1
|
Montiel-Herrera F, Batanero-Geraldo A, López JC, Vargas JP, Quintero E, Díaz E. Effects of acute and chronic methylphenidate on prepulse inhibition: A sex difference study in Wistar rats. Physiol Behav 2024; 278:114526. [PMID: 38531426 DOI: 10.1016/j.physbeh.2024.114526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND The utilization of methylphenidate (MPH) is experiencing a notable surge within the adult population. This growth can be attributed to two key factors: its recreational and cognitive enhancement purposes, as well as the rising prevalence of ADHD diagnoses within this population. This study examined acute and chronic oral MPH effects on attention in male and female Wistar rats. To this end, we used a prepulse inhibition (PPI) task, which is widely used to assess psychoactive drug effects in both humans and rodents. This task allowed us to evaluate changes in attention by analyzing sensorimotor gating associated with stimulus selection process. METHODS Animals were administered a clinically relevant dose of MPH (5 mg/kg) daily for seven days. The estrous cycle phases of the female rats were measured during behavioral sessions. The PPI task was conducted 20 min after drug administration on day 1 (acute), day 7 (chronic), and 48 h post-treatment. RESULTS Results indicated that both acute and chronic MPH treatment impaired PPI expression in male rats, but not in female rats, regardless of their estrous cycle phase. Furthermore, a differential effect of chronic MPH treatment on the PPI task was found in male rats. Specifically, on the seventh treatment day, the PPI effect was observed when animals undertook the PPI task for the first time but was impaired in those animals in which the initial PPI session occurred under the acute influence of the drug (day 1). CONCLUSIONS These findings suggest that the impact of MPH on sensorimotor gating responses may vary based on sex and task experience, possibly leading to state-dependent effects in healthy individuals.
Collapse
Affiliation(s)
- F Montiel-Herrera
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| | - A Batanero-Geraldo
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| | - J C López
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| | - J P Vargas
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| | - E Quintero
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| | - E Díaz
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain.
| |
Collapse
|
2
|
Truckenbrod LM, Cooper EM, Wheeler AR, Orsini CA. Cocaine intake correlates with risk-taking behavior and affects estrous cycling in female Sprague-Dawley rats. Front Behav Neurosci 2023; 17:1293226. [PMID: 37965568 PMCID: PMC10641408 DOI: 10.3389/fnbeh.2023.1293226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Navigating complex decisions and considering their relative risks and rewards is an important cognitive ability necessary for survival. However, use of and dependence on illicit drugs can result in long-lasting changes to this risk/reward calculus in individuals with substance use disorder. Recent work has shown that chronic exposure to cocaine causes long-lasting increases in risk taking in male and female rats, but there are still significant gaps in our understanding of the relationship between cocaine use and changes in risk taking. For example, it is unclear whether the magnitude of cocaine intake dictates the extent to which risk taking is altered. To address this, male and female Sprague-Dawley rats underwent cocaine (or sucrose) self-administration and, following a period of abstinence, were trained and tested in a rodent model of risky decision making. In this behavioral task, rats made discrete-trial choices between a lever associated with a small food reward (i.e., "safe" option) and a lever associated with a larger food reward accompanied by a variable risk of footshock delivery (i.e., "risky" option). Surprisingly, and in contrast to prior work in Long-Evans rats, there were no effects of cocaine self-administration on choice of the large, risky reward (i.e., risk taking) during abstinence in males or females. There was, however, a significant relationship between cocaine intake and risk taking in female rats, with greater intake associated with greater preference for the large, risky reward. Relative to their sucrose counterparts, female rats in the cocaine group also exhibited irregular estrous cycles, characterized by prolonged estrus and/or diestrus phases. Collectively, these data suggest that there may be strain differences in the effects of cocaine on risk taking and highlight the impact that chronic cocaine exposure has on hormonal cyclicity in females. Future work will focus on understanding the neural mechanisms underlying cocaine's intake-dependent effects on risk taking in females, and whether this is directly related to cocaine-induced alterations in neuroendocrine function.
Collapse
Affiliation(s)
- Leah M. Truckenbrod
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Emily M. Cooper
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Alexa-Rae Wheeler
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Caitlin A. Orsini
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
- Department of Neurology, The University of Texas at Austin, Austin, TX, United States
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
3
|
Caine SB, Plant S, Furbish K, Yerton M, Smaragdi E, Niclou B, Lorusso JM, Chang JY, Bitter C, Basu A, Miller S, Huang CY, Komson R, Liu D, Behar S, Thomsen M. Sprague Dawley rats from different vendors vary in the modulation of prepulse inhibition of startle (PPI) by dopamine, acetylcholine, and glutamate drugs. Psychopharmacology (Berl) 2023; 240:2005-2012. [PMID: 37580441 PMCID: PMC10471717 DOI: 10.1007/s00213-023-06444-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
RATIONALE Rodent vendors are often utilized interchangeably, assuming that the phenotype of a given strain remains standardized between colonies. Several studies, however, have found significant behavioral and physiological differences between Sprague Dawley (SD) rats from separate vendors. Prepulse inhibition of startle (PPI), a form of sensorimotor gating in which a low-intensity leading stimulus reduces the startle response to a subsequent stimulus, may also vary by vendor. Differences in PPI between rat strains are well known, but divergence between colonies within the SD strain lacks thorough examination. OBJECTIVES We explored intrastrain variation in PPI by testing SD rats from two vendors: Envigo and Charles River (CR). METHODS We selected drugs acting on four major neurotransmitter systems that have been repeatedly shown to modulate PPI: dopamine (apomorphine; 0.5, 1.5, 3.0 mg/kg), acetylcholine (scopolamine; 0.1, 0.5, 1.0 mg/kg), glutamate (dizocilpine; 0.5, 1.5, 2.5 mg/kg), and serotonin (2,5-Dimethoxy-4-iodoamphetamine, DOI; 0.25, 0.5, 1.0 mg/kg). We determined PPI and startle amplitude for each drug in male and female Envigo and CR SD rats. RESULTS SD rats from Envigo showed dose-dependent decreases in PPI after apomorphine, scopolamine, or dizocilpine administration, without significant effects on startle amplitude. SD rats from CR were less sensitive to modulation of PPI and/or more sensitive to modulation of startle amplitude, across the three drugs. CONCLUSIONS SD rats showed vendor differences in sensitivity to pharmacological modulation of PPI and startle. We encourage researchers to sample rats from separate vendors before experimentation to identify the most suited source of subjects for their specific endpoints.
Collapse
Affiliation(s)
- S B Caine
- Neuroscience and Behavioral Pharmacology Laboratory, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - S Plant
- Neuroscience and Behavioral Pharmacology Laboratory, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - K Furbish
- Neuroscience and Behavioral Pharmacology Laboratory, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - M Yerton
- Neuroscience and Behavioral Pharmacology Laboratory, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - E Smaragdi
- Neuroscience and Behavioral Pharmacology Laboratory, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - B Niclou
- Neuroscience and Behavioral Pharmacology Laboratory, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - J M Lorusso
- Neuroscience and Behavioral Pharmacology Laboratory, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - J Y Chang
- Neuroscience and Behavioral Pharmacology Laboratory, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - C Bitter
- Neuroscience and Behavioral Pharmacology Laboratory, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - A Basu
- Neuroscience and Behavioral Pharmacology Laboratory, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - S Miller
- Neuroscience and Behavioral Pharmacology Laboratory, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - C-Y Huang
- Neuroscience and Behavioral Pharmacology Laboratory, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - R Komson
- Neuroscience and Behavioral Pharmacology Laboratory, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - D Liu
- Neuroscience and Behavioral Pharmacology Laboratory, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - S Behar
- Neuroscience and Behavioral Pharmacology Laboratory, Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - M Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Forskningsenheder, Hovedvejen 17, 1. sal, 2000 Frederiksberg, Copenhagen, Denmark.
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Oliveras I, Cañete T, Sampedro-Viana D, Río-Álamos C, Tobeña A, Corda MG, Giorgi O, Fernández-Teruel A. Neurobehavioral Profiles of Six Genetically-based Rat Models of Schizophrenia- related Symptoms. Curr Neuropharmacol 2023; 21:1934-1952. [PMID: 36809938 PMCID: PMC10514524 DOI: 10.2174/1570159x21666230221093644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 02/24/2023] Open
Abstract
Schizophrenia is a chronic and severe mental disorder with high heterogeneity in its symptoms clusters. The effectiveness of drug treatments for the disorder is far from satisfactory. It is widely accepted that research with valid animal models is essential if we aim at understanding its genetic/ neurobiological mechanisms and finding more effective treatments. The present article presents an overview of six genetically-based (selectively-bred) rat models/strains, which exhibit neurobehavioral schizophrenia-relevant features, i.e., the Apomorphine-susceptible (APO-SUS) rats, the Low-prepulse inhibition rats, the Brattleboro (BRAT) rats, the Spontaneously Hypertensive rats (SHR), the Wisket rats and the Roman High-Avoidance (RHA) rats. Strikingly, all the strains display impairments in prepulse inhibition of the startle response (PPI), which remarkably, in most cases are associated with novelty-induced hyperlocomotion, deficits of social behavior, impairment of latent inhibition and cognitive flexibility, or signs of impaired prefrontal cortex (PFC) function. However, only three of the strains share PPI deficits and dopaminergic (DAergic) psychostimulant-induced hyperlocomotion (together with prefrontal cortex dysfunction in two models, the APO-SUS and RHA), which points out that alterations of the mesolimbic DAergic circuit are a schizophrenia-linked trait that not all models reproduce, but it characterizes some strains that can be valid models of schizophrenia-relevant features and drug-addiction vulnerability (and thus, dual diagnosis). We conclude by putting the research based on these genetically-selected rat models in the context of the Research Domain Criteria (RDoC) framework, suggesting that RDoC-oriented research programs using selectively-bred strains might help to accelerate progress in the various aspects of the schizophrenia-related research agenda.
Collapse
Affiliation(s)
- Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | | | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Maria Giuseppa Corda
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Sardinia, Italy
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Sardinia, Italy
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
5
|
Brosda J, Becker T, Richter M, Jakobs M, Hörbelt T, Bendix I, Lückemann L, Schedlowski M, Hadamitzky M. Treatment with the calcineurin inhibitor and immunosuppressant cyclosporine A impairs sensorimotor gating in Dark Agouti rats. Psychopharmacology (Berl) 2021; 238:1047-1057. [PMID: 33349900 PMCID: PMC7969700 DOI: 10.1007/s00213-020-05751-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022]
Abstract
RATIONALE Calcineurin is a protein regulating cytokine expression in T lymphocytes and calcineurin inhibitors such as cyclosporine A (CsA) are widely used for immunosuppressive therapy. It also plays a functional role in distinct neuronal processes in the central nervous system. Disturbed information processing as seen in neuropsychiatric disorders is reflected by deficient sensorimotor gating, assessed as prepulse inhibition (PPI) of the acoustic startle response (ASR). OBJECTIVE Patients who require treatment with immunosuppressive drugs frequently display neuropsychiatric alterations during treatment with calcineurin inhibitors. Importantly, knockout of calcineurin in the forebrain of mice is associated with cognitive impairments and symptoms of schizophrenia-like psychosis as seen after treatment with stimulants. METHODS The present study investigated in rats effects of systemic acute and subchronic administration of CsA on sensorimotor gating. Following a single injection with effective doses of CsA, adult healthy male Dark Agouti rats were tested for PPI. For subchronic treatment, rats were injected daily with the same doses of CsA for 1 week before PPI was assessed. Since calcineurin works as a modulator of the dopamine pathway, activity of the enzyme tyrosine hydroxylase was measured in the prefrontal cortex and striatum after accomplishment of the study. RESULTS Acute and subchronic treatment with the calcineurin inhibitor CsA disrupted PPI at a dose of 20 mg/kg. Concomitantly, following acute CsA treatment, tyrosine hydroxylase activity was reduced in the prefrontal cortex, which suggests that dopamine synthesis was downregulated, potentially reflecting a stimulatory impact of CsA on this neurotransmitter system. CONCLUSIONS The results support experimental and clinical evidence linking impaired calcineurin signaling in the central nervous system to the pathophysiology of neuropsychiatric symptoms. Moreover, these findings suggest that therapy with calcineurin inhibitors may be a risk factor for developing neurobehavioral alterations as observed after the abuse of psychomotor stimulant drugs.
