1
|
Salimi M, Nazari M, Mishler J, Mishra J, Ramanathan DS. Differential glutamatergic and GABAergic responses drive divergent prefrontal cortex neural outcomes to low and high frequency stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.640887. [PMID: 40093139 PMCID: PMC11908244 DOI: 10.1101/2025.03.03.640887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Repetitive brain stimulation is hypothesized to bidirectionally modulate excitability, with low-frequency trains decreasing and high-frequency (>5 Hz) trains increasing activity. Most insights on the neuroplastic effects of repetitive stimulation protocols stem from non-invasive human studies (TMS/EEG) or data from rodent slice physiology. Here, we developed a rodent experimental preparation enabling simultaneous imaging of cellular activity during stimulation in vivo to understand the mechanisms by which brain stimulation modulates excitability of prefrontal cortex. Methods Repetitive trains of intracortical stimulation were applied to the medial prefrontal cortex using current parameters mapped to human rTMS electric-field estimates. Calcium imaging of glutamatergic (CamKII) and GABAergic (mDLX) neurons was performed before, during, and after stimulation in awake rodents (n=9 females). Protocols included low-frequency (1 Hz, 1000 pulses) and high-frequency (10 Hz, 3000 pulses), with sham stimulation as a control. Results Glutamatergic neurons were differentially modulated by stimulation frequency, with 10 Hz increasing and 1 Hz decreasing activity. Post-stimulation, 1 Hz suppressed both glutamatergic and GABAergic activity, whereas 10 Hz selectively suppressed GABAergic neurons. Conclusions These findings provide direct evidence that clinical brain stimulation protocols induce long-term modulation of cortical excitability, with low-frequency stimulation broadly suppressing activity and high-frequency stimulation preferentially inhibiting GABAergic neurons after stimulation.
Collapse
Affiliation(s)
- Morteza Salimi
- Research Service, VA San Diego Healthcare System, La Jolla, CA, 92161
- NEATLabs, Department of Psychiatry, UC San Diego, La Jolla, CA, 92093
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus, Denmark
- Center for Protein in Memory-PROMEMO, Danish National Research Foundation
| | - Jonathan Mishler
- Research Service, VA San Diego Healthcare System, La Jolla, CA, 92161
- NEATLabs, Department of Psychiatry, UC San Diego, La Jolla, CA, 92093
| | - Jyoti Mishra
- NEATLabs, Department of Psychiatry, UC San Diego, La Jolla, CA, 92093
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, 92161
| | - Dhakshin S Ramanathan
- Research Service, VA San Diego Healthcare System, La Jolla, CA, 92161
- NEATLabs, Department of Psychiatry, UC San Diego, La Jolla, CA, 92093
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, 92161
- Mental Health Care Line, VA San Diego Healthcare System, La Jolla, CA, 92161
| |
Collapse
|
2
|
Cibrão JR, Armada M, Lima MF, Vidinha-Mira A, Campos J, Pinho TS, Salgado AJ, Ainla A, Silva NA. Development and application of a novel multi-channel in vitro electrical stimulator for cellular research. BMC Biomed Eng 2025; 7:3. [PMID: 40025549 PMCID: PMC11874659 DOI: 10.1186/s42490-025-00090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Exposure to electric fields affects cell membranes impacting their potential and altering cellular excitability, nerve transmission, or muscle contraction. Furthermore, electric stimulation influences cell communication, migration, proliferation, and differentiation, with potential therapeutic applications. In vitro platforms for electrical stimulation are valuable tools for studying these effects and advancing medical research. In this study, we developed and tested a novel multi-channel in vitro electrical stimulator designed for cellular applications. The device aims to facilitate research on the effects of electrical stimulation (ES) on cellular processes, providing a versatile platform that is easy to reproduce and implement in various laboratory settings. METHODS The stimulator was designed to be simple, cost-effective, and versatile, fitting on standard 12-well plates for parallel experimentation. Extensive testing was conducted to evaluate the performance of the stimulator, including 3D finite element modelling to analyse electric field distribution. Moreover, the stimulator was evaluated in vitro using neuronal and stem cell cultures. RESULTS Finite element modelling confirmed that the electric field was sufficiently homogeneous within the stimulation zone, though liquid volume affected field strength. A custom controller was developed to program stimulation protocols, ensuring precise and adjustable current delivery up to 160 V/m. ES promoted neurite outgrowth when applied to SH-SY5Y neural cells or to primary spinal cord-derived cells. In human neuronal progenitor cells (hNPCs), ES enhanced neurite growth as well as differentiation into neurons. In adipose stem cells (ASCs), ES altered the secretome, enriching it in molecules that promoted hNPC differentiation into neurons without enhancing neurite growth. CONCLUSIONS Our results highlight the potential of this multi-channel electrical stimulator as a valuable tool for advancing the understanding of ES mechanisms and its therapeutic applications. The simplicity and adaptability of this novel platform make it a promising addition to the toolkit of researchers studying electrical stimulation in cellular models.
Collapse
Affiliation(s)
- Jorge R Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, 4806-909, Portugal
| | - Miguel Armada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, 4806-909, Portugal
| | - Marta F Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, 4806-909, Portugal
| | - André Vidinha-Mira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, 4806-909, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, 4806-909, Portugal
| | - Tiffany S Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, 4806-909, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, 4806-909, Portugal
| | - Alar Ainla
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal.
| | - Nuna A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, 4806-909, Portugal.
| |
Collapse
|
3
|
Fischer QS, Kalikulov D, Viana Di Prisco G, Williams CA, Baldwin PR, Friedlander MJ. Synaptic Plasticity in the Injured Brain Depends on the Temporal Pattern of Stimulation. J Neurotrauma 2024; 41:2455-2477. [PMID: 38818799 DOI: 10.1089/neu.2024.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Neurostimulation protocols are increasingly used as therapeutic interventions, including for brain injury. In addition to the direct activation of neurons, these stimulation protocols are also likely to have downstream effects on those neurons' synaptic outputs. It is well known that alterations in the strength of synaptic connections (long-term potentiation, LTP; long-term depression, LTD) are sensitive to the frequency of stimulation used for induction; however, little is known about the contribution of the temporal pattern of stimulation to the downstream synaptic plasticity that may be induced by neurostimulation in the injured brain. We explored interactions of the temporal pattern and frequency of neurostimulation in the normal cerebral cortex and after mild traumatic brain injury (mTBI), to inform therapies to strengthen or weaken neural circuits in injured brains, as well as to better understand the role of these factors in normal brain plasticity. Whole-cell (WC) patch-clamp recordings of evoked postsynaptic potentials in individual neurons, as well as field potential (FP) recordings, were made from layer 2/3 of visual cortex in response to stimulation of layer 4, in acute slices from control (naive), sham operated, and mTBI rats. We compared synaptic plasticity induced by different stimulation protocols, each consisting of a specific frequency (1 Hz, 10 Hz, or 100 Hz), continuity (continuous or discontinuous), and temporal pattern (perfectly regular, slightly irregular, or highly irregular). At the individual neuron level, dramatic differences in plasticity outcome occurred when the highly irregular stimulation protocol was used at 1 Hz or 10 Hz, producing an overall LTD in controls and shams, but a robust overall LTP after mTBI. Consistent with the individual neuron results, the plasticity outcomes for simultaneous FP recordings were similar, indicative of our results generalizing to a larger scale synaptic network than can be sampled by individual WC recordings alone. In addition to the differences in plasticity outcome between control (naive or sham) and injured brains, the dynamics of the changes in synaptic responses that developed during stimulation were predictive of the final plasticity outcome. Our results demonstrate that the temporal pattern of stimulation plays a role in the polarity and magnitude of synaptic plasticity induced in the cerebral cortex while highlighting differences between normal and injured brain responses. Moreover, these results may be useful for optimization of neurostimulation therapies to treat mTBI and other brain disorders, in addition to providing new insights into downstream plasticity signaling mechanisms in the normal brain.
Collapse
Affiliation(s)
- Quentin S Fischer
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Djanenkhodja Kalikulov
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | | - Carrie A Williams
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
| | - Philip R Baldwin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Michael J Friedlander
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Faculty of Health Sciences, Virginia Tech, Roanoke, Virginia, USA
| |
Collapse
|
4
|
Ma X, Wang X, Zhu K, Ma R, Chu F, Liu X, Zhang S, Yin T, Zhou X, Liu Z. Study on the Role of Physical Fields in TMAS to Modulate Synaptic Plasticity in Mice. IEEE Trans Biomed Eng 2024; 71:1531-1541. [PMID: 38117631 DOI: 10.1109/tbme.2023.3342012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
OBJECTIVE Transcranial magneto-acoustic stimulation (TMAS) is a composite technique combining static magnetic and coupled electric fields with transcranial ultrasound stimulation (TUS) and has shown advantages in neuromodulation. However, the role of these physical fields in neuromodulation is unclear. Synaptic plasticity is the cellular basis for learning and memory. In this paper, we varied the intensity of static magnetic, electric and ultrasonic fields respectively to investigate the modulation of synaptic plasticity by these physical fields. METHODS There are control, static magnetic field (0.1 T/0.2 T), TUS (0.15/0.3 MPa), and TMAS (0.15 MPa + 0.2 V/m, 0.3 MPa + 0.2 V/m, 0.3 MPa + 0.4 V/m) groups. Hippocampal areas were stimulated at 5 min daily for 7 days and in vivo electrophysiological experiments were performed. RESULTS TMAS induced greater LTP, LTD, and paired-pulse ratio (PPR) than TUS, reflecting that TMAS has a more significant modulation in both long- and short- term synaptic plasticity. In TMAS, a doubling of the electric field amplitude increases LTP, LTD and PPR to a greater extent than a doubling of the acoustic pressure. Increasing the static magnetic field intensity has no significant effect on the modulation of synaptic plasticity. CONCLUSION This paper argues that electric fields should be the main reason for the difference in modulation between TMAS and TUS and that changing the amplitude of the electric field affected the modulation of TMAS more than changing the acoustic pressure. SIGNIFICANCE This study elucidates the roles of the physical fields in TMAS and provides a parameterisation way to guide TMAS applications based on the dominant roles of the physical fields.
