1
|
Yi L, Li J, He Y, Wang J, Wang M, Guo S, Luo M, Wu B, Xu M, Tian Q, Fan Y, Chen M, Xu B, Xia L, Song W, He G, Du Y, Dong Z. ELK1 inhibition alleviates amyloid pathology and memory decline by promoting the SYVN1-mediated ubiquitination and degradation of PS1 in Alzheimer's disease. Exp Mol Med 2025:10.1038/s12276-025-01455-8. [PMID: 40307574 DOI: 10.1038/s12276-025-01455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/19/2025] [Accepted: 03/11/2025] [Indexed: 05/02/2025] Open
Abstract
ELK1 is a member of the E-twenty-six transcription factor family and is usually activated by phosphorylation at Ser383 and Ser389 by extracellular signal-regulated kinase 1/2 (ERK1/2). Dysregulation of ERK1/2 is involved in Alzheimer's disease (AD)-related neuropathogenesis and cognitive impairments. However, the role of ELK1 in AD pathogenesis remains unclear. Here we report that the expression of ELK1 was significantly increased in the brain tissues of patients with AD and AD model mice. The genetic knockdown of ELK1 or inhibition of its phosphorylation by an interfering peptide (TAT-DEF-ELK1 (TDE)) reduced amyloidogenic processing of APP by targeting PS1, consequently inhibiting Aβ generation and alleviating synaptic and memory impairments in APP23/PS45 double-transgenic AD model mice. In addition, we further found that ELK1 regulated the expression of PS1 by competitively inhibiting the interaction between PS1 and its E3 ubiquitin ligase synoviolin (SYVN1), thereby inhibiting the SYVN1-mediated ubiquitination and degradation of PS1. Our results demonstrate that ELK1 aberrantly increases in AD and genetic or pharmacological inhibition of ELK1 can alleviate AD-related pathology and memory impairments by enhancing the SYVN1-mediated PS1 ubiquitination and degradation, indicating that ELK1 may be a novel target for AD treatment.
Collapse
Affiliation(s)
- Lilin Yi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Li
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yan He
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaojiao Wang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Maoju Wang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Song Guo
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Man Luo
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Wu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mingliang Xu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyun Tian
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yepeng Fan
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mulan Chen
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Boqing Xu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Xia
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guiqiong He
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China.
| | - Yehong Du
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Lado W, Wu X, Choi S, Dong Y, Yang G, Arancio O, Tempia F, Miniaci MC, Sulzer D, Mosharov E, Tang G. Synaptic plasticity deficits in a mouse model of Timothy syndrome: LTP saturation and its pharmacological rescue by nifedipine. Biomed Pharmacother 2025; 184:117896. [PMID: 39938350 DOI: 10.1016/j.biopha.2025.117896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Timothy syndrome (TS) is a multisystem disorder characterized by cardiovascular abnormalities and a spectrum of neuropsychiatric symptoms, including language impairment, seizure, cognitive disability and autism. TS is caused by gain of function mutations in the CACNA1C gene that encodes the CaV1.2 L-type calcium channel. TS mutations have been reported to disrupt hippocampal long-term potentiation (LTP), a process implicated in memory formation. Here, we compared wild type (WT) and heterozygous G406R CaV1.2 mutant TS2-neo model mice using a LTP saturation protocol consisting of two successive theta burst stimuli. While WT mice showed potentiated synaptic strength in response to both theta-burst stimuli, TS2-neo mutants exhibited a smaller initial LTP and minimal responses to the second stimulus. The dihydropyridine L-type calcium channel blocker, nifedipine, inhibited LTP in WT mice, but enhanced both the initial and the second LTP in TS2-neo mutants. By measuring the phosphorylation activation of ERK, CREB and glutamate receptor GluR1, steps required for hippocampal LTP, we found that all were abnormally high at baseline in the mutant mice. Nifedipine blocked LTP-related phosphorylation in WT mice, but normalized baseline phosphorylation of ERK, CREB and GluR1 in TS2-neo mice, allowing their subsequent activity-dependent induction. Thus, while nifedipine inhibits LTP in WT mice, the drug reinstates LTP and normal synaptic plasticity in a TS model, suggesting potential therapeutic approaches for synaptic deficits in channelopathies such as TS.
Collapse
Affiliation(s)
- Wudu Lado
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Xiaoping Wu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, USA
| | - Sejoon Choi
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric institute, New York, USA
| | - Yuxin Dong
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, USA
| | | | | | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric institute, New York, USA
| | - Eugene Mosharov
- Department of Neurology, Columbia University Irving Medical Center, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric institute, New York, USA
| | - Guomei Tang
- Department of Neurology, Columbia University Irving Medical Center, New York, USA.
| |
Collapse
|
3
|
Donders Z, Skorupska IJ, Willems E, Mussen F, Broeckhoven JV, Carlier A, Schepers M, Vanmierlo T. Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system. Biomed Pharmacother 2024; 177:117009. [PMID: 38908196 DOI: 10.1016/j.biopha.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.
Collapse
Affiliation(s)
- Zoë Donders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Iga Joanna Skorupska
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Emily Willems
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Femke Mussen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium.
| |
Collapse
|
4
|
López-Merino E, Cuartero MI, Esteban JA, Briz V. Perinatal exposure to pesticides alters synaptic plasticity signaling and induces behavioral deficits associated with neurodevelopmental disorders. Cell Biol Toxicol 2023; 39:2089-2111. [PMID: 35137321 PMCID: PMC10547633 DOI: 10.1007/s10565-022-09697-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Increasing evidence from animal and epidemiological studies indicates that perinatal exposure to pesticides cause developmental neurotoxicity and may increase the risk for psychiatric disorders such as autism and intellectual disability. However, the underlying pathogenic mechanisms remain largely elusive. This work was aimed at testing the hypothesis that developmental exposure to different classes of pesticides hijacks intracellular neuronal signaling contributing to synaptic and behavioral alterations associated with neurodevelopmental disorders (NDD). Low concentrations of organochlorine (dieldrin, endosulfan, and chlordane) and organophosphate (chlorpyrifos and its oxon metabolite) pesticides were chronically dosed ex vivo (organotypic rat hippocampal slices) or in vivo (perinatal exposure in rats), and then biochemical, electrophysiological, behavioral, and proteomic studies were performed. All the pesticides tested caused prolonged activation of MAPK/ERK pathway in a concentration-dependent manner. Additionally, some of them impaired metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD). In the case of the pesticide chlordane, the effect was attributed to chronic modulation of MAPK/ERK signaling. These synaptic alterations were reproduced following developmental in vivo exposure to chlordane and chlorpyrifos-oxon, and were also associated with prototypical behavioral phenotypes of NDD, including impaired motor development, increased anxiety, and social and memory deficits. Lastly, proteomic analysis revealed that these pesticides differentially regulate the expression of proteins in the hippocampus with pivotal roles in brain development and synaptic signaling, some of which are associated with NDD. Based on these results, we propose a novel mechanism of synaptic dysfunction, involving chronic overactivation of MAPK and impaired mGluR-LTD, shared by different pesticides which may have important implications for NDD.
Collapse
Affiliation(s)
| | - María I Cuartero
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| | - Víctor Briz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
5
|
Pan S, Wang L, Wang Y, Dong X, Liu Y, Zhou A, Xing H. Transplantation of ERK gene-modified bone marrow mesenchymal stem cells ameliorates cognitive deficits in a 6-hydroxydopamine rat model of Parkinson's disease. Neurosci Lett 2023; 794:136993. [PMID: 36462642 DOI: 10.1016/j.neulet.2022.136993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/15/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
The study aimed to investigate bone marrow mesenchymal stem cells (BMSCs) and extracellular signal-regulated kinase (ERK) gene-modified BMSCs (ERK-BMSCs) transplantation in ameliorating cognitive deficits in Parkinson's disease (PD). The PD rat model was built by 6-hydroxydopamine (6-OHDA) injection into the right striatum for 8 weeks, then successful PD rats were randomly divided into three groups and respectively transplanted in the same position of striatum as modeling with PBS, BMSCs and ERK-BMSCs for another 8 weeks. The 6-OHDA-induced PD rat model was successfully established, as demonstrated by reduced active avoidance response (AAR) times, percentage of time exploring in the light area (Ltime%) and platform quadrant time (PQT), as well as p-ERK expression. Compared with PBS rats, both BMSCs and ERK-BMSCs transplantation significantly reduced the left turn number, while increased AAR, Ltime%, PQT and p-ERK expression, suggesting improved cognitive abilities through restoring p-ERK expression. In addition, ERK-BMSCs injection exhibited higher therapeutic efficacy against cognitive deficits compared with BMSCs injection. These results demonstrated that BMSCs transplantation ameliorated cognitive deficits, and ERK-BMSCs exerted synergistic effects, which may prove beneficial against cognitive impairments in PD.
Collapse
Affiliation(s)
- Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Lijun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xuan Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yuting Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - An Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
6
|
Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Nanowired Delivery of Cerebrolysin Together with Antibodies to Amyloid Beta Peptide, Phosphorylated Tau, and Tumor Necrosis Factor Alpha Induces Superior Neuroprotection in Alzheimer's Disease Brain Pathology Exacerbated by Sleep Deprivation. ADVANCES IN NEUROBIOLOGY 2023; 32:3-53. [PMID: 37480458 DOI: 10.1007/978-3-031-32997-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Sleep deprivation induces amyloid beta peptide and phosphorylated tau deposits in the brain and cerebrospinal fluid together with altered serotonin metabolism. Thus, it is likely that sleep deprivation is one of the predisposing factors in precipitating Alzheimer's disease (AD) brain pathology. Our previous studies indicate significant brain pathology following sleep deprivation or AD. Keeping these views in consideration in this review, nanodelivery of monoclonal antibodies to amyloid beta peptide (AβP), phosphorylated tau (p-tau), and tumor necrosis factor alpha (TNF-α) in sleep deprivation-induced AD is discussed based on our own investigations. Our results suggest that nanowired delivery of monoclonal antibodies to AβP with p-tau and TNF-α induces superior neuroprotection in AD caused by sleep deprivation, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Radwitz J, Hausrat TJ, Heisler FF, Janiesch PC, Pechmann Y, Rübhausen M, Kneussel M. Tubb3 expression levels are sensitive to neuronal activity changes and determine microtubule growth and kinesin-mediated transport. Cell Mol Life Sci 2022; 79:575. [DOI: 10.1007/s00018-022-04607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
Abstract
AbstractMicrotubules are dynamic polymers of α/β-tubulin. They regulate cell structure, cell division, cell migration, and intracellular transport. However, functional contributions of individual tubulin isotypes are incompletely understood. The neuron-specific β-tubulin Tubb3 displays highest expression around early postnatal periods characterized by exuberant synaptogenesis. Although Tubb3 mutations are associated with neuronal disease, including abnormal inhibitory transmission and seizure activity in patients, molecular consequences of altered Tubb3 levels are largely unknown. Likewise, it is unclear whether neuronal activity triggers Tubb3 expression changes in neurons. In this study, we initially asked whether chemical protocols to induce long-term potentiation (cLTP) affect microtubule growth and the expression of individual tubulin isotypes. We found that growing microtubules and Tubb3 expression are sensitive to changes in neuronal activity and asked for consequences of Tubb3 downregulation in neurons. Our data revealed that reduced Tubb3 levels accelerated microtubule growth in axons and dendrites. Remarkably, Tubb3 knockdown induced a specific upregulation of Tubb4 gene expression, without changing other tubulin isotypes. We further found that Tubb3 downregulation reduces tubulin polyglutamylation, increases KIF5C motility and boosts the transport of its synaptic cargo N-Cadherin, which is known to regulate synaptogenesis and long-term potentiation. Due to the large number of tubulin isotypes, we developed and applied a computational model based on a Monte Carlo simulation to understand consequences of tubulin expression changes in silico. Together, our data suggest a feedback mechanism with neuronal activity regulating tubulin expression and consequently microtubule dynamics underlying the delivery of synaptic cargoes.