Collapse
Affiliation(s)
- Jan Brosda
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, 14195, Berlin, Germany
| | - Thorsten Becker
- Institute of Biology, Department of Neurophysiology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Mathis Richter
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Marie Jakobs
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Tina Hörbelt
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I/Experimental perinatal Neuroscience, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
- Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
6
|
Sex and strain differences in dynamic and static properties of the mesolimbic dopamine system. Neuropsychopharmacology 2020; 45:2079-2086. [PMID: 32663840 PMCID: PMC7547712 DOI: 10.1038/s41386-020-0765-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 02/02/2023]
Abstract
Sex is a biological variable that contributes to the incidence, clinical course, and treatment outcome of brain disorders. Chief among these are disorders associated with the dopamine system. These include Parkinson's disease, ADHD, schizophrenia, and mood disorders, which show stark differences in prevalence and outcome between men and women. In order to reveal the influence of biological sex as a risk factor in these disorders, there is a critical need to collect fundamental information about basic properties of the dopamine system in males and females. In Long Evans rats, we measured dynamic and static properties related to the mesolimbic dopamine system. Static measures included assessing ventral tegmental area (VTA) dopamine cell number and volume and expression of tyrosine hydroxylase and dopamine transporter. Dynamic measures in behaving animals included assessing (1) VTA neuronal encoding during learning of a cue-action-reward instrumental task and (2) dopamine release in the nucleus accumbens in response to electrical stimulation of the VTA, vesicular depletion of dopamine, and amphetamine. We found little or no sex difference in these measures, suggesting sexual congruency in fundamental static and dynamic properties of dopamine neurons. Thus, dopamine related sex-differences are likely mediated by secondary mechanisms that flexibly influence the function of the dopamine cells and circuits. Finally, we noted that most behavioral sex differences had been reported in Sprague-Dawley rats and repeated some of the above measures in that strain. We found some sex differences in those animals highlighting the importance of considering strain differences in experimental design and result interpretation.
Collapse
|
7
|
Kaya-Yertutanol FD, Uzbay İT, Çevreli B, Bolay-Belen H. Effect of gabapentin on sleep-deprivation-induced disruption of prepulse inhibition. Psychopharmacology (Berl) 2020; 237:2993-3006. [PMID: 32594186 DOI: 10.1007/s00213-020-05587-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/11/2020] [Indexed: 11/25/2022]
Abstract
RATIONALE There are controversial reports on the effects of gabapentin in respect to psychotic symptoms. Prepulse inhibition of the acoustic startle response is an operational measure of sensorimotor gating. In laboratory rodents, deficits in sensorimotor gating are used to model behavioral endophenotypes of schizophrenia. Sleep deprivation disrupts prepulse inhibition and can be used as a psychosis model to evaluate effects of gabapentin. OBJECTIVES This study aimed to investigate behavioral effects of gabapentin in both naïve and sleep-deprived rats. METHODS Sleep deprivation was induced in male Wistar rats by using the modified multiple platform technique in a water tank for 72 h. The effect of water tank itself was studied in a sham group. The effects of oral acute and subchronic (4.5 days) gabapentin doses (25, 100, or 200 mg/kg/day) on sensorimotor gating and locomotor activity was evaluated by prepulse inhibition test and locomotor activity test, respectively. Plasma gabapentin levels of some groups and body weights of all groups were also assessed. RESULTS Sleep deprivation disrupted prepulse inhibition, increased locomotor activity, reduced gabapentin plasma levels, and body weights. Some gabapentin doses disrupted sensorimotor gating irrespective of sleep condition. Some gabapentin doses increased locomotor activity in non-sleep-deprived rats and decreased locomotor activity in sleep-deprived rats. On the contrary, gabapentin did not normalize sleep deprivation-induced disruption in sensorimotor gating. CONCLUSIONS Sleep deprivation via modified multiple platform technique could be used as an animal model for psychosis. Gabapentin may have dose- and duration-dependent effects on sensorimotor gating and locomotor activity.
Collapse
Affiliation(s)
- Fatma Duygu Kaya-Yertutanol
- Neuropsychopharmacology Practice and Research Center, Uskudar University, Haluk Türksoy Sokak No:14, Istanbul, 34662, Turkey.
| | - İ Tayfun Uzbay
- Neuropsychopharmacology Practice and Research Center, Uskudar University, Haluk Türksoy Sokak No:14, Istanbul, 34662, Turkey
| | - Burcu Çevreli
- Neuropsychopharmacology Practice and Research Center, Uskudar University, Haluk Türksoy Sokak No:14, Istanbul, 34662, Turkey
| | - Hayrunnisa Bolay-Belen
- Department of Neurology, Gazi University Faculty of Medicine, Mevlana Bulvarı No:29, Ankara, 06560, Turkey
| |
Collapse
|
8
|
Mosher LJ, Cadeddu R, Yen S, Staudinger JL, Traccis F, Fowler SC, Maguire JL, Bortolato M. Allopregnanolone is required for prepulse inhibition deficits induced by D 1 dopamine receptor activation. Psychoneuroendocrinology 2019; 108:53-61. [PMID: 31228750 PMCID: PMC6773911 DOI: 10.1016/j.psyneuen.2019.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION The extraction of salient information from the environment is modulated by the activation of dopamine receptors. Using rodent models, we previously reported that gating deficits caused by dopamine receptor activation - as measured by the prepulse inhibition (PPI) of startle - are effectively opposed by inhibitors of the steroidogenic enzyme 5α-reductase (5αR). The specific 5αR isoenzyme and steroids implicated in these effects, however, remain unknown. METHODS The effects of the selective D1 dopamine receptor agonist SKF-82958 (SKF, 0.3 mg/kg, IP) and D2 receptor agonist quinpirole (QUIN, 0.5 mg/kg, IP) were tested in the startle reflex and PPI of knockout (KO) mice for either 5αR type 1 (5αR1) or type 2 (5αR2). Furthermore, we established whether these effects may be modified by the 5α-reduced steroids dihydroprogesterone (DHP), allopregnanolone (AP), dihydrotestosterone (DHT), 5α-androstane-3α,17β-diol (3α-diol), or androsterone. To test the mechanisms whereby 5αR products may alter the PPI-disrupting properties of D1 agonists, we studied the involvement of GABA-A and PXR, two receptors targeted by neuroactive steroids. Specifically, we tested the effects of SKF in combination with the GABA-A antagonist bicuculline, as well as in KO mice for the GABA-A δ subunit and PXR. RESULTS 5αR1, but not 5αR2, knockout (KO) mice were insensitive to the PPI-disrupting effects of SKF. This sensitivity was reinstated by AP (3 mg/kg, IP), but not other 5α-reduced steroids. The PPI deficits induced by SKF were not modified by bicuculline, δ-subunit KO mice and PXR KO mice. CONCLUSIONS These results collectively suggest that 5αR1 enables the negative effects of D1 dopamine receptor activation on information processing via production of AP. The contribution of AP to the PPI-disrupting mechanisms of D1 receptor agonists, however, do not appear to be mediated by either GABA-A or PXR receptors.
Collapse
Affiliation(s)
- Laura J Mosher
- Dept. of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City (UT),Dept. of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence (KS)
| | - Roberto Cadeddu
- Dept. of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City (UT)
| | - Sabrina Yen
- Department of Neuroscience, School of Medicine, Tufts University, Boston (MA)
| | - Jeffrey L Staudinger
- Department of Basic Science, Kansas City University, School of Osteopathic Medicine, Joplin (MO)
| | - Francesco Traccis
- Department of Biomedical Sciences, University of Cagliari, Monserrato (CA), Italy
| | - Stephen C Fowler
- Dept. of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence (KS)
| | - Jamie L Maguire
- Department of Neuroscience, School of Medicine, Tufts University, Boston (MA)
| | - Marco Bortolato
- Dept. of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City UT United States.
| |
Collapse
|
9
|
Khoja S, Asatryan L, Jakowec MW, Davies DL. Dopamine Receptor Blockade Attenuates Purinergic P2X4 Receptor-Mediated Prepulse Inhibition Deficits and Underlying Molecular Mechanisms. Front Cell Neurosci 2019; 13:331. [PMID: 31396053 PMCID: PMC6664007 DOI: 10.3389/fncel.2019.00331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
Sensorimotor gating refers to the ability to filter incoming sensory information in a stimulus-laden environment and disruption of this physiological process has been documented in psychiatric disorders characterized by cognitive aberrations. The effectiveness of current pharmacotherapies for treatment of sensorimotor gating deficits in the patient population still remains controversial. These challenges emphasize the need to better understand the biological underpinnings of sensorimotor gating which could lead to discovery of novel drug targets for therapeutic intervention. Notably, we recently reported a role for purinergic P2X4 receptors (P2X4Rs) in regulation of sensorimotor gating using prepulse inhibition (PPI) of acoustic startle reflex. P2X4Rs are ion channels gated by adenosine-5′-triphosphate (ATP). Ivermectin (IVM) induced PPI deficits in C57BL/6J mice in a P2X4R-specific manner. Furthermore, mice deficient in P2X4Rs [P2X4R knockout (KO)] exhibited PPI deficits that were alleviated by dopamine (DA) receptor antagonists demonstrating an interaction between P2X4Rs and DA receptors in PPI regulation. On the basis of these findings, we hypothesized that increased DA neurotransmission underlies IVM-mediated PPI deficits. To test this hypothesis, we measured the effects of D1 and D2 receptor antagonists, SCH 23390 and raclopride respectively and D1 agonist, SKF 82958 on IVM-mediated PPI deficits. To gain mechanistic insights, we investigated the interaction between IVM and dopaminergic drugs on signaling molecules linked to PPI regulation in the ventral striatum. SCH 23390 significantly attenuated the PPI disruptive effects of IVM to a much greater degree than that of raclopride. SKF 82958 failed to potentiate IVM-mediated PPI disruption. At the molecular level, modulation of D1 receptors altered IVM’s effects on dopamine and cyclic-AMP regulated phosphoprotein of 32 kDa (DARPP-32) phosphorylation. Additionally, IVM interacted with the DA receptors antagonists and SKF 82958 in phosphorylation of Ca2+/calmodulin kinase IIα (CaMKIIα) and its downstream target, neuronal nitric oxide synthase (nNOS). Current findings suggest an involvement for D1 and D2 receptors in IVM-mediated PPI disruption via modulation of DARPP-32, CaMKIIα and nNOS. Taken together, the findings suggest that stimulation of P2X4Rs can lead to DA hyperactivity and disruption of information processing, implicating P2X4Rs as a novel drug target for treatment of psychiatric disorders characterized by sensorimotor gating deficits.
Collapse
Affiliation(s)
- Sheraz Khoja
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Michael W Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
10
|
Adverse neuropsychiatric development following perinatal brain injury: from a preclinical perspective. Pediatr Res 2019; 85:198-215. [PMID: 30367160 DOI: 10.1038/s41390-018-0222-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Perinatal brain injury is a leading cause of death and disability in young children. Recent advances in obstetrics, reproductive medicine and neonatal intensive care have resulted in significantly higher survival rates of preterm or sick born neonates, at the price of increased prevalence of neurological, behavioural and psychiatric problems in later life. Therefore, the current focus of experimental research shifts from immediate injury processes to the consequences for brain function in later life. The aetiology of perinatal brain injury is multi-factorial involving maternal and also labour-associated factors, including not only placental insufficiency and hypoxia-ischaemia but also exposure to high oxygen concentrations, maternal infection yielding excess inflammation, genetic factors and stress as important players, all of them associated with adverse long-term neurological outcome. Several animal models addressing these noxious stimuli have been established in the past to unravel the underlying molecular and cellular mechanisms of altered brain development. In spite of substantial efforts to investigate short-term consequences, preclinical evaluation of the long-term sequelae for the development of cognitive and neuropsychiatric disorders have rarely been addressed. This review will summarise and discuss not only current evidence but also requirements for experimental research providing a causal link between insults to the developing brain and long-lasting neurodevelopmental disorders.