Collapse
|
5
|
Xie Y, Guan M, Wang Z, Ma Z, Fang P, Wang H. Cerebral blood flow changes in schizophrenia patients with auditory verbal hallucinations during low-frequency rTMS treatment. Eur Arch Psychiatry Clin Neurosci 2023; 273:1851-1861. [PMID: 37280358 DOI: 10.1007/s00406-023-01624-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
Auditory verbal hallucinations (AVH) are a prominent symptom of schizophrenia. Low-frequency repetitive transcranial magnetic stimulation (rTMS) has been evidenced to improve the treatment of AVH in schizophrenia. Although abnormalities in resting-state cerebral blood flow (CBF) have been reported in schizophrenia, the perfusion alterations specific to schizophrenia patients with AVH during rTMS require further investigation. In this study, we used arterial spin labeling (ASL) to investigate changes in brain perfusion in schizophrenia patients with AVH, and their associations with clinical improvement following low-frequency rTMS treatment applied to the left temporoparietal junction area. We observed improvements in clinical symptoms (e.g., positive symptoms and AVH) and certain neurocognitive functions (e.g., verbal learning and visual learning) following treatment. Furthermore, at baseline, the patients showed reductions in CBF in regions associated with language, sensory, and cognition compared to controls, primarily located in the prefrontal cortices (e.g., left inferior frontal gyrus and left middle frontal gyrus), occipital lobe (e.g., left calcarine cortex), and cingulate cortex (e.g., bilateral middle cingulate cortex), compared to controls. Conversely, we observed increased CBF in the left inferior temporal gyrus and bilateral putamen in patients relative to controls, regions known to be involved in AVH. However, the hypoperfusion or hyperperfusion patterns did not persist and instead were normalized, and were related to clinical response (e.g., AVH) in patients during low-frequency rTMS treatment. Importantly, the changes in brain perfusion were related to clinical response (e.g., AVH) in patients. Our findings suggest that low-frequency rTMS can regulate brain perfusion involving critical circuits by its remote effect in schizophrenia, and may play an important mechanistic role in the treatment of AVH.
Collapse
Affiliation(s)
- Yuanjun Xie
- Department of Military Medical Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China.
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Clinical Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China
| | - Peng Fang
- Department of Military Medical Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China.
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
6
|
Gambino G, Brighina F, Allegra M, Marrale M, Collura G, Gagliardo C, Attanzio A, Tesoriere L, Di Majo D, Ferraro G, Sardo P, Giglia G. Modulation of Human Motor Cortical Excitability and Plasticity by Opuntia Ficus Indica Fruit Consumption: Evidence from a Preliminary Study through Non-Invasive Brain Stimulation. Nutrients 2022; 14:nu14224915. [PMID: 36432601 PMCID: PMC9694319 DOI: 10.3390/nu14224915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Indicaxanthin (IX) from Opuntia Ficus Indica (OFI) has been shown to exert numerous biological effects both in vitro and in vivo, such as antioxidant, anti-inflammatory, neuro-modulatory activity in rodent models. Our goal was to investigate the eventual neuro-active role of orally assumed fruits containing high levels of IX at nutritionally-relevant amounts in healthy subjects, exploring cortical excitability and plasticity in the human motor cortex (M1). To this purpose, we applied paired-pulse transcranial magnetic stimulation and anodal transcranial direct current stimulation (a-tDCS) in basal conditions and followed the consumption of yellow cactus pear fruits containing IX or white cactus pear fruits devoid of IX (placebo). Furthermore, resting state-functional MRI (rs-fMRI) preliminary acquisitions were performed before and after consumption of the same number of yellow fruits. Our data revealed that the consumption of IX-containing fruits could specifically activate intracortical excitatory circuits, differently from the placebo-controlled group. Furthermore, we found that following the ingestion of IX-containing fruits, elevated network activity of glutamatergic intracortical circuits can homeostatically be restored to baseline levels following a-tDCS stimulation. No significant differences were observed through rs-fMRI acquisitions. These outcomes suggest that IX from OFI increases intracortical excitability of M1 and leads to homeostatic cortical plasticity responses.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
- Correspondence: (G.G.); (P.S.)
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90134 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90134 Palermo, Italy
| | - Maurizio Marrale
- Department of Physics and Chemistry “Emilio Segrè”, University of Palermo, 90134 Palermo, Italy
| | - Giorgio Collura
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
| | - Cesare Gagliardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90134 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90134 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90134 Palermo, Italy
| | - Danila Di Majo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90134 Palermo, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90134 Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90134 Palermo, Italy
- Correspondence: (G.G.); (P.S.)
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
| |
Collapse
|
7
|
Abuhaiba SI, Duarte IC, Castelhano J, Dionísio A, Sales F, Edden R, Castelo-Branco M. The impact of cathodal tDCS on the GABAergic system in the epileptogenic zone: A multimodal imaging study. Front Neurol 2022; 13:935029. [PMID: 35989912 PMCID: PMC9388822 DOI: 10.3389/fneur.2022.935029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives We aimed to investigate the antiepileptic effects of cathodal transcranial direct current stimulation (c-tDCS) and mechanisms of action based on its effects on the neurotransmitters responsible for the abnormal synchrony patterns seen in pharmacoresistant epilepsy. This is the first study to test the impact of neurostimulation on epileptiform interictal discharges (IEDs) and to measure brain metabolites in the epileptogenic zone (EZ) and control regions simultaneously in patients with pharmacoresistant epilepsy. Methods This is a hypothesis-driven pilot prospective single-blinded repeated measure design study in patients diagnosed with pharmacoresistant epilepsy of temporal lobe onset. We included seven patients who underwent two sessions of c-tDCS (sham followed by real). The real tDCS session was 20 min in duration and had a current intensity of 1.5 mA delivered via two surface electrodes that had dimensions of 3 × 4 cm. The cathode electrode was placed at FT7 in the center whereas the anode at Oz in the center. After each session, we performed electroencephalographic recording to count epileptiform IEDs over 30 min. We also performed magnetic resonance spectroscopy (MRS) to measure brain metabolite concentrations in the two areas of interest (EZ and occipital region), namely, gamma-aminobutyric acid (GABA), glutamate (Glx), and glutathione. We focused on a homogenous sample where the EZ and antiepileptic medications are shared among patients. Results Real tDCS decreased the number of epileptiform IEDs per min (from 9.46 ± 2.68 after sham tDCS to 5.37 ± 3.38 after real tDCS), p = 0.018, as compared to sham tDCS. GABA was decreased in the EZ after real c-tDCS stimulation as compared to sham tDCS (from 0.129 ± 0.019 to 0.096 ± 0.018, p = 0.02). The reduction in EZ GABA correlated with the reduction in the frequency of epileptiform IED per min (rho: 0.9, p = 0.003). Conclusion These results provide a window into the antiepileptic mechanisms of action of tDCS, based on local and remote changes in GABA and neural oscillatory patterning responsible for the generation of interictal epileptiform discharges.
Collapse
Affiliation(s)
- Sulaiman I. Abuhaiba
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Epilepsy Unit, Faculty of Medicine, Clinical and Academic Center (CCAC), Coimbra, Portugal
| | - Isabel C. Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Clinical and Academic Center (CCAC), University of Coimbra, Coimbra, Portugal
| | - João Castelhano
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Clinical and Academic Center (CCAC), University of Coimbra, Coimbra, Portugal
| | - Ana Dionísio
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Clinical and Academic Center (CCAC), University of Coimbra, Coimbra, Portugal
| | - Francisco Sales
- Epilepsy Unit, Faculty of Medicine, Clinical and Academic Center (CCAC), Coimbra, Portugal
| | - Richard Edden
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- FM Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Clinical and Academic Center (CCAC), University of Coimbra, Coimbra, Portugal
- *Correspondence: Miguel Castelo-Branco
| |
Collapse
|
8
|
Zhang L, Xuan R, Chen Q, Zhao Q, Shi Z, Du J, Zhu C, Yu F, Ji G, Wang K. High-definition transcranial direct current stimulation modulates eye gaze on emotional faces in college students with alexithymia: An eye-tracking study. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110521. [PMID: 35104607 DOI: 10.1016/j.pnpbp.2022.110521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Atypical eye gaze on emotional faces is a core feature of alexithymia. The inferior frontal gyrus (IFG) is considered to be the neurophysiological basis of alexithymia-related emotional face fixation. Our aim was to examine whether anodal high-definition transcranial direct current stimulation (HD-tDCS) administered to the right (r)IFG would facilitate eye gaze of emotional faces in alexithymia individuals. METHOD Forty individuals with alexithymia were equally assigned to anodal or sham HD-tDCS of the rIFG according to the principle of randomization. The individuals then completed a free-viewing eye tracking task (including happy, sad, and neutral faces) before and after 5 consecutive days of stimulation (twice a day). RESULTS The results showed that twice a day anodal HD-tDCS of the rIFG significantly increased the fixation time and fixation count of the eye area on happy and neutral faces, but there was no significant effect on sad faces. According to the temporal-course analysis, after the intervention, the fixation time on neutral faces increased significantly at almost all time points of the eye tracking task. For happy faces, the improvement was demonstrated between 500 and 1000 ms and between 2500 and 3500 ms. For sad faces, the fixation time improved but not significantly. CONCLUSIONS Applying high-dose anodal HD-tDCS to the rIFG selectively facilitated eye gaze in the eye area of neutral and happy faces in individuals with alexithymia, which may improve their face processing patterns.