Collapse
|
8
|
Ojea Ramos S, Feld M, Fustiñana MS. Contributions of extracellular-signal regulated kinase 1/2 activity to the memory trace. Front Mol Neurosci 2022; 15:988790. [PMID: 36277495 PMCID: PMC9580372 DOI: 10.3389/fnmol.2022.988790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022] Open
Abstract
The ability to learn from experience and consequently adapt our behavior is one of the most fundamental capacities enabled by complex and plastic nervous systems. Next to cellular and systems-level changes, learning and memory formation crucially depends on molecular signaling mechanisms. In particular, the extracellular-signal regulated kinase 1/2 (ERK), historically studied in the context of tumor growth and proliferation, has been shown to affect synaptic transmission, regulation of neuronal gene expression and protein synthesis leading to structural synaptic changes. However, to what extent the effects of ERK are specifically related to memory formation and stabilization, or merely the result of general neuronal activation, remains unknown. Here, we review the signals leading to ERK activation in the nervous system, the subcellular ERK targets associated with learning-related plasticity, and how neurons with activated ERK signaling may contribute to the formation of the memory trace.
Collapse
Affiliation(s)
- Santiago Ojea Ramos
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Feld
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | |
Collapse
|
9
|
Liu T, Zhu X, Huang C, Chen J, Shu S, Chen G, Xu Y, Hu Y. ERK inhibition reduces neuronal death and ameliorates inflammatory responses in forebrain-specific Ppp2cα knockout mice. FASEB J 2022; 36:e22515. [PMID: 35997299 DOI: 10.1096/fj.202200293r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022]
Abstract
It has been shown that PP2A is critical for apoptosis in neural progenitor cells. However, it remains unknown whether PP2A is required for neuronal survival. To address this question, we generated forebrain-specific Ppp2cα knockout (KO) mice. We show that Ppp2cα KO mice display robust neuronal apoptosis and inflammatory responses in the postnatal cortex. Previous evidence has revealed that PD98059 is a potent ERK inhibitor and may protect the brain against cell death after cardiac arrest. To study whether PD98059 may have any effects on Ppp2cα KO mice, the latter was treated with this inhibitor. We demonstrated that the total number of cleaved caspase3 positive (+) cells in the cortex was significantly reduced in Ppp2cα KO mice treated with PD98059 compared with those without PD98059 treatment. We observed that the total number of IBA1+ cells in the cortex was significantly decreased in Ppp2cα KO mice treated with PD98059. Mechanistic analysis reveals that deletion of PP2Aca causes DNA damage, which may be attenuated by PD98059. Together, this study suggests that inhibition of ERK may be an effective strategy to reduce cell death in brain diseases with abnormal neuronal apoptosis.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Chaoli Huang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Jiang Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yimin Hu
- Department of Anesthesiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
10
|
Jeon J, Mony TJ, Cho E, Kwon H, Cho WS, Choi JW, Kim BC, Ryu JH, Jeon SJ, Kwon KJ, Shin CY, Park SJ, Kim DH. Role of extracellular signal-regulated kinase in rubrofusarin-enhanced cognitive functions and neurite outgrowth. Biomed Pharmacother 2022; 147:112663. [DOI: 10.1016/j.biopha.2022.112663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
|
11
|
Shil SK, Kagawa Y, Umaru BA, Nanto-Hara F, Miyazaki H, Yamamoto Y, Kobayashi S, Suzuki C, Abe T, Owada Y. Ndufs4 ablation decreases synaptophysin expression in hippocampus. Sci Rep 2021; 11:10969. [PMID: 34040028 PMCID: PMC8155116 DOI: 10.1038/s41598-021-90127-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Altered function of mitochondrial respiratory chain in brain cells is related to many neurodegenerative diseases. NADH Dehydrogenase (Ubiquinone) Fe-S protein 4 (Ndufs4) is one of the subunits of mitochondrial complex I and its mutation in human is associated with Leigh syndrome. However, the molecular biological role of Ndufs4 in neuronal function is poorly understood. In this study, upon Ndufs4 expression confirmation in NeuN-positive neurons, and GFAP-positive astrocytes in WT mouse hippocampus, we found significant decrease of mitochondrial respiration in Ndufs4-KO mouse hippocampus. Although there was no change in the number of NeuN positive neurons in Ndufs4-KO hippocampus, the expression of synaptophysin, a presynaptic protein, was significantly decreased. To investigate the detailed mechanism, we silenced Ndufs4 in Neuro-2a cells and we observed shorter neurite lengths with decreased expression of synaptophysin. Furthermore, western blot analysis for phosphorylated extracellular regulated kinase (pERK) revealed that Ndufs4 silencing decreases the activity of ERK signalling. These results suggest that Ndufs4-modulated mitochondrial activity may be involved in neuroplasticity via regulating synaptophysin expression.
Collapse
Affiliation(s)
- Subrata Kumar Shil
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Banlanjo Abdulaziz Umaru
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Fumika Nanto-Hara
- Division of Animal Metabolism and Nutrition, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, 305-0901, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yui Yamamoto
- Department of Anatomy, Tohoku Medical and Pharmaceutical University, Sendai, 981-0905, Japan
| | - Shuhei Kobayashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Chitose Suzuki
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takaaki Abe
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
12
|
Miningou N, Blackwell KT. The road to ERK activation: Do neurons take alternate routes? Cell Signal 2020; 68:109541. [PMID: 31945453 PMCID: PMC7127974 DOI: 10.1016/j.cellsig.2020.109541] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 01/29/2023]
Abstract
The ERK cascade is a central signaling pathway that regulates a wide variety of cellular processes including proliferation, differentiation, learning and memory, development, and synaptic plasticity. A wide range of inputs travel from the membrane through different signaling pathway routes to reach activation of one set of output kinases, ERK1&2. The classical ERK activation pathway beings with growth factor activation of receptor tyrosine kinases. Numerous G-protein coupled receptors and ionotropic receptors also lead to ERK through increases in the second messengers calcium and cAMP. Though both types of pathways are present in diverse cell types, a key difference is that most stimuli to neurons, e.g. synaptic inputs, are transient, on the order of milliseconds to seconds, whereas many stimuli acting on non-neural tissue, e.g. growth factors, are longer duration. The ability to consolidate these inputs to regulate the activation of ERK in response to diverse signals raises the question of which factors influence the difference in ERK activation pathways. This review presents both experimental studies and computational models aimed at understanding the control of ERK activation and whether there are fundamental differences between neurons and other cells. Our main conclusion is that differences between cell types are quite subtle, often related to differences in expression pattern and quantity of some molecules such as Raf isoforms. In addition, the spatial location of ERK is critical, with regulation by scaffolding proteins producing differences due to colocalization of upstream molecules that may differ between neurons and other cells.
Collapse
Affiliation(s)
- Nadiatou Miningou
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, United States of America
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience and Bioengineering Department, George Mason University, Fairfax, VA 22030, United States of America.
| |
Collapse
|
13
|
Carrano N, Samaddar T, Brunialti E, Franchini L, Marcello E, Ciana P, Mauceri D, Di Luca M, Gardoni F. The Synaptonuclear Messenger RNF10 Acts as an Architect of Neuronal Morphology. Mol Neurobiol 2019; 56:7583-7593. [DOI: 10.1007/s12035-019-1631-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
|
14
|
Prion acute synaptotoxicity is largely driven by protease-resistant PrPSc species. PLoS Pathog 2018; 14:e1007214. [PMID: 30089152 PMCID: PMC6101418 DOI: 10.1371/journal.ppat.1007214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/20/2018] [Accepted: 07/12/2018] [Indexed: 01/09/2023] Open
Abstract
Although misfolding of normal prion protein (PrPC) into abnormal conformers (PrPSc) is critical for prion disease pathogenesis our current understanding of the underlying molecular pathophysiology is rudimentary. Exploiting an electrophysiology paradigm, herein we report that at least modestly proteinase K (PK)-resistant PrPSc (PrPres) species are acutely synaptotoxic. Brief exposure to ex vivo PrPSc from two mouse-adapted prion strains (M1000 and MU02) prepared as crude brain homogenates (cM1000 and cMU02) and cell lysates from chronically M1000-infected RK13 cells (MoRK13-Inf) caused significant impairment of hippocampal CA1 region long-term potentiation (LTP), with the LTP disruption approximating that reported during the evolution of murine prion disease. Proof of PrPSc (especially PrPres) species as the synaptotoxic agent was demonstrated by: significant rescue of LTP following selective immuno-depletion of total PrP from cM1000 (dM1000); modestly PK-treated cM1000 (PK+M1000) retaining full synaptotoxicity; and restoration of the LTP impairment when employing reconstituted, PK-eluted, immuno-precipitated M1000 preparations (PK+IP-M1000). Additional detailed electrophysiological analyses exemplified by impairment of post-tetanic potentiation (PTP) suggest possible heightened pre-synaptic vulnerability to the acute synaptotoxicity. This dysfunction correlated with cumulative insufficiency of replenishment of the readily releasable pool (RRP) of vesicles during repeated high-frequency stimulation utilised for induction of LTP. Broadly comparable results with LTP and PTP impairment were obtained utilizing hippocampal slices from PrPC knockout (PrPo/o) mice, with cM1000 serial dilution assessments revealing similar sensitivity of PrPo/o and wild type (WT) slices. Size fractionation chromatography demonstrated that synaptotoxic PrP correlated with PK-resistant species >100kDa, consistent with multimeric PrPSc, with levels of these species >6 ng/ml appearing sufficient to induce synaptic dysfunction. Biochemical analyses of hippocampal slices manifesting acute synaptotoxicity demonstrated reduced levels of multiple key synaptic proteins, albeit with noteworthy differences in PrPo/o slices, while such changes were absent in hippocampi demonstrating rescued LTP through treatment with dM1000. Our findings offer important new mechanistic insights into the synaptic impairment underlying prion disease, enhancing prospects for development of targeted effective therapies. Misfolding of the normal prion protein (PrPC) into disease-associated conformations (PrPSc) is the critical initiating step for prion diseases. Similar to other neurodegenerative disorders, progressive failure of brain synapses is considered a primary deleterious event underpinning prion disease evolution. Our current understanding of the underlying mechanisms associated with synaptic failure is rudimentary contributing to difficulties in developing effective treatments. Herein we report the use of an electrophysiology paradigm that allowed us to demonstrate that at least modestly proteinase K (PK)-resistant PrPSc species from two mouse-adapted prion strains (M1000 and MU02) are directly synaptotoxic causing significant acute impairment of hippocampal CA1 region long-term potentiation (LTP). Of note, the LTP disruption approximated that reported in prion animal models. Additional detailed analyses provided novel pathophysiological insights suggesting possible heightened pre-synaptic vulnerability to the acute synaptotoxicity through impairment of replenishment of the readily releasable pool of neurotransmitter vesicles, while biochemical analyses demonstrated reduced levels of multiple key pre-and post-synaptic proteins. Broadly similar acute synaptic dysfunction and dose-response susceptibility were observed in slices from mice not expressing PrPC albeit with minor but noteworthy differences in electrophysiological and biochemical findings. Our study offers important new mechanistic insights into the synaptic impairment underlying prion disease, enhancing prospects for development effective therapies.
