1
|
Day JL, Tirard M, Brose N. Deletion of a core APC/C component reveals APC/C function in regulating neuronal USP1 levels and morphology. Front Mol Neurosci 2024; 17:1352782. [PMID: 38932933 PMCID: PMC11199872 DOI: 10.3389/fnmol.2024.1352782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction The Anaphase Promoting Complex (APC/C), an E3 ubiquitin ligase, plays a key role in cell cycle control, but it is also thought to operate in postmitotic neurons. Most studies linking APC/C function to neuron biology employed perturbations of the APC/C activators, cell division cycle protein 20 (Cdc20) and Cdc20 homologue 1 (Cdh1). However, multiple lines of evidence indicate that Cdh1 and Cdc20 can function in APC/C-independent contexts, so that the effects of their perturbation cannot strictly be linked to APC/C function. Methods We therefore deleted the gene encoding Anaphase Promoting Complex 4 (APC4), a core APC/C component, in neurons cultured from conditional knockout (cKO) mice. Results Our data indicate that several previously published substrates are actually not APC/C substrates, whereas ubiquitin specific peptidase 1 (USP1) protein levels are altered in APC4 knockout (KO) neurons. We propose a model where the APC/C ubiquitylates USP1 early in development, but later ubiquitylates a substrate that directly or indirectly stabilizes USP1. We further discovered a novel role of the APC/C in regulating the number of neurites exiting somata, but we were unable to confirm prior data indicating that the APC/C regulates neurite length, neurite complexity, and synaptogenesis. Finally, we show that APC4 SUMOylation does not impact the ability of the APC/C to control the number of primary neurites or USP1 protein levels. Discussion Our data indicate that perturbation studies aimed at dissecting APC/C biology must focus on core APC/C components rather than the APC/C activators, Cdh20 and Cdh1.
Collapse
Affiliation(s)
| | | | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
2
|
Yap CC, Digilio L, McMahon L, Winckler B. "Disruption of Golgi markers by two RILP-directed shRNAs in neurons: a new role for RILP or a neuron-specific off-target phenotype?". J Biol Chem 2023:104916. [PMID: 37315786 PMCID: PMC10362152 DOI: 10.1016/j.jbc.2023.104916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
In neurons, degradation of dendritic cargos requires RAB7 and dynein-mediated retrograde transport to somatic lysosomes. To test if the dynein adaptor RILP (RAB-interacting lysosomal protein) mediated the recruitment of dynein to late endosomes for retrograde transport in dendrites, we obtained several knockdown reagents previously validated in non-neuronal cells. Striking endosomal phenotypes elicited by one shRILP plasmid were not reproduced by another one. Furthermore, we discovered a profound depletion of Golgi/TGN markers for both shRILP plasmids. This Golgi disruption was only observed in neurons and could not be rescued by re-expression of RILP. This Golgi phenotype was also not found in neurons treated with siRILP or gRILP/Cas9. Lastly, we tested if a different RAB protein that interacts with RILP, namely the Golgi-associated RAB34, might be responsible for the loss of Golgi markers. Expression of a dominant-negative RAB34 did indeed cause changes in Golgi staining in a small subset of neurons but manifested as fragmentation rather than loss of staining. Unlike in non-neuronal cells, interference with RAB34 did not cause dispersal of lysosomes in neurons. Based on multiple lines of experimentation, we conclude that the neuronal Golgi phenotype observed with shRILP is likely off-target in this cell type specifically. Any observed disruptions of endosomal trafficking caused by shRILP in neurons might thus be downstream of Golgi disruption. It would be interesting to identify the actual target for this neuronal Golgi phenotype. Cell type-specific off-target phenotypes therefore likely occur in neurons, necessitating re-validation of reagents that were previously validated in other cell types.
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA.
| | - Laura Digilio
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA
| | - Lloyd McMahon
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA.
| |
Collapse
|
3
|
Yap CC, Digilio L, McMahon L, Winckler B. "Disruption of Golgi markers by two RILP-directed shRNAs in neurons: a new role for RILP or a neuron-specific off-target phenotype?". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531742. [PMID: 36945482 PMCID: PMC10028860 DOI: 10.1101/2023.03.08.531742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In neurons, degradation of dendritic cargos requires RAB7 and dynein-mediated retrograde transport to somatic lysosomes. In order to test if the dynein adaptor RILP (RAB-interacting lysosomal protein) mediated the recruitment of dynein to late endosomes for retrograde transport in dendrites, we obtained several knockdown reagents which had been previously validated in non-neuronal cells. We found that striking endosomal phenotypes elicited by one shRILP plasmid were not reproduced by another one. Furthermore, we discovered a profound depletion of Golgi/TGN markers for both shRILP plasmids. This Golgi disruption was only observed in neurons and could not be rescued by re-expression of RILP. This Golgi phenotype was also not found in neurons treated with siRILP or gRILP/Cas9. Lastly, we tested if a different RAB protein that interacts with RILP, namely the Golgi-associated RAB34, might be responsible for the loss of Golgi markers. Expression of a dominant-negative RAB34 did indeed cause changes in Golgi staining in a small subset of neurons but manifested as fragmentation rather than loss of markers. Unlike in non-neuronal cells, interference with RAB34 did not cause dispersal of lysosomes in neurons. Based on multiple lines of experimentation, we conclude that the neuronal Golgi phenotype observed with shRILP is likely off-target in this cell type specifically. Any observed disruptions of endosomal trafficking caused by shRILP in neurons might thus be downstream of Golgi disruption. Different approaches will be needed to test if RILP is required for late endosomal transport in dendrites. Cell type-specific off-target phenotypes therefore likely occur in neurons, making it prudent to re-validate reagents that were previously validated in other cell types.
Collapse
Affiliation(s)
- Chan Choo Yap
- Corresponding authors: Bettina Winckler and Chan Choo Yap, Phone: (434)924-5528/5526. ,
| | | | | | - Bettina Winckler
- Corresponding authors: Bettina Winckler and Chan Choo Yap, Phone: (434)924-5528/5526. ,
| |
Collapse
|
4
|
Neurexin-β Mediates the Synaptogenic Activity of Amyloid Precursor Protein. J Neurosci 2022; 42:8936-8947. [PMID: 36261284 PMCID: PMC9732828 DOI: 10.1523/jneurosci.0511-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/13/2022] [Accepted: 10/12/2022] [Indexed: 01/05/2023] Open
Abstract
In addition to its role in Alzheimer's disease, amyloid precursor protein (APP) has physiological roles in synapse development and function. APP induces presynaptic differentiation when presented to axons, but the mechanism is unknown. Here we show that APP binds neurexin to mediate this synaptogenic activity. APP specifically binds β not α neurexins modulated by splice site 4. Binding to neurexin heparan sulfate glycan and LNS protein domains is required for high-affinity interaction and for full-length APP to recruit axonal neurexin. The synaptogenic activity of APP is abolished by triple knockdown of neurexins in hippocampal neurons pooled from male and female rats. Based on these and previous results, our model is that a dendritic-axonal trans dimer of full-length APP binds to axonal neurexin-β to promote synaptic differentiation and function. Furthermore, soluble sAPPs also bind neurexin-β and inhibit its interaction with neuroligin-1, raising the possibility that disruption of neurexin function by altered levels of full-length APP and its cleavage products may contribute to early synaptic deficits in Alzheimer's disease.SIGNIFICANCE STATEMENT The prevailing model for the basis of Alzheimer's disease is the amyloid cascade triggered by altered cleavage of amyloid precursor protein (APP). APP also has physiological roles at the synapse, but the molecular basis for its synaptic functions is not well understood. Here, we show that APP binds the presynaptic organizing protein neurexin-β and that neurexin is essential for the synaptogenic activity of APP. Furthermore, soluble APP forms generated by APP cleavage also bind neurexin-β and can block interaction with transmembrane synaptogenic ligands of neurexin. These findings reveal a role for neurexin-APP interaction in synapse development and raise the possibility that disruptions of neurexin function may contribute to synaptic and cognitive deficits in the critical early stage of Alzheimer's disease.
Collapse
|
5
|
Bingul A, Merlin S, Carrive P, Killcross S, Furlong TM. Targeting the lateral hypothalamus with short hairpin RNAs reduces habitual behaviour following extended instrumental training in rats. Neurobiol Learn Mem 2022; 193:107657. [DOI: 10.1016/j.nlm.2022.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
6
|
Goel K, Ploski JE. RISC-y Business: Limitations of Short Hairpin RNA-Mediated Gene Silencing in the Brain and a Discussion of CRISPR/Cas-Based Alternatives. Front Mol Neurosci 2022; 15:914430. [PMID: 35959108 PMCID: PMC9362770 DOI: 10.3389/fnmol.2022.914430] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Manipulating gene expression within and outside the nervous system is useful for interrogating gene function and developing therapeutic interventions for a variety of diseases. Several approaches exist which enable gene manipulation in preclinical models, and some of these have been approved to treat human diseases. For the last couple of decades, RNA interference (RNAi) has been a leading technique to knockdown (i.e., suppress) specific RNA expression. This has been partly due to the technology's simplicity, which has promoted its adoption throughout biomedical science. However, accumulating evidence indicates that this technology can possess significant shortcomings. This review highlights the overwhelming evidence that RNAi can be prone to off-target effects and is capable of inducing cytotoxicity in some cases. With this in mind, we consider alternative CRISPR/Cas-based approaches, which may be safer and more reliable for gene knockdown. We also discuss the pros and cons of each approach.
Collapse
Affiliation(s)
- Kanishk Goel
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jonathan E. Ploski
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
7
|
Wu QW, Kapfhammer JP. CRISPR-Cas13-Mediated Knockdown of Regulator of G-Protein Signaling 8 (RGS8) Does Not Affect Purkinje Cell Dendritic Development. Front Cell Dev Biol 2022; 10:854273. [PMID: 35712654 PMCID: PMC9193279 DOI: 10.3389/fcell.2022.854273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/10/2022] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas13 technology is rapidly evolving as it is a very specific tool for RNA editing and interference. Since there are no significant off-target effects via the Cas13-mediated method, it is a promising tool for studying gene function in differentiating neurons. In this study, we designed two crRNA targeting regulator of G-protein signaling 8 (RGS8), which is a signaling molecule associated with spinocerebellar ataxias. Using CRISPR-Cas13 technology, we found that both of crRNAs could specifically achieve RGS8 knockdown. By observing and comparing the dendritic growth of Purkinje cells, we found that CRISPR-Cas13-mediated RGS8 knockdown did not significantly affect Purkinje cell dendritic development. We further tested the role of RGS8 by classical RNAi. Again, the results of the RNAi-mediated RGS8 knockdown showed that reduced RGS8 expression did not significantly affect the dendritic growth of Purkinje cells. This is the first example of CRISPR-Cas13-mediated gene function study in Purkinje cells and establishes CRISPR-Cas13-mediated knockdown as a reliable method for studying gene function in primary neurons.