Collapse
Affiliation(s)
- Lei Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Rongrong Xuan
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
| | - Qiuyu Chen
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
| | - Qingqing Zhao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhulin Shi
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
| | - Jinmei Du
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
| | - Chunyan Zhu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
| | - FengQiong Yu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
| | - Gongjun Ji
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei 230032, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China.
| |
Collapse
|
9
|
Marufa SA, Hsieh TH, Liou JC, Chen HY, Peng CW. Neuromodulatory effects of repetitive transcranial magnetic stimulation on neural plasticity and motor functions in rats with an incomplete spinal cord injury: A preliminary study. PLoS One 2021; 16:e0252965. [PMID: 34086836 PMCID: PMC8177618 DOI: 10.1371/journal.pone.0252965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
We investigated the effects of intermittent theta-burst stimulation (iTBS) on locomotor function, motor plasticity, and axonal regeneration in an animal model of incomplete spinal cord injury (SCI). Aneurysm clips with different compression forces were applied extradurally around the spinal cord at T10. Motor plasticity was evaluated by examining the motor evoked potentials (MEPs). Long-term iTBS treatment was given at the post-SCI 5th week and continued for 2 weeks (5 consecutive days/week). Time-course changes in locomotor function and the axonal regeneration level were measured by the Basso Beattie Bresnahan (BBB) scale, and growth-associated protein (GAP)-43 expression was detected in brain and spinal cord tissues. iTBS-induced potentiation was reduced at post-1-week SCI lesion and had recovered by 4 weeks post-SCI lesion, except in the severe group. Multiple sessions of iTBS treatment enhanced the motor plasticity in all SCI rats. The locomotor function revealed no significant changes between pre- and post-iTBS treatment in SCI rats. The GAP-43 expression level in the spinal cord increased following 2 weeks of iTBS treatment compared to the sham-treatment group. This preclinical model may provide a translational platform to further investigate therapeutic mechanisms of transcranial magnetic stimulation and enhance the possibility of the potential use of TMS with the iTBS scheme for treating SCIs.
Collapse
Affiliation(s)
- Siti Ainun Marufa
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Physical Therapy Department, Faculty of Health Science, University of Muhammadiyah Malang, Indonesia
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Jian-Chiun Liou
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yung Chen
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Wei Peng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- School of Gerontology Health Management, College of Nursing, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Gronlier E, Vendramini E, Volle J, Wozniak-Kwasniewska A, Antón Santos N, Coizet V, Duveau V, David O. Single-pulse electrical stimulation methodology in freely moving rat. J Neurosci Methods 2021; 353:109092. [PMID: 33549638 DOI: 10.1016/j.jneumeth.2021.109092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cortico-cortical evoked potentials (CCEP) are becoming popular to infer brain connectivity and cortical excitability in implanted refractory epilepsy patients. Our goal was to transfer this methodology to the freely moving rodent. NEW METHOD CCEP were recorded on freely moving Sprague-Dawley rats, from cortical and subcortical areas using depth electrodes. Electrical stimulation was applied using 1 ms biphasic current pulse, cathodic first, at a frequency of 0.5 Hz, with intensities ranging from 0.2 to 0.8 mA. Data were then processed in a similar fashion to human clinical studies, which included epoch selection, artefact correction and smart averaging. RESULTS For a large range of tested intensities, we recorded CCEPs with very good signal to noise ratio and reproducibility between animals, without any behavioral modification. The CCEP were composed of different components according to recorded and stimulated sites, similarly to human recordings. COMPARISON WITH EXISTING METHODS We minimally adapted a clinically-motivated methodology to a freely moving rodent model to achieve high translational relevance of future preclinical studies. CONCLUSIONS Our results indicate that the CCEP methodology can be applied to freely moving rodents and transferred to preclinical research. This will be of interest to address various neuroscientific questions, in physiological and pathological conditions.
Collapse
Affiliation(s)
- Eloïse Gronlier
- SynapCell SAS, Saint-Ismier, France; Univ. Grenoble Alpes, Inserm, GIN, Grenoble Institut des Neurosciences, Grenoble, France.
| | - Estelle Vendramini
- Univ. Grenoble Alpes, Inserm, GIN, Grenoble Institut des Neurosciences, Grenoble, France
| | | | | | - Noelia Antón Santos
- Univ. Grenoble Alpes, Inserm, GIN, Grenoble Institut des Neurosciences, Grenoble, France
| | - Véronique Coizet
- Univ. Grenoble Alpes, Inserm, GIN, Grenoble Institut des Neurosciences, Grenoble, France
| | | | - Olivier David
- Univ. Grenoble Alpes, Inserm, GIN, Grenoble Institut des Neurosciences, Grenoble, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
11
|
Transcranial direct current stimulation (tDCS) over the auditory cortex modulates GABA and glutamate: a 7 T MR-spectroscopy study. Sci Rep 2020; 10:20111. [PMID: 33208867 PMCID: PMC7674467 DOI: 10.1038/s41598-020-77111-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is one of the most prominent non-invasive electrical brain stimulation method to alter neuronal activity as well as behavioral processes in cognitive and perceptual domains. However, the exact mode of action of tDCS-related cortical alterations is still unclear as the results of tDCS studies often do not comply with the somatic doctrine assuming that anodal tDCS enhances while cathodal tDCS decreases neuronal excitability. Changes in the regional cortical neurotransmitter balance within the stimulated cortex, measured by excitatory and inhibitory neurotransmitter levels, have the potential to provide direct neurochemical underpinnings of tDCS effects. Here we assessed tDCS-induced modulations of the neurotransmitter concentrations in the human auditory cortex (AC) by using magnetic resonance spectroscopy (MRS) at ultra-high-field (7 T). We quantified inhibitory gamma-amino butyric (GABA) concentration and excitatory glutamate (Glu) and compared changes in the relative concentration of GABA to Glu before and after tDCS application. We found that both, anodal and cathodal tDCS significantly increased the relative concentration of GABA to Glu with individual temporal specificity. Our results offer novel insights for a potential neurochemical mechanism that underlies tDCS-induced alterations of AC processing.
Collapse
|
12
|
Theta burst stimulation in humans: a need for better understanding effects of brain stimulation in health and disease. Exp Brain Res 2020; 238:1707-1714. [PMID: 32671422 DOI: 10.1007/s00221-020-05880-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
Repetitive transcranial stimulation (rTMS) paradigms have been used to induce lasting changes in brain activity and excitability. Previous methods of stimulation were long, often ineffective and produced short-lived and variable results. A new non-invasive brain stimulation technique was developed in John Rothwell's laboratory in the early 2000s, which was named 'theta burst stimulation' (TBS). This used rTMS applied in burst patterns of newly acquired 50 Hz rTMS machines, which emulated long-term potentiation/depression-like effects in brain slices. This stimulation paradigm created long-lasting changes in brain excitability, using efficient, very rapid stimulation, which would affect behaviour, with the aim to influence neurological diseases in humans. We describe the development of this technique, including findings and limitations identified since then. We discuss how pitfalls facing TBS reflect those involving both older and newer, non-invasive stimulation techniques, with suggestions of how to overcome these, using personalised, 'closed loop' stimulation methods. The challenge in most non-invasive stimulation techniques remains in identifying their exact mechanisms of action in the context of neurological disease models. The development of TBS provides the backdrop for describing John's contribution to the field, inspiring our own scientific endeavour thanks to his unconditional support, and unfailing kindness.
Collapse
|
13
|
Zhou Q, Yu C, Yu H, Zhang Y, Liu Z, Hu Z, Yuan TF, Zhou D. The effects of repeated transcranial direct current stimulation on sleep quality and depression symptoms in patients with major depression and insomnia. Sleep Med 2020; 70:17-26. [DOI: 10.1016/j.sleep.2020.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
|
14
|
Nwaroh C, Giuffre A, Cole L, Bell T, Carlson HL, MacMaster FP, Kirton A, Harris AD. Effects of Transcranial Direct Current Stimulation on GABA and Glx in Children: A pilot study. PLoS One 2020; 15:e0222620. [PMID: 31910218 PMCID: PMC6946135 DOI: 10.1371/journal.pone.0222620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/11/2019] [Indexed: 01/30/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation that safely modulates brain excitability and has therapeutic potential for many conditions. Several studies have shown that anodal tDCS of the primary motor cortex (M1) facilitates motor learning and plasticity, but there is little information about the underlying mechanisms. Using magnetic resonance spectroscopy (MRS), it has been shown that tDCS can affect local levels of γ-aminobutyric acid (GABA) and Glx (a measure of glutamate and glutamine combined) in adults, both of which are known to be associated with skill acquisition and plasticity; however this has yet to be studied in children and adolescents. This study examined GABA and Glx in response to conventional anodal tDCS (a-tDCS) and high definition tDCS (HD-tDCS) targeting the M1 in a pediatric population. Twenty-four typically developing, right-handed children ages 12-18 years participated in five consecutive days of tDCS intervention (sham, a-tDCS or HD-tDCS) targeting the right M1 while training in a fine motor task (Purdue Pegboard Task) with their left hand. Glx and GABA were measured before and after the protocol (at day 5 and 6 weeks) using a PRESS and GABA-edited MEGA-PRESS MRS sequence in the sensorimotor cortices. Glx measured in the left sensorimotor cortex was higher in the HD-tDCS group compared to a-tDCS and sham at 6 weeks (p = 0.001). No changes in GABA were observed in either sensorimotor cortex at any time. These results suggest that neither a-tDCS or HD-tDCS locally affect GABA and Glx in the developing brain and therefore it may demonstrate different responses in adults.
