that multiple sclerosis may be a degenerative disease that secondarily elicits an autoimmune response, and suggest how this might influence therapeutic approaches.
Collapse
|
43
|
Groh J, Kühl TG, Ip CW, Nelvagal HR, Sri S, Duckett S, Mirza M, Langmann T, Cooper JD, Martini R. Immune cells perturb axons and impair neuronal survival in a mouse model of infantile neuronal ceroid lipofuscinosis. Brain 2013; 136:1083-101. [DOI: 10.1093/brain/awt020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
44
|
Wieser GL, Gerwig UC, Adamcio B, Barrette B, Nave KA, Ehrenreich H, Goebbels S. Neuroinflammation in white matter tracts of Cnp1 mutant mice amplified by a minor brain injury. Glia 2013; 61:869-80. [PMID: 23483656 DOI: 10.1002/glia.22480] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/16/2013] [Indexed: 11/12/2022]
Abstract
Oligodendrocytes make myelin for rapid impulse propagation and contribute to the long-term survival of myelinated axons. The mechanisms by which oligodendroglial dysfunction(s) contribute to slowly progressive neurodegeneration are not well understood. Here, we demonstrate in Cnp1 mutant mice that secondary axonal degeneration in the subcortical white matter is associated with an age-dependent activation of both, innate and adaptive immune responses, including an expansion of infiltrating CD8+ T cells. While the detrimental role of lymphocytes in inherited myelin diseases is known, the role of activated microglia for the hypothetical cycle of inflammation/degeneration is unclear. We used a mild standardized cryolesion of the right parietal cortex to activate microglia at the vulnerable age of mouse puberty (postnatal day (P) 28). When applied to Cnp1 mutant mice, analyzed more than 3 months later, minor brain injury had acted as a "second hit" and significantly enhanced astrogliosis, microgliosis and axon degeneration, but not T cell infiltration. Interestingly, exacerbated neuropathological changes were also reflected by specific deterioration of working memory on top of an essentially normal basic behavior. We propose a model in which oligodendroglial dysfunctions can trigger a vicious cycle of neurodegeneration and low-grade inflammation that is amplified by nonspecific activators of the innate immune system. This interaction of genetic and environmental factors may be relevant for neuropsychiatric diseases associated with secondary neuroinflammation.
Collapse
Affiliation(s)
- Georg L Wieser
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Goldman SA, Nedergaard M, Windrem MS. Glial progenitor cell-based treatment and modeling of neurological disease. Science 2012; 338:491-5. [PMID: 23112326 PMCID: PMC3548656 DOI: 10.1126/science.1218071] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The diseases of myelin are among the most prevalent and disabling conditions in neurology. These diseases include both the vascular and inflammatory demyelinating disorders of adulthood, as well as the childhood leukodystrophies and cerebral palsy. These fundamentally glial disorders may be amenable to treatment by glial progenitor cells (GPCs), which give rise to astroglia and myelin-producing oligodendrocytes. Given the development of new methods for generating and isolating human GPCs, the myelin disorders may now be compelling targets for cell-based therapy. In addition, the efficient engraftment and expansion of human GPCs in murine hosts has led to the development of human glial chimeric mouse brains, which provides new opportunities for studying the species-specific roles of human glia in cognition, as well as in disease pathogenesis.