Collapse
|
15
|
Carpenter-Hyland E, Bichler EK, Smith M, Sloviter RS, Benveniste M. Epileptic pilocarpine-treated rats exhibit aberrant hippocampal EPSP-spike potentiation but retain long-term potentiation. Physiol Rep 2018; 5:5/21/e13490. [PMID: 29138358 PMCID: PMC5688781 DOI: 10.14814/phy2.13490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 01/14/2023] Open
Abstract
Hippocampal neuron plasticity is strongly associated with learning, memory, and cognition. In addition to modification of synaptic function and connectivity, the capacity of hippocampal neurons to undergo plasticity involves the ability to change nonsynaptic excitability. This includes altering the probability that EPSPs will generate action potentials (E‐S plasticity). Epilepsy is a prevalent neurological disorder commonly associated with neuronal hyperexcitability and cognitive dysfunction. We examined E‐S plasticity in chronically epileptic Sprague–Dawley rats 3–10 weeks after pilocarpine‐induced status epilepticus. CA1 neurons in hippocampal slices were assayed by whole‐cell current clamp to measure EPSPs evoked by Schaffer collateral stimulation. Using a weak spike‐timing‐dependent protocol to induce plasticity, we found robust E‐S potentiation in conjunction with weak long‐term potentiation (LTP) in saline‐treated rats. In pilocarpine‐treated rats, a similar degree of LTP was found, but E‐S potentiation was reduced. Additionally, the degree of E‐S potentiation was not correlated with the degree of LTP for either group, suggesting that they independently contribute to neuronal plasticity. E‐S potentiation also differed from LTP in that E‐S plasticity could be induced solely from action potentials generated by postsynaptic current injection. The calcium chelating agent BAPTA in the intracellular solution blocked LTP and E‐S potentiation, revealing the calcium dependence of both processes. These findings suggest that LTP and E‐S potentiation have overlapping but nonidentical mechanisms of inducing neuronal plasticity that may independently contribute to cognitive disruptions observed in the chronic epileptic state.
Collapse
Affiliation(s)
| | - Edyta K Bichler
- Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia
| | - Mathew Smith
- Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia
| | - Robert S Sloviter
- Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia
| | - Morris Benveniste
- Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia
| |
Collapse
|
16
|
Tecuatl C, Herrrera-López G, Martín-Ávila A, Yin B, Weber S, Barrionuevo G, Galván EJ. TrkB-mediated activation of the phosphatidylinositol-3-kinase/Akt cascade reduces the damage inflicted by oxygen-glucose deprivation in area CA3 of the rat hippocampus. Eur J Neurosci 2018; 47:1096-1109. [PMID: 29480936 PMCID: PMC5938095 DOI: 10.1111/ejn.13880] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
Abstract
The selective vulnerability of hippocampal area CA1 to ischemia-induced injury is a well-known phenomenon. However, the cellular mechanisms that confer resistance to area CA3 against ischemic damage remain elusive. Here, we show that oxygen-glucose deprivation-reperfusion (OGD-RP), an in vitro model that mimic the pathological conditions of the ischemic stroke, increases the phosphorylation level of tropomyosin receptor kinase B (TrkB) in area CA3. Slices preincubated with brain-derived neurotrophic factor (BDNF) or 7,8-dihydroxyflavone (7,8-DHF) exhibited reduced depression of the electrical activity triggered by OGD-RP. Consistently, blockade of TrkB suppressed the resistance of area CA3 to OGD-RP. The protective effect of TrkB activation was limited to area CA3, as OGD-RP caused permanent suppression of CA1 responses. At the cellular level, TrkB activation leads to phosphorylation of the accessory proteins SHC and Gab as well as the serine/threonine kinase Akt, members of the phosphoinositide 3-kinase/Akt (PI-3-K/Akt) pathway, a cascade involved in cell survival. Hence, acute slices pretreated with the Akt antagonist MK2206 in combination with BDNF lost the capability to resist the damage inflicted with OGD-RP. Consistently, with these results, CA3 pyramidal cells exhibited reduced propidium iodide uptake and caspase-3 activity in slices pretreated with BDNF and exposed to OGD-RP. We propose that PI-3-K/Akt downstream activation mediated by TrkB represents an endogenous mechanism responsible for the resistance of area CA3 to ischemic damage.
Collapse
Affiliation(s)
- Carolina Tecuatl
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City, 14330, México
| | - Gabriel Herrrera-López
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City, 14330, México
| | - Alejandro Martín-Ávila
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City, 14330, México
| | - Bocheng Yin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Germán Barrionuevo
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Emilio J. Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City, 14330, México
| |
Collapse
|
17
|
Glutathione depletion: Starting point of brain metabolic stress, neuroinflammation and cognitive impairment in rats. Brain Res Bull 2018; 137:120-131. [DOI: 10.1016/j.brainresbull.2017.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/18/2022]
|
18
|
Lao-Peregrín C, Ballesteros JJ, Fernández M, Zamora-Moratalla A, Saavedra A, Gómez Lázaro M, Pérez-Navarro E, Burks D, Martín ED. Caffeine-mediated BDNF release regulates long-term synaptic plasticity through activation of IRS2 signaling. Addict Biol 2017; 22:1706-1718. [PMID: 27457910 PMCID: PMC5697621 DOI: 10.1111/adb.12433] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 11/27/2022]
Abstract
Caffeine has cognitive‐enhancing properties with effects on learning and memory, concentration, arousal and mood. These effects imply changes at circuital and synaptic level, but the mechanism by which caffeine modifies synaptic plasticity remains elusive. Here we report that caffeine, at concentrations representing moderate to high levels of consumption in humans, induces an NMDA receptor‐independent form of LTP (CAFLTP) in the CA1 region of the hippocampus by promoting calcium‐dependent secretion of BDNF, which subsequently activates TrkB‐mediated signaling required for the expression of CAFLTP. Our data include the novel observation that insulin receptor substrate 2 (IRS2) is phosphorylated during induction of CAFLTP, a process that requires cytosolic free Ca2+. Consistent with the involvement of IRS2 signals in caffeine‐mediated synaptic plasticity, phosphorylation of Akt (Ser473) in response to LTP induction is defective in Irs2−/− mice, demonstrating that these plasticity changes are associated with downstream targets of the phosphoinositide 3‐kinase (PI3K) pathway. These findings indicate that TrkB‐IRS2 signals are essential for activation of PI3K during the induction of LTP by caffeine.
Collapse
Affiliation(s)
- Cristina Lao-Peregrín
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Jesús Javier Ballesteros
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Miriam Fernández
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Alfonsa Zamora-Moratalla
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina; Universitat de Barcelona; Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Spain
- Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Institut de Neurociències; Universitat de Barcelona; Spain
| | - María Gómez Lázaro
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina; Universitat de Barcelona; Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Spain
- Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Institut de Neurociències; Universitat de Barcelona; Spain
| | - Deborah Burks
- Centro de Investigación Príncipe Felipe, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM); Spain
| | - Eduardo D. Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| |
Collapse
|
19
|
Unilateral stimulation of the lateral division of the dorsal telencephalon induces synaptic plasticity in the bilateral medial division of zebrafish. Sci Rep 2017; 7:9096. [PMID: 28831099 PMCID: PMC5567264 DOI: 10.1038/s41598-017-08093-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/07/2017] [Indexed: 11/17/2022] Open
Abstract
This study was aimed to evaluate the synaptic plasticity in projections from the dorsal lateral region (Dl) to the bilateral dorsal medial region (Dm) of the zebrafish telencephalon. The results showed that unilateral electrical stimulation of the Dl evokes a negative field potential (FP) in both the contralateral and ipsilateral side of the Dm. We tested synaptic plasticity, including high-frequency stimulation-induced LTP (HFS-LTP) and low-frequency stimulation-induced LTD (LFS-LTD). We demonstrated that HFS-induced bilateral LTP is NMDAR-dependent by the application of an NMDAR antagonist, DL-AP5 (30 μM, suprafused for 10 min), which blocked the HFS-induced LTP in both the contralateral and ipsilateral Dm. In addition, LTP was restored after DL-AP5 was washed out by continuous aCSF suprafusion. These results suggested that the potentiation is NMDAR-dependent. Either LFS (1 Hz for 20 min) or applying the mGluR agonist, DHPG (40 μM, suprafused for 10 min) successfully induced bilateral LTD for at least 1 h. Furthermore, both the contralateral fEPSP and LTP vanished after ablation of the anterior commissure. In conclusion, the results of the present study suggested that the projection between the Dl and contralateral Dm in the telencephalon of zebrafish is via the anterior commissure and possesses synaptic plasticity.