Collapse
Affiliation(s)
- Chidera Nwaroh
- Department of Radiology, University of Calgary, Calgary AB, Canada
- Alberta Children’s Hospital (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Child and Adolescent Imaging Research (CAIR) Program, Calgary, AB, Canada
| | - Adrianna Giuffre
- Alberta Children’s Hospital (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Neuroscience, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Lauran Cole
- Alberta Children’s Hospital (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Neuroscience, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Tiffany Bell
- Department of Radiology, University of Calgary, Calgary AB, Canada
- Alberta Children’s Hospital (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Child and Adolescent Imaging Research (CAIR) Program, Calgary, AB, Canada
| | - Helen L. Carlson
- Alberta Children’s Hospital (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Frank P. MacMaster
- Alberta Children’s Hospital (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Child and Adolescent Imaging Research (CAIR) Program, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
- The Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
- Addictions and Mental Health Strategic Clinical Network, Calgary, AB, Canada
| | - Adam Kirton
- Alberta Children’s Hospital (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Ashley D. Harris
- Department of Radiology, University of Calgary, Calgary AB, Canada
- Alberta Children’s Hospital (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Child and Adolescent Imaging Research (CAIR) Program, Calgary, AB, Canada
| |
Collapse
|
15
|
Tao X, Sun N, Mu Y. Development of Depotentiation in Adult-Born Dentate Granule Cells. Front Cell Dev Biol 2019; 7:236. [PMID: 31681768 PMCID: PMC6805727 DOI: 10.3389/fcell.2019.00236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/30/2019] [Indexed: 01/20/2023] Open
Abstract
Activity-dependent synaptic plasticity, i.e., long-term potentiation (LTP), long-term depression (LTD) and LTP reversal, is generally thought to make up the cellular mechanism underlying learning and memory in the mature brain, in which N-methyl-D-aspartate subtype of glutamate (NMDA) receptors and neurogenesis play important roles. LTP reversal may be the mechanism of forgetting and may mediate many psychiatric disorders, such as schizophrenia, but the specific mechanisms underlying these disorders remain unclear. In addition, LTP reversal during the development of adult-born dentate granule cells (DGCs) remains unknown. We found that the expression of the NMDA receptor subunits NR2A and NR2B displayed dynamic changes during the development of postnatal individuals and the maturation of adult-born neurons and was coupled with the change in LTP reversal. The susceptibility of LTP reversal progressively increases with the rise in the expression of NR2A during the development of postnatal individual and adult-born neurons. In addition, NMDA receptor subunits NR2A, but not NR2B, mediated LTP reversal in the DGCs of the mouse hippocampus.
Collapse
Affiliation(s)
- Xiaoqing Tao
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Sun
- Department of Neurobiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yangling Mu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Steady-state auditory evoked fields reflect long-term effects of repetitive transcranial magnetic stimulation in tinnitus. Clin Neurophysiol 2019; 130:1665-1672. [DOI: 10.1016/j.clinph.2019.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/02/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
|
17
|
Turski CA, Kessler-Jones A, Chow C, Hermann B, Hsu D, Jones J, Seeger SK, Chappell R, Boly M, Ikonomidou C. Extended Multiple-Field High-Definition transcranial direct current stimulation (HD-tDCS) is well tolerated and safe in healthy adults. Restor Neurol Neurosci 2018; 35:631-642. [PMID: 29172010 DOI: 10.3233/rnn-170757] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND High definition transcranial direct current stimulation (HD-tDCS) has been administered over single brain regions for small numbers of sessions. Safety, feasibility and tolerability of HD-tDCS over multiple brain regions, multiple daily stimulations and long periods are not established. OBJECTIVE We studied safety, feasibility and tolerability of daily HD-tDCS over 2-4 brain regions for 20 sessions in healthy adults. METHODS Five healthy adults underwent physical and neurological examination, electrocardiogram (EKG), electroencephalogram (EEG) and cognitive screening (ImpACT) before, during and after HD-tDCS. Four networks (left/right temporoparietal and frontal) were stimulated in sequence (20 min each) using HD-tDCS in 20 daily sessions. Sessions 1-10 included sequential stimulation of both temporoparietal networks, sessions 11-15 stimulations of 4 networks and sessions 16-20 two daily stimulation cycles of 4 networks/cycle (1.5 mA/network). Side effects, ImpACT scores and EEG power spectrum were compared before and after HD-tDCS. RESULTS All subjects completed the trial. Adverse events were tingling, transient redness at the stimulation site, perception of continuing stimulation after end of session and one self-resolving headache. EEG power spectrum showed decreased delta power in frontal areas several days after HD-tDCS. While at the group level ImpACT scores did not differ before and after stimulations, we found a trend for correlation between decreased EEG delta power and individual improvements in ImpACT scores after HD-tDCS. CONCLUSION Prolonged, repeat daily stimulation of multiple brain regions using HD-tDCS is feasible and safe in healthy adults. Preliminary EEG results suggest that HD-tDCS may induce long lasting changes in excitability in the brain.
Collapse
Affiliation(s)
| | | | - Clara Chow
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Bruce Hermann
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - David Hsu
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Jana Jones
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Susanne K Seeger
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Rick Chappell
- Departments of Statistics and Biostatistics/Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI, USA.,Department of Psychiatry, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
18
|
Ghaffari H, Yoonessi A, Darvishi MJ, Ahmadi A. Normal Electrical Activity of the Brain in Obsessive-Compulsive Patients After Anodal Stimulation of the Left Dorsolateral Prefrontal Cortex. Basic Clin Neurosci 2018; 9:135-146. [PMID: 29967673 PMCID: PMC6026096 DOI: 10.29252/nirp.bcn.9.2.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Introduction: Transcranial Direct Current Stimulation (tDCS) has been used as a non-invasive method to increase the plasticity of brain. Growing evidence has shown several brain disorders such as depression, anxiety disorders, and chronic pain syndrome are improved following tDCS. In patients with Obsessive-Compulsive Disorder (OCD), increased brain rhythm activity particularly in the frontal lobe has been reported in several studies using Eectroencephalogram (EEG). To our knowledge, no research has been done on the effects of electrical stimulation on brain signals of patients with OCD. We measured the electrical activity of the brain using EEG in patients with OCD before and after tDCS and compared it to normal participants. Methods: Eight patients with OCD (3 males) and 8 matched healthy controls were recruited. A 64-channel EEG was used to record a 5-min resting state before and after application of tDCS in both groups. The intervention of tDCS was applied for 15 minutes with 2 mA amplitude where anode was placed on the left Dorsolateral Prefrontal Cortex (DLPFC) and cathode on the right DLPFC. Results: In line with previous studies, the results showed that the power of Delta frequency band in OCD patients are significantly higher than the normal group. Following anodal tDCS, hyperactivity in Delta and Theta bands declined in most channels, particularly in DLPFC (F3, F4) and became similar to normal signals pattern. The reduction in Delta band was significantly more than the other bands. Conclusion: Anodal tDCS over the left DLPFC significantly decreased the power of frequency bands of Delta and Theta in Patients with OCD. The pattern of EEG activity after tDCS became particularly similar to normal, so tDCS may have potential clinical application in these patients.
Collapse
Affiliation(s)
- Hamidreza Ghaffari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Yoonessi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Darvishi
- Department of Biomedical Engineering, Faculty of Engineering, Shahed University, Tehran, Iran
| | - Akbar Ahmadi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Biabani M, Aminitehrani M, Zoghi M, Farrell M, Egan G, Jaberzadeh S. The effects of transcranial direct current stimulation on short-interval intracortical inhibition and intracortical facilitation: a systematic review and meta-analysis. Rev Neurosci 2017; 29:99-114. [DOI: 10.1515/revneuro-2017-0023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/20/2017] [Indexed: 11/15/2022]
Abstract
Abstract
Transcranial direct current stimulation (tDCS) is increasingly being used to affect the neurological conditions with deficient intracortical synaptic activities (i.e. Parkinson’s disease and epilepsy). In addition, it is suggested that the lasting effects of tDCS on corticospinal excitability (CSE) have intracortical origin. This systematic review and meta-analysis aimed to examine whether tDCS has any effect on intracortical circuits. Eleven electronic databases were searched for the studies investigating intracortical changes induced by anodal (a) and cathodal (c) tDCS, in healthy individuals, using two paired-pulse transcranial magnetic stimulation (TMS) paradigms: short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). Additionally, motor-evoked potential (MEP) size alterations, assessed by single-pulse TMS, were extracted from these studies to investigate the probable intracortical origin of tDCS effects on CSE. The methodological quality of included studies was examined using Physiotherapy Evidence Database (PEDro) and Downs and Black’s (D&B) assessment tools. Thirteen research papers, including 24 experiments, were included in this study scoring good and medium quality in PEDro and D&B scales, respectively. Immediately following anodal tDCS (a-tDCS) applications, we found significant decreases in SICI, but increases in ICF and MEP size. However, ICF and MEP size significantly decreased, and SICI increased immediately following cathodal tDCS (c-tDCS). The results of this systematic review and meta-analysis reveal that a-tDCS changes intracortical activities (SICI and ICF) toward facilitation, whereas c-tDCS alters them toward inhibition. It can also be concluded that increases and decreases in CSE after tDCS application are associated with corresponding changes in intracortical activities. The results suggest that tDCS can be clinically useful to modulate intracortical circuits.
Collapse
|
20
|
Cathodal transcranial direct current stimulation of the extrastriate visual cortex modulates implicit anti-fat bias in male, but not female, participants. Neuroscience 2017; 359:92-104. [DOI: 10.1016/j.neuroscience.2017.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 11/23/2022]
|
21
|
Paulus W, Rothwell JC. Membrane resistance and shunting inhibition: where biophysics meets state-dependent human neurophysiology. J Physiol 2017; 594:2719-28. [PMID: 26940751 PMCID: PMC4865581 DOI: 10.1113/jp271452] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/23/2016] [Indexed: 11/28/2022] Open
Abstract
Activation of neurons not only changes their membrane potential and firing rate but as a secondary action reduces membrane resistance. This loss of resistance, or increase of conductance, may be of central importance in non‐invasive magnetic or electric stimulation of the human brain since electrical fields cause larger changes in transmembrane voltage in resting neurons with low membrane conductances than in active neurons with high conductance. This may explain why both the immediate effects and after‐effects of brain stimulation are smaller or even reversed during voluntary activity compared with rest. Membrane conductance is also increased during shunting inhibition, which accompanies the classic GABAA IPSP. This short‐circuits nearby EPSPs and is suggested here to contribute to the magnitude and time course of short‐interval intracortical inhibition and intracortical facilitation.