Collapse
|
11
|
Lins BR, Marks WN, Phillips AG, Howland JG. Dissociable effects of the d- and l- enantiomers of govadine on the disruption of prepulse inhibition by MK-801 and apomorphine in male Long-Evans rats. Psychopharmacology (Berl) 2017; 234:1079-1091. [PMID: 28180960 DOI: 10.1007/s00213-017-4540-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 01/23/2017] [Indexed: 01/02/2023]
Abstract
RATIONALE The search for novel antipsychotic drugs to treat schizophrenia is driven by the poor treatment efficacy, serious side effects, and poor patient compliance of current medications. Recently, a class of compounds known as tetrahydroprotoberberines, which includes the compound d,l-govadine, have shown promise in preclinical rodent tests relevant to schizophrenia. To date, the effect of govadine on prepulse inhibition (PPI), a test for sensorimotor gating commonly used to assess the effects of putative treatments for schizophrenia, has not been determined. OBJECTIVES The objective of the present study was to determine the effects of each enantiomer of govadine (d- and l-govadine) on PPI alone and its disruption by the distinct pharmacological compounds apomorphine and MK-801. METHODS Male Long-Evans rats were treated systemically with d- or l-govadine and apomorphine or MK-801 prior to PPI. The PPI paradigm employed here included parametric manipulations of the prepulse intensity and the interval between the prepulse and pulse. RESULTS Acute MK-801 (0.15 mg/kg) significantly increased the startle response to startle pulses alone, while both MK-801 and apomorphine (0.2 mg/kg) significantly increased reactivity to prepulse-alone trials. Both MK-801 and apomorphine disrupted PPI. In addition, d-govadine alone significantly disrupted PPI in the apomorphine experiment. Pretreatment with l-, but not d-, govadine (1.0 mg/kg) blocked the effect of apomorphine and MK-801 on PPI. Treatment of rats with l-govadine alone (0.3, 1.0, 3.0 mg/kg) also dose-dependently increased PPI. CONCLUSIONS Given the high affinity of l-govadine for dopamine D2 receptors, these results suggest that further testing of l-govadine as an antipsychotic is warranted.
Collapse
Affiliation(s)
- Brittney R Lins
- Department of Physiology, University of Saskatchewan, GD30.7, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Wendie N Marks
- Department of Physiology, University of Saskatchewan, GD30.7, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Anthony G Phillips
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - John G Howland
- Department of Physiology, University of Saskatchewan, GD30.7, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
12
|
Mosher LJ, Frau R, Pardu A, Pes R, Devoto P, Bortolato M. Selective activation of D1 dopamine receptors impairs sensorimotor gating in Long-Evans rats. Br J Pharmacol 2016; 173:2122-34. [PMID: 26101934 PMCID: PMC4908197 DOI: 10.1111/bph.13232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 06/04/2015] [Accepted: 06/14/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Sensorimotor gating is a perceptual process aimed at filtering out irrelevant information. In humans and animal models, this function can be operationally measured through the prepulse inhibition (PPI) of the acoustic startle reflex. Notably, PPI deficits are associated with numerous neuropsychiatric conditions characterized by gating disturbances, including schizophrenia and Tourette syndrome. Ample evidence has shown that dopamine plays a key role in PPI regulation and, in particular, rodent studies indicate that this neurotransmitter modulates PPI through D1 and D2 dopamine receptors. In mice, the relative contributions of these two families of receptors are strain-dependent. Conversely, the role of D1 receptors in the regulation of PPI across different rat strains remains unclear. EXPERIMENTAL APPROACH We tested the effects of selective D1 and D2 receptor agonists and antagonists on the startle reflex and PPI of Sprague-Dawley, Wistar and Long-Evans rats. KEY RESULTS In contrast with Sprague-Dawley and Wistar rats, the full D1 receptor agonist SKF82958 elicited significant PPI deficits in Long-Evans rats, an effect sensitive to the selective D1 antagonist SCH23390. CONCLUSIONS AND IMPLICATIONS Our results suggest that, in Long-Evans rats, D1 receptor activation may be sufficient to significantly impair PPI. These data emphasize the role of D1 receptors in the pathophysiology of neuropsychiatric disorders featuring alterations in sensorimotor gating, and uphold the importance of the genetic background in shaping the role of dopamine receptors in the regulation of this key information-processing function. LINKED ARTICLES This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc.
Collapse
Affiliation(s)
- Laura J Mosher
- Department of Pharmacology and ToxicologySchool of PharmacyUniversity of KansasLawrenceKSUSA
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA)University of KansasLawrenceKSUSA
- Problem Gambling Research Studies (ProGResS) NetworkUniversity of KansasLawrenceKSUSA
| | - Roberto Frau
- ‘Guy Everett’ Laboratory, Dept. of Neuroscience ‘B.B. Brodie’University of CagliariMonserratoCAItaly
| | - Alessandra Pardu
- ‘Guy Everett’ Laboratory, Dept. of Neuroscience ‘B.B. Brodie’University of CagliariMonserratoCAItaly
| | - Romina Pes
- Department of Pharmacology and ToxicologySchool of PharmacyUniversity of KansasLawrenceKSUSA
| | - Paola Devoto
- ‘Guy Everett’ Laboratory, Dept. of Neuroscience ‘B.B. Brodie’University of CagliariMonserratoCAItaly
| | - Marco Bortolato
- Department of Pharmacology and ToxicologySchool of PharmacyUniversity of KansasLawrenceKSUSA
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA)University of KansasLawrenceKSUSA
- Problem Gambling Research Studies (ProGResS) NetworkUniversity of KansasLawrenceKSUSA
| |
Collapse
|
13
|
Powell SB, Swerdlow NR. Social Isolation Rearing and Sensorimotor Gating in Rat Models of Relevance to Schizophrenia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-800981-9.00009-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Frau R, Mosher LJ, Bini V, Pillolla G, Pes R, Saba P, Fanni S, Devoto P, Bortolato M. The neurosteroidogenic enzyme 5α-reductase modulates the role of D1 dopamine receptors in rat sensorimotor gating. Psychoneuroendocrinology 2016; 63:59-67. [PMID: 26415119 PMCID: PMC4695380 DOI: 10.1016/j.psyneuen.2015.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/21/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
Neurosteroids exert diverse modulatory actions on dopamine neurotransmission and signaling. We previously documented that the enzyme 5α-reductase, which catalyzes the main rate-limiting step in neurosteroid synthesis, is required for the behavioral responses of Sprague-Dawley rats to non-selective dopaminergic agonists, such as the D1-D2 receptor agonist apomorphine. Specifically, systemic and intra-accumbal administrations of the 5α-reductase inhibitor finasteride countered apomorphine-induced deficits of sensorimotor gating, as measured by the prepulse inhibition (PPI) of the startle reflex; the classes of dopamine receptors involved in these effects, however, remain unknown. Prior rodent studies have revealed that the contributions of dopamine receptors to PPI regulation vary depending on the genetic background; thus, we analyzed the effect of finasteride on the PPI deficits induced by selective dopamine receptor agonists in Long-Evans (a strain exhibiting PPI deficits in response to both D1 and D2 receptor agonists) and Sprague-Dawley rats (which display PPI reductions following treatment with D2, and D3, but not D1 receptor agonists). In Long-Evans rats, finasteride opposed the PPI deficits induced by activation of D1, but not D2 receptors; conversely, in Sprague-Dawley rats, finasteride prevented the reductions in %PPI and accumbal dopamine extracellular levels caused by selective stimulation of D3, but not D2 receptors; however, the effects on %PPI were not confirmed by analyses on absolute PPI values. Our findings suggest that 5α-reductase modulates the effects of D1, but not D2 receptor agonists on sensorimotor gating. These data may help elucidate the role of neurosteroids in neuropsychiatric disorders featuring PPI deficits, including schizophrenia and Tourette syndrome.
Collapse
MESH Headings
- 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism
- 5-alpha Reductase Inhibitors/pharmacology
- Animals
- Dopamine Agonists/pharmacology
- Finasteride/pharmacology
- Male
- Microdialysis
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Prepulse Inhibition/drug effects
- Prepulse Inhibition/physiology
- Rats
- Rats, Long-Evans
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3/drug effects
- Receptors, Dopamine D3/metabolism
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Sensory Gating/drug effects
- Sensory Gating/physiology
Collapse
Affiliation(s)
- Roberto Frau
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy; Tourette Syndrome Center, University of Cagliari, Italy
| | - Laura J Mosher
- Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA; Problem Gambling Research Studies (ProGResS) Network, University of Kansas, Lawrence, KS, USA
| | - Valentina Bini
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy; Tourette Syndrome Center, University of Cagliari, Italy
| | - Giuliano Pillolla
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Romina Pes
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy; Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Pierluigi Saba
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Silvia Fanni
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Paola Devoto
- "Guy Everett" Laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy; Tourette Syndrome Center, University of Cagliari, Italy
| | - Marco Bortolato
- Tourette Syndrome Center, University of Cagliari, Italy; Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA; Problem Gambling Research Studies (ProGResS) Network, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
15
|
Bodnar TS, Hill LA, Taves MD, Yu W, Soma KK, Hammond GL, Weinberg J. Colony-Specific Differences in Endocrine and Immune Responses to an Inflammatory Challenge in Female Sprague Dawley Rats. Endocrinology 2015; 156:4604-17. [PMID: 26402842 PMCID: PMC4655222 DOI: 10.1210/en.2015-1497] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sprague Dawley rats from different vendor colonies display divergent responses in a variety of experimental paradigms. An adjuvant-induced arthritis (AA) model of human rheumatoid arthritis was used to examine immune and endocrine responses to inflammatory challenge in Sprague Dawley rats from Charles River and Harlan colonies. Rats were injected with either complete Freund's adjuvant or physiological saline (control), weights, and paw volumes measured over 15 days, and blood and tissue were collected 16 days post-injection. Overall, Harlan rats developed more severe AA than Charles River rats. In addition, despite comparable corticosterone levels, corticosteroid binding globulin levels were lower in Harlan compared with Charles River rats in the absence of inflammation, suggesting that a lower corticosterone reservoir in Harlan rats may underlie their greater susceptibility to inflammation. With increasing AA severity, there was an increase in plasma corticosterone (total and free) and a decrease in corticosteroid binding globulin in both Charles River and Harlan rats. However, contrasting patterns of cytokine activation were observed in the hind paw, suggesting a reliance on different cytokine networks at different stages of inflammation, with Charles River rats exhibiting increased TNF-α, monocyte chemotactic protein-1 (MCP-1), keratinocyte chemoattractant/growth-regulated oncogene (KC/GRO), and IL-1β in the absence of clinical signs of arthritis, whereas Harlan had increased TNF-α, monocyte chemotactic protein-1, and IL-6 with mild to moderate arthritis. These colony-specific differences in endocrine and immune responses to AA in Sprague Dawley rats must be considered when comparing data from different laboratories and could be exploited to provide insight into physiological changes and therapeutic outcomes in arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Tamara S Bodnar
- Departments of Cellular and Physiological Sciences (T.S.B., L.A.H., W.Y., C.L.H., J.W.), Psychology (M.D.T., K.K.S.), and Zoology (M.D.T., K.K.S.), and Graduate Program in Neuroscience (K.K.S.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Lesley A Hill
- Departments of Cellular and Physiological Sciences (T.S.B., L.A.H., W.Y., C.L.H., J.W.), Psychology (M.D.T., K.K.S.), and Zoology (M.D.T., K.K.S.), and Graduate Program in Neuroscience (K.K.S.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Matthew D Taves
- Departments of Cellular and Physiological Sciences (T.S.B., L.A.H., W.Y., C.L.H., J.W.), Psychology (M.D.T., K.K.S.), and Zoology (M.D.T., K.K.S.), and Graduate Program in Neuroscience (K.K.S.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Wayne Yu
- Departments of Cellular and Physiological Sciences (T.S.B., L.A.H., W.Y., C.L.H., J.W.), Psychology (M.D.T., K.K.S.), and Zoology (M.D.T., K.K.S.), and Graduate Program in Neuroscience (K.K.S.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Kiran K Soma
- Departments of Cellular and Physiological Sciences (T.S.B., L.A.H., W.Y., C.L.H., J.W.), Psychology (M.D.T., K.K.S.), and Zoology (M.D.T., K.K.S.), and Graduate Program in Neuroscience (K.K.S.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Geoffrey L Hammond
- Departments of Cellular and Physiological Sciences (T.S.B., L.A.H., W.Y., C.L.H., J.W.), Psychology (M.D.T., K.K.S.), and Zoology (M.D.T., K.K.S.), and Graduate Program in Neuroscience (K.K.S.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Joanne Weinberg
- Departments of Cellular and Physiological Sciences (T.S.B., L.A.H., W.Y., C.L.H., J.W.), Psychology (M.D.T., K.K.S.), and Zoology (M.D.T., K.K.S.), and Graduate Program in Neuroscience (K.K.S.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
16
|
Sizemore RJ, Zhang R, Lin N, Goddard L, Wastney T, Parr-Brownlie LC, Reynolds JNJ, Oorschot DE. Marked differences in the number and type of synapses innervating the somata and primary dendrites of midbrain dopaminergic neurons, striatal cholinergic interneurons, and striatal spiny projection neurons in the rat. J Comp Neurol 2015; 524:1062-80. [PMID: 26355230 DOI: 10.1002/cne.23891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 08/17/2015] [Accepted: 09/02/2015] [Indexed: 12/24/2022]
Abstract
Elucidating the link between cellular activity and goal-directed behavior requires a fuller understanding of the mechanisms underlying burst firing in midbrain dopaminergic neurons and those that suppress activity during aversive or non-rewarding events. We have characterized the afferent synaptic connections onto these neurons in the rat substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA), and compared these findings with cholinergic interneurons and spiny projection neurons in the striatum. We found that the average absolute number of synapses was three to three and one-half times greater onto the somata of dorsal striatal spiny projection neurons than onto the somata of dopaminergic neurons in the SNpc or dorsal striatal cholinergic interneurons. A similar comparison between populations of dopamine neurons revealed a two times greater number of somatic synapses on VTA dopaminergic neurons than SNpc dopaminergic neurons. The percentage of symmetrical, presumably inhibitory, synaptic inputs on somata was significantly higher on spiny projection neurons and cholinergic interneurons compared with SNpc dopaminergic neurons. Synaptic data on the primary dendrites yielded similar significant differences for the percentage of symmetrical synapses for VTA dopaminergic vs. striatal neurons. No differences in the absolute number or type of somatic synapses were evident for dopaminergic neurons in the SNpc of Wistar vs. Sprague-Dawley rat strains. These data from identified neurons are pivotal for interpreting their electrophysiological responses to afferent activity and for generating realistic computer models of neuronal networks of striatal and midbrain dopaminergic function.