Collapse
Affiliation(s)
- Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
46
|
Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination. J Neurosci 2012; 32:8317-30. [PMID: 22699912 DOI: 10.1523/jneurosci.1053-12.2012] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The critical role of oligodendrocytes in producing and maintaining myelin that supports rapid axonal conduction in CNS neurons is well established. More recently, additional roles for oligodendrocytes have been posited, including provision of trophic factors and metabolic support for neurons. To investigate the functional consequences of oligodendrocyte loss, we have generated a transgenic mouse model of conditional oligodendrocyte ablation. In this model, oligodendrocytes are rendered selectively sensitive to exogenously administered diphtheria toxin (DT) by targeted expression of the diphtheria toxin receptor in oligodendrocytes. Administration of DT resulted in severe clinical dysfunction with an ascending spastic paralysis ultimately resulting in fatal respiratory impairment within 22 d of DT challenge. Pathologically, at this time point, mice exhibited a loss of ∼26% of oligodendrocyte cell bodies throughout the CNS. Oligodendrocyte cell-body loss was associated with moderate microglial activation, but no widespread myelin degradation. These changes were accompanied with acute axonal injury as characterized by structural and biochemical alterations at nodes of Ranvier and reduced somatosensory-evoked potentials. In summary, we have shown that a death signal initiated within oligodendrocytes results in subcellular changes and loss of key symbiotic interactions between the oligodendrocyte and the axons it ensheaths. This produces profound functional consequences that occur before the removal of the myelin membrane, i.e., in the absence of demyelination. These findings have clear implications for the understanding of the pathogenesis of diseases of the CNS such as multiple sclerosis in which the oligodendrocyte is potentially targeted.
Collapse
|
47
|
|
48
|
Ip CW, Kroner A, Groh J, Huber M, Klein D, Spahn I, Diem R, Williams SK, Nave KA, Edgar JM, Martini R. Neuroinflammation by cytotoxic T-lymphocytes impairs retrograde axonal transport in an oligodendrocyte mutant mouse. PLoS One 2012; 7:e42554. [PMID: 22905147 PMCID: PMC3414455 DOI: 10.1371/journal.pone.0042554] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/10/2012] [Indexed: 02/03/2023] Open
Abstract
Mice overexpressing proteolipid protein (PLP) develop a leukodystrophy-like disease involving cytotoxic, CD8+ T-lymphocytes. Here we show that these cytotoxic T-lymphocytes perturb retrograde axonal transport. Using fluorogold stereotactically injected into the colliculus superior, we found that PLP overexpression in oligodendrocytes led to significantly reduced retrograde axonal transport in retina ganglion cell axons. We also observed an accumulation of mitochondria in the juxtaparanodal axonal swellings, indicative for a disturbed axonal transport. PLP overexpression in the absence of T-lymphocytes rescued retrograde axonal transport defects and abolished axonal swellings. Bone marrow transfer from wildtype mice, but not from perforin- or granzyme B-deficient mutants, into lymphocyte-deficient PLP mutant mice led again to impaired axonal transport and the formation of axonal swellings, which are predominantly located at the juxtaparanodal region. This demonstrates that the adaptive immune system, including cytotoxic T-lymphocytes which release perforin and granzyme B, are necessary to perturb axonal integrity in the PLP-transgenic disease model. Based on our observations, so far not attended molecular and cellular players belonging to the immune system should be considered to understand pathogenesis in inherited myelin disorders with progressive axonal damage.
Collapse
Affiliation(s)
- Chi Wang Ip
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Würzburg, Germany
| | - Antje Kroner
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Würzburg, Germany
| | - Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Würzburg, Germany
| | - Marianne Huber
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Würzburg, Germany
| | - Dennis Klein
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Würzburg, Germany
| | - Irene Spahn
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Würzburg, Germany
| | - Ricarda Diem
- Department of Neuro-oncology, University Hospital, Heidelberg, Germany
| | - Sarah K. Williams
- Department of Neuro-oncology, University Hospital, Heidelberg, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Julia M. Edgar
- Applied Neurobiology Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
49
|
Abstract
Multiple sclerosis (MS) is considered to be an autoimmune, inflammatory disease of the CNS. In most patients, the disease follows a relapsing-remitting course and is characterized by dynamic inflammatory demyelinating lesions in the CNS. Although on the surface MS may appear consistent with a primary autoimmune disease, questions have been raised as to whether inflammation and/or autoimmunity are really at the root of the disease, and it has been proposed that MS might in fact be a degenerative disorder. We argue that MS may be an 'immunological convolution' between an underlying primary degenerative disorder and the host's aberrant immune response. To better understand this disease, we might need to consider non-inflammatory primary progressive MS as the 'real' MS, with inflammatory forms reflecting secondary, albeit very important, reactions.