![]()
Collapse
Affiliation(s)
- Walter Paulus
- Department of Clinical Neurophysiology, University of Göttingen Medical Centre, Germany
| | - John C Rothwell
- UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
22
|
Hanley CJ, Singh KD, McGonigle DJ. Transcranial modulation of brain oscillatory responses: A concurrent tDCS–MEG investigation. Neuroimage 2016; 140:20-32. [DOI: 10.1016/j.neuroimage.2015.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/13/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022] Open
|
23
|
Nielsen RK, Jensen W. Low-Frequency Intracortical Electrical Stimulation Decreases Sensorimotor Cortex Hyperexcitability in the Acute Phase of Ischemic Stroke. IEEE Trans Neural Syst Rehabil Eng 2016; 25:1287-1296. [PMID: 27654834 DOI: 10.1109/tnsre.2016.2610762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ischemic stroke causes a series of complex pathophysiological events in the brain. Electrical stimulation of the brain has been considered as a novel neuroprotection intervention to save the penumbra. However, the effect on the cells' responsiveness and their ability to survive has yet to be established. The objective of the present study was to investigate the effects of low-frequency intracortical electrical stimulation (lf-ICES) applied to the ischemia-affected sensorimotor cortex immediately following ischemic stroke. Twenty male Sprague-Dawley rats were instrumented with an intracortical microelectrode array (IC MEA) and a cuff-electrode around the sciatic nerve. Photothrombosis intervention was performed within the sensorimotor cortex and the electrophysiological changes were assessed by analysis of the neural responses to stimulation of the sciatic nerve. Neuroprotection intervention consisted of eight 23 min lf-ICES blocks applied to the IC MEA during the initial 4 h following photothrombosis. Our results revealed that the area and magnitude of the sensorimotor cortex response significantly increased if ischemic stroke was allowed to progress uninterrupted, whereas this was not observed for the group of rats subjected to lf-ICES. Our findings indicate that low-frequency electrical stimulation is able to minimize hyperexcitability and may therefore be a candidate as neuroprotection intervention in the future.
Collapse
|
24
|
Luu P, Essaki Arumugam EM, Anderson E, Gunn A, Rech D, Turovets S, Tucker DM. Slow-Frequency Pulsed Transcranial Electrical Stimulation for Modulation of Cortical Plasticity Based on Reciprocity Targeting with Precision Electrical Head Modeling. Front Hum Neurosci 2016. [PMID: 27531976 DOI: 10.3339/fnhum.2016.00377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In pain management as well as other clinical applications of neuromodulation, it is important to consider the timing parameters influencing activity-dependent plasticity, including pulsed versus sustained currents, as well as the spatial action of electrical currents as they polarize the complex convolutions of the cortical mantle. These factors are of course related; studying temporal factors is not possible when the spatial resolution of current delivery to the cortex is so uncertain to make it unclear whether excitability is increased or decreased with anodal vs. cathodal current flow. In the present study we attempted to improve the targeting of specific cortical locations by applying current through flexible source-sink configurations of 256 electrodes in a geodesic array. We constructed a precision electric head model for 12 healthy individuals. Extraction of the individual's cortical surface allowed computation of the component of the induced current that is normal to the target cortical surface. In an effort to replicate the long-term depression (LTD) induced with pulsed protocols in invasive animal research and transcranial magnetic stimulation studies, we applied 100 ms pulses at 1.9 s intervals either in cortical-surface-anodal or cortical-surface-cathodal directions, with a placebo (sham) control. The results showed significant LTD of the motor evoked potential as a result of the cortical-surface-cathodal pulses in contrast to the placebo control, with a smaller but similar LTD effect for anodal pulses. The cathodal LTD after-effect was sustained over 90 min following current injection. These results support the feasibility of pulsed protocols with low total charge in non-invasive neuromodulation when the precision of targeting is improved with a dense electrode array and accurate head modeling.
Collapse
Affiliation(s)
- Phan Luu
- Electrical Geodesics, Inc., EugeneOR, USA; Department of Psychology, University of Oregon, EugeneOR, USA
| | | | | | | | | | - Sergei Turovets
- Electrical Geodesics, Inc., EugeneOR, USA; NeuroInformatics Center, University of Oregon, EugeneOR, USA
| | - Don M Tucker
- Electrical Geodesics, Inc., EugeneOR, USA; Department of Psychology, University of Oregon, EugeneOR, USA
| |
Collapse
|
25
|
Luu P, Essaki Arumugam EM, Anderson E, Gunn A, Rech D, Turovets S, Tucker DM. Slow-Frequency Pulsed Transcranial Electrical Stimulation for Modulation of Cortical Plasticity Based on Reciprocity Targeting with Precision Electrical Head Modeling. Front Hum Neurosci 2016; 10:377. [PMID: 27531976 PMCID: PMC4969286 DOI: 10.3389/fnhum.2016.00377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022] Open
Abstract
In pain management as well as other clinical applications of neuromodulation, it is important to consider the timing parameters influencing activity-dependent plasticity, including pulsed versus sustained currents, as well as the spatial action of electrical currents as they polarize the complex convolutions of the cortical mantle. These factors are of course related; studying temporal factors is not possible when the spatial resolution of current delivery to the cortex is so uncertain to make it unclear whether excitability is increased or decreased with anodal vs. cathodal current flow. In the present study we attempted to improve the targeting of specific cortical locations by applying current through flexible source-sink configurations of 256 electrodes in a geodesic array. We constructed a precision electric head model for 12 healthy individuals. Extraction of the individual's cortical surface allowed computation of the component of the induced current that is normal to the target cortical surface. In an effort to replicate the long-term depression (LTD) induced with pulsed protocols in invasive animal research and transcranial magnetic stimulation studies, we applied 100 ms pulses at 1.9 s intervals either in cortical-surface-anodal or cortical-surface-cathodal directions, with a placebo (sham) control. The results showed significant LTD of the motor evoked potential as a result of the cortical-surface-cathodal pulses in contrast to the placebo control, with a smaller but similar LTD effect for anodal pulses. The cathodal LTD after-effect was sustained over 90 min following current injection. These results support the feasibility of pulsed protocols with low total charge in non-invasive neuromodulation when the precision of targeting is improved with a dense electrode array and accurate head modeling.
Collapse
Affiliation(s)
- Phan Luu
- Electrical Geodesics, Inc., EugeneOR, USA; Department of Psychology, University of Oregon, EugeneOR, USA
| | | | | | | | | | - Sergei Turovets
- Electrical Geodesics, Inc., EugeneOR, USA; NeuroInformatics Center, University of Oregon, EugeneOR, USA
| | - Don M Tucker
- Electrical Geodesics, Inc., EugeneOR, USA; Department of Psychology, University of Oregon, EugeneOR, USA
| |
Collapse
|
26
|
Monfils MH, Plautz EJ, Kleim JA. In Search of the Motor Engram: Motor Map Plasticity as a Mechanism for Encoding Motor Experience. Neuroscientist 2016; 11:471-83. [PMID: 16151047 DOI: 10.1177/1073858405278015] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Motor skill acquisition occurs through modification and organization of muscle synergies into effective movement sequences. The learning process is reflected neurophysiologically as a reorganization of movement representations within the primary motor cortex, suggesting that the motor map is a motor engram. However, the specific neural mechanisms underlying map plasticity are unknown. Here the authors review evidence that 1) motor map topography reflects the capacity for skilled movement, 2) motor skill learning induces reorganization of motor maps in a manner that reflects the kinematics of acquired skilled movement, 3) map plasticity is supported by a reorganization of cortical microcircuitry involving changes in synaptic efficacy, and 4) motor map integrity and topography are influenced by various neurochemical signals that coordinate changes in cortical circuitry to encode motor experience. Finally, the role of motor map plasticity in recovery of motor function after brain damage is discussed.
Collapse
Affiliation(s)
- Marie-H Monfils
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Alberta, Canada
| | | | | |
Collapse
|
27
|
Tremblay S, Lafleur LP, Proulx S, Beaulé V, Latulipe-Loiselle A, Doyon J, Marjańska M, Théoret H. The effects of bi-hemispheric M1-M1 transcranial direct current stimulation on primary motor cortex neurophysiology and metabolite concentration. Restor Neurol Neurosci 2016; 34:587-602. [PMID: 27232951 PMCID: PMC9924828 DOI: 10.3233/rnn-150569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE The aim of the present study was to assess, in healthy individuals, the impact of M1-M1 tDCS on primary motor cortex excitability using transcranial magnetic stimulation and sensorimotor metabolite concentration using 1H-MRS. METHODS For both experiments, each participant received the three following interventions (20 min tDCS, 1 mA): left-anodal/right-cathodal, left-cathodal/right-anodal, sham. The effects of tDCS were assessed via motor evoked potentials (experiment 1) and metabolite concentrations (experiment 2) immediately after and 12 minutes following the end of stimulation and compared to baseline measurement. RESULTS No effect of M1-M1 tDCS on corticospinal excitability was found. Similarly, M1-M1 tDCS did not significantly modulate metabolite concentrations. High inter-subject variability was noted. Response rate analysis showed a tendency towards inhibition following left-anodal/right-cathodal tDCS in 50% of participants and increased GABA levels in 45% of participants. CONCLUSION In line with recent studies showing important inter-subject variability following M1-supraorbital tDCS, the present data show that M1-M1 stimulation is also associated with large response variability. The absence of significant effects suggests that current measures may lack sensitivity to assess changes in M1 neurophysiology and metabolism associated with M1-M1 tDCS.