Collapse
Affiliation(s)
- Rachel J Sizemore
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Rong Zhang
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Naili Lin
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Liping Goddard
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Timothy Wastney
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Louise C Parr-Brownlie
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - John N J Reynolds
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Dorothy E Oorschot
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|
17
|
Wischhof L, Irrsack E, Osorio C, Koch M. Prenatal LPS-exposure--a neurodevelopmental rat model of schizophrenia--differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:17-30. [PMID: 25455585 DOI: 10.1016/j.pnpbp.2014.10.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023]
Abstract
Maternal infection during pregnancy increases the risk for the offspring to develop schizophrenia. Gender differences can be seen in various features of the illness and sex steroid hormones (e.g. estrogen) have strongly been implicated in the disease pathology. In the present study, we evaluated sex differences in the effects of prenatal exposure to a bacterial endotoxin (lipopolysaccharide, LPS) in rats. Pregnant dams received LPS-injections (100 μg/kg) at gestational day 15 and 16. The offspring was then tested for prepulse inhibition (PPI), locomotor activity, anxiety-like behavior and object recognition memory at various developmental time points. At postnatal day (PD) 33 and 60, prenatally LPS-exposed rats showed locomotor hyperactivity which was similar in male and female offspring. Moreover, prenatal LPS-treatment caused PPI deficits in pubertal (PD45) and adult (PD90) males while PPI impairments were found only at PD45 in prenatally LPS-treated females. Following prenatal LPS-administration, recognition memory for objects was impaired in both sexes with males being more severely affected. Additionally, we assessed prenatal infection-induced alterations of parvalbumin (Parv) expression and myelin fiber density. Male offspring born to LPS-challenged mothers showed decreased myelination in cortical and limbic brain regions as well as reduced numbers of Parv-expressing cells in the medial prefrontal cortex (mPFC), hippocampus and entorhinal cortex. In contrast, LPS-exposed female rats showed only a modest decrease in myelination and Parv immunoreactivity. Collectively, our data indicate that some of the prenatal immune activation effects are sex dependent and further strengthen the importance of taking into account gender differences in animal models of schizophrenia.
Collapse
Affiliation(s)
- Lena Wischhof
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany.
| | - Ellen Irrsack
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| | - Carmen Osorio
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| | - Michael Koch
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| |
Collapse
|
18
|
Issy AC, Padovan-Neto FE, Lazzarini M, Bortolanza M, Del-Bel E. Disturbance of sensorimotor filtering in the 6-OHDA rodent model of Parkinson's disease. Life Sci 2015; 125:71-8. [PMID: 25681528 DOI: 10.1016/j.lfs.2015.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/23/2015] [Accepted: 01/25/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Ana Carolina Issy
- Department of Morphology, Physiology and Basic Pathology, School of Odontology of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Ribeirao Preto, SP, Brazil
| | - Fernando E Padovan-Neto
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Ribeirao Preto, SP, Brazil; Department of Neuroscience and Behavior, University of Sao Paulo, Ribeirao Preto Medical School, Ribeirao Preto, SP, Brazil
| | - Marcio Lazzarini
- Department of Morphology, Physiology and Basic Pathology, School of Odontology of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Neuroscience and Behavior, University of Sao Paulo, Ribeirao Preto Medical School, Ribeirao Preto, SP, Brazil
| | - Mariza Bortolanza
- Department of Morphology, Physiology and Basic Pathology, School of Odontology of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Ribeirao Preto, SP, Brazil
| | - Elaine Del-Bel
- Department of Morphology, Physiology and Basic Pathology, School of Odontology of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Ribeirao Preto, SP, Brazil; Department of Neuroscience and Behavior, University of Sao Paulo, Ribeirao Preto Medical School, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
19
|
Koch H, Bespalov A, Drescher K, Franke H, Krügel U. Impaired cognition after stimulation of P2Y1 receptors in the rat medial prefrontal cortex. Neuropsychopharmacology 2015; 40:305-14. [PMID: 25027332 PMCID: PMC4443943 DOI: 10.1038/npp.2014.173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/02/2014] [Accepted: 07/10/2014] [Indexed: 11/09/2022]
Abstract
We hypothesize that cortical ATP and ADP accumulating in the extracellular space, eg during prolonged network activity, contribute to a decline in cognitive performance in particular via stimulation of the G protein-coupled P2Y1 receptor (P2Y1R) subtype. Here, we report first evidence on P2Y1R-mediated control of cognitive functioning in rats using bilateral microinfusions of the selective agonist MRS2365 into medial prefrontal cortex (mPFC). MRS2365 attenuated prepulse inhibition of the acoustic startle reflex while having no impact on startle amplitude. Stimulation of P2Y1Rs deteriorated performance accuracy in the delayed non-matching to position task in a delay dependent manner and increased the rate of magazine entries consistent with both working memory disturbances and impaired impulse control. Further, MRS2365 significantly impaired performance in the reversal learning task. These effects might be related to MRS2365-evoked increase of dopamine observed by microdialysis to be short-lasting in mPFC and long-lasting in the nucleus accumbens. P2Y1Rs were identified on pyramidal cells and parvalbumin-positive interneurons, but not on tyrosine hydroxylase-positive fibers, which argues for an indirect activation of dopaminergic afferents in the cortex by MRS2365. Collectively, these results suggest that activation of P2Y1Rs in the mPFC impairs inhibitory control and behavioral flexibility mediated by increased mesocorticolimbic activity and local disinhibition.
Collapse
Affiliation(s)
- Holger Koch
- Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, Leipzig, Germany,Translational Centre for Regenerative Medicine (TRM) Leipzig, University of Leipzig, Philipp-Rosenthal-Strasse 55, Leipzig, Germany
| | - Anton Bespalov
- AbbVie, Neuroscience Research, Knollstrasse 50, Ludwigshafen, Germany,AbbVie Deutschland GmbH & Co KG, Neuroscience Research, Knollstrasse 50, Ludwigshafen 67008, Germany, E-mail:
| | - Karla Drescher
- AbbVie, Neuroscience Research, Knollstrasse 50, Ludwigshafen, Germany
| | - Heike Franke
- Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, Leipzig, Germany
| | - Ute Krügel
- Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, Leipzig, Germany,Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, Leipzig 67061, Germany, Tel: +49 341 97 24600, Fax: +49 341 97 24609, E-mail:
| |
Collapse
|
20
|
Rich ME, Caldwell HK. A Role for Oxytocin in the Etiology and Treatment of Schizophrenia. Front Endocrinol (Lausanne) 2015; 6:90. [PMID: 26089815 PMCID: PMC4453483 DOI: 10.3389/fendo.2015.00090] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/15/2015] [Indexed: 01/12/2023] Open
Abstract
Schizophrenia is a chronic debilitating neuropsychiatric disorder estimated to affect 51 million people worldwide. Several symptom domains characterize schizophrenia, including negative symptoms, such as social withdrawal and anhedonia, cognitive impairments, such as disorganized thinking and impaired memory, and positive symptoms, such as hallucinations and delusions. While schizophrenia is a complex neuropsychiatric disorder with no single "cause," there is evidence that the oxytocin (Oxt) system may be dysregulated in some individuals. Further, treatment with intranasal Oxt reduces some of the heterogeneous symptoms associated with schizophrenia. Since Oxt is known for its modulatory effects on a variety of social and non-social behaviors, it is perhaps not surprising that it may contribute to some aspects of schizophrenia and could also be a useful therapeutic agent. In this review, we highlight what is known about Oxt's contributions to schizophrenia and schizophrenia-related behaviors and discuss its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Megan Elizabeth Rich
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, The School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Heather Kingsley Caldwell
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, The School of Biomedical Sciences, Kent State University, Kent, OH, USA
- *Correspondence: Heather Kingsley Caldwell, Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, The School of Biomedical Sciences, Kent State University, PO Box 5190, 121 Cunningham Hall, Kent, OH 44242, USA,
| |
Collapse
|
21
|
Bortolato M, Bini V, Frau R, Devoto P, Pardu A, Fan Y, Solbrig MV. Juvenile cannabinoid treatment induces frontostriatal gliogenesis in Lewis rats. Eur Neuropsychopharmacol 2014; 24:974-85. [PMID: 24630433 DOI: 10.1016/j.euroneuro.2013.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 11/20/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
Cannabis abuse in adolescence is associated with a broad array of phenotypical consequences, including a higher risk for schizophrenia and other mental disturbances related to dopamine (DA) imbalances. The great variability of these sequelae likely depends on the key influence of diverse genetic vulnerability factors. Inbred rodent strains afford a highly informative tool to study the contribution of genetic determinants to the long-term effects of juvenile cannabinoid exposure. In this study, we analyzed the phenotypical impact of the synthetic cannabinoid agonist WIN 55,212-2 (WIN; 2mg/kg/day from postnatal day 35-48) in adolescent Lewis rats, an inbred strain exhibiting resistance to psychotomimetic effects of environmental manipulations. At the end of this treatment, WIN-injected animals displayed increased survival of new cells (mainly oligodendroglia precursors) in the striatum and prefrontal cortex (PFC), two key terminal fields of DAergic pathways. To test whether these changes may be associated with enduring behavioral alterations, we examined the consequences of adolescent WIN treatment in adulthood (postnatal days 60-70), with respect to DA levels and metabolism as well as multiple behavioral paradigms. Rats injected with WIN exhibited increased turnover, but not levels, of striatal DA. In addition, cannabinoid-treated animals displayed increases in acoustic startle latency and novel-object exploration; however, WIN treatment failed to induce overt deficits of sensorimotor gating and social interaction. These results indicate that, in Lewis rats, juvenile cannabinoid exposure leads to alterations in frontostriatal gliogenesis, as well as select behavioral alterations time-locked to high DAergic metabolism, but not overt schizophrenia-related deficits.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Dr, Malott Hall, Room 5040, Lawrence, KS, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence (KS), USA.