Collapse
|
8
|
Kim D, Jung H, Shirai Y, Kim H, Kim J, Lim D, Mori T, Lee H, Park D, Kim HY, Guo Q, Pang B, Qiu W, Cao X, Kouyama-Suzuki E, Uemura T, Kasem E, Fu Y, Kim S, Tokunaga A, Yoshizawa T, Suzuki T, Sakagami H, Lee KJ, Ko J, Tabuchi K, Um JW. IQSEC3 Deletion Impairs Fear Memory Through Upregulation of Ribosomal S6K1 Signaling in the Hippocampus. Biol Psychiatry 2022; 91:821-831. [PMID: 35219498 DOI: 10.1016/j.biopsych.2021.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND IQSEC3, a gephyrin-binding GABAergic (gamma-aminobutyric acidergic) synapse-specific guanine nucleotide exchange factor, was recently reported to regulate activity-dependent GABAergic synapse maturation, but the underlying signaling mechanisms remain incompletely understood. METHODS We generated mice with conditional knockout (cKO) of Iqsec3 to examine whether altered synaptic inhibition influences hippocampus-dependent fear memory formation. In addition, electrophysiological recordings, immunohistochemistry, and behavioral assays were used to address our question. RESULTS We found that Iqsec3-cKO induces a specific reduction in GABAergic synapse density, GABAergic synaptic transmission, and maintenance of long-term potentiation in the hippocampal CA1 region. In addition, Iqsec3-cKO mice exhibited impaired fear memory formation. Strikingly, Iqsec3-cKO caused abnormally enhanced activation of ribosomal P70-S6K1-mediated signaling in the hippocampus but not in the cortex. Furthermore, inhibiting upregulated S6K1 signaling by expressing dominant-negative S6K1 in the hippocampal CA1 of Iqsec3-cKO mice completely rescued impaired fear learning and inhibitory synapse density but not deficits in long-term potentiation maintenance. Finally, upregulated S6K1 signaling was rescued by IQSEC3 wild-type, but not by an ARF-GEF (adenosine diphosphate ribosylation factor-guanine nucleotide exchange factor) inactive IQSEC3 mutant. CONCLUSIONS Our results suggest that IQSEC3-mediated balanced synaptic inhibition in hippocampal CA1 is critical for the proper formation of hippocampus-dependent fear memory.
Collapse
Affiliation(s)
- Dongwook Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hyeji Jung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jinhu Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Dongseok Lim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Hyojeong Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Dongseok Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hee Young Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Qi Guo
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Bo Pang
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Wen Qiu
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Xueshan Cao
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Takeshi Uemura
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Enas Kasem
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan; Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Yu Fu
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Akinori Tokunaga
- Division of Laboratory Animal Resources, Life Science Research Laboratory, University of Fukui, Fukui, Japan
| | - Takahiro Yoshizawa
- Research Center for Supports to Advanced Science, Shinshu University, Nagano, Japan
| | - Tatsuo Suzuki
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Kea Joo Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea; Neural Circuits Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan.
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea.
| |
Collapse
|
9
|
Wu QW, Kapfhammer JP. Conditional gene silencing via a CRISPR system in cerebellar Purkinje cells. Biochim Biophys Acta Gen Subj 2021; 1865:129869. [PMID: 33581252 DOI: 10.1016/j.bbagen.2021.129869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022]
Abstract
• Specific gene knockdown in cerebellar Purkinje cells is a major challenge because Purkinje cells only make up a small fraction of the cerebellum and off-target effects of shRNA occur.
• Little is known about the application of CRISPR-Cas13 and the resulting protein expression levels in Purkinje cells, a type of developing postmitotic neuron.
• We explored the possibility of a Cas13-mediated conditional knockdown system for cerebellar Purkinje cells. This system can achieve a suppression of the target proteins restricted to Purkinje cells in mixed cerebellar cultures.
Collapse
Affiliation(s)
- Qin-Wei Wu
- Institute of Anatomy, Department of Biomedicine, University of Basel, Pestalozzistr. 20, 4056 Basel, Switzerland.
| | - Josef P Kapfhammer
- Institute of Anatomy, Department of Biomedicine, University of Basel, Pestalozzistr. 20, 4056 Basel, Switzerland.
| |
Collapse
|
10
|
Letellier M, Lagardère M, Tessier B, Janovjak H, Thoumine O. Optogenetic control of excitatory post-synaptic differentiation through neuroligin-1 tyrosine phosphorylation. eLife 2020; 9:e52027. [PMID: 32324534 PMCID: PMC7180054 DOI: 10.7554/elife.52027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroligins (Nlgns) are adhesion proteins mediating trans-synaptic contacts in neurons. However, conflicting results around their role in synaptic differentiation arise from the various techniques used to manipulate Nlgn expression level. Orthogonally to these approaches, we triggered here the phosphorylation of endogenous Nlgn1 in CA1 mouse hippocampal neurons using a photoactivatable tyrosine kinase receptor (optoFGFR1). Light stimulation for 24 hr selectively increased dendritic spine density and AMPA-receptor-mediated EPSCs in wild-type neurons, but not in Nlgn1 knock-out neurons or when endogenous Nlgn1 was replaced by a non-phosphorylatable mutant (Y782F). Moreover, light stimulation of optoFGFR1 partially occluded LTP in a Nlgn1-dependent manner. Combined with computer simulations, our data support a model by which Nlgn1 tyrosine phosphorylation promotes the assembly of an excitatory post-synaptic scaffold that captures surface AMPA receptors. This optogenetic strategy highlights the impact of Nlgn1 intracellular signaling in synaptic differentiation and potentiation, while enabling an acute control of these mechanisms.
Collapse
Affiliation(s)
- Mathieu Letellier
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
| | - Matthieu Lagardère
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
| | - Béatrice Tessier
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash UniversityClaytonAustralia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash UniversityClaytonAustralia
| | - Olivier Thoumine
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
| |
Collapse
|
11
|
Roppongi RT, Dhume SH, Padmanabhan N, Silwal P, Zahra N, Karimi B, Bomkamp C, Patil CS, Champagne-Jorgensen K, Twilley RE, Zhang P, Jackson MF, Siddiqui TJ. LRRTMs Organize Synapses through Differential Engagement of Neurexin and PTPσ. Neuron 2020; 106:108-125.e12. [PMID: 31995730 DOI: 10.1016/j.neuron.2020.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 08/07/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023]
Abstract
Presynaptic neurexins (Nrxs) and type IIa receptor-type protein tyrosine phosphatases (RPTPs) organize synapses through a network of postsynaptic ligands. We show that leucine-rich-repeat transmembrane neuronal proteins (LRRTMs) differentially engage the protein domains of Nrx but require its heparan sulfate (HS) modification to induce presynaptic differentiation. Binding to the HS of Nrx is sufficient for LRRTM3 and LRRTM4 to induce synaptogenesis. We identify mammalian Nrx1γ as a potent synapse organizer and reveal LRRTM4 as its postsynaptic ligand. Mice expressing a mutant form of LRRTM4 that cannot bind to HS show structural and functional deficits at dentate gyrus excitatory synapses. Through the HS of Nrx, LRRTMs also recruit PTPσ to induce presynaptic differentiation but function to varying degrees in its absence. PTPσ forms a robust complex with Nrx, revealing an unexpected interaction between the two presynaptic hubs. These findings underscore the complex interplay of synapse organizers in specifying the molecular logic of a neural circuit.
Collapse
Affiliation(s)
- Reiko T Roppongi
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shreya H Dhume
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Nirmala Padmanabhan
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Prabhisha Silwal
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Nazmeena Zahra
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Benyamin Karimi
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Claire Bomkamp
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B, Canada
| | - Chetan S Patil
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Kevin Champagne-Jorgensen
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Rebecca E Twilley
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Peng Zhang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B, Canada
| | - Michael F Jackson
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Tabrez J Siddiqui
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; The Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
12
|
Guidi LG, Velayos‐Baeza A, Martinez‐Garay I, Monaco AP, Paracchini S, Bishop DVM, Molnár Z. The neuronal migration hypothesis of dyslexia: A critical evaluation 30 years on. Eur J Neurosci 2018; 48:3212-3233. [PMID: 30218584 PMCID: PMC6282621 DOI: 10.1111/ejn.14149] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022]
Abstract
The capacity for language is one of the key features underlying the complexity of human cognition and its evolution. However, little is known about the neurobiological mechanisms that mediate normal or impaired linguistic ability. For developmental dyslexia, early postmortem studies conducted in the 1980s linked the disorder to subtle defects in the migration of neurons in the developing neocortex. These early studies were reinforced by human genetic analyses that identified dyslexia susceptibility genes and subsequent evidence of their involvement in neuronal migration. In this review, we examine recent experimental evidence that does not support the link between dyslexia and neuronal migration. We critically evaluate gene function studies conducted in rodent models and draw attention to the lack of robust evidence from histopathological and imaging studies in humans. Our review suggests that the neuronal migration hypothesis of dyslexia should be reconsidered, and the neurobiological basis of dyslexia should be approached with a fresh start.