Collapse
|
20
|
Liu RY, Neveu C, Smolen P, Cleary LJ, Byrne JH. Superior long-term synaptic memory induced by combining dual pharmacological activation of PKA and ERK with an enhanced training protocol. Learn Mem 2017; 24:289-297. [PMID: 28620076 PMCID: PMC5473109 DOI: 10.1101/lm.044834.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/13/2017] [Indexed: 02/06/2023]
Abstract
Developing treatment strategies to enhance memory is an important goal of neuroscience research. Activation of multiple biochemical signaling cascades, such as the protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways, is necessary to induce long-term synaptic facilitation (LTF), a correlate of long-term memory (LTM). Previously, a computational model was developed which correctly predicted a novel enhanced training protocol that augmented LTF by searching for the protocol with maximal overlap of PKA and ERK activation. The present study focused on pharmacological approaches to enhance LTF. Combining an ERK activator, NSC, and a PKA activator, rolipram, enhanced LTF to a greater extent than did either drug alone. An even greater increase in LTF occurred when rolipram and NSC were combined with the Enhanced protocol. These results indicate superior memory can be achieved by enhanced protocols that take advantage of the structure and dynamics of the biochemical cascades underlying memory formation, used in conjunction with combinatorial pharmacology.
Collapse
Affiliation(s)
- Rong-Yu Liu
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Curtis Neveu
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Leonard J Cleary
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
21
|
Sun J, Nan G. The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review). Int J Mol Med 2017; 39:1338-1346. [PMID: 28440493 PMCID: PMC5428947 DOI: 10.3892/ijmm.2017.2962] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
Signaling pathways are critical modulators of a variety of physiological and pathological processes, and the abnormal activation of some signaling pathways can contribute to disease progression in various conditions. As a result, signaling pathways have emerged as an important tool through which the occurrence and development of diseases can be studied, which may then lead to the development of novel drugs. Accumulating evidence supports a key role for extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in the embryonic development of the central nervous system (CNS) and in the regulation of adult brain function. ERK1/2, one of the most well characterized members of the mitogen-activated protein kinase family, regulates a range of processes, from metabolism, motility and inflammation, to cell death and survival. In the nervous system, ERK1/2 regulates synaptic plasticity, brain development and repair as well as memory formation. ERK1/2 is also a potent effector of neuronal death and neuroinflammation in many CNS diseases. This review summarizes recent findings in neurobiological ERK1/2 research, with a special emphasis on findings that clarify our understanding of the processes that regulate the plethora of isoform-specific ERK functions under physiological and pathological conditions. Finally, we suggest some potential therapeutic strategies associated with agents acting on the ERK1/2 signaling to prevent or treat neurological diseases.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
22
|
Soares LM, Meyer E, Milani H, Steinbusch HWM, Prickaerts J, de Oliveira RMW. The phosphodiesterase type 2 inhibitor BAY 60-7550 reverses functional impairments induced by brain ischemia by decreasing hippocampal neurodegeneration and enhancing hippocampal neuronal plasticity. Eur J Neurosci 2016; 45:510-520. [PMID: 27813297 DOI: 10.1111/ejn.13461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023]
Abstract
Cognitive and affective impairments are the most characterized consequences following cerebral ischemia. BAY 60-7550, a selective phosphodiesterase type 2 inhibitor (PDE2-I), presents memory-enhancing and anxiolytic-like properties. The behavioral effects of BAY 60-7550 have been associated with its ability to prevent hydrolysis of both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) thereby interfering with neuronal plasticity. Here, we hypothesize that PDE2-I treatment could promote functional recovery after brain ischemia. Mice C57Bl/6 were submitted to bilateral common carotid artery occlusion (BCCAO), an experimental model of transient brain ischemia, for 20 min. During 21 days after reperfusion, the animals were tested in a battery of behavioral tests including the elevated zero maze (EZM), object location task (OLT) and forced swim test (FST). The effects of BAY 60-7550 were evaluated on neuronal nuclei (NeuN), caspase-9, cAMP response element-binding protein (CREB), phosphorylated CREB (pCREB) and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. BCCAO increased anxiety levels, impaired hippocampus-dependent cognitive function and induced despair-like behavior in mice. Hippocampal neurodegeneration was evidenced by a decrease in NeuN and increase incaspase-9 protein levels in BCCAO mice. Ischemic mice also showed low BDNF protein levels in the hippocampus. Repeated treatment with BAY 60-7550 attenuated the behavioral impairments induced by BCCAO in mice. Concomitantly, BAY 60-7550 enhanced expression of pCREB and BDNF protein levels in the hippocampus of ischemic mice. The present findings suggest that chronic inhibition of PDE2 provides functional recovery in BCCAO mice possibly by augmenting hippocampal neuronal plasticity.
Collapse
Affiliation(s)
- Ligia Mendes Soares
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Harry W M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rúbia M Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil
| |
Collapse
|
23
|
Li C, Wang J, Zhao J, Wang Y, Liu Z, Guo FL, Wang XF, Vreugdenhil M, Lu CB. Atorvastatin enhances kainate-induced gamma oscillations in rat hippocampal slices. Eur J Neurosci 2016; 44:2236-46. [PMID: 27336700 DOI: 10.1111/ejn.13322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 01/16/2023]
Abstract
Atorvastatin has been shown to affect cognitive functions in rodents and humans. However, the underlying mechanism is not fully understood. Because hippocampal gamma oscillations (γ, 20-80 Hz) are associated with cognitive functions, we studied the effect of atorvastatin on persistent kainate-induced γ oscillation in the CA3 area of rat hippocampal slices. The involvement of NMDA receptors and multiple kinases was tested before and after administration of atorvastatin. Whole-cell current-clamp and voltage-clamp recordings were made from CA3 pyramidal neurons and interneurons before and after atorvastatin application. Atorvastatin increased γ power by ~ 50% in a concentration-dependent manner, without affecting dominant frequency. Whereas atorvastatin did not affect intrinsic properties of both pyramidal neurons and interneurons, it increased the firing frequency of interneurons but not that of pyramidal neurons. Furthermore, whereas atorvastatin did not affect synaptic current amplitude, it increased the frequency of spontaneous inhibitory post-synaptic currents, but did not affect the frequency of spontaneous excitatory post-synaptic currents. The atorvastatin-induced enhancement of γ oscillations was prevented by pretreatment with the PKA inhibitor H89, the ERK inhibitor U0126, or the PI3K inhibitor wortmanin, but not by the NMDA receptor antagonist D-AP5. Taken together, these results demonstrate that atorvastatin enhanced the kainate-induced γ oscillation by increasing interneuron excitability, with an involvement of multiple intracellular kinase pathways. Our study suggests that the classical cholesterol-lowering agent atorvastatin may improve cognitive functions compromised in disease, via the enhancement of hippocampal γ oscillations.
Collapse
Affiliation(s)
- Chengzhang Li
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Jiangang Wang
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Jianhua Zhao
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yali Wang
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Zhihua Liu
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Fang Li Guo
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Xiao Fang Wang
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Martin Vreugdenhil
- Department of Psychology, Xinxiang Medical University, Xinxiang, China.,School of Health and Education, Birmingham City University, Birmingham, UK
| | - Cheng Biao Lu
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| |
Collapse
|
24
|
Pigott BM, Garthwaite J. Nitric Oxide Is Required for L-Type Ca(2+) Channel-Dependent Long-Term Potentiation in the Hippocampus. Front Synaptic Neurosci 2016; 8:17. [PMID: 27445786 PMCID: PMC4925670 DOI: 10.3389/fnsyn.2016.00017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) has long been implicated in the generation of long-term potentiation (LTP) and other types of synaptic plasticity, a role for which the intimate coupling between NMDA receptors (NMDARs) and the neuronal isoform of NO synthase (nNOS) is likely to be instrumental in many instances. While several types of synaptic plasticity depend on NMDARs, others do not, an example of which is LTP triggered by opening of L-type voltage-gated Ca2+ channels (L-VGCCs) in postsynaptic neurons. In CA3-CA1 synapses in the hippocampus, NMDAR-dependent LTP (LTPNMDAR) appears to be primarily expressed postsynaptically whereas L-VGCC-dependent LTP (LTPL−VGCC), which often coexists with LTPNMDAR, appears mainly to reflect enhanced presynaptic transmitter release. Since NO is an excellent candidate as a retrograde messenger mediating post-to-presynaptic signaling, we sought to determine if NO functions in LTPL−VGCC in mouse CA3-CA1 synapses. When elicited by a burst type of stimulation with NMDARs and the associated NO release blocked, LTPL−VGCC was curtailed by inhibition of NO synthase or of the NO-receptor guanylyl cyclase to the same extent as occurred with inhibition of L-VGCCs. Unlike LTPNMDAR at these synapses, LTPL−VGCC was unaffected in mice lacking endothelial NO synthase, implying that the major source of the NO is neuronal. Transient delivery of exogenous NO paired with tetanic synaptic stimulation under conditions of NMDAR blockade resulted in a long-lasting potentiation that was sensitive to inhibition of NO-receptor guanylyl cyclase but was unaffected by inhibition of L-VGCCs. The results indicate that NO, acting through its second messenger cGMP, plays an unexpectedly important role in L-VGCC-dependent, NMDAR-independent LTP, possibly as a retrograde messenger generated in response to opening of postsynaptic L-VGCCs and/or as a signal acting postsynaptically, perhaps to facilitate changes in gene expression.