| | - Valentina Bini
- "Guy Everett" Laboratory, Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Roberto Frau
- "Guy Everett" Laboratory, Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Paola Devoto
- "Guy Everett" Laboratory, Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Alessandra Pardu
- "Guy Everett" Laboratory, Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Yijun Fan
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Marylou V Solbrig
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada; Department of Medicine (Neurology), University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
22
|
Rohleder C, Jung F, Mertgens H, Wiedermann D, Sué M, Neumaier B, Graf R, Leweke FM, Endepols H. Neural correlates of sensorimotor gating: a metabolic positron emission tomography study in awake rats. Front Behav Neurosci 2014; 8:178. [PMID: 24904330 PMCID: PMC4033256 DOI: 10.3389/fnbeh.2014.00178] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/28/2014] [Indexed: 01/20/2023] Open
Abstract
Impaired sensorimotor gating occurs in neuropsychiatric disorders such as schizophrenia and can be measured using the prepulse inhibition (PPI) paradigm of the acoustic startle response. This assay is frequently used to validate animal models of neuropsychiatric disorders and to explore the therapeutic potential of new drugs. The underlying neural network of PPI has been extensively studied with invasive methods and genetic modifications. However, its relevance for healthy untreated animals and the functional interplay between startle- and PPI-related areas during a PPI session is so far unknown. Therefore, we studied awake rats in a PPI paradigm, startle control and background noise control, combined with behavioral [(18)F]fluoro-2-deoxyglucose positron emission tomography (FDG-PET). Subtractive analyses between conditions were used to identify brain regions involved in startle and PPI processing in well-hearing Black hooded rats. For correlative analysis with regard to the amount of PPI we also included hearing-impaired Lister hooded rats that startled more often, because their hearing threshold was just below the lowest prepulses. Metabolic imaging showed that the brain areas proposed for startle and PPI mediation are active during PPI paradigms in healthy untreated rats. More importantly, we show for the first time that the whole PPI modulation network is active during "passive" PPI sessions, where no selective attention to prepulse or startle stimulus is required. We conclude that this reflects ongoing monitoring of stimulus significance and constant adjustment of sensorimotor gating.
Collapse
Affiliation(s)
- Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
- Multimodal Imaging, Max Planck Institute for Neurological ResearchCologne, Germany
| | - Fabienne Jung
- Multimodal Imaging, Max Planck Institute for Neurological ResearchCologne, Germany
| | - Hanna Mertgens
- Multimodal Imaging, Max Planck Institute for Neurological ResearchCologne, Germany
| | - Dirk Wiedermann
- Multimodal Imaging, Max Planck Institute for Neurological ResearchCologne, Germany
| | - Michael Sué
- Multimodal Imaging, Max Planck Institute for Neurological ResearchCologne, Germany
| | - Bernd Neumaier
- Multimodal Imaging, Max Planck Institute for Neurological ResearchCologne, Germany
| | - Rudolf Graf
- Multimodal Imaging, Max Planck Institute for Neurological ResearchCologne, Germany
| | - F. Markus Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
| | - Heike Endepols
- Multimodal Imaging, Max Planck Institute for Neurological ResearchCologne, Germany
| |
Collapse
|
23
|
Wu Y, Satkunendrarajah K, Fehlings M. Riluzole improves outcome following ischemia–reperfusion injury to the spinal cord by preventing delayed paraplegia. Neuroscience 2014; 265:302-12. [DOI: 10.1016/j.neuroscience.2014.01.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 12/15/2022]
|
24
|
Turner KM, Burne THJ. Comprehensive behavioural analysis of Long Evans and Sprague-Dawley rats reveals differential effects of housing conditions on tests relevant to neuropsychiatric disorders. PLoS One 2014; 9:e93411. [PMID: 24671152 PMCID: PMC3966872 DOI: 10.1371/journal.pone.0093411] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/05/2014] [Indexed: 01/07/2023] Open
Abstract
Genetic (G) and environmental (E) manipulations are known to alter behavioural outcomes in rodents, however many animal models of neuropsychiatric disorders only use a restricted selection of strain and housing conditions. The aim of this study was to examine GxE interactions comparing two outbred rat strains, which were housed in either standard or enriched cages. The strains selected were the albino Sprague-Dawley rat, commonly used for animal models, and the other was the pigmented Long Evans rat, which is frequently used in cognitive studies. Rats were assessed using a comprehensive behavioural test battery and included well-established tests frequently employed to examine animal models of neuropsychiatric diseases, measuring aspects of anxiety, exploration, sensorimotor gating and cognition. Selective strain and housing effects were observed on a number of tests. These included increased locomotion and reduced pre-pulse inhibition in Long Evans rats compared to Sprague Dawley rats; and rats housed in enriched cages had reduced anxiety-like behaviour compared to standard housed rats. Long Evans rats required fewer sessions than Sprague Dawley rats to learn operant tasks, including a signal detection task and reversal learning. Furthermore, Long Evans rats housed in enriched cages acquired simple operant tasks faster than standard housed Long Evans rats. Cognitive phenotypes in animal models of neuropsychiatric disorders would benefit from using strain and housing conditions where there is greater potential for both enhancement and deficits in performance.
Collapse
Affiliation(s)
- Karly M. Turner
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Australia
- * E-mail:
| |
Collapse
|
25
|
Kjell J, Sandor K, Josephson A, Svensson CI, Abrams MB. Rat substrains differ in the magnitude of spontaneous locomotor recovery and in the development of mechanical hypersensitivity after experimental spinal cord injury. J Neurotrauma 2013; 30:1805-11. [PMID: 23879467 DOI: 10.1089/neu.2013.2998] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A number of different rodent experimental models of spinal cord injury have been used in an attempt to model the pathophysiology of human spinal cord injury. As a result, interlaboratory comparisons of the outcome measures can be difficult. Further complicating interexperiment comparisons is the fact that the rodent response to different experimental models is strain-dependent. Moreover, the literature is abundant with examples in which the same injury model and strain result in divergent functional outcomes. The objective of this research was to determine whether substrain differences influence functional outcome in experimental spinal cord injury. We induced mild contusion spinal cord injuries in three substrains of Sprague-Dawley rats purchased from three different European breeders (Scanbur, Charles River, and Harlan) and evaluated the impact of injury on spontaneous locomotor function, hypersensitivity to mechanical stimulation, and bladder function. We found that Harlan rats regained significantly more hindlimb function than Charles River and Scanbur rats. We also observed substrain differences in the recovery of the ability to empty the bladder and development of hypersensitivity to mechanical stimulation. The Harlan substrain did not show any signs of hypersensitivity in contrast to the Scanbur and Charles River substrains, which both showed transient reduction in paw withdrawal thresholds. Lastly, we found histological differences possibly explaining the observed behavioral differences. We conclude that in spite of being the same strain, there might be genetic differences that can influence outcome measures in experimental studies of spinal cord injury of Sprague-Dawley rats from different vendors.
Collapse
Affiliation(s)
- Jacob Kjell
- 1 Department of Neuroscience, Karolinska Institutet , Stockholm, Sweden
| | | | | | | | | |
Collapse
|
26
|
McIntosh AL, Ballard TM, Steward LJ, Moran PM, Fone KCF. The atypical antipsychotic risperidone reverses the recognition memory deficits induced by post-weaning social isolation in rats. Psychopharmacology (Berl) 2013; 228:31-42. [PMID: 23397053 DOI: 10.1007/s00213-013-3011-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/23/2013] [Indexed: 01/31/2023]
Abstract
RATIONALE Rearing rats in isolation from weaning is an established preclinical neurodevelopmental model which induces behavioural deficits with apparent translational relevance to some core symptoms of schizophrenia. OBJECTIVE This study evaluated the ability of the atypical antipsychotic risperidone to reverse behavioural deficits induced by post-weaning social isolation of rat pups and to further characterise the predictive validity of this model. METHOD Forty-five male Lister hooded rats were housed in groups of 3-4 (n = 16) or singly (n = 29) for 4 weeks immediately after weaning on postnatal day (PND) 22-24. On PND 51, novel cage-induced locomotor activity (LMA) was assessed to subdivide rats into groups balanced for behavioural response. On PNDs 58, 59, 65 and 72, rats received either vehicle (1 ml/kg; i.p.) or risperidone (0.2 or 0.5 mg/kg; i.p.) 30 min prior to testing in LMA, novel object discrimination (NOD), prepulse inhibition (PPI) of acoustic startle and conditioned emotional response (CER) learning paradigms, respectively. RESULTS Isolation rearing had no effect on PPI, but produced LMA hyperactivity and impaired NOD and CER compared to group-housed controls. Risperidone caused a dose-dependent reduction in LMA, irrespective of rearing condition, but selectively reversed the NOD deficit in isolation-reared rats. Risperidone did not reverse the isolation rearing-induced CER deficit. CONCLUSIONS Similar to its clinical profile, risperidone only partially reverses the schizophrenic symptomology; since it reversed some, but not all, of the learning and memory deficits induced by post-weaning isolation, the isolation rearing model may be useful to predict antipsychotic activity of novel therapeutic agents.
Collapse
Affiliation(s)
- Allison L McIntosh
- School of Biomedical Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | | | |
Collapse
|
27
|
Frau R, Pillolla G, Bini V, Tambaro S, Devoto P, Bortolato M. Inhibition of 5α-reductase attenuates behavioral effects of D1-, but not D2-like receptor agonists in C57BL/6 mice. Psychoneuroendocrinology 2013; 38:542-51. [PMID: 22877998 PMCID: PMC3540184 DOI: 10.1016/j.psyneuen.2012.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 11/30/2022]
Abstract
Converging lines of evidence point to the involvement of neurosteroids in the regulation of dopamine (DA) neurotransmission and signaling, yet the neurobiological bases of this link remain poorly understood. We previously showed that inhibition of steroid 5α-reductase (5αR), the key rate-limiting enzyme in neurosteroidogenesis, attenuates the behavioral effects of non-selective DA receptor agonists in rats, including stereotyped responses and sensorimotor gating deficits, as measured by the prepulse inhibition (PPI) of the acoustic startle reflex. Since previous findings suggested that the role of DA D(1)- and D(2)-like receptor families in behavioral regulation may exhibit broad interspecies and interstrain variations, we assessed the impact of 5αR blockade on the behavioral effects of DAergic agonists in C57BL/6 mice. The prototypical 5αR inhibitor finasteride (FIN; 25-50 mg/kg, intraperitoneally, IP) dose-dependently countered the PPI deficits and the enhancement of rearing responses induced by the full D(1)-like receptor agonist SKF-82958 (0.3 mg/kg, IP); however, FIN did not significantly affect the hyperlocomotive and startle-attenuating effects of SKF-82958. Whereas the D(2)-like receptor agonist quinpirole (QUIN; 0.5 mg/kg, IP) did not induce significant changes in PPI, the combination of this agent and FIN surprisingly produced marked gating and startle deficits. In contrast with previous data on rats, FIN did not affect the reductions of startle reflex and PPI produced by the non-selective DAergic agonist apomorphine (APO; 0.5 mg/kg, IP). These findings collectively indicate that, in C57BL/6 mice, 5αR differentially modulates the effects of D(1)- and D(2)-like receptor agonists in behavioral regulation.