Collapse
Affiliation(s)
- Luiz G. Guidi
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Antonio Velayos‐Baeza
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Isabel Martinez‐Garay
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Division of NeuroscienceSchool of BiosciencesCardiff UniversityCardiffUK
| | | | | | | | - Zoltán Molnár
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
13
|
Zhang P, Lu H, Peixoto RT, Pines MK, Ge Y, Oku S, Siddiqui TJ, Xie Y, Wu W, Archer-Hartmann S, Yoshida K, Tanaka KF, Aricescu AR, Azadi P, Gordon MD, Sabatini BL, Wong ROL, Craig AM. Heparan Sulfate Organizes Neuronal Synapses through Neurexin Partnerships. Cell 2018; 174:1450-1464.e23. [PMID: 30100184 PMCID: PMC6173057 DOI: 10.1016/j.cell.2018.07.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 06/23/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
Synapses are fundamental units of communication in the brain. The prototypical synapse-organizing complex neurexin-neuroligin mediates synapse development and function and is central to a shared genetic risk pathway in autism and schizophrenia. Neurexin's role in synapse development is thought to be mediated purely by its protein domains, but we reveal a requirement for a rare glycan modification. Mice lacking heparan sulfate (HS) on neurexin-1 show reduced survival, as well as structural and functional deficits at central synapses. HS directly binds postsynaptic partners neuroligins and LRRTMs, revealing a dual binding mode involving intrinsic glycan and protein domains for canonical synapse-organizing complexes. Neurexin HS chains also bind novel ligands, potentially expanding the neurexin interactome to hundreds of HS-binding proteins. Because HS structure is heterogeneous, our findings indicate an additional dimension to neurexin diversity, provide a molecular basis for fine-tuning synaptic function, and open therapeutic directions targeting glycan-binding motifs critical for brain development.
Collapse
Affiliation(s)
- Peng Zhang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| | - Hong Lu
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Rui T Peixoto
- Howard Hughes Medical Institute, Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA; Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Mary K Pines
- Department of Zoology and Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yuan Ge
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Shinichiro Oku
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Tabrez J Siddiqui
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Yicheng Xie
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Wenlan Wu
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Medical School, Henan University of Science and Technology, Luoyang 471023, China
| | | | - Keitaro Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - A Radu Aricescu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Michael D Gordon
- Department of Zoology and Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
14
|
Guidi LG, Mattley J, Martinez-Garay I, Monaco AP, Linden JF, Velayos-Baeza A, Molnár Z. Knockout Mice for Dyslexia Susceptibility Gene Homologs KIAA0319 and KIAA0319L have Unaffected Neuronal Migration but Display Abnormal Auditory Processing. Cereb Cortex 2017; 27:5831-5845. [PMID: 29045729 PMCID: PMC5939205 DOI: 10.1093/cercor/bhx269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developmental dyslexia is a neurodevelopmental disorder that affects reading ability caused by genetic and non-genetic factors. Amongst the susceptibility genes identified to date, KIAA0319 is a prime candidate. RNA-interference experiments in rats suggested its involvement in cortical migration but we could not confirm these findings in Kiaa0319-mutant mice. Given its homologous gene Kiaa0319L (AU040320) has also been proposed to play a role in neuronal migration, we interrogated whether absence of AU040320 alone or together with KIAA0319 affects migration in the developing brain. Analyses of AU040320 and double Kiaa0319;AU040320 knockouts (dKO) revealed no evidence for impaired cortical lamination, neuronal migration, neurogenesis or other anatomical abnormalities. However, dKO mice displayed an auditory deficit in a behavioral gap-in-noise detection task. In addition, recordings of click-evoked auditory brainstem responses revealed suprathreshold deficits in wave III amplitude in AU040320-KO mice, and more general deficits in dKOs. These findings suggest that absence of AU040320 disrupts firing and/or synchrony of activity in the auditory brainstem, while loss of both proteins might affect both peripheral and central auditory function. Overall, these results stand against the proposed role of KIAA0319 and AU040320 in neuronal migration and outline their relationship with deficits in the auditory system.
Collapse
Affiliation(s)
- Luiz G Guidi
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jane Mattley
- Ear Institute, University College London, London WC1X 8EE, UK
| | - Isabel Martinez-Garay
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Current address: Office of the President, Ballou Hall, Tufts University, Medford, MA 02155, USA
| | - Jennifer F Linden
- Ear Institute, University College London, London WC1X 8EE, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | | | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
15
|
Molumby MJ, Anderson RM, Newbold DJ, Koblesky NK, Garrett AM, Schreiner D, Radley JJ, Weiner JA. γ-Protocadherins Interact with Neuroligin-1 and Negatively Regulate Dendritic Spine Morphogenesis. Cell Rep 2017; 18:2702-2714. [PMID: 28297673 DOI: 10.1016/j.celrep.2017.02.060] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/18/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022] Open
Abstract
The 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules are critical for the elaboration of complex dendritic arbors in the cerebral cortex. Here, we provide evidence that the γ-Pcdhs negatively regulate synapse development by inhibiting the postsynaptic cell adhesion molecule, neuroligin-1 (Nlg1). Mice lacking all γ-Pcdhs in the forebrain exhibit significantly increased dendritic spine density in vivo, while spine density is significantly decreased in mice overexpressing one of the 22 γ-Pcdh isoforms. Co-expression of γ-Pcdhs inhibits the ability of Nlg1 to increase spine density and to induce presynaptic differentiation in hippocampal neurons in vitro. The γ-Pcdhs physically interact in cis with Nlg1 both in vitro and in vivo, and we present evidence that this disrupts Nlg1 binding to its presynaptic partner neurexin1β. Together with prior work, these data identify a mechanism through which γ-Pcdhs could coordinate dendrite arbor growth and complexity with spine maturation in the developing brain.
Collapse
Affiliation(s)
- Michael J Molumby
- Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA; Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Rachel M Anderson
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | - Dillan J Newbold
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Norah K Koblesky
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Andrew M Garrett
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Dietmar Schreiner
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Jason J Radley
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | - Joshua A Weiner
- Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA; Department of Biology, The University of Iowa, Iowa City, IA 52242, USA; Department of Psychiatry, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
The AMPA Receptor Subunit GluA1 is Required for CA1 Hippocampal Long-Term Potentiation but is not Essential for Synaptic Transmission. Neurochem Res 2017; 44:549-561. [PMID: 29098531 DOI: 10.1007/s11064-017-2425-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/13/2017] [Accepted: 10/21/2017] [Indexed: 10/18/2022]
Abstract
AMPA receptors mediate the majority of excitatory glutamatergic transmission in the mammalian brain and are heterotetramers composed of GluA1-4 subunits. Despite genetic studies, the roles of the subunits in synaptic transmission and plasticity remain controversial. To address this issue, we investigated the effects of cell-specific removal of GluA1 in hippocampal CA1 pyramidal neurons using virally-expressed GluA1 shRNA in organotypic slice culture. We show that this shRNA approach produces a rapid, efficient and selective loss of GluA1, and removed > 80% of surface GluA1 from synapses. This loss of GluA1 caused a modest reduction (up to 57%) in synaptic transmission and when applied in neurons from GluA3 knock-out mice, a similar small reduction in transmission occurred. Further, we found that loss of GluA1 caused a redistribution of GluA2 to synapses that may compensate functionally for the absence of GluA1. We found that LTP was absent in neurons lacking GluA1, induced either by pairing or by a theta-burst pairing protocol previously shown to induce LTP in GluA1 knock-out mice. Our findings demonstrate a critical role of GluA1 in CA1 LTP, but no absolute requirement for GluA1 in maintaining synaptic transmission. Further, our results indicate that GluA2 homomers can mediate synaptic transmission and can compensate for loss of GluA1.
Collapse
|
17
|
Dissecting the Role of Synaptic Proteins with CRISPR. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-60192-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Hasegawa Y, Mao W, Saha S, Gunner G, Kolpakova J, Martin GE, Futai K. Luciferase shRNA Presents off-Target Effects on Voltage-Gated Ion Channels in Mouse Hippocampal Pyramidal Neurons. eNeuro 2017; 4:ENEURO.0186-17.2017. [PMID: 29034317 PMCID: PMC5635487 DOI: 10.1523/eneuro.0186-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
RNA interference (RNAi) is a straightforward approach to study gene function from the in vitro cellular level to in vivo animal behavior. Although RNAi-mediated gene knockdown has become essentially routine in neuroscience over the past ten years, off-target effects of short hairpin RNAs (shRNAs) should be considered as the proper choice of control shRNA is critical in order to perform meaningful experiments. Luciferase shRNA (shLuc), targeting firefly luciferase, and scrambled shRNAs (shScrs) have been widely used as controls for vertebrate cell research. However, thorough validation of control shRNAs has not been made to date. Here, we performed thorough physiological and morphological studies against control shRNAs in mouse hippocampal CA1 pyramidal neurons. As expected, all control shRNAs exhibited normal basal synaptic transmission and dendritic morphology. However, to our surprise, shLuc exerted severe off-target effects on voltage-gated ion channel function, while the shScr had no detectable changes. These results indicate that thorough validation of shRNA is imperative and, in the absence of such validation, that shScr is the best available negative control for gene knockdown studies.
Collapse
Affiliation(s)
- Yuto Hasegawa
- Brudnick Neuropsychiatric Research Institute and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01604
| | - Wenjie Mao
- Brudnick Neuropsychiatric Research Institute and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01604
| | - Sucharita Saha
- Brudnick Neuropsychiatric Research Institute and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01604
| | - Georgia Gunner
- Brudnick Neuropsychiatric Research Institute and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01604
| | - Jenya Kolpakova
- Brudnick Neuropsychiatric Research Institute and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01604
| | - Gilles E Martin
- Brudnick Neuropsychiatric Research Institute and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01604
| | - Kensuke Futai
- Brudnick Neuropsychiatric Research Institute and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01604
| |
Collapse
|
19
|
Hancock R, Pugh KR, Hoeft F. Neural Noise Hypothesis of Developmental Dyslexia. Trends Cogn Sci 2017; 21:434-448. [PMID: 28400089 PMCID: PMC5489551 DOI: 10.1016/j.tics.2017.03.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/27/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
Developmental dyslexia (decoding-based reading disorder; RD) is a complex trait with multifactorial origins at the genetic, neural, and cognitive levels. There is evidence that low-level sensory-processing deficits precede and underlie phonological problems, which are one of the best-documented aspects of RD. RD is also associated with impairments in integrating visual symbols with their corresponding speech sounds. Although causal relationships between sensory processing, print-speech integration, and fluent reading, and their neural bases are debated, these processes all require precise timing mechanisms across distributed brain networks. Neural excitability and neural noise are fundamental to these timing mechanisms. Here, we propose that neural noise stemming from increased neural excitability in cortical networks implicated in reading is one key distal contributor to RD.