Collapse
Affiliation(s)
- Beatrice M Pigott
- The Wolfson Institute for Biomedical Research, University College London London, UK
| | - John Garthwaite
- The Wolfson Institute for Biomedical Research, University College London London, UK
| |
Collapse
|
25
|
Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 2015; 25:1073-188. [PMID: 26135716 PMCID: PMC4648295 DOI: 10.1002/hipo.22488] [Citation(s) in RCA: 1046] [Impact Index Per Article: 104.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/23/2022]
Abstract
Sharp wave ripples (SPW-Rs) represent the most synchronous population pattern in the mammalian brain. Their excitatory output affects a wide area of the cortex and several subcortical nuclei. SPW-Rs occur during "off-line" states of the brain, associated with consummatory behaviors and non-REM sleep, and are influenced by numerous neurotransmitters and neuromodulators. They arise from the excitatory recurrent system of the CA3 region and the SPW-induced excitation brings about a fast network oscillation (ripple) in CA1. The spike content of SPW-Rs is temporally and spatially coordinated by a consortium of interneurons to replay fragments of waking neuronal sequences in a compressed format. SPW-Rs assist in transferring this compressed hippocampal representation to distributed circuits to support memory consolidation; selective disruption of SPW-Rs interferes with memory. Recently acquired and pre-existing information are combined during SPW-R replay to influence decisions, plan actions and, potentially, allow for creative thoughts. In addition to the widely studied contribution to memory, SPW-Rs may also affect endocrine function via activation of hypothalamic circuits. Alteration of the physiological mechanisms supporting SPW-Rs leads to their pathological conversion, "p-ripples," which are a marker of epileptogenic tissue and can be observed in rodent models of schizophrenia and Alzheimer's Disease. Mechanisms for SPW-R genesis and function are discussed in this review.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, New York
| |
Collapse
|
26
|
Cavalier M, Crouzin N, Ben Sedrine A, de Jesus Ferreira MC, Guiramand J, Cohen-Solal C, Fehrentz JA, Martinez J, Barbanel G, Vignes M. Involvement of PKA and ERK pathways in ghrelin-induced long-lasting potentiation of excitatory synaptic transmission in the CA1 area of rat hippocampus. Eur J Neurosci 2015; 42:2568-76. [DOI: 10.1111/ejn.13013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Mélanie Cavalier
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Nadine Crouzin
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Azza Ben Sedrine
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Marie Celeste de Jesus Ferreira
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Janique Guiramand
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Catherine Cohen-Solal
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Gérard Barbanel
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Michel Vignes
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| |
Collapse
|
27
|
pRb phosphorylation regulates the proliferation of supporting cells in gentamicin-damaged neonatal avian utricle. Neuroreport 2015; 25:1144-50. [PMID: 25100553 DOI: 10.1097/wnr.0000000000000241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ability of nonmammalian vertebrates to regenerate hair cells (HCs) after damage-induced HC loss has stimulated and inspired research in the field of HC regeneration. The protein pRb encoded by retinoblastoma gene Rb1 forces sensory progenitor cells to exit cell cycle and maintain differentiated HCs and supporting cells (SCs) in a quiescent state. pRb function is regulated by phosphorylation through the MEK/ERK or the pRb/Raf-1 signaling pathway. In our previous study, we have shown that pRb phosphorylation is crucial for progenitor cell proliferation and survival during the early embryonic stage of avian otocyst sensory epithelium development. However, in damaged avian utricle, the role of pRb in regulating the cell cycling of SCs or HCs regeneration still remains unclear. To further elucidate the function of pRb phosphorylation on SCs re-entering the cell cycle triggered by gentamycin-induced HCs damage, we isolated neonatal chicken utricles and treated them with the MEK inhibitor U0126 or the pRb/Raf-1 inhibitor RRD-251, respectively in vitro. We found that after gentamycin-induced HCs damage, pRb phosphorylation is important for the quiescent SCs re-entering the cell cycle in the neonatal chicken utricle. In addition, the proliferation of SCs decreased in a dose-dependent manner in response to both U0126 and RRD-251, which indicates that both the MEK/ERK and the pRb/Raf-1 signaling pathway play important roles in pRb phosphorylation in damaged neonatal chicken utricle. Together, these findings on the function of pRb in damaged neonatal chicken utricle improve our understanding of the regulation of the cell cycle of SCs after HCs loss and may shed light on the mammalian HC regeneration from SCs in damaged organs.
Collapse
|
28
|
Giovannini MG, Lana D, Pepeu G. The integrated role of ACh, ERK and mTOR in the mechanisms of hippocampal inhibitory avoidance memory. Neurobiol Learn Mem 2015; 119:18-33. [PMID: 25595880 DOI: 10.1016/j.nlm.2014.12.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 11/28/2022]
Abstract
The purpose of this review is to summarize the present knowledge on the interplay among the cholinergic system, Extracellular signal-Regulated Kinase (ERK) and Mammalian Target of Rapamycin (mTOR) pathways in the development of short and long term memories during the acquisition and recall of the step-down inhibitory avoidance in the hippocampus. The step-down inhibitory avoidance is a form of associative learning that is acquired in a relatively simple one-trial test through several sensorial inputs. Inhibitory avoidance depends on the integrated activity of hippocampal CA1 and other brain areas. Recall can be performed at different times after acquisition, thus allowing for the study of both short and long term memory. Among the many neurotransmitter systems involved, the cholinergic neurons that originate in the basal forebrain and project to the hippocampus are of crucial importance in inhibitory avoidance processes. Acetylcholine released from cholinergic fibers during acquisition and/or recall of behavioural tasks activates muscarinic and nicotinic acetylcholine receptors and brings about a long-lasting potentiation of the postsynaptic membrane followed by downstream activation of intracellular pathway (ERK, among others) that create conditions favourable for neuronal plasticity. ERK appears to be salient not only in long term memory, but also in the molecular mechanisms underlying short term memory formation in the hippocampus. Since ERK can function as a biochemical coincidence detector in response to extracellular signals in neurons, the activation of ERK-dependent downstream effectors is determined, in part, by the duration of ERK phosphorylation itself. Long term memories require protein synthesis, that in the synapto-dendritic compartment represents a direct mechanism that can produce rapid changes in protein content in response to synaptic activity. mTOR in the brain regulates protein translation in response to neuronal activity, thereby modulating synaptic plasticity and long term memory formation. Some studies demonstrate a complex interplay among the cholinergic system, ERK and mTOR. It has been shown that co-activation of muscarinic acetylcholine receptors and β-adrenergic receptors facilitates the conversion of short term to long term synaptic plasticity through an ERK- and mTOR-dependent mechanism which requires translation initiation. It seems therefore that the complex interplay among the cholinergic system, ERK and mTOR is crucial in the development of new inhibitory avoidance memories in the hippocampus.
Collapse
Affiliation(s)
- Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Giancarlo Pepeu
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|
29
|
Campos CA, Ritter RC. NMDA-type glutamate receptors participate in reduction of food intake following hindbrain melanocortin receptor activation. Am J Physiol Regul Integr Comp Physiol 2015; 308:R1-9. [PMID: 25394828 PMCID: PMC4281681 DOI: 10.1152/ajpregu.00388.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023]
Abstract
Hindbrain injection of a melanocortin-3/4 receptor agonist, MTII, reduces food intake primarily by reducing meal size. Our previously reported results indicate that N-methyl-D-aspartate-type glutamate receptors (NMDAR) in the nucleus of the solitary tract (NTS) play an important role in the control of meal size and food intake. Therefore, we hypothesized that activation of NTS NMDARs contribute to reduction of food intake in response to fourth ventricle or NTS injection of MTII. We found that coinjection of a competitive NMDAR antagonist (d-CPP-ene) with MTII into the fourth ventricle or directly into the NTS of adult male rats attenuated MTII-induced reduction of food intake. Hindbrain NMDAR antagonism also attenuated MTII-induced ERK1/2 phosphorylation in NTS neurons and prevented synapsin I phosphorylation in central vagal afferent endings, both of which are cellular mechanisms previously shown to participate in hindbrain melanocortinergic reduction of food intake. Together, our results indicate that NMDAR activation significantly contributes to reduction of food intake following hindbrain melanocortin receptor activation, and it participates in melanocortinergic signaling in NTS neural circuits that mediate reduction of food intake.
Collapse
Affiliation(s)
- Carlos A Campos
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Robert C Ritter
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington
| |
Collapse
|
30
|
Hippocampal cAMP/PKA/CREB is required for neuroprotective effect of acupuncture. Physiol Behav 2014; 139:482-90. [PMID: 25481359 DOI: 10.1016/j.physbeh.2014.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 01/18/2023]
Abstract
Acupuncture has beneficial effects in vascular dementia (VaD) patients. The underlying mechanism, however, remains unknown. The present study was designed to investigate whether the cAMP/PKA/CREB cascade is involved in the mechanism of acupuncture in cerebral multi-infarction rats. In this study, cerebral multi-infarction was modeled in adult Wistar rats by homologous blood clot emboli. After a two-week acupuncture treatment at Zusanli (ST36), hippocampal-dependent memory was tested by employing a radial arm maze test. The hippocampus was isolated for analyses of cAMP concentration, phosphodiesterase (PDE) activity and CREB/pCREB and ERK/pERK expressions. The Morris water maze (MWM) task and CREB phosphorylation were evaluated in the presence of PKA-selective peptide inhibitor (H89). The radial arm maze test results demonstrated that acupuncture treatment at ST36 reversed hippocampal-dependent memory in impaired animals. Compared to those of the impaired group, cAMP concentration, PKA activity and pCREB and pERK expressions were increased following acupuncture therapy. Finally, the blockade of PKA reversed the increase in CREB phosphorylation and the improvement in recognitive function induced by acupuncture treatment. These results suggest that acupuncture could improve hippocampus function by modulating the cAMP/PKA/CREB signaling pathway, which represents a molecular mechanism of acupuncture for recognitive function in cerebral multi-infarction rats.
Collapse
|
31
|
David O, Barrera I, Chinnakkaruppan A, Kaphzan H, Nakazawa T, Yamamoto T, Rosenblum K. Dopamine-induced tyrosine phosphorylation of NR2B (Tyr1472) is essential for ERK1/2 activation and processing of novel taste information. Front Mol Neurosci 2014; 7:66. [PMID: 25100942 PMCID: PMC4103512 DOI: 10.3389/fnmol.2014.00066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/02/2014] [Indexed: 01/14/2023] Open
Abstract
Understanding the heterosynaptic interaction between glutamatergic and neuromodulatory synapses is highly important for revealing brain function in health and disease. For instance, the interaction between dopamine and glutamate neurotransmission is vital for memory and synaptic plasticity consolidation, and it is known to converge on extracellular signal-regulated kinase (ERK)-MAPK signaling in neurons. Previous studies suggest that dopamine induces N-methyl-D-aspartate (NMDA) receptor phosphorylation at the NR2B Y1472 subunit, influencing receptor internalization at the synaptic plasma membrane. However, it is unclear whether this phosphorylation is upstream to and/or necessary for ERK1/2 activation, which is known to be crucial for synaptic plasticity and memory consolidation. Here, we tested the hypothesis that tyrosine phosphorylation of NR2B at Y1472 is correlated with ERK1/2 activation by dopamine and necessary for it as well. We find that dopamine receptor D1, but not D2, activates ERK1/2 and leads to NR2BY1472 phosphorylation in the mature hippocampus and cortex. Moreover, our results indicate that NR2B Y1472 phosphorylation is necessary for ERK1/2 activation. Importantly, application of dopamine or the D1 receptor agonist SKF38393 to hippocampal slices from NR2B F1472 mutant mice did not result in ERK1/2 activation, suggesting this site is not only correlated with ERK1/2 activation by dopamine stimulation, but also necessary for it. In addition, NR2B F1472 mice show impairment in learning of attenuation of taste neophobia but not associative taste learning. Our study shows that the dopaminergic and glutamatergic transmission converge on the NMDA receptor itself, at the Y1472 site of the NR2B subunit, and that this convergence is essential for ERK1/2 activation in the mature brain and for processing new sensory information in the cortex.