Collapse
Affiliation(s)
- Sara Tremblay
- Département de psychologie, Université de Montréal, Montréal, Canada,Centre de recherche du Centre Hospitalier Universitaire de l’Hôpital Sainte-Justine, Montréal, Canada
| | - Louis-Philippe Lafleur
- Département de psychologie, Université de Montréal, Montréal, Canada,Centre de recherche du Centre Hospitalier Universitaire de l’Hôpital Sainte-Justine, Montréal, Canada
| | - Sébastien Proulx
- Unité de Neuroimagerie Fonctionnelle, Centre de recherche de l’Institut Universitaire de Gériatrie de Montréal, Canada,McGill University, Montréal, Canada
| | - Vincent Beaulé
- Département de psychologie, Université de Montréal, Montréal, Canada,Centre de recherche du Centre Hospitalier Universitaire de l’Hôpital Sainte-Justine, Montréal, Canada
| | | | - Julien Doyon
- Unité de Neuroimagerie Fonctionnelle, Centre de recherche de l’Institut Universitaire de Gériatrie de Montréal, Canada
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, USA
| | - Hugo Théoret
- Département de psychologie, Université de Montréal, Montréal, Canada,Centre de recherche du Centre Hospitalier Universitaire de l’Hôpital Sainte-Justine, Montréal, Canada
| |
Collapse
|
28
|
Abstract
The central point of this article is that the concept of memory as information storage in the brain is inadequate for and irrelevant to understanding the nervous system. Beginning from the sensorimotor hypothesis that underlies neuroscience—that the entire function of the nervous system is to connect experience to appropriate behavior—the paper defines memories as sequences of events that connect remote experience to present behavior. Their essential components are (a) persistent events that bridge the time from remote experience to present behavior and (b) junctional events in which connections from remote experience and recent experience merge to produce behavior. The sequences comprising even the simplest memories are complex. This is both necessary—to preserve previously learned behaviors—and inevitable—due to secondary activity-driven plasticity. This complexity further highlights the inadequacy of the information storage concept and the importance of extreme simplicity in models used to study memory.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| |
Collapse
|
29
|
Petrosyan TR, Gevorgyan OV, Hovsepyan AS, Ter-Markosyan AS. Effects of Bacterial Melanin on Neuronal Activity in the Rat Sensorimotor Cortex. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Koops S, van Dellen E, Schutte MJL, Nieuwdorp W, Neggers SFW, Sommer IEC. Theta Burst Transcranial Magnetic Stimulation for Auditory Verbal Hallucinations: Negative Findings From a Double-Blind-Randomized Trial. Schizophr Bull 2016; 42. [PMID: 26221051 PMCID: PMC4681555 DOI: 10.1093/schbul/sbv100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Auditory verbal hallucinations (AVH) in schizophrenia are resistant to antipsychotic medication in approximately 25% of patients. Treatment with repetitive transcranial magnetic stimulation (rTMS) for refractory AVH has shown varying results. A stimulation protocol using continuous theta burst rTMS (TB-rTMS) showed high efficacy in open label studies. We tested TB-rTMS as a treatment strategy for refractory AVH in a double-blind, placebo-controlled trial. METHODS Seventy-one patients with AVH were randomly allocated to TB-rTMS or placebo treatment. They received 10 TB-rTMS or sham treatments over the left temporoparietal cortex in consecutive days. AVH severity was assessed at baseline, end of treatment and follow-up using the Psychotic Symptom Rating Scale (PSYRATS) and the Auditory Hallucinations Rating Scale (AHRS). Other schizophrenia-related symptoms were assessed with the Positive and Negative Syndrome Scale (PANSS). RESULTS Seven patients dropped out before completing the study. In the remaining 64, AVH improved significantly after treatment in both groups as measured with both PSYRATS and AHRS. PANSS positive and general subscores also decreased, but the negative subscores did not. However, improvement did not differ significantly between the TB-rTMS and the placebo group on any outcome measure. CONCLUSIONS Symptom reduction could be achieved in patients with medication-resistant hallucinations, even within 1 week time. However, as both groups showed similar improvement, effects were general (ie, placebo-effects) rather than specific to treatment with continuous TB-rTMS. Our findings highlight the importance of double-blind trials including a sham-control condition to assess efficacy of new treatments such as TMS.
Collapse
Affiliation(s)
- Sanne Koops
- Psychiatry Department, University Medical Center Utrecht, Utrecht, The Netherlands; Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Edwin van Dellen
- Psychiatry Department, University Medical Center Utrecht, Utrecht, The Netherlands;,Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Maya J. L. Schutte
- Psychiatry Department, University Medical Center Utrecht, Utrecht, The Netherlands;,Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Wendy Nieuwdorp
- Psychiatry Department, University Medical Center Utrecht, Utrecht, The Netherlands;,Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Sebastiaan F. W. Neggers
- Psychiatry Department, University Medical Center Utrecht, Utrecht, The Netherlands;,Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Iris E. C. Sommer
- Psychiatry Department, University Medical Center Utrecht, Utrecht, The Netherlands;,Brain Center Rudolf Magnus, Utrecht, The Netherlands
| |
Collapse
|
31
|
Pedroarena-Leal N, Ruge D. Cerebellar neurophysiology in Gilles de la Tourette syndrome and its role as a target for therapeutic intervention. J Neuropsychol 2015; 11:327-346. [DOI: 10.1111/jnp.12091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 10/07/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Nicole Pedroarena-Leal
- Sobell Department of Motor Neuroscience and Movement Disorders; UCL-Institute of Neurology; University College London; UK
| | - Diane Ruge
- Sobell Department of Motor Neuroscience and Movement Disorders; UCL-Institute of Neurology; University College London; UK
| |
Collapse
|
32
|
Bianchi M, Cosseddu M, Cotelli M, Manenti R, Brambilla M, Rizzetti MC, Padovani A, Borroni B. Left parietal cortex transcranial direct current stimulation enhances gesture processing in corticobasal syndrome. Eur J Neurol 2015; 22:1317-22. [PMID: 26073740 DOI: 10.1111/ene.12748] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/06/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Corticobasal syndrome (CBS) is a clinical entity characterized by higher cortical dysfunctions associated with asymmetric onset of levodopa-resistant parkinsonism, dystonia and myoclonus. One of the most typical and distressful features of CBS is limb apraxia, which affects patients in their everyday life. Transcranial direct current stimulation (tDCS) is a non-invasive procedure of cortical stimulation, which represents a promising tool for cognitive enhancement and neurorehabilitation. The present study investigated whether anodal tDCS over the parietal cortex (PARC), would improve ideomotor upper limb apraxia in CBS patients. METHODS Fourteen patients with possible CBS and upper limb apraxia were enrolled. Each patient underwent two sessions of anodal tDCS (left and right PARC) and one session of placebo tDCS. Ideomotor upper limb apraxia was assessed using the De Renzi ideomotor apraxia test that is performed only on imitation. RESULTS A significant improvement of the De Renzi ideomotor apraxia test scores (post-stimulation versus pre-stimulation) after active anodal stimulation over the left PARC was observed (χ(2) = 17.6, P = 0.0005), whilst no significant effect was noticed after active anodal stimulation over the right PARC (χ(2) = 7.2, P = 0.07). A post hoc analysis revealed a selective improvement in the De Renzi ideomotor apraxia score after active anodal stimulation over the left PARC compared with placebo stimulation considering both right (P = 0.03) and left upper limbs (P = 0.01). CONCLUSIONS These findings indicate that tDCS to the PARC improves the performance of an ideomotor apraxia test in CBS patients and might represent a promising tool for future rehabilitation approaches.
Collapse
Affiliation(s)
- M Bianchi
- Neurology Unit, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - M Cosseddu
- Neurology Unit, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - M Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - R Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - M Brambilla
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - M C Rizzetti
- Riabilitazione Parkinson Unit, S. Isidoro Hospital, FERB Onlus, Trescore Balneario, Italy
| | - A Padovani
- Neurology Unit, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - B Borroni
- Neurology Unit, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| |
Collapse
|
33
|
da Silva NRJ, Laste G, Deitos A, Stefani LC, Cambraia-Canto G, Torres ILS, Brunoni AR, Fregni F, Caumo W. Combined neuromodulatory interventions in acute experimental pain: assessment of melatonin and non-invasive brain stimulation. Front Behav Neurosci 2015; 9:77. [PMID: 25873871 PMCID: PMC4379934 DOI: 10.3389/fnbeh.2015.00077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) and melatonin can effectively treat pain. Given their potentially complementary mechanisms of action, their combination could have a synergistic effect. Thus, we tested the hypothesis that compared to the control condition and melatonin alone, tDCS combined with melatonin would have a greater effect on pain modulatory effect, as assessed by quantitative sensory testing (QST) and by the pain level during the Conditioned Pain Modulation (CPM)-task. Furthermore, the combined treatment would have a greater cortical excitability effect as indicated by the transcranial magnetic stimulation (TMS) and on the serum BDNF level. Healthy males (n = 20), (aged 18-40 years), in a blinded, placebo-controlled, crossover, clinical trial, were randomized into three groups: sublingual melatonin (0.25 mg/kg) + a-tDCS, melatonin (0.25 mg/kg) + sham-(s)-tDCS, or sublingual placebo+sham-(s)-tDCS. Anodal stimulation (2 mA, 20 min) was applied over the primary motor cortex. There was a significant difference in the heat pain threshold (°C) for melatonin+a-tDCS vs. placebo+s-tDCS (mean difference: 4.86, 95% confidence interval [CI]: 0.9 to 8.63) and melatonin+s-tDCS vs. placebo+s-tDCS (mean: 5.16, 95% CI: 0.84 to 8.36). There was no difference between melatonin+s-tDCS and melatonin+a-tDCS (mean difference: 0.29, 95% CI: -3.72 to 4.23). The mean change from the baseline on amplitude of motor evocate potential (MEP) was significantly higher in the melatonin+a-tDCS (-19.96% ± 5.2) compared with melatonin+s-tDCS group (-1.36% ± 5.35) and with placebo+s-tDCS group (3.61% ± 10.48), respectively (p < 0.05 for both comparisons). While melatonin alone or combined with a-tDCS did not significantly affect CPM task result, and serum BDNF level. The melatonin effectively reduced pain; however, its association with a-tDCS did not present an additional modulatory effect on acute induced pain.