Collapse
Affiliation(s)
- Roeland Hancock
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA; Science-based Innovation in Learning Center (SILC), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA.
| | - Kenneth R Pugh
- Haskins Laboratories, 300 George Street, New Haven, CT 06511, USA; Department of Linguistics, Yale University, 370 Temple Street, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale University, 330 Cedar Street, New Haven, CT 06520, USA; Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269, USA
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA; Haskins Laboratories, 300 George Street, New Haven, CT 06511, USA; Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160, Japan; Science-based Innovation in Learning Center (SILC), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA; Dyslexia Center, UCSF, 675 Nelson Rising Lane, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Masuda T, Wan J, Yerrabelli A, Berlinicke C, Kallman A, Qian J, Zack DJ. Off Target, but Sequence-Specific, shRNA-Associated Trans-Activation of Promoter Reporters in Transient Transfection Assays. PLoS One 2016; 11:e0167867. [PMID: 27977714 PMCID: PMC5158200 DOI: 10.1371/journal.pone.0167867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022] Open
Abstract
Transient transfection promoter reporter assays are commonly used in the study of transcriptional regulation, and can be used to define and characterize both cis-acting regulatory sequences and trans-acting factors. In the process of using a variety of reporter assays designed to study regulation of the rhodopsin (rho) promoter, we discovered that rhodopsin promoter-driven reporter expression could be activated by certain species of shRNA in a gene-target-independent but shRNA sequence-specific manner, suggesting involvement of a specific shRNA associated pathway. Interestingly, the shRNA-mediated increase of rhodopsin promoter activity was synergistically enhanced by the rhodopsin transcriptional regulators CRX and NRL. Additionally, the effect was cell line-dependent, suggesting that this pathway requires the expression of cell-type specific factors. Since microRNA (miRNA) and interferon response-mediated processes have been implicated in RNAi off-target phenomena, we performed miRNA and gene expression profiling on cells transfected with shRNAs that do target a specific gene but have varied effects on rho reporter expression in order to identify transcripts whose expression levels are associated with shRNA induced rhodopsin promoter reporter activity. We identified a total of 50 miRNA species, and by microarray analysis, 320 protein-coding genes, some of which were predicted targets of the identified differentially expressed miRNAs, whose expression was altered in the presence of shRNAs that stimulated rhodopsin-promoter activity in a non-gene-targeting manner. Consistent with earlier studies on shRNA off-target effects, a number of interferon response genes were among those identified to be upregulated. Taken together, our results confirm the importance of considering off-target effects when interpreting data from RNAi experiments and extend prior results by focusing on the importance of including multiple and carefully designed controls in the design and analysis of the effects of shRNA on transient transfection-based transcriptional assays.
Collapse
Affiliation(s)
- Tomohiro Masuda
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jun Wan
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Anitha Yerrabelli
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Cindy Berlinicke
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alyssa Kallman
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institut de la Vision, University Pierre and Marie Curie, Paris, France
- * E-mail:
| |
Collapse
|
21
|
Essential Roles for ARID1B in Dendritic Arborization and Spine Morphology of Developing Pyramidal Neurons. J Neurosci 2016; 36:2723-42. [PMID: 26937011 DOI: 10.1523/jneurosci.2321-15.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED De novo truncating mutations in ARID1B, a chromatin-remodeling gene, cause Coffin-Siris syndrome, a developmental disorder characterized by intellectual disability and speech impairment; however, how the genetic elimination leads to cognitive dysfunction remains unknown. Thus, we investigated the neural functions of ARID1B during brain development. Here, we show that ARID1B regulates dendritic differentiation in the developing mouse brain. We knocked down ARID1B expression in mouse pyramidal neurons using in utero gene delivery methodologies. ARID1B knockdown suppressed dendritic arborization of cortical and hippocampal pyramidal neurons in mice. The abnormal development of dendrites accompanied a decrease in dendritic outgrowth into layer I. Furthermore, knockdown of ARID1B resulted in aberrant dendritic spines and synaptic transmission. Finally, ARID1B deficiency led to altered expression of c-Fos and Arc, and overexpression of these factors rescued abnormal differentiation induced by ARID1B knockdown. Our results demonstrate a novel role for ARID1B in neuronal differentiation and provide new insights into the origin of cognitive dysfunction associated with developmental intellectual disability. SIGNIFICANCE STATEMENT Haploinsufficiency of ARID1B, a component of chromatin remodeling complex, causes intellectual disability. However, the role of ARID1B in brain development is unknown. Here, we demonstrate that ARID1B is required for neuronal differentiation in the developing brain, such as in dendritic arborization and synapse formation. Our findings suggest that ARID1B plays a critical role in the establishment of cognitive circuitry by regulating dendritic complexity. Thus, ARID1B deficiency may cause intellectual disability via abnormal brain wiring induced by the defective differentiation of cortical neurons.
Collapse
|
22
|
Rannals MD, Hamersky GR, Page SC, Campbell MN, Briley A, Gallo RA, Phan BN, Hyde TM, Kleinman JE, Shin JH, Jaffe AE, Weinberger DR, Maher BJ. Psychiatric Risk Gene Transcription Factor 4 Regulates Intrinsic Excitability of Prefrontal Neurons via Repression of SCN10a and KCNQ1. Neuron 2016; 90:43-55. [PMID: 26971948 PMCID: PMC4824652 DOI: 10.1016/j.neuron.2016.02.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/09/2015] [Accepted: 02/12/2016] [Indexed: 01/28/2023]
Abstract
Transcription Factor 4 (TCF4) is a clinically pleiotropic gene associated with schizophrenia and Pitt-Hopkins syndrome (PTHS). To gain insight about the neurobiology of TCF4, we created an in vivo model of PTHS by suppressing Tcf4 expression in rat prefrontal neurons immediately prior to neurogenesis. This cell-autonomous genetic insult attenuated neuronal spiking by increasing the afterhyperpolarization. At the molecular level, using a novel technique called iTRAP that combined in utero electroporation and translating ribosome affinity purification, we identified increased translation of two ion channel genes, Kcnq1 and Scn10a. These ion channel candidates were validated by pharmacological rescue and molecular phenocopy. Remarkably, similar excitability deficits were observed in prefrontal neurons from a Tcf4(+/tr) mouse model of PTHS. Thus, we identify TCF4 as a regulator of neuronal intrinsic excitability in part by repression of Kcnq1 and Scn10a and suggest that this molecular function may underlie pathophysiology associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Matthew D Rannals
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Gregory R Hamersky
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Stephanie Cerceo Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Morganne N Campbell
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Aaron Briley
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Ryan A Gallo
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - BaDoi N Phan
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Neurology and the McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Neurology and the McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neurology and the McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brady J Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Fowler DK, Williams C, Gerritsen AT, Washbourne P. Improved knockdown from artificial microRNAs in an enhanced miR-155 backbone: a designer's guide to potent multi-target RNAi. Nucleic Acids Res 2015; 44:e48. [PMID: 26582923 PMCID: PMC4797272 DOI: 10.1093/nar/gkv1246] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/31/2015] [Indexed: 01/24/2023] Open
Abstract
Artificial microRNA (amiRNA) sequences embedded in natural microRNA (miRNA) backbones have proven to be useful tools for RNA interference (RNAi). amiRNAs have reduced off-target and toxic effects compared to other RNAi-based methods such as short-hairpin RNAs (shRNA). amiRNAs are often less effective for knockdown, however, compared to their shRNA counterparts. We screened a large empirically-designed amiRNA set in the synthetic inhibitory BIC/miR-155 RNA (SIBR) scaffold and show common structural and sequence-specific features associated with effective amiRNAs. We then introduced exogenous motifs into the basal stem region which increase amiRNA biogenesis and knockdown potency. We call this modified backbone the enhanced SIBR (eSIBR) scaffold. Using chained amiRNAs for multi-gene knockdown, we show that concatenation of miRNAs targeting different genes is itself sufficient for increased knockdown efficacy. Further, we show that eSIBR outperforms wild-type SIBR (wtSIBR) when amiRNAs are chained. Finally, we use a lentiviral expression system in cultured neurons, where we again find that eSIBR amiRNAs are more potent for multi-target knockdown of endogenous genes. eSIBR will be a valuable tool for RNAi approaches, especially for studies where knockdown of multiple targets is desired.
Collapse
Affiliation(s)
- Daniel K Fowler
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Carly Williams
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Alida T Gerritsen
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Philip Washbourne
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
24
|
Chassefeyre R, Martínez-Hernández J, Bertaso F, Bouquier N, Blot B, Laporte M, Fraboulet S, Couté Y, Devoy A, Isaacs AM, Pernet-Gallay K, Sadoul R, Fagni L, Goldberg Y. Regulation of postsynaptic function by the dementia-related ESCRT-III subunit CHMP2B. J Neurosci 2015; 35:3155-73. [PMID: 25698751 PMCID: PMC4331633 DOI: 10.1523/jneurosci.0586-14.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 12/14/2022] Open
Abstract
The charged multivesicular body proteins (Chmp1-7) are an evolutionarily conserved family of cytosolic proteins that transiently assembles into helical polymers that change the curvature of cellular membrane domains. Mutations in human CHMP2B cause frontotemporal dementia, suggesting that this protein may normally control some neuron-specific process. Here, we examined the function, localization, and interactions of neuronal Chmp2b. The protein was highly expressed in mouse brain and could be readily detected in neuronal dendrites and spines. Depletion of endogenous Chmp2b reduced dendritic branching of cultured hippocampal neurons, decreased excitatory synapse density in vitro and in vivo, and abolished activity-induced spine enlargement and synaptic potentiation. To understand the synaptic effects of Chmp2b, we determined its ultrastructural distribution by quantitative immuno-electron microscopy and its biochemical interactions by coimmunoprecipitation and mass spectrometry. In the hippocampus in situ, a subset of neuronal Chmp2b was shown to concentrate beneath the perisynaptic membrane of dendritic spines. In synaptoneurosome lysates, Chmp2b was stably bound to a large complex containing other members of the Chmp family, as well as postsynaptic scaffolds. The supramolecular Chmp assembly detected here corresponds to a stable form of the endosomal sorting complex required for transport-III (ESCRT-III), a ubiquitous cytoplasmic protein complex known to play a central role in remodeling of lipid membranes. We conclude that Chmp2b-containing ESCRT-III complexes are also present at dendritic spines, where they regulate synaptic plasticity. We propose that synaptic ESCRT-III filaments may function as a novel element of the submembrane cytoskeleton of spines.