Collapse
Affiliation(s)
- Orit David
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | - Iliana Barrera
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | | | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | - Takanobu Nakazawa
- Division of Oncology, Institute of Medical Science, University of Tokyo Tokyo, Japan
| | - Tadashi Yamamoto
- Division of Oncology, Institute of Medical Science, University of Tokyo Tokyo, Japan
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel ; Center for Gene Manipulation in the Brain, University of Haifa Haifa, Israel
| |
Collapse
|
32
|
Extracellular proteolysis of reelin by tissue plasminogen activator following synaptic potentiation. Neuroscience 2014; 274:299-307. [PMID: 24892761 DOI: 10.1016/j.neuroscience.2014.05.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/21/2014] [Indexed: 01/19/2023]
Abstract
The secreted glycoprotein reelin plays an indispensable role in neuronal migration during development and in regulating adult synaptic functions. The upstream mechanisms responsible for initiating and regulating the duration and magnitude of reelin signaling are largely unknown. Here we report that reelin is cleaved between EGF-like repeats 6-7 (R6-7) by tissue plasminogen activator (tPA) under cell-free conditions. No changes were detected in the level of reelin and its fragments in the brains of tPA knockouts, implying that other unknown proteases are responsible for generating reelin fragments found constitutively in the adult brain. Induction of NMDAR-independent long-term potentiation with the potassium channel blocker tetraethylammonium chloride (TEA-Cl) led to a specific up-regulation of reelin processing at R6-7 in wild-type mice. In contrast, no changes in reelin expression and processing were observed in tPA knockouts following TEA-Cl treatment. These results demonstrate that synaptic potentiation results in tPA-dependent reelin processing and suggest that extracellular proteolysis of reelin may regulate reelin signaling in the adult brain.
Collapse
|
33
|
Campos CA, Shiina H, Silvas M, Page S, Ritter RC. Vagal afferent NMDA receptors modulate CCK-induced reduction of food intake through synapsin I phosphorylation in adult male rats. Endocrinology 2013; 154:2613-25. [PMID: 23715865 PMCID: PMC3713210 DOI: 10.1210/en.2013-1062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vagal afferent nerve fibers transmit gastrointestinal satiation signals to the brain via synapses in the nucleus of the solitary tract (NTS). Despite their pivotal role in energy homeostasis, little is known about the cellular mechanisms enabling fleeting synaptic events at vagal sensory endings to sustain behavioral changes lasting minutes to hours. Previous reports suggest that the reduction of food intake by the satiation peptide, cholecystokinin (CCK), requires activation of N-methyl-D-aspartate-type glutamate receptors (NMDAR) in the NTS, with subsequent phosphorylation of ERK1/2 (pERK1/2) in NTS vagal afferent terminals. The synaptic vesicle protein synapsin I is phosphorylated by pERK1/2 at serines 62 and 67. This pERK1/2-catalyzed phosphorylation increases synaptic strength by increasing the readily releasable pool of the neurotransmitter. Conversely, dephosphorylation of serines 62 and 67 by calcineurin reduces the size of the readily releasable transmitter pool. Hence, the balance of synapsin I phosphorylation and dephosphorylation can modulate synaptic strength. We postulated that CCK-evoked activation of vagal afferent NMDARs results in pERK1/2-catalyzed phosphorylation of synapsin I in vagal afferent terminals, leading to the suppression of food intake. We found that CCK injection increased the phosphorylation of synapsin I in the NTS and that this increase is abolished after surgical or chemical ablation of vagal afferent fibers. Furthermore, fourth ventricle injection of an NMDAR antagonist or the mitogen-activated ERK kinase inhibitor blocked CCK-induced synapsin I phosphorylation, indicating that synapsin phosphorylation in vagal afferent terminals depends on NMDAR activation and ERK1/2 phosphorylation. Finally, hindbrain inhibition of calcineurin enhanced and prolonged synapsin I phosphorylation and potentiated reduction of food intake by CCK. Our findings are consistent with a mechanism in which NMDAR-dependent phosphorylation of ERK1/2 modulates satiation signals via synapsin I phosphorylation in vagal afferent endings.
Collapse
Affiliation(s)
- Carlos A Campos
- Department of Integrative Physiology and Neuroscience, Washington State University, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
34
|
Montalbano A, Baj G, Papadia D, Tongiorgi E, Sciancalepore M. Blockade of BDNF signaling turns chemically-induced long-term potentiation into long-term depression. Hippocampus 2013; 23:879-89. [PMID: 23674394 DOI: 10.1002/hipo.22144] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 01/28/2023]
Abstract
Long-term potentiation (LTP) is accompanied by increased spine density and dimensions triggered by signaling cascades involving activation of the neurotrophin brain-derived neurotrophic factor (BDNF) and cytoskeleton remodeling. Chemically-induced long-term potentiation (c-LTP) is a widely used cellular model of plasticity, whose effects on spines have been poorly investigated. We induced c-LTP by bath-application of the N-methyl-d-aspartate receptor (NMDAR) coagonist glycine or by the K(+) channel blocker tetraethylammonium (TEA) chloride in cultured hippocampal neurons and compared the changes in dendritic spines induced by the two models of c-LTP and determined if they depend on BDNF/TrkB signaling. We found that both TEA and glycine induced a significant increase in stubby spine density in primary and secondary apical dendrites, whereas a specific increase in mushroom spine density was observed upon TEA application only in primary dendrites. Both TEA and glycine increased BDNF levels and the blockade of tropomyosin-receptor-kinase receptors (TrkRs) by the nonselective tyrosine kinase inhibitor K-252a or the selective allosteric TrkB receptor (TrkBR) inhibitor ANA-12, abolished the c-LTP-induced increase in spine density. Surprisingly, a blockade of TrkBRs did not change basal spontaneous glutamatergic transmission but completely changed the synaptic plasticity induced by c-LTP, provoking a shift from a long-term increase to a long-term depression (LTD) in miniature excitatory postsynaptic current (mEPSC) frequency. In conclusion, these results suggest that BDNF/TrkB signaling is necessary for c-LTP-induced plasticity in hippocampal neurons and its blockade leads to a switch of c-LTP into chemical-LTD (c-LTD).
Collapse
Affiliation(s)
- A Montalbano
- Department of Life Sciences and B.R.A.I.N., Centre for Neuroscience, University of Trieste, Trieste, Italy
| | | | | | | | | |
Collapse
|
35
|
Campos CA, Wright JS, Czaja K, Ritter RC. CCK-induced reduction of food intake and hindbrain MAPK signaling are mediated by NMDA receptor activation. Endocrinology 2012; 153:2633-46. [PMID: 22508518 PMCID: PMC3359610 DOI: 10.1210/en.2012-1025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/23/2012] [Indexed: 01/28/2023]
Abstract
The dorsal vagal complex of the hindbrain, including the nucleus of the solitary tract (NTS), receives neural and humoral afferents that contribute to the process of satiation. The gut peptide, cholecystokinin (CCK), promotes satiation by activating gastrointestinal vagal afferents that synapse in the NTS. Previously, we demonstrated that hindbrain administration of N-methyl-D-aspartate (NMDA)-type glutamate receptor antagonists attenuate reduction of food intake after ip CCK-8 injection, indicating that these receptors play a necessary role in control of food intake by CCK. However, the signaling pathways through which hindbrain NMDA receptors contribute to CCK-induced reduction of food intake have not been investigated. Here we report CCK increases phospho-ERK1/2 in NTS neurons and in identified vagal afferent endings in the NTS. CCK-evoked phospho-ERK1/2 in the NTS was attenuated in rats pretreated with capsaicin and was abolished by systemic injection of a CCK1 receptor antagonist, indicating that phosphorylation of ERK1/2 occurs in and is mediated by gastrointestinal vagal afferents. Fourth ventricle injection of a competitive NMDA receptor antagonist, prevented CCK-induced phosphorylation of ERK1/2 in hindbrain neurons and in vagal afferent endings, as did direct inhibition of MAPK kinase. Finally, fourth ventricle administration of either a MAPK kinase inhibitor or NMDA receptor antagonist prevented the reduction of food intake by CCK. We conclude that activation of NMDA receptors in the hindbrain is necessary for CCK-induced ERK1/2 phosphorylation in the NTS and consequent reduction of food intake.
Collapse
Affiliation(s)
- Carlos A Campos
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology and Programs in Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-6520, USA
| | | | | | | |
Collapse
|
36
|
Zinc and the ERK kinases in the developing brain. Neurotox Res 2011; 21:128-41. [PMID: 22095091 DOI: 10.1007/s12640-011-9291-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/03/2011] [Accepted: 11/05/2011] [Indexed: 02/07/2023]
Abstract
This article reviews evidence in support of the hypothesis that impaired activation of the extracellular signal-regulated kinases (ERK1/2) contributes to the disruptions in neurodevelopment associated with zinc deficiency. These kinases are implicated in major events of brain development, including proliferation of progenitor cells, neuronal migration, differentiation, and apoptotic cell death. In humans, mutations in ERK1/2 genes have been associated with neuro-cardio-facial-cutaneous syndromes. ERK1/2 deficits in mice have revealed impaired neurogenesis, altered cellularity, and behavioral abnormalities. Zinc is an important modulator of ERK1/2 signaling. Conditions of both zinc deficiency and excess affect ERK1/2 phosphorylation in fetal and adult brains. Hypophosphorylation of ERK1/2, associated with decreased zinc availability in cell cultures, is accompanied by decreased proliferation and an arrest of the cell cycle at the G0/G1 phase. Zinc and ERK1/2 have both been shown to modulate neural progenitor cell proliferation and cell death in the brain. Furthermore, behavioral deficits resulting from developmental zinc deficiency are similar to those observed in mice with decreased ERK1/2 signaling. For example, impaired performance on behavioral tests of learning and memory; such as the Morris water maze, fear conditioning, and the radial arm maze; has been reported in both animals exposed to developmental zinc deficiency and transgenic mice with decreased ERK signaling. Future study should clarify the mechanisms through which a dysregulation of ERK1/2 may contribute to altered brain development associated with dietary zinc deficiency and with conditions that limit zinc availability.