Collapse
|
50
|
Hagemeyer N, Goebbels S, Papiol S, Kästner A, Hofer S, Begemann M, Gerwig UC, Boretius S, Wieser GL, Ronnenberg A, Gurvich A, Heckers SH, Frahm J, Nave KA, Ehrenreich H. A myelin gene causative of a catatonia-depression syndrome upon aging. EMBO Mol Med 2012; 4:528-39. [PMID: 22473874 PMCID: PMC3443947 DOI: 10.1002/emmm.201200230] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/09/2012] [Accepted: 02/13/2012] [Indexed: 11/09/2022] Open
Abstract
Severe mental illnesses have been linked to white matter abnormalities, documented by postmortem studies. However, cause and effect have remained difficult to distinguish. CNP (2',3'-cyclic nucleotide 3'-phosphodiesterase) is among the oligodendrocyte/myelin-associated genes most robustly reduced on mRNA and protein level in brains of schizophrenic, bipolar or major depressive patients. This suggests that CNP reduction might be critical for a more general disease process and not restricted to a single diagnostic category. We show here that reduced expression of CNP is the primary cause of a distinct behavioural phenotype, seen only upon aging as an additional 'pro-inflammatory hit'. This phenotype is strikingly similar in Cnp heterozygous mice and patients with mental disease carrying the AA genotype at CNP SNP rs2070106. The characteristic features in both species with their partial CNP 'loss-of-function' genotype are best described as 'catatonia-depression' syndrome. As a consequence of perturbed CNP expression, mice show secondary low-grade inflammation/neurodegeneration. Analogously, in man, diffusion tensor imaging points to axonal loss in the frontal corpus callosum. To conclude, subtle white matter abnormalities inducing neurodegenerative changes can cause/amplify psychiatric diseases.
Collapse
Affiliation(s)
- Nora Hagemeyer
- Division of Clinical Neuroscience, Max Planck Institute of Experimental MedicineGöttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingen, Germany
| | - Sergi Papiol
- Division of Clinical Neuroscience, Max Planck Institute of Experimental MedicineGöttingen, Germany
- DFG Research Center for Molecular Physiology of the Brain (CMPB)Göttingen, Germany
| | - Anne Kästner
- Division of Clinical Neuroscience, Max Planck Institute of Experimental MedicineGöttingen, Germany
| | - Sabine Hofer
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical ChemistryGöttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN)Göttingen, Germany
| | - Martin Begemann
- Division of Clinical Neuroscience, Max Planck Institute of Experimental MedicineGöttingen, Germany
| | - Ulrike C Gerwig
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingen, Germany
| | - Susann Boretius
- DFG Research Center for Molecular Physiology of the Brain (CMPB)Göttingen, Germany
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical ChemistryGöttingen, Germany
| | - Georg L Wieser
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingen, Germany
| | - Anja Ronnenberg
- Division of Clinical Neuroscience, Max Planck Institute of Experimental MedicineGöttingen, Germany
| | - Artem Gurvich
- Division of Clinical Neuroscience, Max Planck Institute of Experimental MedicineGöttingen, Germany
| | | | - Jens Frahm
- DFG Research Center for Molecular Physiology of the Brain (CMPB)Göttingen, Germany
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical ChemistryGöttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN)Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingen, Germany
- DFG Research Center for Molecular Physiology of the Brain (CMPB)Göttingen, Germany
| | - Hannelore Ehrenreich
- Division of Clinical Neuroscience, Max Planck Institute of Experimental MedicineGöttingen, Germany
- DFG Research Center for Molecular Physiology of the Brain (CMPB)Göttingen, Germany
| |
Collapse
|