Collapse
Affiliation(s)
- Romain Chassefeyre
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 836, F-38042 Grenoble, France, Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France
| | - José Martínez-Hernández
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 836, F-38042 Grenoble, France, Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France
| | - Federica Bertaso
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34094 Montpellier, France, Universités de Montpellier 1 & 2, UMR-5203, F-34094 Montpellier, France, INSERM, Unité 661, F-34094 Montpellier, France
| | - Nathalie Bouquier
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34094 Montpellier, France, Universités de Montpellier 1 & 2, UMR-5203, F-34094 Montpellier, France, INSERM, Unité 661, F-34094 Montpellier, France
| | - Béatrice Blot
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 836, F-38042 Grenoble, France, Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France
| | - Marine Laporte
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 836, F-38042 Grenoble, France, Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France
| | - Sandrine Fraboulet
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 836, F-38042 Grenoble, France, Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France
| | - Yohann Couté
- INSERM, Unité 1038, F-38054 Grenoble, France, Commissariat à l'Energie Atomique (CEA), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), Laboratoire de Biologie à Grande Echelle, F-38054 Grenoble, France
| | - Anny Devoy
- Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, United Kingdom, and
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, United Kingdom, and
| | - Karin Pernet-Gallay
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 836, F-38042 Grenoble, France, Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France
| | - Rémy Sadoul
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 836, F-38042 Grenoble, France, Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France,
| | - Laurent Fagni
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34094 Montpellier, France, Universités de Montpellier 1 & 2, UMR-5203, F-34094 Montpellier, France, INSERM, Unité 661, F-34094 Montpellier, France
| | - Yves Goldberg
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 836, F-38042 Grenoble, France, Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France, CEA, iRTSV, Groupe Physiopathologie du Cytosquelette (GPC), F-38054 Grenoble, France
| |
Collapse
|
25
|
Incontro S, Asensio CS, Edwards RH, Nicoll RA. Efficient, complete deletion of synaptic proteins using CRISPR. Neuron 2014; 83:1051-7. [PMID: 25155957 PMCID: PMC4195490 DOI: 10.1016/j.neuron.2014.07.043] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 12/26/2022]
Abstract
One of the most powerful ways to test the function of a protein is to characterize the consequences of its deletion. In the past, this has involved inactivation of the gene by homologous recombination either in the germline or later through conditional deletion. RNA interference (RNAi) provides an alternative way to knock down proteins, but both of these approaches have their limitations. Recently, the CRISPR/Cas9 system has suggested another way to selectively inactivate genes. We have now tested this system in postmitotic neurons by targeting two well-characterized synaptic proteins, the obligatory GluN1 subunit of the NMDA receptor and the GluA2 subunit of the AMPA receptor. Expression of CRISPR/Cas9 in hippocampal slice cultures completely eliminated NMDA receptor and GluA2 function. CRISPR/Cas9 thus provides a powerful tool to study the function of synaptic proteins.
Collapse
Affiliation(s)
- Salvatore Incontro
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cedric S Asensio
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Robert H Edwards
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
26
|
Off-target effect of doublecortin family shRNA on neuronal migration associated with endogenous microRNA dysregulation. Neuron 2014; 82:1255-1262. [PMID: 24945770 DOI: 10.1016/j.neuron.2014.04.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2014] [Indexed: 12/31/2022]
Abstract
Acute gene inactivation using short hairpin RNA (shRNA, knockdown) in developing brain is a powerful technique to study genetic function; however, discrepancies between knockdown and knockout murine phenotypes have left unanswered questions. For example, doublecortin (Dcx) knockdown but not knockout shows a neocortical neuronal migration phenotype. Here we report that in utero electroporation of shRNA, but not siRNA or miRNA, to Dcx demonstrates a migration phenotype in Dcx knockouts akin to the effect in wild-type mice, suggesting shRNA-mediated off-target toxicity. This effect was not limited to Dcx, as it was observed in Dclk1 knockouts, as well as with a fraction of scrambled shRNAs, suggesting a sequence-dependent but not sequence-specific effect. Profiling RNAs from electroporated cells showed a defect in endogenous let7 miRNA levels, and disruption of let7 or Dicer recapitulated the migration defect. The results suggest that shRNA-mediated knockdown can produce untoward migration effects by altering endogenous miRNA pathways.
Collapse
|
27
|
Boda B, Mendez P, Boury-Jamot B, Magara F, Muller D. Reversal of activity-mediated spine dynamics and learning impairment in a mouse model of Fragile X syndrome. Eur J Neurosci 2014; 39:1130-7. [DOI: 10.1111/ejn.12488] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Bernadett Boda
- Department of Basic Neurosciences; School of Medicine; University of Geneva; Geneva 4 1211 Switzerland
| | - Pablo Mendez
- Department of Basic Neurosciences; School of Medicine; University of Geneva; Geneva 4 1211 Switzerland
| | | | - Fulvio Magara
- Center for Psychiatric Neurosciences; Cery; Prilly-Lausanne Switzerland
| | - Dominique Muller
- Department of Basic Neurosciences; School of Medicine; University of Geneva; Geneva 4 1211 Switzerland
| |
Collapse
|
28
|
Heitz F, Johansson T, Baumgärtel K, Gecaj R, Pelczar P, Mansuy IM. Heritable and inducible gene knockdown in astrocytes or neurons in vivo by a combined lentiviral and RNAi approach. Front Cell Neurosci 2014; 8:62. [PMID: 24678290 PMCID: PMC3958736 DOI: 10.3389/fncel.2014.00062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/12/2014] [Indexed: 11/13/2022] Open
Abstract
Gene knockout by homologous recombination is a popular method to study gene functions in the mouse in vivo. However, its lack of temporal control has limited the interpretation of knockout studies because the complete elimination of a gene product often alters developmental processes, and can induce severe malformations or lethality. Conditional gene knockdown has emerged as a compelling alternative to gene knockout, an approach well-established in vitro but that remains challenging in vivo, especially in the adult brain. Here, we report a method for conditional and cell-specific gene knockdown in the mouse brain in vivo that combines Cre-mediated RNA interference (RNAi) with classical and lentivirus-mediated transgenesis. The method is based on the inducible expression of a silencing short hairpin RNA (shRNA) introduced in mice by lentivirus-mediated transgenesis, and on its activation by excision of a floxed stop EGFP reporter with an inducible Cre recombinase expressed in astrocytes or in neurons. This dual system should be of broad utility for comparative studies of gene functions in these two cell types in vivo.
Collapse
Affiliation(s)
- Fabrice Heitz
- Brain Research Institute, Medical Faculty of the University of Zürich and Department of Biology of the Swiss Federal Institute of Technology Zürich, Switzerland
| | - Torbjörn Johansson
- Institute of Pharmacology and Toxicology, Medical Faculty of the University of Zürich Zürich, Switzerland
| | - Karsten Baumgärtel
- Dorris Neuroscience Center, The Scripps Research Institute La Jolla, CA, USA
| | - Rreze Gecaj
- Brain Research Institute, Medical Faculty of the University of Zürich and Department of Biology of the Swiss Federal Institute of Technology Zürich, Switzerland
| | - Pawel Pelczar
- Institute of Laboratory Animal Science, University of Zürich Zürich, Switzerland
| | - Isabelle M Mansuy
- Brain Research Institute, Medical Faculty of the University of Zürich and Department of Biology of the Swiss Federal Institute of Technology Zürich, Switzerland
| |
Collapse
|
29
|
Yim YS, Kwon Y, Nam J, Yoon HI, Lee K, Kim DG, Kim E, Kim CH, Ko J. Slitrks control excitatory and inhibitory synapse formation with LAR receptor protein tyrosine phosphatases. Proc Natl Acad Sci U S A 2013; 110:4057-62. [PMID: 23345436 PMCID: PMC3593915 DOI: 10.1073/pnas.1209881110] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The balance between excitatory and inhibitory synaptic inputs, which is governed by multiple synapse organizers, controls neural circuit functions and behaviors. Slit- and Trk-like proteins (Slitrks) are a family of synapse organizers, whose emerging synaptic roles are incompletely understood. Here, we report that Slitrks are enriched in postsynaptic densities in rat brains. Overexpression of Slitrks promoted synapse formation, whereas RNAi-mediated knockdown of Slitrks decreased synapse density. Intriguingly, Slitrks were required for both excitatory and inhibitory synapse formation in an isoform-dependent manner. Moreover, Slitrks required distinct members of the leukocyte antigen-related receptor protein tyrosine phosphatase (LAR-RPTP) family to trigger synapse formation. Protein tyrosine phosphatase σ (PTPσ), in particular, was specifically required for excitatory synaptic differentiation by Slitrks, whereas PTPδ was necessary for inhibitory synapse differentiation. Taken together, these data suggest that combinatorial interactions of Slitrks with LAR-RPTP family members maintain synapse formation to coordinate excitatory-inhibitory balance.
Collapse
Affiliation(s)
- Yeong Shin Yim
- Department of Pharmacology, Brain Research Institute, Brain Korea 21 Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Younghee Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea; and
| | - Jungyong Nam
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Hong In Yoon
- Department of Pharmacology, Brain Research Institute, Brain Korea 21 Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Kangduk Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea; and
| | - Dong Goo Kim
- Department of Pharmacology, Brain Research Institute, Brain Korea 21 Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Brain Research Institute, Brain Korea 21 Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jaewon Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea; and
| |
Collapse
|
30
|
A comprehensive small interfering RNA screen identifies signaling pathways required for gephyrin clustering. J Neurosci 2013; 32:14821-34. [PMID: 23077067 DOI: 10.1523/jneurosci.1261-12.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The postsynaptic scaffold protein gephyrin is clustered at inhibitory synapses and serves for the stabilization of GABA(A) receptors. Here, a comprehensive kinome-wide siRNA screen in a human HeLa cell-based model for gephyrin clustering was used to identify candidate protein kinases implicated in the stabilization of gephyrin clusters. As a result, 12 hits were identified including FGFR1 (FGF receptor 1), TrkB, and TrkC as well as components of the MAPK and mammalian target of rapamycin (mTOR) pathways. For confirmation, the impact of these hits on gephyrin clustering was analyzed in rat primary hippocampal neurons. We found that brain-derived neurotrophic factor (BDNF) acts on gephyrin clustering through MAPK signaling, and this process may be controlled by the MAPK signaling antagonist sprouty2. BDNF signaling through phosphatidylinositol 3-kinase (PI3K)-Akt also activates mTOR and represses GSK3β, which was previously shown to reduce gephyrin clustering. Gephyrin is associated with inactive mTOR and becomes released upon BDNF-dependent mTOR activation. In primary neurons, a reduction in the number of gephyrin clusters due to manipulation of the BDNF-mTOR signaling is associated with reduced GABA(A) receptor clustering, suggesting functional impairment of GABA signaling. Accordingly, application of the mTOR antagonist rapamycin leads to disinhibition of neuronal networks as measured on microelectrode arrays. In conclusion, we provide evidence that BDNF regulates gephyrin clustering via MAPK as well as PI3K-Akt-mTOR signaling.