Collapse
|
37
|
Martín ED, Sánchez-Perez A, Trejo JL, Martin-Aldana JA, Cano Jaimez M, Pons S, Acosta Umanzor C, Menes L, White MF, Burks DJ. IRS-2 Deficiency impairs NMDA receptor-dependent long-term potentiation. ACTA ACUST UNITED AC 2011; 22:1717-27. [PMID: 21955917 PMCID: PMC3388895 DOI: 10.1093/cercor/bhr216] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The beneficial effects of insulin and insulin-like growth factor I on cognition have been documented in humans and animal models. Conversely, obesity, hyperinsulinemia, and diabetes increase the risk for neurodegenerative disorders including Alzheimer's disease (AD). However, the mechanisms by which insulin regulates synaptic plasticity are not well understood. Here, we report that complete disruption of insulin receptor substrate 2 (Irs2) in mice impairs long-term potentiation (LTP) of synaptic transmission in the hippocampus. Basal synaptic transmission and paired-pulse facilitation were similar between the 2 groups of mice. Induction of LTP by high-frequency conditioning tetanus did not activate postsynaptic N-methyl-D-aspartate (NMDA) receptors in hippocampus slices from Irs2(-/-) mice, although the expression of NR2A, NR2B, and PSD95 was equivalent to wild-type controls. Activation of Fyn, AKT, and MAPK in response to tetanus stimulation was defective in Irs2(-/-) mice. Interestingly, IRS2 was phosphorylated during induction of LTP in control mice, revealing a potential new component of the signaling machinery which modulates synaptic plasticity. Given that IRS2 expression is diminished in Type 2 diabetics as well as in AD patients, these data may reveal an explanation for the prevalence of cognitive decline in humans with metabolic disorders by providing a mechanistic link between insulin resistance and impaired synaptic transmission.
Collapse
Affiliation(s)
- Eduardo D Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park, PCYTA, Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, 02071 Albacete, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Massaad CA, Klann E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 2011; 14:2013-54. [PMID: 20649473 PMCID: PMC3078504 DOI: 10.1089/ars.2010.3208] [Citation(s) in RCA: 443] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The brain is a metabolically active organ exhibiting high oxygen consumption and robust production of reactive oxygen species (ROS). The large amounts of ROS are kept in check by an elaborate network of antioxidants, which sometimes fail and lead to neuronal oxidative stress. Thus, ROS are typically categorized as neurotoxic molecules and typically exert their detrimental effects via oxidation of essential macromolecules such as enzymes and cytoskeletal proteins. Most importantly, excessive ROS are associated with decreased performance in cognitive function. However, at physiological concentrations, ROS are involved in functional changes necessary for synaptic plasticity and hence, for normal cognitive function. The fine line of role reversal of ROS from good molecules to bad molecules is far from being fully understood. This review focuses on identifying the multiple sources of ROS in the mammalian nervous system and on presenting evidence for the critical and essential role of ROS in synaptic plasticity and memory. The review also shows that the inability to restrain either age- or pathology-related increases in ROS levels leads to opposite, detrimental effects that are involved in impairments in synaptic plasticity and memory function.
Collapse
Affiliation(s)
- Cynthia A Massaad
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
39
|
Shiflett MW, Balleine BW. Contributions of ERK signaling in the striatum to instrumental learning and performance. Behav Brain Res 2011; 218:240-7. [PMID: 21147168 PMCID: PMC3022085 DOI: 10.1016/j.bbr.2010.12.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 12/07/2010] [Indexed: 02/07/2023]
Abstract
The striatum is critical for learning and decision making; however, the molecular mechanisms that govern striatum function are not fully understood. The extracellular signal regulated kinase (ERK) cascade is an important signaling pathway that underlies synaptic plasticity, cellular excitability, learning and arousal. This review focuses on the role of ERK signaling in striatum function. ERK is activated in the striatum by coordinated dopamine and glutamate receptor signaling, where it underlies corticostriatal synaptic plasticity and influences striatal cell excitability. ERK activation in the dorsal striatum is necessary for action-outcome learning and performance of goal-directed actions. In the ventral striatum, ERK is necessary for the motivating effects of reward-associated stimuli on instrumental performance. Dysregulation of ERK signaling in the striatum by repeated drug exposure contributes to the development of addictive behavior. These results highlight the importance of ERK signaling in the striatum as a critical substrate for learning and as a regulator of ongoing behavior. Furthermore, they suggest that ERK may be a suitable target for therapeutics to treat disorders of learning and decision making that arise from compromised striatum function.
Collapse
Affiliation(s)
- Michael W Shiflett
- Department of Psychology, Rutgers University, 301 Smith Hall, 101 Warren St., Newark, NJ 07102, USA.
| | | |
Collapse
|
40
|
Differential roles of ERK, JNK and p38 MAPK in pain-related spatial and temporal enhancement of synaptic responses in the hippocampal formation of rats: Multi-electrode array recordings. Brain Res 2011; 1382:57-69. [DOI: 10.1016/j.brainres.2011.01.076] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/21/2010] [Accepted: 01/24/2011] [Indexed: 12/30/2022]
|
41
|
Alteration of synaptic plasticity in rat dorsal striatum induced by chronic ethanol intake and withdrawal via ERK pathway. Acta Pharmacol Sin 2011; 32:175-81. [PMID: 21293469 DOI: 10.1038/aps.2010.199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM The dorsal striatum has been proposed to contribute to the formation of drug-seeking behaviors, leading to excessive and compulsive drug usage, such as addiction. The current study aimed to investigate the involvement of extracellular signal-regulated kinase (ERK) pathway in the modification of striatal synaptic plasticity. METHODS Ethanol was administered to rats in drinking water at concentration of 6% (v/v) for 30 days. Rats were sacrificed on day 10, 20, or 30 during ethanol intake or on withdrawal day 1, 3, or 7 following 30-d ethanol intake. The striata were removed either for electrophysiological recording or for protein immuno-blot analysis. Extracellular recording technique was used to record population spikes (PS) induced by high-frequency stimulation (HFS) in the dorsolateral striatum (DLS). RESULTS Corticostriatal long-term depression (LTD) was determined to be dependent upon ERK signaling. Chronic ethanol intake (CEI) attenuated ERK phosphorylation and LTD induction, whereas withdrawal for one day (W1D) potentiated ERK phosphorylation and LTD induction. These results showed that the impact of chronic ethanol intake and withdrawal on corticostriatal synaptic plasticity was associated with ethanol's effect on ERK phosphorylation. In particular, pharmacological inhibition of ERK hyper-phosphorylation by U0126 prevented LTD induction in the DLS and attenuated ethanol withdrawal syndrome as well. CONCLUSION In rat DLS, chronic ethanol intake and withdrawal altered LTD induction via ERK signaling pathway. Ethanol withdrawal syndrome is mediated, at least partly, by ERK hyper-phosphorylation in the DLS.
Collapse
|
42
|
Origlia N, Arancio O, Domenici L, Yan SS. MAPK, beta-amyloid and synaptic dysfunction: the role of RAGE. Expert Rev Neurother 2010; 9:1635-45. [PMID: 19903023 DOI: 10.1586/ern.09.107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetic and biological studies provide strong support for the hypothesis that accumulation of beta amyloid peptide (Abeta) contributes to the etiology of Alzheimer's disease (AD). Growing evidence indicates that oligomeric soluble Abeta plays an important role in the development of synaptic dysfunction and the impairment of cognitive function in AD. The receptor for advanced glycation end products (RAGE), a multiligand receptor in the immunoglobulin superfamily, acts as a cell surface binding site for Abeta and mediates alternations in the phosphorylation state of mitogen-activated protein kinase (MAPKs). Recent results have shown that MAPKs are involved in neurodegenerative processes. In particular, changes in the phosphorylation state of various MAPKs by Abeta lead to synaptic dysfunction and cognitive decline, as well as development of inflammatory responses in AD. The present review summarizes the evidence justifying a novel therapeutic approach focused on inhibition of RAGE signaling in order to arrest or halt the development of neuronal dysfunction in AD.
Collapse
|
43
|
Vara H, Onofri F, Benfenati F, Sassoè-Pognetto M, Giustetto M. ERK activation in axonal varicosities modulates presynaptic plasticity in the CA3 region of the hippocampus through synapsin I. Proc Natl Acad Sci U S A 2009; 106:9872-7. [PMID: 19487674 PMCID: PMC2701005 DOI: 10.1073/pnas.0900077106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Indexed: 01/11/2023] Open
Abstract
Activity-dependent changes in the strength of synaptic connections in the hippocampus are central for cognitive processes such as learning and memory storage. In this study, we reveal an activity-dependent presynaptic mechanism that is related to the modulation of synaptic plasticity. In acute mouse hippocampal slices, high-frequency stimulation (HFS) of the mossy fiber (MF)-CA3 pathway induced a strong and transient activation of extracellular-regulated kinase (ERK) in MF giant presynaptic terminals. Remarkably, pharmacological blockade of ERK disclosed a negative role of this kinase in the regulation of a presynaptic form of plasticity at MF-CA3 contacts. This ERK-mediated inhibition of post-tetanic enhancement (PTE) of MF-CA3 synapses was both frequency- and pathway-specific and was observed only with HFS at 50 Hz. Importantly, blockade of ERK was virtually ineffective on PTE of MF-CA3 synapses in mice lacking synapsin I, 1 of the major presynaptic ERK substrates, and triple knockout mice lacking all synapsin isoforms displayed PTE kinetics resembling that of wild-type mice under ERK inhibition. These findings reveal a form of short-term synaptic plasticity that depends on ERK and is finely tuned by the firing frequency of presynaptic neurons. Our results also demonstrate that presynaptic activation of the ERK signaling pathway plays part in the activity-dependent modulation of synaptic vesicle mobilization and transmitter release.