Collapse
Affiliation(s)
- Roberto Frau
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
- Tourette Syndrome Center, University of Cagliari, Italy
| | - Giuliano Pillolla
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Valentina Bini
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Simone Tambaro
- Dept. of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles (CA), USA
| | - Paola Devoto
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Marco Bortolato
- Tourette Syndrome Center, University of Cagliari, Italy
- Dept. of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles (CA), USA
- Corresponding author: Marco Bortolato, MD PhD, Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Rm. 527, PSC 1985 Zonal Ave, Los Angeles, CA 90089, Phone: 323-442-3225, Fax: 323-442-3229,
| |
Collapse
|
28
|
Adult vitamin D deficiency leads to behavioural and brain neurochemical alterations in C57BL/6J and BALB/c mice. Behav Brain Res 2013; 241:120-31. [DOI: 10.1016/j.bbr.2012.12.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 12/11/2022]
|
29
|
Goepfrich AA, Gluch C, Friemel CM, Schneider M. Behavioral differences in three Wistar Han rat lines for emotional reactivity, cognitive processing and ethanol intake. Physiol Behav 2013; 110-111:102-8. [DOI: 10.1016/j.physbeh.2012.12.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/30/2012] [Indexed: 11/24/2022]
|
30
|
Chronic melatonin treatment reverses disruption of prepulse inhibition in pinealectomized and pinealectomized-plus-ovariectomized rats. Behav Brain Res 2013; 239:1-7. [DOI: 10.1016/j.bbr.2012.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/01/2012] [Accepted: 10/06/2012] [Indexed: 01/08/2023]
|
31
|
Naert A, Gantois I, Laeremans A, Vreysen S, Van den Bergh G, Arckens L, Callaerts-Vegh Z, D'Hooge R. Behavioural alterations relevant to developmental brain disorders in mice with neonatally induced ventral hippocampal lesions. Brain Res Bull 2013; 94:71-81. [PMID: 23357176 DOI: 10.1016/j.brainresbull.2013.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/31/2012] [Accepted: 01/17/2013] [Indexed: 12/22/2022]
Abstract
Neonatal lesioning of the ventral hippocampus (vHc) in rats has served as a useful heuristic animal model to elucidate neurodevelopmental mechanisms of schizophrenia (SCZ). In the current study we have established that this procedure can be applied to model SCZ symptomatology in mice. Neonatal mice (postnatal day 6) were anaesthetised by hypothermia and electrolytic lesions of the vHc were induced. We observed locomotor hyperactivity at prepubertal and adult age and hypersensitivity to amphetamine. Furthermore, working memory deficits were observed in Y-maze (spontaneous alternation) and T-maze (exploration of a novel arm) test protocols. Decreased anxious behaviour in the elevated plus maze and increased sociability were also observed. These changes were dependent on lesion size. No differences were observed in prepulse inhibition of the startle reflex, latent inhibition, spatial memory (Morris water maze), problem solving capacities (syringe puzzle) and ability to discriminate between different unfamiliar mice. The presented findings might further help to identify neurobiological mechanisms of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Arne Naert
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KULeuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
32
|
van den Buuse M. Exploring the role of 5-HT1A receptors in the regulation of prepulse inhibition in mice: implications for cross-species comparisons. ACS Chem Neurosci 2013; 4:149-60. [PMID: 23336054 DOI: 10.1021/cn300118t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/18/2012] [Indexed: 12/20/2022] Open
Abstract
Prepulse inhibition (PPI) is a model of sensorimotor gating, a sensory filtering mechanism which is disrupted in schizophrenia. Here, investigation of the role of the serotonin-1A (5-HT(1A)) receptor in the regulation of PPI in two mouse strains, C57Bl/6 and Balb/c, was used to address findings in the PPI literature on species and mouse strain differences that question the usefulness of PPI as a cross-species preclinical test. Although the full 5-HT(1A) receptor agonist, 8-OH-DPAT, induced markedly different strain-specific responses in PPI, other selective 5-HT(1A) receptor ligands with partial agonist or antagonist activity elicited similar effects across strains. Pretreatment with the serotonin precursor, 5-HTP, to increase serotonergic activity in the brain, unmasked a decrease in PPI caused by 8-OH-DPAT in C57Bl/6 mice. Pretreatment with the serotonin synthesis inhibitor, PCPA, to decrease serotonergic activity in the brain, unmasked an 8-OH-DPAT-induced increase in PPI in this strain. These studies show that the strain-dependent involvement of 5-HT(1A) receptors in PPI can be modulated by the type of 5-HT(1A) ligand used, or increasing or decreasing serotonin levels in the brain. These results help to clarify some of the mouse strain and species differences in PPI regulation and strengthen its usefulness as a cross-species measure of sensorimotor gating.
Collapse
Affiliation(s)
- Maarten van den Buuse
- Behavioural Neuroscience Laboratory,
Mental Health Research Institute, Florey Institute for Neuroscience
and Mental Health, Kenneth Myer Building, and Department of Pharmacology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
33
|
Devoto P, Frau R, Bini V, Pillolla G, Saba P, Flore G, Corona M, Marrosu F, Bortolato M. Inhibition of 5α-reductase in the nucleus accumbens counters sensorimotor gating deficits induced by dopaminergic activation. Psychoneuroendocrinology 2012; 37:1630-45. [PMID: 22029952 PMCID: PMC3432701 DOI: 10.1016/j.psyneuen.2011.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 11/16/2022]
Abstract
Cogent evidence highlights a key role of neurosteroids and androgens in schizophrenia. We recently reported that inhibition of steroid 5α-reductase (5αR), the rate-limiting enzyme in neurosteroid synthesis and androgen metabolism, elicits antipsychotic-like effects in humans and animal models, without inducing extrapyramidal side effects. To elucidate the anatomical substrates mediating these effects, we investigated the contribution of peripheral and neural structures to the behavioral effects of the 5αR inhibitor finasteride (FIN) on the prepulse inhibition (PPI) of the acoustic startle reflex (ASR), a rat paradigm that dependably simulates the sensorimotor gating impairments observed in schizophrenia and other neuropsychiatric disorders. The potential effect of drug-induced ASR modifications on PPI was excluded by measuring this index both as percent (%PPI) and absolute values (ΔPPI). In both orchidectomized and sham-operated rats, FIN prevented the %PPI deficits induced by the dopamine (DA) receptor agonists apomorphine (APO, 0.25mg/kg, SC) and d-amphetamine (AMPH, 2.5mg/kg, SC), although the latter effect was not corroborated by ΔPPI analysis. Conversely, APO-induced PPI deficits were countered by FIN infusions in the brain ventricles (10μg/1μl) and in the nucleus accumbens (NAc) shell and core (0.5μg/0.5μl/side). No significant PPI-ameliorating effect was observed following FIN injections in other brain regions, including dorsal caudate, basolateral amygdala, ventral hippocampus and medial prefrontal cortex, although a statistical trend was observed for the latter region. The efflux of DA in NAc was increased by systemic, but not intracerebral FIN administration. Taken together, these findings suggest that the role of 5αR in gating regulation is based on post-synaptic mechanisms in the NAc, and is not directly related to alterations in DA efflux in this region.
Collapse
Affiliation(s)
- Paola Devoto
- Tourette Syndrome Center, Laboratory “Guy Everett”, University of Cagliari, Cagliari, Italy
,Department of Neuroscience “Bernard B. Brodie”, University of Cagliari, Cagliari, Italy
| | - Roberto Frau
- Tourette Syndrome Center, Laboratory “Guy Everett”, University of Cagliari, Cagliari, Italy
,Department of Neuroscience “Bernard B. Brodie”, University of Cagliari, Cagliari, Italy
| | - Valentina Bini
- Department of Neuroscience “Bernard B. Brodie”, University of Cagliari, Cagliari, Italy
| | - Giuliano Pillolla
- Department of Neuroscience “Bernard B. Brodie”, University of Cagliari, Cagliari, Italy
| | - Pierluigi Saba
- Department of Neuroscience “Bernard B. Brodie”, University of Cagliari, Cagliari, Italy
| | - Giovanna Flore
- Department of Cardiovascular and Neurological Sciences, University of Cagliari, Italy
| | - Marta Corona
- Department of Cardiovascular and Neurological Sciences, University of Cagliari, Italy
| | - Francesco Marrosu
- Tourette Syndrome Center, Laboratory “Guy Everett”, University of Cagliari, Cagliari, Italy
,Department of Cardiovascular and Neurological Sciences, University of Cagliari, Italy
| | - Marco Bortolato
- Tourette Syndrome Center, Laboratory “Guy Everett”, University of Cagliari, Cagliari, Italy
,Department of Cardiovascular and Neurological Sciences, University of Cagliari, Italy
,Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
,Corresponding author at: Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Rm. 527, PSC 1985 Zonal Avenue, Los Angeles, CA 90089, USA. Tel.: +1 323 442 3225; fax: +1 323 442 3229. (M. Bortolato)
| |
Collapse
|
34
|
Wischhof L, Aho HE, Koch M. DOI-induced deficits in prepulse inhibition in Wistar rats are reversed by mGlu2/3 receptor stimulation. Pharmacol Biochem Behav 2012; 102:6-12. [DOI: 10.1016/j.pbb.2012.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 03/06/2012] [Accepted: 03/17/2012] [Indexed: 11/28/2022]
|
35
|
Zweifel LS, Fadok JP, Argilli E, Garelick MG, Jones GL, Dickerson TMK, Allen JM, Mizumori SJY, Bonci A, Palmiter RD. Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nat Neurosci 2011; 14:620-6. [PMID: 21499253 PMCID: PMC3083461 DOI: 10.1038/nn.2808] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/18/2011] [Indexed: 11/20/2022]
Abstract
Generalized anxiety is thought to result, in part, from impairments in contingency awareness during conditioning to cues that predict aversive or fearful outcomes. Dopamine neurons of the ventral midbrain exhibit heterogeneous responses to aversive stimuli that are thought to provide a critical modulatory signal to facilitate orienting to environmental changes and assignment of motivational value to unexpected events. Here, we describe a mouse model in which activation of dopamine neurons in response to an aversive stimulus is attenuated by conditional genetic inactivation of functional N–methyl–D–aspartate–type glutamate receptors (NMDARs) on dopamine neurons. We discovered that altering the magnitude of excitatory responses by dopamine neurons in response to an aversive stimulus is associated with impaired conditioning to a cue that predicts an aversive outcome. Impaired conditioning by these mice is associated with development of a persistent, generalized anxiety–like phenotype. These data are consistent with a role for dopamine in facilitating contingency awareness that is critical for the prevention of generalized anxiety.
Collapse
Affiliation(s)
- Larry S Zweifel
- Department of Pharmacology, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Modulation of methylphenidate effects on wheel running and acoustic startle by acute food deprivation in commercially and selectively bred rats. Pharmacol Biochem Behav 2011; 97:500-8. [DOI: 10.1016/j.pbb.2010.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/25/2010] [Accepted: 10/23/2010] [Indexed: 11/18/2022]
|
37
|
Umeda T, Takashima N, Nakagawa R, Maekawa M, Ikegami S, Yoshikawa T, Kobayashi K, Okanoya K, Inokuchi K, Osumi N. Evaluation of Pax6 mutant rat as a model for autism. PLoS One 2010; 5:e15500. [PMID: 21203536 PMCID: PMC3006426 DOI: 10.1371/journal.pone.0015500] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/04/2010] [Indexed: 01/31/2023] Open
Abstract
Autism is a highly variable brain developmental disorder and has a strong genetic basis. Pax6 is a pivotal player in brain development and maintenance. It is expressed in embryonic and adult neural stem cells, in astrocytes in the entire central nervous system, and in neurons in the olfactory bulb, amygdala, thalamus, and cerebellum, functioning in highly context-dependent manners. We have recently reported that Pax6 heterozygous mutant (rSey2/+) rats with a spontaneous mutation in the Pax6 gene, show impaired prepulse inhibition (PPI). In the present study, we further examined behaviors of rSey2/+ rats and revealed that they exhibited abnormality in social interaction (more aggression and withdrawal) in addition to impairment in rearing activity and in fear-conditioned memory. Ultrasonic vocalization (USV) in rSey2+ rat pups was normal in male but abnormal in female. Moreover, treatment with clozapine successfully recovered the defects in sensorimotor gating function, but not in fear-conditioned memory. Taken together with our prior human genetic data and results in other literatures, rSey2/+ rats likely have some phenotypic components of autism.