Collapse
|
31
|
Neuroligin-1-dependent competition regulates cortical synaptogenesis and synapse number. Nat Neurosci 2012; 15:1667-74. [PMID: 23143522 PMCID: PMC3536444 DOI: 10.1038/nn.3256] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/11/2012] [Indexed: 02/06/2023]
Abstract
Members of the neuroligin (NL) family of cell-adhesion proteins are found at excitatory and inhibitory synapses and are mutated in some familial forms of autism spectrum disorders. Although they display synaptogenic properties in heterologous systems, a function of NLs in vivo in regulating synapse formation and synapse number has been difficult to establish. Here we show that neuroligin-1 (NL1), which is located at excitatory post-synaptic densities, does regulate activity-dependent synaptogenesis as well as mature synapse number on cortical layer 2/3 pyramidal neurons in vivo. However, synapse number is not sensitive to absolute NL1 levels but rather to transcellular differences in the relative amounts of NL1. These effects are independent of the cell-autonomous regulation of NMDA-type glutamate receptors by absolute levels of NL1. Our data indicate that transcellular competitive processes govern synapse formation and number in developing cortex and that NL1 plays a central function in these processes.
Collapse
|
32
|
Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development. Proc Natl Acad Sci U S A 2012; 109:18120-5. [PMID: 23074245 DOI: 10.1073/pnas.1216398109] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in the contactin-associated protein 2 (CNTNAP2) gene encoding CASPR2, a neurexin-related cell-adhesion molecule, predispose to autism, but the function of CASPR2 in neural circuit assembly remains largely unknown. In a knockdown survey of autism candidate genes, we found that CASPR2 is required for normal development of neural networks. RNAi-mediated knockdown of CASPR2 produced a cell-autonomous decrease in dendritic arborization and spine development in pyramidal neurons, leading to a global decline in excitatory and inhibitory synapse numbers and a decrease in synaptic transmission without a detectable change in the properties of these synapses. Our data suggest that in addition to the previously described role of CASPR2 in mature neurons, where CASPR2 organizes nodal microdomains of myelinated axons, CASPR2 performs an earlier organizational function in developing neurons that is essential for neural circuit assembly and operates coincident with the time of autism spectrum disorder (ASD) pathogenesis.
Collapse
|
33
|
Saunders A, Johnson CA, Sabatini BL. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons. Front Neural Circuits 2012; 6:47. [PMID: 22866029 PMCID: PMC3406316 DOI: 10.3389/fncir.2012.00047] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/06/2012] [Indexed: 11/13/2022] Open
Abstract
Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs) whose transgene expression is activated by Cre (“Cre-On”). Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (“Cre-Off”) and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery.
Collapse
Affiliation(s)
- Arpiar Saunders
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute Boston, MA, USA
| | | | | |
Collapse
|
34
|
Maussion G, Yang J, Yerko V, Barker P, Mechawar N, Ernst C, Turecki G. Regulation of a truncated form of tropomyosin-related kinase B (TrkB) by Hsa-miR-185* in frontal cortex of suicide completers. PLoS One 2012; 7:e39301. [PMID: 22802923 PMCID: PMC3382618 DOI: 10.1371/journal.pone.0039301] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 05/18/2012] [Indexed: 01/03/2023] Open
Abstract
Background TrkB-T1 is a BDNF receptor lacking a tyrosine kinase domain that is highly expressed in astrocytes and regulates BDNF-evoked calcium transients. Previous studies indicate that downregulation of TrkB-T1 in frontal cortex may be involved in neurobiological processes underlying suicide. Methods In a microarray screening study (N = 8), we interrogated all known microRNA in the frontal cortex of suicide completers with low expression of TrkB-T1 and normal controls. These findings were validated and followed up in a larger sample of cases and controls (N = 55). Functional analyses included microRNA silencing, microRNA overexpression and luciferase assays to investigate specificity and to validate interactions between differentially expressed microRNA and TrkB-T1. Results MicroRNAs Hsa-miR-185* and Hsa-miR-491-3p were upregulated in suicide completers with low expression of TrkB.T1 (Pnominal: 9.10−5 and 1.8.10−4 respectively; FDR-corrected p = 0.031). Bioinformatic analyses revealed five putative binding sites for the DiGeorge syndrome linked microRNA Hsa-miR-185*in the 3′UTR of TrkB-T1, but none for Hsa-miR-491-3P. The increase of Hsa-miR-185* in frontal cortex of suicide completers was validated then confirmed in a larger, randomly selected group of suicide completers, where an inverse correlation between Hsa-miR-185* and TrkB-T1 expression was observed (R = −0.439; p = 0.001). Silencing and overexpression studies performed in human cell lines confirmed the inverse relationship between hsa-mir-185* and trkB-T1 expression. Luciferase assays demonstrated that Hsa-miR-185* binds to sequences in the 3′UTR of TrkB-T1. Conclusion These results suggest that an increase of Hsa-miR-185* expression levels regulates, at least in part, the TrkB-T1 decrease observed in the frontal cortex of suicide completers and further implicate the 22q11 region in psychopathology.
Collapse
Affiliation(s)
- Gilles Maussion
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, McGill University, Montreal, Quebec, Canada
| | - Jennie Yang
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, McGill University, Montreal, Quebec, Canada
| | - Volodymyr Yerko
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, McGill University, Montreal, Quebec, Canada
| | - Philip Barker
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, McGill University, Montreal, Quebec, Canada
| | - Carl Ernst
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, McGill University, Montreal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
35
|
Silencing of amyloid precursor protein expression using a new engineered delta ribozyme. Int J Alzheimers Dis 2012; 2012:947147. [PMID: 22482079 PMCID: PMC3296272 DOI: 10.1155/2012/947147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 11/01/2011] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) etiological studies suggest that an elevation in amyloid-β peptides (Aβ) level contributes to aggregations of the peptide and subsequent development of the disease. The major constituent of these amyloid peptides is the 1 to 40–42 residue peptide (Aβ40−42) derived from amyloid protein precursor (APP). Most likely, reducing Aβ levels in the brain may block both its aggregation and neurotoxicity and would be beneficial for patients with AD. Among the several possible ways to lower Aβ accumulation in the cells, we have selectively chosen to target the primary step in the Aβ cascade, namely, to reduce APP gene expression. Toward this end, we engineered specific SOFA-HDV ribozymes, a new generation of catalytic RNA tools, to decrease APP mRNA levels. Additionally, we demonstrated that APP-ribozymes are effective at decreasing APP mRNA and protein levels as well as Aβ levels in neuronal cells. Our results could lay the groundwork for a new protective treatment for AD.
Collapse
|
36
|
Ko J, Soler-Llavina GJ, Fuccillo MV, Malenka RC, Südhof TC. Neuroligins/LRRTMs prevent activity- and Ca2+/calmodulin-dependent synapse elimination in cultured neurons. ACTA ACUST UNITED AC 2011; 194:323-34. [PMID: 21788371 PMCID: PMC3144410 DOI: 10.1083/jcb.201101072] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neuroligins and leucine-rich repeat transmembrane proteins are necessary to prevent activity-dependent elimination of excitatory synapses in cultured neurons, with synapse elimination operating by a Ca2+/calmodulin-dependent pathway. Neuroligins (NLs) and leucine-rich repeat transmembrane proteins (LRRTMs) are postsynaptic cell adhesion molecules that bind to presynaptic neurexins. In this paper, we show that short hairpin ribonucleic acid–mediated knockdowns (KDs) of LRRTM1, LRRTM2, and/or NL-3, alone or together as double or triple KDs (TKDs) in cultured hippocampal neurons, did not decrease synapse numbers. In neurons cultured from NL-1 knockout mice, however, TKD of LRRTMs and NL-3 induced an ∼40% loss of excitatory but not inhibitory synapses. Strikingly, synapse loss triggered by the LRRTM/NL deficiency was abrogated by chronic blockade of synaptic activity as well as by chronic inhibition of Ca2+ influx or Ca2+/calmodulin (CaM) kinases. Furthermore, postsynaptic KD of CaM prevented synapse loss in a cell-autonomous manner, an effect that was reversed by CaM rescue. Our results suggest that two neurexin ligands, LRRTMs and NLs, act redundantly to maintain excitatory synapses and that synapse elimination caused by the absence of NLs and LRRTMs is promoted by synaptic activity and mediated by a postsynaptic Ca2+/CaM-dependent signaling pathway.
Collapse
Affiliation(s)
- Jaewon Ko
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
37
|
Wang HG, Wang C, Pitt GS. Rem2-targeted shRNAs reduce frequency of miniature excitatory postsynaptic currents without altering voltage-gated Ca²⁺ currents. PLoS One 2011; 6:e25741. [PMID: 21980534 PMCID: PMC3183078 DOI: 10.1371/journal.pone.0025741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/09/2011] [Indexed: 02/02/2023] Open
Abstract
Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) plays important roles in neuronal cell development and function. Rem2 is a member of the RGK (Rad, Rem, Rem2, Gem/Kir) subfamily of small GTPases that confers potent inhibition upon VGCCs. The physiologic roles of RGK proteins, particularly in the brain, are poorly understood. Rem2 was implicated in synaptogenesis through an RNAi screen and proposed to regulate Ca2+ homeostasis in neurons. To test this hypothesis and uncover physiological roles for Rem2 in the brain, we investigated the molecular mechanisms by which Rem2 knockdown affected synaptogenesis and Ca2+ homeostasis in cultured rat hippocampal neurons. Expression of a cocktail of shRNAs targeting rat Rem2 (rRem2) reduced the frequency of miniature excitatory postsynaptic currents (mEPSCs) measured 10 d after transfection (14 d in vitro), but did not affect mEPSC amplitude. VGCC current amplitude after rRem2-targeted knockdown was not different from that in control cells, however, at either 4 or 10 d post transfection. Co-expression of a human Rem2 that was insensitive to the shRNAs targeting rRem2 was unable to prevent the reduction in mEPSC frequency after rRem2-targeted knockdown. Over-expression of rRem2 resulted in 50% reduction in VGCC current, but neither the mEPSC frequency nor amplitude was affected. Taken together, the observed effects upon synaptogenesis after shRNA treatment are more likely due to mechanisms other than modulation of VGCCs and Ca2+ homeostasis, and may be independent of Rem2. In addition, our results reveal a surprising lack of contribution of VGCCs to synaptogenesis during early development in cultured hippocampal neurons.