Collapse
Affiliation(s)
- Nádia Regina Jardim da Silva
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS)Porto Alegre, Brazil
| | - Gabriela Laste
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS)Porto Alegre, Brazil
| | - Alícia Deitos
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS)Porto Alegre, Brazil
| | - Luciana Cadore Stefani
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS)Porto Alegre, Brazil
- Pain and Anesthesia in Surgery Department, School of Medicine, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Gustavo Cambraia-Canto
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS)Porto Alegre, Brazil
| | - Iraci L. S. Torres
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS)Porto Alegre, Brazil
- Pharmacology Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Andre R. Brunoni
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, USA
| | - Felipe Fregni
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, University of São PauloSão Paulo, Brazil
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS)Porto Alegre, Brazil
- Pain and Anesthesia in Surgery Department, School of Medicine, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
- Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA), Laboratory of Pain and Neuromodulation at UFRGSPorto Alegre, Brazil
| |
Collapse
|
34
|
Marchina S, Schlaug G, Kumar S. Study design for the fostering eating after stroke with transcranial direct current stimulation trial: a randomized controlled intervention for improving Dysphagia after acute ischemic stroke. J Stroke Cerebrovasc Dis 2014; 24:511-20. [PMID: 25534369 DOI: 10.1016/j.jstrokecerebrovasdis.2014.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 01/14/2023] Open
Abstract
GOAL Dysphagia is a major stroke complication but lacks effective therapy that can promote recovery. Noninvasive brain stimulation with and without peripheral sensorimotor activities may be an attractive treatment option for swallowing recovery but has not been systematically investigated in the stroke population. This article describes the study design of the first prospective, single-center, double-blinded trial of anodal versus sham transcranial direct current stimulation (tDCS) used in combination with swallowing exercises in patients with dysphagia from an acute ischemic stroke. The aim of this study is to gather safety data on cumulative sessions of tDCS in acute-subacute phases of stroke, obtain information about effects of this intervention on important physiologic and clinically relevant swallowing parameters, and examine possible dose effects. METHODS Ninety-nine consecutive patients with dysphagia from an acute unilateral hemispheric infarction with a Penetration and Aspiration Scale (PAS) score of 4 or more and without other confounding reasons for dysphagia will be enrolled at a single tertiary care center. Subjects will be randomized to either a high or low dose tDCS or a sham group and will undergo 10 sessions over 5 consecutive days concomitantly with effortful swallowing maneuvers. The main efficacy measures are a change in the PAS score before and after treatment; the main safety measures are mortality, seizures, neurologic, motor, and swallowing deterioration. CONCLUSIONS The knowledge gained from this study will help plan a larger confirmatory trial for treating stroke-related dysphagia and advance our understanding of important covariates influencing swallowing recovery and response to the proposed intervention.
Collapse
Affiliation(s)
- Sarah Marchina
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Gottfried Schlaug
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Sandeep Kumar
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
35
|
Ganella DE, Thangaraju P, Lawrence AJ, Kim JH. Fear extinction in 17 day old rats is dependent on metabotropic glutamate receptor 5 signaling. Behav Brain Res 2014; 298:32-6. [PMID: 25497704 DOI: 10.1016/j.bbr.2014.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/06/2014] [Accepted: 12/01/2014] [Indexed: 11/30/2022]
Abstract
We used pharmacological modulation of the mGlu5 receptor to investigate its role in the extinction of conditioned fear throughout development. In postnatal day (P) 17 rats, the positive allosteric modulator CDPPB facilitated, while the negative allosteric modulator MTEP impaired extinction. These drugs had no such effects on P24 or adult rats. These results establish a changing importance of mGlu5 in extinction of conditioned fear at distinct stages of development.
Collapse
Affiliation(s)
- Despina E Ganella
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Pushbalela Thangaraju
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Andrew J Lawrence
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Jee Hyun Kim
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
36
|
Cerebellar Neurophysiology in Gilles de la Tourette Syndrome and its Role as a Target for Therapeutic Intervention. ARCHIVES OF NEUROSCIENCE 2014. [DOI: 10.5812/archneurosci.24311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Sampaio-Baptista C, Filippini N, Stagg CJ, Near J, Scholz J, Johansen-Berg H. Changes in functional connectivity and GABA levels with long-term motor learning. Neuroimage 2014; 106:15-20. [PMID: 25463472 PMCID: PMC4405007 DOI: 10.1016/j.neuroimage.2014.11.032] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 12/03/2022] Open
Abstract
Learning novel motor skills alters local inhibitory circuits within primary motor cortex (M1) (Floyer-Lea et al., 2006) and changes long-range functional connectivity (Albert et al., 2009). Whether such effects occur with long-term training is less well established. In addition, the relationship between learning-related changes in functional connectivity and local inhibition, and their modulation by practice, has not previously been tested. Here, we used resting-state functional magnetic resonance imaging (rs-fMRI) to assess functional connectivity and MR spectroscopy to quantify GABA in primary motor cortex (M1) before and after a 6 week regime of juggling practice. Participants practiced for either 30 min (high intensity group) or 15 min (low intensity group) per day. We hypothesized that different training regimes would be reflected in distinct changes in brain connectivity and local inhibition, and that correlations would be found between learning-induced changes in GABA and functional connectivity. Performance improved significantly with practice in both groups and we found no evidence for differences in performance outcomes between the low intensity and high intensity groups. Despite the absence of behavioral differences, we found distinct patterns of brain change in the two groups: the low intensity group showed increases in functional connectivity in the motor network and decreases in GABA, whereas the high intensity group showed decreases in functional connectivity and no significant change in GABA. Changes in functional connectivity correlated with performance outcome. Learning-related changes in functional connectivity correlated with changes in GABA. The results suggest that different training regimes are associated with distinct patterns of brain change, even when performance outcomes are comparable between practice schedules. Our results further indicate that learning-related changes in resting-state network strength in part reflect GABAergic plastic processes. Long-term learning modulated functional connectivity. Changes in functional connectivity correlated with performance outcome. Long-term learning decreased GABA levels. Learning-related changes in functional connectivity correlated with changes in GABA.
Collapse
Affiliation(s)
- Cassandra Sampaio-Baptista
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Nicola Filippini
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK; Department of Psychiatry, University of Oxford, Warneford Hospital, OX3 7JX, UK
| | - Charlotte J Stagg
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Jamie Near
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Jan Scholz
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK; Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto, Ontario M5T 3H7, Canada
| | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.
| |
Collapse
|
38
|
Chronic psychosocial stress impairs early LTP but not late LTP in the dentate gyrus of at-risk rat model of Alzheimer׳s disease. Brain Res 2014; 1588:150-8. [DOI: 10.1016/j.brainres.2014.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/27/2014] [Accepted: 09/04/2014] [Indexed: 01/31/2023]
|
39
|
Hsieh TH, Huang YZ, Rotenberg A, Pascual-Leone A, Chiang YH, Wang JY, Chen JJJ. Functional Dopaminergic Neurons in Substantia Nigra are Required for Transcranial Magnetic Stimulation-Induced Motor Plasticity. Cereb Cortex 2014; 25:1806-14. [DOI: 10.1093/cercor/bht421] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
Rizzo V, Terranova C, Crupi D, Sant'angelo A, Girlanda P, Quartarone A. Increased Transcranial Direct Current Stimulation After Effects During Concurrent Peripheral Electrical Nerve Stimulation. Brain Stimul 2014; 7:113-21. [PMID: 24388283 DOI: 10.1016/j.brs.2013.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/25/2013] [Accepted: 10/13/2013] [Indexed: 10/26/2022] Open
|
41
|
Evidence for metaplasticity in the human visual cortex. J Neural Transm (Vienna) 2013; 121:221-31. [PMID: 24162796 DOI: 10.1007/s00702-013-1104-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
The threshold and direction of excitability changes induced by low- and high-frequency repetitive transcranial magnetic stimulation (rTMS) in the primary motor cortex can be effectively reverted by a preceding session of transcranial direct current stimulation (tDCS), a phenomenon referred to as "metaplasticity". Here, we used a combined tDCS-rTMS protocol and visual evoked potentials (VEPs) in healthy subjects to provide direct electrophysiological evidence for metaplasticity in the human visual cortex. Specifically, we evaluated changes in VEPs at two different contrasts (90 and 20 %) before and at different time points after the application of anodal or cathodal tDCS to occipital cortex (i.e., priming), followed by an additional conditioning with low- or high-frequency rTMS. Anodal tDCS increased the amplitude of VEPs and this effect was paradoxically reverted by applying high-frequency (5 Hz), conventionally excitatory rTMS (p < 0.0001). Similarly, cathodal tDCS led to a decrease in VEPs amplitude, which was reverted by a subsequent application of conventionally inhibitory, 1 Hz rTMS (p < 0.0001). Similar changes were observed for both the N1 and P1 component of the VEP. There were no significant changes in resting motor threshold values (p > 0.5), confirming the spatial selectivity of our conditioning protocol. Our findings show that preconditioning primary visual area excitability with tDCS can modulate the direction and strength of plasticity induced by subsequent application of 1 or 5 Hz rTMS. These data indicate the presence of mechanisms of metaplasticity that keep synaptic strengths within a functional dynamic range in the human visual cortex.
Collapse
|
42
|
Teskey GC, Flynn C, Goertzen CD, Monfils MH, Young NA. Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat. Neurol Res 2013; 25:794-800. [PMID: 14669521 DOI: 10.1179/016164103771953871] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Improving functional recovery following cerebral strokes in humans will likely involve augmenting brain plasticity. This study examined skilled forelimb behavior, neocortical evoked potentials, and movement thresholds to assess cortical electrical stimulation concurrent with rehabilitative forelimb usage following a focal ischemic insult. Adult rats were trained on a task that required skilled usage of both forelimbs. They then underwent an acute focal ischemic insult to the caudal forelimb area of sensorimotor cortex contralateral to their preferred forelimb. During the same procedure, they also received a stimulation electrode over the infarct area and two depth electrodes anterior to the lesion to record evoked potentials. One week following the surgery, rats received cortical stimulation during performance of the skilled task. Evoked potentials and movement thresholds were also determined. Functional assessment revealed that cortical stimulation resulted in superior performance compared to the no stimulation group, and this was initially due to a shift in forelimb preference. Cortical stimulation also resulted in enhanced evoked potentials and a reduction in the amount of current required to elicit a movement, in a stimulation frequency dependent manner. This study suggests that cortical stimulation, concurrent with rehabilitative training, results in better forelimb usage that may be due to augmented synaptic plasticity.