Collapse
Affiliation(s)
- Hugo Vara
- Department of Anatomy, Pharmacology, and Forensic Medicine, University of Turin, C.so Massimo d'Azeglio, 52, I-10126 Turin, Italy
- National Institute of Neuroscience, 10125 Turin, Italy
| | - Franco Onofri
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, I-16131 Genova, Italy
- Department of Experimental Medicine, University of Genova, 16126 Genova, Italy; and
- National Institute of Neuroscience, 10125 Turin, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, I-16131 Genova, Italy
- Department of Experimental Medicine, University of Genova, 16126 Genova, Italy; and
- National Institute of Neuroscience, 10125 Turin, Italy
| | - Marco Sassoè-Pognetto
- Department of Anatomy, Pharmacology, and Forensic Medicine, University of Turin, C.so Massimo d'Azeglio, 52, I-10126 Turin, Italy
- National Institute of Neuroscience, 10125 Turin, Italy
| | - Maurizio Giustetto
- Department of Anatomy, Pharmacology, and Forensic Medicine, University of Turin, C.so Massimo d'Azeglio, 52, I-10126 Turin, Italy
- National Institute of Neuroscience, 10125 Turin, Italy
| |
Collapse
|
44
|
Katoh-Semba R, Kaneko R, Kitajima S, Tsuzuki M, Ichisaka S, Hata Y, Yamada H, Miyazaki N, Takahashi Y, Kato K. Activation of p38 mitogen-activated protein kinase is required for in vivo brain-derived neurotrophic factor production in the rat hippocampus. Neuroscience 2009; 163:352-61. [PMID: 19524026 DOI: 10.1016/j.neuroscience.2009.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/26/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
Abstract
Several lines of evidence strongly suggest that brain-derived neurotrophic factor (BDNF) is associated with the formation, storage and recall of memory in the hippocampus and that it is important to maintain a considerable level of hippocampal BDNF in order to keep normal functions. BDNF can be synthesized in an activity-dependent manner. In fact, kainic acid or AMPA enhances BDNF levels in hippocampal granule neurons. However, the mechanisms of BDNF production are largely unclear. Recently, we have found that riluzole, which blocks voltage-gated sodium channels and thereby reduces glutamate release, actually strengthens immunoreactivity of BDNF in hippocampal granule neurons of rats. Therefore, we examined the riluzole-activated signaling pathways for BDNF production. Riluzole increased levels of phospho-p38 mitogen-activated protein kinase (p38 MAPK), as well as BDNF levels. Inhibition of p38 MAPK by SB203580 reduced riluzole effects, while activation of p38 MAPK by anisomycin increased levels of BDNF, suggesting that p38 MAPK can mediate BDNF production. Riluzole-induced elevation of phospho-activating transcription factor-2, a transcription factor downstream of p38 MAPK, was also observed. A blocker of N-type voltage-gated calcium channels reduced the effects of riluzole on BDNF production and p38 MAPK activation. We also examined a possible involvement of the adenosine A1 receptor in BDNF production because riluzole can influence ecto-nucleotide levels. An A1 receptor agonist inhibited riluzole-induced elevation of BDNF levels, whereas an antagonist not only increased levels of BDNF and active p38 MAPK but also augmented riluzole effects. These results indicate that, in the rat hippocampus, there is an in vivo signaling pathway for BDNF synthesis mediated by p38 MAPK, and that N-type voltage-gated calcium channels and/or adenosine A1 receptors contribute to p38 MAPK activation.
Collapse
Affiliation(s)
- R Katoh-Semba
- Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, 480-0392, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Samudio-Ruiz SL, Allan AM, Valenzuela CF, Perrone-Bizzozero NI, Caldwell KK. Prenatal ethanol exposure persistently impairs NMDA receptor-dependent activation of extracellular signal-regulated kinase in the mouse dentate gyrus. J Neurochem 2009; 109:1311-23. [PMID: 19317851 PMCID: PMC2693081 DOI: 10.1111/j.1471-4159.2009.06049.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dentate gyrus (DG) is the central input region to the hippocampus and is known to play an important role in learning and memory. Previous studies have shown that prenatal alcohol is associated with hippocampal-dependent learning deficits and a decreased ability to elicit long-term potentiation (LTP) in the DG in adult animals. Given that activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade by NMDA receptors is required for various forms of learning and memory, as well as LTP, in hippocampal regions, including the DG, we hypothesized that fetal alcohol-exposed adult animals would have deficits in hippocampal NMDA receptor-dependent ERK1/2 activation. We used immunoblotting and immunohistochemistry techniques to detect NMDA-stimulated ERK1/2 activation in acute hippocampal slices prepared from adult fetal alcohol-exposed mice. We present the first evidence linking prenatal alcohol exposure to deficits in NMDA receptor-dependent ERK1/2 activation specifically in the DG of adult offspring. This deficit may account for the LTP deficits previously observed in the DG, as well as the life-long cognitive deficits, associated with prenatal alcohol exposure.
Collapse
Affiliation(s)
- Sabrina L Samudio-Ruiz
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
46
|
Sai Y, Chen J, Wu Q, Liu H, Zhao J, Dong Z. Phosphorylated-ERK 1/2 and neuronal degeneration induced by rotenone in the hippocampus neurons. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 27:366-72. [PMID: 21783966 DOI: 10.1016/j.etap.2008.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/10/2008] [Accepted: 12/12/2008] [Indexed: 05/21/2023]
Abstract
Rotenone, a mitochondrial complex-I inhibitor, has been verified to cause dopaminergic neurons degeneration in vivo and in vitro, and the substantia nigra pars compacta (SNc) and the striatum are the main target organs of rotenone in the rat brain. However, whether rotenone could cause damage to other regions in the brain has been unclear till now. To address this question, the rotenone-induced neurotoxicity in the hippocampal neurons was investigated in the present study. Rotenone (4mg/kg) was given to the male Sprague-Dawley rats per day for up to 4 weeks by using the osmotic minipumps. Results showed that neurodegeneration was formed and phosphorylated ERK1/2 (p-ERK1/2) was induced in the hippocampus of rats following rotenone treatment. In additionally, Ras, PKA and PKC were also activated and free [Ca(2+)](i) was increased in the cytoplasm of the hippocampus neurons. To determine how ERK cascade was activated, studies in the primary cultured hippocampus neurons were carried out in a further. Cell viability was reduced, and also apoptosis was induced in vitro following rotenone administration. Expressions of p-ERK1/2 were also enhanced evidently in the cultured neurons treated by rotenone. Free [Ca(2+)](i) was also increased in the cultured neurons induced by rotenone. However, this influx might not take main effect in ERK1/2 phosphorylation. In conclusion, Ras-Raf-1-MEK-ERK1/2 classic signal pathway, not by PKA/PKC alternative pathway may be the mainly contributor to the ERK1/2 phosphorylation. And also, Ras protein is the dominant activator in the ERK phosphorylation induced by rotenone.
Collapse
Affiliation(s)
- Yan Sai
- Department of Toxicology, School of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, PR China
| | | | | | | | | | | |
Collapse
|
47
|
Rosenkranz JA, Frick A, Johnston D. Kinase-dependent modification of dendritic excitability after long-term potentiation. J Physiol 2008; 587:115-25. [PMID: 19001050 DOI: 10.1113/jphysiol.2008.158816] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Patterns of presynaptic activity properly timed with postsynaptic action potential output can not only increase the strength of synaptic inputs but can also increase the excitability of dendritic branches of adult CA1 pyramidal neurons. Here, we examined the role of protein kinase A (PKA) and mitogen-activated protein kinase (MAPK) in the enhancement of dendritic excitability that occurs during theta-burst pairing of presynaptic and postsynaptic firing activity. Using dendritic and somatic whole-cell recordings in rat hippocampal slices, we measured the increase in the amplitude of back-propagating action potentials in the apical dendrite that occurs in parallel with long-term potentiation (LTP) of synaptic inputs. We found that inhibition of the MAPK pathway prevents this enhancement of dendritic excitability using either a weak or strong LTP induction protocol, while synaptic LTP can still be induced by the strong protocol. Both forms of plasticity are blocked by inhibition of PKA and occluded by interfering with cAMP degradation, consistent with a PKA-mediated increase in MAPK activity following induction of LTP. This provides a signalling mechanism for plasticity of dendritic excitability that occurs during neuronal activity and demonstrates the necessity of MAPK activation. Furthermore, this study uncovers an additional contribution of kinase activation to plasticity that may occur during learning.
Collapse
Affiliation(s)
- J Amiel Rosenkranz
- Center for Learning and Memory, University of Texas at Austin, Austin, TX, USA.
| | | | | |
Collapse
|
48
|
Bajova H, Nelson TE, Gruol DL. Chronic CXCL10 alters the level of activated ERK1/2 and transcriptional factors CREB and NF-kappaB in hippocampal neuronal cell culture. J Neuroimmunol 2008; 195:36-46. [PMID: 18329727 PMCID: PMC2396565 DOI: 10.1016/j.jneuroim.2008.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/21/2007] [Accepted: 01/08/2008] [Indexed: 11/17/2022]
Abstract
Signal transduction pathways may be important targets of chemokines during neuroinflammation. In the current study, Western blot analyses show that in rat hippocampal neuronal/glial cell cultures chronic CXCL10 increases the level of protein for ERK1/2 as well as for the transcriptional factors CREB and NF-kappaB. Bcl-2, an anti-apoptotic protein whose expression can be regulated by a pathway involving ERK1/2, CREB and NF-kappaB, was also increased in the CXCL10 treated cultures. These results implicate a role for ERK1/2, CREB and NF-kappaB in effects of CXCL10 on hippocampal cells and suggest that chronic CXCL10 may have a protective role during certain neuroinflammatory conditions.
Collapse
Affiliation(s)
- Hilda Bajova
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
49
|
Bhagya V, Srikumar BN, Raju TR, Shankaranarayana Rao BS. Neonatal clomipramine induced endogenous depression in rats is associated with learning impairment in adulthood. Behav Brain Res 2008; 187:190-4. [PMID: 17889946 DOI: 10.1016/j.bbr.2007.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 08/17/2007] [Accepted: 08/20/2007] [Indexed: 11/22/2022]
Abstract
Clinical studies show cognitive impairment in depression. However, the neural substrates underlying these remain elusive. Hence, we have examined the effect of neonatal clomipramine treatment on cognition in adulthood. The neonatal clomipramine treated rats displayed a profound impairment in partially baited 8-arm radial maze task. This work provides a novel perspective into neural basis of depression associated cognitive changes and help in development of therapeutic strategies to treat depression related memory dysfunctions.
Collapse
Affiliation(s)
- V Bhagya
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, PB #2900, Hosur Road, Bangalore 560029, India
| | | | | | | |
Collapse
|
50
|
Cammarota M, Bevilaqua LR, Medina JH, Izquierdo I. ERK1/2 and CaMKII-mediated events in memory formation: is 5HT regulation involved? Behav Brain Res 2007; 195:120-8. [PMID: 18242725 DOI: 10.1016/j.bbr.2007.11.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/21/2007] [Accepted: 11/21/2007] [Indexed: 01/13/2023]
Abstract
Activity-dependent changes in neuronal efficacy underlie the formation and storage of new memories. Several studies indicate that modification of the phosphorylation/activation state of different protein kinases localized in the synapses or the nucleus plays a critical role in the induction and maintenance of plastic mechanisms and in the consolidation of long-lasting memories. Here we review some of the more recent findings concerning the regulation of two of the main protein kinase groups involved in memory processes and in neuronal plasticity: Ca2+/calmodulin-dependent protein kinase II (CaMKII), and the mitogen-activated protein kinase (MAPK) family. Since this issue of the journal is dedicated to serotonin (5HT) regulation of behavior, we will comment on the so far scanty, but significant, evidence for a role of 5HT in the regulation of CaMKII and MAPK.
Collapse
Affiliation(s)
- Martín Cammarota
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, Andar 2, Porto Alegre, RS90610-000, Brasil
| | | | | | | |
Collapse
|