Collapse
Affiliation(s)
- Hong-Gang Wang
- Division of Cardiology, Department of Medicine, and the Ion Channel Research Unit, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Chuan Wang
- Division of Cardiology, Department of Medicine, and the Ion Channel Research Unit, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Geoffrey S. Pitt
- Division of Cardiology, Department of Medicine, and the Ion Channel Research Unit, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
38
|
Granger AJ, Gray JA, Lu W, Nicoll RA. Genetic analysis of neuronal ionotropic glutamate receptor subunits. J Physiol 2011; 589:4095-101. [PMID: 21768264 PMCID: PMC3180569 DOI: 10.1113/jphysiol.2011.213033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/18/2011] [Indexed: 11/08/2022] Open
Abstract
In the brain, fast, excitatory synaptic transmission occurs primarily through AMPA- and NMDA-type ionotropic glutamate receptors. These receptors are composed of subunit proteins that determine their biophysical properties and trafficking behaviour. Therefore, determining the function of these subunits and receptor subunit composition is essential for understanding the physiological properties of synaptic transmission. Here, we discuss and evaluate various genetic approaches that have been used to study AMPA and NMDA receptor subunits. These approaches have demonstrated that the GluA1 AMPA receptor subunit is required for activity-dependent trafficking and contributes to basal synaptic transmission, while the GluA2 subunit regulates Ca(2+) permeability, homeostasis and trafficking to the synapse under basal conditions. In contrast, the GluN2A and GluN2B NMDA receptor subunits regulate synaptic AMPA receptor content, both during synaptic development and plasticity. Ongoing research in this field is focusing on the molecular interactions and mechanisms that control these functions. To accomplish this, molecular replacement techniques are being used, where native subunits are replaced with receptors containing targeted mutations. In this review, we discuss a single-cell molecular replacement approach which should arguably advance our physiological understanding of ionotropic glutamate receptor subunits, but is generally applicable to study of any neuronal protein.
Collapse
Affiliation(s)
- Adam J Granger
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
39
|
Cheng J, Zhou X, Miller EL, Alvarez VA, Sabatini BL, Wong STC. Oriented Markov random field based dendritic spine segmentation for fluorescence microscopy images. Neuroinformatics 2011; 8:157-70. [PMID: 20585900 DOI: 10.1007/s12021-010-9073-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dendritic spines have been shown to be closely related to various functional properties of the neuron. Usually dendritic spines are manually labeled to analyze their morphological changes, which is very time-consuming and susceptible to operator bias, even with the assistance of computers. To deal with these issues, several methods have been recently proposed to automatically detect and measure the dendritic spines with little human interaction. However, problems such as degraded detection performance for images with larger pixel size (e.g. 0.125 μm/pixel instead of 0.08 μm/pixel) still exist in these methods. Moreover, the shapes of detected spines are also distorted. For example, the "necks" of some spines are missed. Here we present an oriented Markov random field (OMRF) based algorithm which improves spine detection as well as their geometric characterization. We begin with the identification of a region of interest (ROI) containing all the dendrites and spines to be analyzed. For this purpose, we introduce an adaptive procedure for identifying the image background. Next, the OMRF model is discussed within a statistical framework and the segmentation is solved as a maximum a posteriori estimation (MAP) problem, whose optimal solution is found by a knowledge-guided iterative conditional mode (KICM) algorithm. Compared with the existing algorithms, the proposed algorithm not only provides a more accurate representation of the spine shape, but also improves the detection performance by more than 50% with regard to reducing both the misses and false detection.
Collapse
Affiliation(s)
- Jie Cheng
- The Center for Bioengineering and Informatics, The Methodist Hospital Research Institute and Department of Radiology, The Methodist Hospital, Weill Cornell Medical College, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
40
|
Tsang CW, Estey MP, DiCiccio JE, Xie H, Patterson D, Trimble WS. Characterization of presynaptic septin complexes in mammalian hippocampal neurons. Biol Chem 2011; 392:739-49. [PMID: 21767234 DOI: 10.1515/bc.2011.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Septins are GTPases that form heteromeric complexes and are linked to neurological disorders. Although several septin subcomplexes have been reported in various mammalian tissues, the cellular and subcellular distribution of these complexes is largely unexplored. Using antibodies against ten mammalian septins, we show that septins diverge with respect to their tissue distribution implying that septin complexes in various tissues have unique composition. Although all ten septins examined were expressed in brain tissue, we describe septin complex(es) including SEPT3, SEPT5, SEPT6, SEPT7 and SEPT11 that could be functional within the presynapse because, unlike other septins they: (1) showed an increase in expression from embryonic day 15 to post-natal day 70, (2) were abundantly expressed in axons and growth cones of developing hippocampal neurons, (3) were found in presynaptic terminals of mature synapses, (4) were enriched in a preparation of synaptic vesicles and (5) immunoprecipitated together from brain tissue and cultured nerve cells. Knockdown of SEPT5 or SEPT7 in developing hippocampal neurons impaired axon growth. Because septins are functionally linked to the cytoskeleton and vesicle traffic, presynaptic neuronal septin complexes could be important for ensuring proper axon development and neurotransmitter release.
Collapse
|
41
|
Pang ZP, Bacaj T, Yang X, Zhou P, Xu W, Südhof TC. Doc2 supports spontaneous synaptic transmission by a Ca(2+)-independent mechanism. Neuron 2011; 70:244-51. [PMID: 21521611 PMCID: PMC3102832 DOI: 10.1016/j.neuron.2011.03.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2011] [Indexed: 11/24/2022]
Abstract
Two families of Ca(2+)-binding proteins have been proposed as Ca(2+) sensors for spontaneous release: synaptotagmins and Doc2s, with the intriguing possibility that Doc2s may represent high-affinity Ca(2+) sensors that are activated by deletion of synaptotagmins, thereby accounting for the increased spontaneous release in synaptotagmin-deficient synapses. Here, we use an shRNA-dependent quadruple knockdown of all four Ca(2+)-binding proteins of the Doc2 family to confirm that Doc2-deficient synapses exhibit a marked decrease in the frequency of spontaneous release events. Knockdown of Doc2s in synaptotagmin-1-deficient synapses, however, failed to reduce either the increased spontaneous release or the decreased evoked release of these synapses, suggesting that Doc2s do not constitute Ca(2+) sensors for asynchronous release. Moreover, rescue experiments revealed that the decrease in spontaneous release induced by the Doc2 knockdown in wild-type synapses is fully reversed by mutant Doc2B lacking Ca(2+)-binding sites. Thus, our data suggest that Doc2s are modulators of spontaneous synaptic transmission that act by a Ca(2+)-independent mechanism.
Collapse
Affiliation(s)
- Zhiping P Pang
- Department of Molecular and Cellular Physiology, Stanford University, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | | | | | | | | | | |
Collapse
|
42
|
Nuclear Calcium-VEGFD Signaling Controls Maintenance of Dendrite Arborization Necessary for Memory Formation. Neuron 2011; 71:117-30. [DOI: 10.1016/j.neuron.2011.04.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2011] [Indexed: 01/17/2023]
|
43
|
Grasselli G, Mandolesi G, Strata P, Cesare P. Impaired sprouting and axonal atrophy in cerebellar climbing fibres following in vivo silencing of the growth-associated protein GAP-43. PLoS One 2011; 6:e20791. [PMID: 21695168 PMCID: PMC3112224 DOI: 10.1371/journal.pone.0020791] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/09/2011] [Indexed: 01/19/2023] Open
Abstract
The adult mammalian central nervous system has a limited ability to establish new connections and to recover from traumatic or degenerative events. The olivo-cerebellar network represents an excellent model to investigate neuroprotection and repair in the brain during adulthood, due to its high plasticity and ordered synaptic organization. To shed light on the molecular mechanisms involved in these events, we focused on the growth-associated protein GAP-43 (also known as B-50 or neuromodulin). During development, this protein plays a crucial role in growth and in branch formation of neurites, while in the adult it is only expressed in a few brain regions, including the inferior olive (IO) where climbing fibres (CFs) originate. Following axotomy GAP-43 is usually up-regulated in association with regeneration. Here we describe an in vivo lentiviral-mediated gene silencing approach, used for the first time in the olivo-cerebellar system, to efficiently and specifically downregulate GAP-43 in rodents CFs. We show that lack of GAP-43 causes an atrophy of the CF in non-traumatic conditions, consisting in a decrease of its length, branching and number of synaptic boutons. We also investigated CF regenerative ability by inducing a subtotal lesion of the IO. Noteworthy, surviving CFs lacking GAP-43 were largely unable to sprout on surrounding Purkinje cells. Collectively, our results demonstrate that GAP-43 is essential both to maintain CFs structure in non-traumatic condition and to promote sprouting after partial lesion of the IO.
Collapse
|
44
|
A multifunctional lentiviral-based gene knockdown with concurrent rescue that controls for off-target effects of RNAi. GENOMICS PROTEOMICS & BIOINFORMATICS 2011; 8:238-45. [PMID: 21382592 PMCID: PMC5054148 DOI: 10.1016/s1672-0229(10)60025-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The efficient, stable delivery of siRNA into cells, and the appropriate controls for non-specific off-target effects of siRNA are major limitations to functional studies using siRNA technology. To overcome these drawbacks, we have developed a single lentiviral vector that can concurrently deplete endogenous gene expression while expressing an epitope-tagged siRNA-resistant target gene in the same cell. To demonstrate the functional utility of this system, we performed RNAi-depleted α-actinin-1 (α-ACTNl) expression in human T cells. α-ACTNl RNAi resulted in inhibited chemotaxis to SDF-lα, but it can be completely rescued by concurrent expression of RNAi-resistant α-ACTNl (rr-α-ACTNl) in the same cell. The presence of a GFP tag on rr-α-ACTNl allowed for detection of appropriate subcellular localization of rr-α-ACTNl. This system provides not only an internal control for RNAi off-target effects, but also the potential tool for rapid structure-function analyses and gene therapy.