Collapse
Affiliation(s)
- Toshiko Umeda
- Division of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Takashima
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako, Japan
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
| | - Ryoko Nakagawa
- Laboratory for Biolinguistics, RIKEN Brain Science Institute, Wako, Japan
| | - Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Japan
| | - Shiro Ikegami
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
- Department of Psychology, Saitama Institute of Technology, Fukaya, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kazuo Okanoya
- Laboratory for Biolinguistics, RIKEN Brain Science Institute, Wako, Japan
| | - Kaoru Inokuchi
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
- Department of Biochemistry, Faculty of Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Noriko Osumi
- Division of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
38
|
Kayir H, Yavuz O, Goktalay G, Yildirim M, Uzbay T. The relationship between baseline prepulse inhibition levels and ethanol withdrawal severity in rats. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1507-14. [PMID: 20800642 DOI: 10.1016/j.pnpbp.2010.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
Baseline prepulse inhibition (PPI) of the acoustic startle reflex is thought to reflect the functioning of the sensorimotor gating system in the brain. The current literature indicates that similar neurotransmitter systems may play roles both in the regulation of PPI and in the development of ethanol withdrawal syndrome (EWS). The aim of the present study was to test if individual baseline PPI levels have any relationship to the behavioral and neurochemical consequences of EWS in rats. A batch of rats (n=30) was sorted according to baseline PPI levels and classified as either high-inhibitory (HI) or low-inhibitory (LI) rats (n=10 in each group). Ethanol was administered in a liquid diet for 21 days. On the 22nd day, ethanol was removed from the diet, and EWS was induced. At the 2nd, 4th, and 6th hours of EWS, locomotor activity and behavioral symptoms were evaluated. Brain tissue concentrations of dopamine, serotonin and noradrenaline in hippocampus, cortex, and striatum were measured after the 6th hour of EWS testing. Another batch of rats (n=30) was classified using the same procedure and fed with regular diet. On the 22nd day, rats were decapitated and neurochemical measurements were repeated. HI and LI rats consumed similar amounts of ethanol. However, EWS signs such as stereotyped behaviors, wet-dog shakes, and tremor were more intense in LI rats compared to their HI counterparts. Audiogenic seizures occurred in both groups in a similar manner. Although the catecholamine concentrations in the brains of both groups were parallel under baseline conditions, dopamine levels increased in the cortex of LI and in the striatum of HI rats, whereas striatum serotonin levels decreased only in LI rats after the 6th hour of EWS. In conclusion, the data suggest that the behavioral symptoms and neurochemical changes observed in EWS may be associated with baseline PPI levels.
Collapse
Affiliation(s)
- Hakan Kayir
- Department of Medical Pharmacology, Psychopharmacology Research Unit, Gulhane Military Medical Academy, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
39
|
Bardgett ME, Points M, Kleier J, Blankenship M, Griffith MS. The H3 antagonist, ciproxifan, alleviates the memory impairment but enhances the motor effects of MK-801 (dizocilpine) in rats. Neuropharmacology 2010; 59:492-502. [PMID: 20621107 DOI: 10.1016/j.neuropharm.2010.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 07/01/2010] [Accepted: 07/02/2010] [Indexed: 11/30/2022]
Abstract
Antagonists of H(3)-type histamine receptors exhibit cognitive-enhancing properties in various memory paradigms as well as evidence of antipsychotic activity in normal animals. The present study determined if a prototypical H(3) antagonist, ciproxifan, could reverse the behavioral effects of MK-801, a drug used in animals to mimic the hypoglutamatergic state suspected to exist in schizophrenia. Four behaviors were chosen for study, locomotor activity, ataxia, prepulse inhibition (PPI), and delayed spatial alternation, since their modification by dizocilpine (MK-801) has been well characterized. Adult male Long-Evans rats were tested after receiving a subcutaneous injection of ciproxifan or vehicle followed 20 min later by a subcutaneous injection of MK-801 or vehicle. Three doses of MK-801 (0.05, 0.1, & 0.3 mg/kg) increased locomotor activity. Each dose of ciproxifan (1.0 & 3.0 mg/kg) enhanced the effect of the moderate dose of MK-801, but suppressed the effect of the high dose. Ciproxifan (3.0 mg/kg) enhanced the effects of MK-801 (0.1 & 0.3 mg/kg) on fine movements and ataxia. Deficits in PPI were observed after treatment with MK-801 (0.05 & 0.1 mg/kg), but ciproxifan did not alter these effects. Delayed spatial alternation was significantly impaired by MK-801 (0.1 mg/kg) at a longer delay, and ciproxifan (3.0 mg/kg) alleviated this impairment. These results indicate that some H(3) antagonists can alleviate the impact of NMDA receptor hypofunction on some forms of memory, but may exacerbate its effect on other behaviors.
Collapse
Affiliation(s)
- Mark E Bardgett
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41076, USA.
| | | | | | | | | |
Collapse
|
40
|
Wang DD, Kriegstein AR. Blocking early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits. ACTA ACUST UNITED AC 2010; 21:574-87. [PMID: 20624842 DOI: 10.1093/cercor/bhq124] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A high incidence of seizures occurs during the neonatal period when immature networks are hyperexcitable and susceptible to hypersyncrhonous activity. During development, γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in adults, typically excites neurons due to high expression of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1). NKCC1 facilitates seizures because it renders GABA activity excitatory through intracellular Cl(-) accumulation, while blocking NKCC1 with bumetanide suppresses seizures. Bumetanide is currently being tested in clinical trials for treatment of neonatal seizures. By blocking NKCC1 with bumetanide during cortical development, we found a critical period for the development of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate synapses. Disruption of GABA signaling during this window resulted in permanent decreases in excitatory synaptic transmission and sensorimotor gating deficits, a common feature in schizophrenia. Our study identifies an essential role for GABA-mediated depolarization in regulating the balance between cortical excitation and inhibition during a critical period and suggests a cautionary approach for using bumetanide in treating neonatal seizures.
Collapse
Affiliation(s)
- Doris D Wang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco CA 94143, USA.
| | | |
Collapse
|
41
|
Uzbay T, Kayir H, Goktalay G, Yildirim M. Agmatine disrupts prepulse inhibition of acoustic startle reflex in rats. J Psychopharmacol 2010; 24:923-9. [PMID: 19282421 DOI: 10.1177/0269881109102533] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Agmatine is a guanidine-amine formed by the enzymatic decarboxylation of arginine. Agmatine has been proposed to be a neuromodulator and its downstream derivatives, the polyamines, have been suggested to be responsible for sensory gating deficits seen in schizophrenia. In this study, male Wistar rats underwent treatments with agmatine, vehicle or other agents known to alter sensory gating in an experimental paradigm of prepulse inhibition (PPI) of the acoustic startle response. Apomorphine (1 mg/kg s.c.), a nonselective dopamine agonist known to disrupt PPI responses, was injected as the positive reference. Neither apomorphine nor agmatine (40-160 mg/kg i.p.) induced effects on the intensity of startle reflex without a prepulse. However, apomorphine or agmatine (160 mg/kg i.p.) disrupted the PPI of acoustic startle reflex. Furthermore, when given 30 min prior, agmatine acted additively with apomorphine's effect on PPI. In an attempt to gain more insight, haloperidol (1 and 2 mg/kg i.p.), clozapine (2.5-7.5 mg/kg i.p.) or quetiapine (2.5 and 7.5 mg/kg i.p.) was also injected prior to agmatine (160 mg/kg i.p.). Haloperidol (1 mg/kg) and clozapine (2.5 and 5 mg/kg) were able to prevent the PPI-disrupting effects of apomorphine. However, none of these antipsychotics prevent the PPI-disrupting effects of agmatine. These results suggest that agmatine disrupts the PPI of acoustic startle reflex of rats in a fundamentally different manner than apomorphine does. It may also have a critical role in the pathogenesis of sensorimotor gating-related dysfunctions.
Collapse
Affiliation(s)
- T Uzbay
- Gulhane Military Medical Academy, Faculty of Medicine, Department of Medical Pharmacology, Psychopharmacology Research Unit, Ankara, Turkey.
| | | | | | | |
Collapse
|
42
|
Tejeda HA, Chefer VI, Zapata A, Shippenberg TS. The effects of kappa-opioid receptor ligands on prepulse inhibition and CRF-induced prepulse inhibition deficits in the rat. Psychopharmacology (Berl) 2010; 210:231-40. [PMID: 20232058 PMCID: PMC2946822 DOI: 10.1007/s00213-010-1799-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 02/10/2010] [Indexed: 11/30/2022]
Abstract
RATIONALE Kappa-opioid receptor (KOR) agonists produce dysphoria and psychotomimesis in humans. KORs are enriched in the prefrontal cortex and other brain regions that regulate mood and cognitive function. Dysregulation of the dynorphin/KOR system has been implicated in the pathogenesis of schizophrenia, depression, and bipolar disorder. Prepulse inhibition of the acoustic startle reflex (PPI), a sensorimotor gating process, is disrupted in many psychiatric disorders. OBJECTIVES The present study determined whether KOR ligands alter PPI in rats. RESULTS Utilizing a range of doses of the synthetic KOR agonists (+/-) U50,488, (-) U50,488, and U69,593 and the naturally occurring KOR agonist, Salvinorin A, we demonstrate that KOR activation does not alter PPI or startle reactivity in rats. Similarly, selective KOR blockade using the long-acting antagonist nor-binaltorphimine (nor-BNI) was without effect. In contrast to KOR ligands, MK-801 and quinpirole produced deficits in PPI. Stress and corticotropin-releasing factor (CRF) decrease PPI levels. The dynorphin/KOR system has been suggested to be a key mediator of various behavioral effects produced by stress and CRF. We therefore examined the contribution of KORs to CRF-induced alterations in PPI. Intracerebroventricular infusion of CRF decreased PPI. Administration of nor-BNI failed to affect the CRF-evoked disruption in PPI. CONCLUSIONS Together, these results provide no evidence of a link between the dynorphin/KOR system and deficits in sensory gating processes. Additional studies, however, examining whether dysregulation of this opioid system contributes to cognitive deficits and other behavioral abnormalities associated with psychiatric disorders are warranted.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Animals
- Benzeneacetamides/pharmacology
- Corticotropin-Releasing Hormone/pharmacology
- Diterpenes, Clerodane/pharmacology
- Dose-Response Relationship, Drug
- Ligands
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Neural Inhibition
- Pyrrolidines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Reflex, Startle/drug effects
Collapse
Affiliation(s)
- Hugo A. Tejeda
- Integrative Neuroscience Section, Integrative Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, NIDA/IRP 333 Cassell Dr., Baltimore, MD 21224, USA
- Program in Neuroscience, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201, USA
| | - Vladimir I. Chefer
- Integrative Neuroscience Section, Integrative Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, NIDA/IRP 333 Cassell Dr., Baltimore, MD 21224, USA
| | - Agustin Zapata
- Integrative Neuroscience Section, Integrative Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, NIDA/IRP 333 Cassell Dr., Baltimore, MD 21224, USA
| | - Toni S. Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, NIDA/IRP 333 Cassell Dr., Baltimore, MD 21224, USA
| |
Collapse
|
43
|
Darbra S, Pallarès M. Alterations in neonatal neurosteroids affect exploration during adolescence and prepulse inhibition in adulthood. Psychoneuroendocrinology 2010; 35:525-35. [PMID: 19775818 DOI: 10.1016/j.psyneuen.2009.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/31/2009] [Accepted: 08/27/2009] [Indexed: 11/27/2022]
Abstract
Allopregnanolone (AlloP) is a neurosteroid that plays an important role during neural development. Alterations of endogenous neonatal allopregnanolone levels alter the localisation and function of GABA neurons in the adult brain and affect behaviour in adulthood. We have carried out research into the effects of an increase (AlloP administration) or a decrease (administration of finasteride, inhibitor of the AlloP synthesis) of neonatal AlloP levels during the fifth to ninth postnatal days in male Wistar rats on the novelty exploration (Boissier test) at adolescent ages (40 and 60 days old), and on the prepulse inhibition achievement in adulthood (85 days). We also investigated the role of a GABA(A) modulator (midazolam, 1, 1.75 or 2.5mg/kg body weight) in the long-lasting behavioural changes in adulthood (85 days). Results indicate that neonatal finasteride decreases both novelty-exploration (head-dipping and locomotion) and anxiety-relevant scores (the distance travelled in and the number of entries into the central zone) at adolescent age, along with a reduction in body weight and general locomotion. Also, neonatal AlloP administration decreases prepulse inhibition in adulthood. Prepulse inhibition disruption was only partially reproduced decreasing the neonatal AlloP levels by means of finasteride administration. Although there was no interaction between neonatal neurosteroid manipulation and adult benzodiazepine treatments, the effects of midazolam were dose-dependent: the lowest dose of midazolam increased whereas the highest disrupted the expected progressive reduction of the startle response (and the consequent improvement of the PPI percentage) after the gradual increase in prepulse intensity. Reduced prepulse inhibition of startle provides evidence of deficient sensorimotor gating in several disorders, including schizophrenia. Alterations of AlloP levels during maturation could partly explain the inter-individual differences shown by adult subjects in response to novelty (exploration) and in the sensorimotor gating and prepulse inhibition. Also, abrupt changes in neonatal levels of AlloP could be related to a susceptibility to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sònia Darbra
- Departament de Psicobiologia i Metodologia en Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | |
Collapse
|
44
|
Pešić V, Popić J, Milanović D, Lončarević-Vasiljković N, Rakić L, Kanazir S, Ruždijić S. The effect of MK-801 on motor activity and c-Fos protein expression in the brain of adolescent Wistar rats. Brain Res 2010; 1321:96-104. [DOI: 10.1016/j.brainres.2010.01.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/28/2009] [Accepted: 01/17/2010] [Indexed: 01/18/2023]
|
45
|
Harro J. Inter-individual differences in neurobiology as vulnerability factors for affective disorders: implications for psychopharmacology. Pharmacol Ther 2009; 125:402-22. [PMID: 20005252 DOI: 10.1016/j.pharmthera.2009.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
Susceptibility to affective disorders is individually different, and determined both by genetic variance and life events that cause significant differences in the CNS structure and function between individual subjects. Therefore it is plausible that search for the inter-individual differences in endophenotypes that mediate the effects of causal factors, both genetic and environmental, will reveal the substrates for vulnerability, help to clarify pathogenetic mechanisms, and possibly aid in developing strategies to discover better, more personalized treatments. This review first examines comparatively a number of animal models of human affect and affect-related disorders that rely on persistent inter-individual differences, and then highlights some of the neurobiological findings in these models that are compatible with much of research in human behavioural and personality traits. Many behaviours occur in specific combinations in several models, but often remarkable dissociations are observed, providing a variety of constellations of traits. It is concluded that more systematic comparative experimentation on behaviour and neurobiology in different models is warranted to reveal possible "building blocks" of affect-related personality common in animals and humans. Looking into the perspectives in psychopharmacology the focus is placed on probable associations of inter-individual differences with brain structure and function, personality and coping strategies, and psychiatric vulnerability, highlighting some unexpected interactions between vulnerability endophenotypes, adverse life events, and behavioural traits. It is argued that further studies on inter-individual differences in affect and underlying neurobiology should include formal modeling of their epistatic, hierarchical and dynamic nature.