Collapse
Affiliation(s)
- G Campbell Teskey
- Behavioural Neuroscience Research Group, Department of Psychology, University of Calgary, Calgary, Alberta, Canada T2N 1N4.
| | | | | | | | | |
Collapse
|
43
|
Auvichayapat N, Rotenberg A, Gersner R, Ngodklang S, Tiamkao S, Tassaneeyakul W, Auvichayapat P. Transcranial Direct Current Stimulation for Treatment of Refractory Childhood Focal Epilepsy. Brain Stimul 2013; 6:696-700. [DOI: 10.1016/j.brs.2013.01.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/13/2013] [Accepted: 01/17/2013] [Indexed: 11/24/2022] Open
|
44
|
Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, Edwards DJ, Valero-Cabre A, Rotenberg A, Pascual-Leone A, Ferrucci R, Priori A, Boggio PS, Fregni F. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul 2012; 5:175-195. [PMID: 22037126 PMCID: PMC3270156 DOI: 10.1016/j.brs.2011.03.002] [Citation(s) in RCA: 972] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/25/2011] [Accepted: 03/03/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity, direct current to cortical areas facilitating or inhibiting spontaneous neuronal activity. In the past 10 years, tDCS physiologic mechanisms of action have been intensively investigated giving support for the investigation of its applications in clinical neuropsychiatry and rehabilitation. However, new methodologic, ethical, and regulatory issues emerge when translating the findings of preclinical and phase I studies into phase II and III clinical studies. The aim of this comprehensive review is to discuss the key challenges of this process and possible methods to address them. METHODS We convened a workgroup of researchers in the field to review, discuss, and provide updates and key challenges of tDCS use in clinical research. MAIN FINDINGS/DISCUSSION We reviewed several basic and clinical studies in the field and identified potential limitations, taking into account the particularities of the technique. We review and discuss the findings into four topics: (1) mechanisms of action of tDCS, parameters of use and computer-based human brain modeling investigating electric current fields and magnitude induced by tDCS; (2) methodologic aspects related to the clinical research of tDCS as divided according to study phase (ie, preclinical, phase I, phase II, and phase III studies); (3) ethical and regulatory concerns; and (4) future directions regarding novel approaches, novel devices, and future studies involving tDCS. Finally, we propose some alternative methods to facilitate clinical research on tDCS.
Collapse
Affiliation(s)
- Andre Russowsky Brunoni
- Department of Neurosciences and Behavior, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Michael A Nitsche
- Department of Clinical Neurophysiology, Georg-August University, Goettingen, Germany
| | - Nadia Bolognini
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Neuropsychological Laboratory, IRCCS Instituto Auxologico Italiano, Milan, Italy
| | - Marom Bikson
- The City College of City University of New York, New York, New York
| | - Tim Wagner
- Massachusetts Institute of Technology, Boston, Massachusetts
| | - Lotfi Merabet
- Massachusets Eye and Ear Infirmary, Harvard University, Boston, Massachusetts
| | | | | | - Alexander Rotenberg
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Roberta Ferrucci
- Centro Clinico per la Neurostimolazione, le Neurotecnologie ed i Disordini del Movimento, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Dipartimento di Scienze Neurologiche, Milan, Italy
| | - Alberto Priori
- Centro Clinico per la Neurostimolazione, le Neurotecnologie ed i Disordini del Movimento, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Dipartimento di Scienze Neurologiche, Milan, Italy
| | - Paulo Sergio Boggio
- Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Prebyterian University, Sao Paulo, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
45
|
Rebesco JM, Miller LE. Enhanced detection threshold for in vivo cortical stimulation produced by Hebbian conditioning. J Neural Eng 2011; 8:016011. [PMID: 21252415 PMCID: PMC3056083 DOI: 10.1088/1741-2560/8/1/016011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Normal brain function requires constant adaptation, as an organism learns to associate important sensory stimuli with the appropriate motor actions. Neurological disorders may disrupt these learned associations and require the nervous system to reorganize itself. As a consequence, neural plasticity is a crucial component of normal brain function and a critical mechanism for recovery from injury. Associative, or Hebbian, pairing of pre- and post-synaptic activity has been shown to alter stimulus-evoked responses in vivo; however, to date, such protocols have not been shown to affect the animal's subsequent behavior. We paired stimulus trains separated by a brief time delay to two electrodes in rat sensorimotor cortex, which changed the statistical pattern of spikes during subsequent behavior. These changes were consistent with strengthened functional connections from the leading electrode to the lagging electrode. We then trained rats to respond to a microstimulation cue, and repeated the paradigm using the cue electrode as the leading electrode. This pairing lowered the rat's ICMS-detection threshold, with the same dependence on intra-electrode time lag that we found for the functional connectivity changes. The timecourse of the behavioral effects was very similar to that of the connectivity changes. We propose that the behavioral changes were a consequence of strengthened functional connections from the cue electrode to other regions of sensorimotor cortex. Such paradigms might be used to augment recovery from a stroke, or to promote adaptation in a bidirectional brain-machine interface.
Collapse
Affiliation(s)
- James M Rebesco
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | |
Collapse
|
46
|
Zasady stosowania i mechanizm działania przezczaszkowej stymulacji prądem stałym w neurorehabilitacji: dane z badań kory ruchowej. Neurol Neurochir Pol 2010; 44:172-80. [DOI: 10.1016/s0028-3843(14)60008-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Arul-Anandam AP, Loo C. Transcranial direct current stimulation: a new tool for the treatment of depression? J Affect Disord 2009; 117:137-45. [PMID: 19201483 DOI: 10.1016/j.jad.2009.01.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 01/16/2009] [Accepted: 01/16/2009] [Indexed: 11/19/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that applies mild (typically 1-2 mA) direct currents via the scalp to enhance or diminish neuronal excitability. The technique has a dual function: on the one hand, it has been used to investigate the functions of various cortical regions; on the other, it has been used as an experimental treatment modality, most notably for Major Depressive Disorder (MDD). With the growing utility of tDCS in psychiatry, it is important from the vantage of safety and effectiveness to understand its underlying neurobiological mechanisms. In this respect, researchers have made significant progress in recent years, highlighting changes in resting membrane potential, spontaneous neuronal firing rates, synaptic strength, cerebral blood flow and metabolism subsequent to tDCS. We briefly review tDCS clinical trials for MDD, and then consider its mechanisms of action, identifying potential avenues for future research.
Collapse
|
48
|
Ozen L, Teskey G. One hertz stimulation to the corpus callosum quenches seizure development and attenuates motor map expansion. Neuroscience 2009; 160:567-75. [DOI: 10.1016/j.neuroscience.2009.02.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 02/18/2009] [Accepted: 02/24/2009] [Indexed: 11/24/2022]
|
49
|
Bolognini N, Pascual-Leone A, Fregni F. Using non-invasive brain stimulation to augment motor training-induced plasticity. J Neuroeng Rehabil 2009; 6:8. [PMID: 19292910 PMCID: PMC2667408 DOI: 10.1186/1743-0003-6-8] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 03/17/2009] [Indexed: 11/10/2022] Open
Abstract
Therapies for motor recovery after stroke or traumatic brain injury are still not satisfactory. To date the best approach seems to be the intensive physical therapy. However the results are limited and functional gains are often minimal. The goal of motor training is to minimize functional disability and optimize functional motor recovery. This is thought to be achieved by modulation of plastic changes in the brain. Therefore, adjunct interventions that can augment the response of the motor system to the behavioural training might be useful to enhance the therapy-induced recovery in neurological populations. In this context, noninvasive brain stimulation appears to be an interesting option as an add-on intervention to standard physical therapies. Two non-invasive methods of inducing electrical currents into the brain have proved to be promising for inducing long-lasting plastic changes in motor systems: transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). These techniques represent powerful methods for priming cortical excitability for a subsequent motor task, demand, or stimulation. Thus, their mutual use can optimize the plastic changes induced by motor practice, leading to more remarkable and outlasting clinical gains in rehabilitation. In this review we discuss how these techniques can enhance the effects of a behavioural intervention and the clinical evidence to date.
Collapse
Affiliation(s)
- Nadia Bolognini
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| | | | | |
Collapse
|
50
|
Pikov V, McCreery DB. Spinal hyperexcitability and bladder hyperreflexia during reversible frontal cortical inactivation induced by low-frequency electrical stimulation in the cat. J Neurotrauma 2009; 26:109-19. [PMID: 19119915 PMCID: PMC2733532 DOI: 10.1089/neu.2008.0584] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal hyperexcitability and hyperreflexia gradually develop in the majority of stroke patients. These pathologies develop as a result of reduced cortical modulation of spinal reflexes, mediated largely indirectly via relays in the brainstem and other subcortical structures. Cortical control of spinal reflexes is markedly different in small animals, such as rodents, while in some larger species, such as cats, it is more comparable to that in humans. In this study, we developed a novel model of stroke in the cat, with controllable and reversible inhibition of cortical neuronal activity appearing approximately 1h after initiation of low-frequency electrical stimulation in the frontal cerebral cortex, evidenced by a large increase in the alpha frequency band (7-14 Hz) of the frontal electrocorticographic signal. Hyperreflexia of the urinary bladder developed 3h or more after induction of reversible cortical inactivation with optimized stimulation parameters (frequency of 1-2 Hz, amplitude of 10 mA, applied for 30 min). The bladder hyperreflexia persisted for at least 8h, and disappeared within 24h. At the S2 level of the spinal cord, where neural circuits mediating micturition and other pelvic reflexes reside, we have recorded an increase in neuronal activity correlated with the development of hyperreflexia. The low-frequency stimulation-induced reversible cortical inactivation model of stroke is highly reproducible and allows evaluation of spinal hyperexcitability and hyperreflexia using within-animal comparisons across experimental conditions, which can be of great value in examination of mechanisms of spinal hyperreflexia following stroke or brain trauma, and for developing more effective treatments for these conditions.
Collapse
Affiliation(s)
- Victor Pikov
- Neural Engineering Program, Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
| | | |
Collapse
|