Collapse
|
45
|
Pellegrino C, Gubkina O, Schaefer M, Becq H, Ludwig A, Mukhtarov M, Chudotvorova I, Corby S, Salyha Y, Salozhin S, Bregestovski P, Medina I. Knocking down of the KCC2 in rat hippocampal neurons increases intracellular chloride concentration and compromises neuronal survival. J Physiol 2011; 589:2475-96. [PMID: 21486764 PMCID: PMC3115820 DOI: 10.1113/jphysiol.2010.203703] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/16/2011] [Indexed: 12/12/2022] Open
Abstract
KCC2 is a neuron-specific potassium-chloride co-transporter controlling intracellular chloride homeostasis in mature and developing neurons. It is implicated in the regulation of neuronal migration, dendrites outgrowth and formation of the excitatory and inhibitory synaptic connections. The function of KCC2 is suppressed under several pathological conditions including neuronal trauma, different types of epilepsies, axotomy of motoneurons, neuronal inflammations and ischaemic insults. However, it remains unclear how down-regulation of the KCC2 contributes to neuronal survival during and after toxic stress. Here we show that in primary hippocampal neuronal cultures the suppression of the KCC2 function using two different shRNAs, dominant-negative KCC2 mutant C568A or DIOA inhibitor, increased the intracellular chloride concentration [Cl⁻]i and enhanced the toxicity induced by lipofectamine-dependent oxidative stress or activation of the NMDA receptors. The rescuing of the KCC2 activity using over-expression of the active form of the KCC2, but not its non-active mutant Y1087D, effectively restored [Cl⁻]i and enhanced neuronal resistance to excitotoxicity. The reparative effects of KCC2 were mimicked by over-expression of the KCC3, a homologue transporter. These data suggest an important role of KCC2-dependent potassium/chloride homeostasis under neurototoxic conditions and reveal a novel role of endogenous KCC2 as a neuroprotective molecule.
Collapse
|
46
|
Chen CY, Lin CW, Chang CY, Jiang ST, Hsueh YP. Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology. ACTA ACUST UNITED AC 2011; 193:769-84. [PMID: 21555464 PMCID: PMC3166868 DOI: 10.1083/jcb.201008050] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dendritic arborization is a critical neuronal differentiation process. Here, we demonstrate that syndecan-2 (Sdc2), a synaptic heparan sulfate proteoglycan that triggers dendritic filopodia and spine formation, regulates dendritic arborization in cultured hippocampal neurons. This process is controlled by sterile α and TIR motif-containing 1 protein (Sarm1), a negative regulator of Toll-like receptor 3 (TLR3) in innate immunity signaling. We show that Sarm1 interacts with and receives signal from Sdc2 and controls dendritic arborization through the MKK4-JNK pathway. In Sarm1 knockdown mice, dendritic arbors of neurons were less complex than those of wild-type littermates. In addition to acting downstream of Sdc2, Sarm1 is expressed earlier than Sdc2, which suggests that it has multiple roles in neuronal morphogenesis. Specifically, it is required for proper initiation and elongation of dendrites, axonal outgrowth, and neuronal polarization. These functions likely involve Sarm1-mediated regulation of microtubule stability, as Sarm1 influenced tubulin acetylation. This study thus reveals the molecular mechanism underlying the action of Sarm1 in neuronal morphogenesis.
Collapse
Affiliation(s)
- Chiung-Ya Chen
- Institute of Molecular Biology and 2 Molecular and Cell Biology Program, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
47
|
Das R, Karthireddy S, Gireesh-Babu P, Reddy AK, Krishna G, Chaudhari A. Protection of Penaeus monodon from Infection of White spot syndrome virus by DNA Construct Expressing Long Hairpin-RNA Against ICP11 Gene. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2011; 21:95-102. [PMID: 23637487 DOI: 10.1007/s13337-011-0024-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/15/2011] [Indexed: 11/30/2022]
Abstract
A plasmid construct (pICP11-LH) was designed to constitutively express long-hairpin RNA (lhRNA) against icp11 gene, which is reportedly the most highly expressed gene of White spot syndrome virus (WSSV) and likely to have an important role in viral pathogenesis. The construct was used singly and in combination with other similar constructs designed against vp28 and vp19. A total of 6 treatments, T1 (pICP11-LH; 35 μg), T2 (pVP28-LH; 35 μg), T3 (pVP28-LH and pVP19-LH; 17.5 μg each), T4 (pVP28-LH and pVP19-LH; 25 μg:10 μg), T5 (pICP11-LH, pVP28-LH and pVP19-LH; 11.5 μg each) and T6 (pGFP-LH; 35 μg) were injected intramuscularly into 20 g Penaeus monodon specimens. The shrimp were challenged with WSSV 24 hpi and protection efficacy was measured in terms of survival and viral load 15 days after challenge. Appropriate negative and positive controls were used. T2 and T3 offered highest protection (75%) followed by T1 (67%) and T4 and T5 groups (58%), while T6 showed 25% protection. In all the target specific treatments, the viral load as estimated by single tube WSSV kit was kept in check (10-100 copies), whereas in the unimmunized challenged controls it progressed to severe infection (>10(5) copies). In spite of over 3 times higher expression of ICP11 compared to VP28, its knockdown by pICP11-LH did not offer any protective advantage over pVP28-LH, either singly or in combination. Moreover, none of the combinations bettered the protection efficacy of pVP28-LH administered alone. To investigate concerns about deleterious effect of plasmid persistence and constitutive expression on shrimp growth, a lab-scale 1 month growth study was conducted with 4 treatments T2, T3, T4 and T6, where no difference in specific growth rate was observed compared to controls.
Collapse
Affiliation(s)
- Rekha Das
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061 India
| | | | | | | | | | | |
Collapse
|
48
|
Enhanced artemin/GFRα3 levels regulate mechanically insensitive, heat-sensitive C-fiber recruitment after axotomy and regeneration. J Neurosci 2011; 30:16272-83. [PMID: 21123573 DOI: 10.1523/jneurosci.2195-10.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have shown recently that following saphenous nerve transection and successful regeneration, cutaneous polymodal nociceptors (CPMs) lacking transient receptor potential vanilloid 1 (TRPV1) are sensitized to heat stimuli and that mechanically insensitive, heat-sensitive C-fibers (CHs) that contain TRPV1 increase in prevalence. Target-derived neurotrophic factor levels were also enhanced after axotomy and regeneration. In particular, the glial-cell line-derived neurotrophic factor (GDNF) family member artemin was found to be significantly enhanced in the hairy hindpaw skin and its receptor GDNF family receptor α3 (GFRα3) was increased in the L2/L3 dorsal root ganglia (DRGs) following nerve injury. In this study, we assessed the role of enhanced artemin/GFRα3 levels on the changes in mouse cutaneous CH neurons following saphenous nerve regeneration. We used a newly developed siRNA-mediated in vivo knockdown strategy to specifically inhibit the injury-induced expression of GFRα3 and coupled this with an ex vivo recording preparation to examine response characteristics and neurochemical phenotype of different types of functionally defined neurons after injury. We found that inhibition of GFRα3 did not affect the axotomy-induced decrease in CPM threshold, but transiently prevented the recruitment of CH neurons. Western blot and real-time PCR analysis of hairy hindpaw skin and L2/L3 DRGs after saphenous nerve regeneration suggested that inhibition of the potential initial injury-induced increase in enhanced target-derived artemin signaling resulted in dynamic changes in TRPV1 expression after regeneration. These changes in TRPV1 expression may underlie the functional alterations observed in CH neurons after nerve regeneration.
Collapse
|
49
|
Pradhan AD, Case AM, Farrer RG, Tsai SY, Cheatwood JL, Martin JL, Kartje GL. Dendritic spine alterations in neocortical pyramidal neurons following postnatal neuronal Nogo-A knockdown. Dev Neurosci 2010; 32:313-20. [PMID: 20938157 DOI: 10.1159/000309135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 03/17/2010] [Indexed: 11/19/2022] Open
Abstract
The myelin-associated protein Nogo-A is a well-known inhibitor of axonal regeneration and compensatory plasticity, yet functions of neuronal Nogo-A are not as clear. The present study examined the effects of decreased levels of neuronal Nogo-A on dendritic spines of developing neocortical neurons. Decreased Nogo-A levels in these neurons resulted in lowered spine density and an increase in filopodial type protrusions. These results suggest a role for neuronal Nogo-A in maintaining a spine phenotype in neocortical pyramidal cells.
Collapse
Affiliation(s)
- A D Pradhan
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, Ill., USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Meixner A, Boldt K, Van Troys M, Askenazi M, Gloeckner CJ, Bauer M, Marto JA, Ampe C, Kinkl N, Ueffing M. A QUICK screen for Lrrk2 interaction partners--leucine-rich repeat kinase 2 is involved in actin cytoskeleton dynamics. Mol Cell Proteomics 2010; 10:M110.001172. [PMID: 20876399 DOI: 10.1074/mcp.m110.001172] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mutations in human leucine-rich repeat kinase 2 (Lrrk2), a protein of yet unknown function, are linked to Parkinson's disease caused by degeneration of midbrain dopaminergic neurons. The protein comprises several domains including a GTPase and a kinase domain both affected by several pathogenic mutations. To elucidate the molecular interaction network of endogenous Lrrk2 under stoichiometric constraints, we applied QUICK (quantitative immunoprecipitation combined with knockdown) in NIH3T3 cells. The identified interactome reveals actin isoforms as well as actin-associated proteins involved in actin filament assembly, organization, rearrangement, and maintenance, suggesting that the biological function of Lrrk2 is linked to cytoskeletal dynamics. In fact, we demonstrate Lrrk2 de novo binding to F-actin and its ability to modulate its assembly in vitro. When tested in intact cells, knockdown of Lrrk2 causes morphological alterations in NIH3T3 cells. In developing dopaminergic midbrain primary neurons, Lrrk2 knockdown results in shortened neurite processes, indicating a physiological role of Lrrk2 in cytoskeletal organization and dynamics of dopaminergic neurons. Hence, our results demonstrate that molecular interactions as well as the physiological function of Lrrk2 are closely related to the organization of the actin-based cytoskeleton, a crucial feature of neuronal development and neuron function.
Collapse
Affiliation(s)
- Andrea Meixner
- Department of Protein Science, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|