Collapse
Affiliation(s)
- Jaanus Harro
- Department of Psychology, University of Tartu, Estonian Centre of Behavioural and Health Sciences, Tiigi 78, 50410 Tartu, Estonia.
| |
Collapse
|
46
|
The amphetamine sensitization model of schizophrenia: relevance beyond psychotic symptoms? Psychopharmacology (Berl) 2009; 206:603-21. [PMID: 19326100 DOI: 10.1007/s00213-009-1514-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 03/10/2009] [Indexed: 10/21/2022]
Abstract
RATIONALE A sensitized dopamine system may be linked to the genesis of psychotic symptoms in schizophrenia. Following withdrawal from amphetamine exposures, psychotic-like traits have been robustly demonstrated, but the presence of cognitive/mnemonic deficits remains uncertain. METHODS Adult male Lewis and Fischer rats, differing in cognitive performance, were exposed intermittently to escalating doses of amphetamine over 5 weeks. This was effective in producing behavioral sensitization to a subsequent amphetamine challenge. Following 27 days of drug withdrawal, the animals were assessed in Pavlovian conditioning, object recognition, and spatial working memory. In addition, prepulse inhibition (PPI), spontaneous motor activity, and anxiety-like behavior were measured. RESULTS Amphetamine pretreatment induced behavioral sensitization in both rat strains similarly. Working memory was enhanced in Fischer but not Lewis rats following withdrawal. Spontaneous novel object preference was enhanced in sensitized Fischer rats, but was impaired in sensitized Lewis rats, thus effectively reversing the strain difference in non-sensitized controls. In contrast, Pavlovian fear conditioning remained unaffected and so were anxiety-like behavior, open field activity, and PPI. CONCLUSION The face validity of the amphetamine withdrawal model for cognitive deficits was limited to the object recognition memory impairment observed in sensitized Lewis rats. Yet, the possibility that enhancing dopaminergic neurotransmission may facilitate object recognition and spatial working memory performance was demonstrated in sensitized Fischer rats. Identification of the mechanisms underlying such strain-dependent effects would be instrumental in the further specifications of the construct validity, and therefore the limitations and potential of the amphetamine sensitization model of schizophrenia.
Collapse
|
47
|
Hayashida M, Miyaoka T, Tsuchie K, Yasuda H, Wake R, Nishida A, Inagaki T, Toga T, Nagami H, Oda T, Horiguchi J. Hyperbilirubinemia-related behavioral and neuropathological changes in rats: a possible schizophrenia animal model. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:581-8. [PMID: 19249333 DOI: 10.1016/j.pnpbp.2009.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 02/05/2009] [Accepted: 02/06/2009] [Indexed: 11/20/2022]
Abstract
BACKGROUND Patients with schizophrenia show a significantly higher frequency of hyperbilirubinemia than patients suffering from other psychiatric disorders and the general healthy population. We examined the hyperbilirubinemia on behavioral and neuropathological changes in rats as a possible animal model of schizophrenia. METHODS Gunn rats with severe hyperbilirubinemia (j/j), Gunn rats without severe hyperbilirubinemia (+/j), and Wistar rats were examined by open-field, social interaction, and prepulse inhibition tests. TUNEL, AgNOR and Ki-67 were also assayed on paraffin-embedded brain sections of these rats. RESULTS Compared to Wistar rats, both Gunn j/j and +/j rats showed hyperlocomotion, high sniffing scores, and low defecation scores. They showed significantly more aggressive behaviors and impaired prepulse inhibition. The numbers of Ki-67-labeled cells and AgNOR were lower and the number of TUNEL-positive cells was higher than that of Wistar rats. CONCLUSIONS These results might support the neurodevelopmental hypothesis of schizophrenia. Both Gunn j/j and +/j rats may be a useful animal model and provide clues to the role of hyperbilirubinemia in schizophrenia.
Collapse
Affiliation(s)
- Maiko Hayashida
- Department of Psychiatry, Shimane University Faculty of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Weber M, Breier M, Ko D, Thangaraj N, Marzan DE, Swerdlow NR. Evaluating the antipsychotic profile of the preferential PDE10A inhibitor, papaverine. Psychopharmacology (Berl) 2009; 203:723-35. [PMID: 19066855 PMCID: PMC2748940 DOI: 10.1007/s00213-008-1419-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 11/14/2008] [Indexed: 01/04/2023]
Abstract
RATIONALE Prepulse inhibition (PPI) is an operational measure of sensorimotor gating that is deficient in schizophrenia patients. In rats, PPI deficits induced by dopamine (DA) agonists are reversed by antipsychotics. Inhibition of the striatum-rich phosphodiesterase (PDE)10A may represent a novel antipsychotic mechanism. Previous studies were controversial, showing antipsychotic-like profiles in measures of PPI for the preferential PDE10A inhibitor papaverine (PAP) but not the novel PDE10A inhibitor TP-10. OBJECTIVE The aim of the study was to evaluate the antipsychotic profile of PAP in rats using PPI. MATERIALS AND METHODS PPI deficits were induced in rats by apomorphine (APO; 0.1, 0.5 mg/kg) or D: -amphetamine (AMPH; 4 mg/kg). PAP (3, 10, 30 mg/kg) or haloperidol (HAL; 0.1 mg/kg) was tested against these agonists in Sprague-Dawley (SD) or Wistar (WI) rats. Prepulse intervals ranged from 10 to 120 ms. Further tests evaluated the effects of PAP on spontaneous locomotion, AMPH (1 mg/kg)-induced hyperlocomotion, and core body temperature (T degrees ). RESULTS HAL reversed APO-induced PPI deficits but PAP failed to reverse APO- and AMPH-induced PPI deficits at all doses, strains, pretreatment times, and prepulse intervals. PAP (30 mg/kg) significantly reduced AMPH hyperlocomotion in SD rats, and a similar pattern was detected in WI rats. This PAP dose also strongly reduced spontaneous locomotion and T degrees in SD rats. CONCLUSION Our study does not support an antipsychotic-like profile of PAP in dopaminergic PPI models.
Collapse
Affiliation(s)
- M Weber
- Department of Psychiatry, UCSD School of Medicine, 9500 Gilman Dr., La Jolla, CA 92093-0804, USA
| | | | | | | | | | | |
Collapse
|
49
|
Secchi RL, Sung E, Hedley LR, Button D, Schreiber R. The neurotensin agonist NT69L improves sensorimotor gating deficits in rats induced by a glutamatergic antagonist, but not by dopaminergic agonists. Behav Brain Res 2009; 202:192-7. [PMID: 19463701 DOI: 10.1016/j.bbr.2009.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 11/29/2022]
Abstract
An imbalance between different neurotransmitter systems is involved in the pathophysiological processes underlying schizophrenia. Since the neurotensin (NT) system modulates the activity of several of these neurotransmitters, drugs acting upon the NT system may act as novel antipsychotic drugs. This hypothesis is supported by studies with NT in animal models. For example, intracranial injection of NT improves sensorimotor gating in rats [Feifel D, Minor KL, Dulawa S, Swerdlow NR. The effects of intra-accumbens neurotensin on sensorimotor gating. Brain Research 1997;760:80-4]. NT-mimetics, such as NT69L, have been developed which are more resistant to enzymatic degradation than the native NT peptide. In the present study, the potential antipsychotic properties of NT69L were evaluated in a rat pre-pulse inhibition (PPI) paradigm. PPI is a measure of sensorimotor gating where a weak auditory stimulus, or pre-pulse, inhibits the startle response to a strong stimulus, or pulse. Schizophrenic patients exhibit deficits in their PPI response. This condition can be mimicked in rats with psychotomimetic drugs and the resulting PPI deficit is reversed by antipsychotic drugs. NT69L (0.1-10mg/kg i.p.) reversed disruptions of the PPI response induced by the NMDA antagonist dizocilpine (0.1mg/kg s.c.) for at least 1-h post-injection, but did not reverse disruptions induced by the dopaminergic agonists apomorphine and d-amphetamine (0.5 and 5mg/kg s.c., respectively). These results confirm that NT69L possesses antipsychotic-like activity and therefore could be beneficial in the treatment of schizophrenia.
Collapse
Affiliation(s)
- R L Secchi
- CNS Therapy Area, Department of Neurobehavior, Roche Pharmaceuticals, Palo Alto, CA 94304, USA
| | | | | | | | | |
Collapse
|
50
|
Effects of microinjections of apomorphine and haloperidol into the inferior colliculus on the latent inhibition of the conditioned emotional response. Exp Neurol 2009; 216:16-21. [DOI: 10.1016/j.expneurol.2008.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 10/28/2008] [Accepted: 10/30/2008] [Indexed: 11/20/2022]
|