1
|
Bolzenius J, Sacdalan C, Ndhlovu LC, Sailasuta N, Trautmann L, Tipsuk S, Crowell TA, Suttichom D, Colby DJ, Phanuphak N, Chan P, Premeaux T, Kroon E, Vasan S, Hsu DC, Valcour V, Ananworanich J, Robb ML, Ake JA, Pohl KM, Sriplienchan S, Spudich S, Paul R. Brain volumetrics differ by Fiebig stage in acute HIV infection. AIDS 2023; 37:861-869. [PMID: 36723491 PMCID: PMC10079583 DOI: 10.1097/qad.0000000000003496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE People with chronic HIV exhibit lower regional brain volumes compared to people without HIV (PWOH). Whether imaging alterations observed in chronic infection occur in acute HIV infection (AHI) remains unknown. DESIGN Cross-sectional study of Thai participants with AHI. METHODS One hundred and twelve Thai males with AHI (age 20-46) and 18 male Thai PWOH (age 18-40) were included. Individuals with AHI were stratified into early (Fiebig I-II; n = 32) and late (Fiebig III-V; n = 80) stages of acute infection using validated assays. T1-weighted scans were acquired using a 3 T MRI performed within five days of antiretroviral therapy (ART) initiation. Volumes for the amygdala, caudate nucleus, hippocampus, nucleus accumbens, pallidum, putamen, and thalamus were compared across groups. RESULTS Participants in late Fiebig stages exhibited larger volumes in the nucleus accumbens (8% larger; P = 0.049) and putamen (19%; P < 0.001) when compared to participants in the early Fiebig. Compared to PWOH, participants in late Fiebig exhibited larger volumes of the amygdala (9% larger; P = 0.002), caudate nucleus (11%; P = 0.005), nucleus accumbens (15%; P = 0.004), pallidum (19%; P = 0.001), and putamen (31%; P < 0.001). Brain volumes in the nucleus accumbens, pallidum, and putamen correlated modestly with stimulant use over the past four months among late Fiebig individuals ( P s < 0.05). CONCLUSIONS Findings indicate that brain volume alterations occur in acute infection, with the most prominent differences evident in the later stages of AHI. Additional studies are needed to evaluate mechanisms for possible brain disruption following ART, including viral factors and markers of neuroinflammation.
Collapse
Affiliation(s)
| | - Carlo Sacdalan
- SEARCH, Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Lishomwa C Ndhlovu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York
| | - Napapon Sailasuta
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, University of Hawaii, Hawaii
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon
| | - Somporn Tipsuk
- SEARCH, Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Trevor A Crowell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | | | - Donn J Colby
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | | | - Phillip Chan
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Thomas Premeaux
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York
| | - Eugène Kroon
- SEARCH, Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Denise C Hsu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Victor Valcour
- Department of Neurology, University of California, San Francisco, California, USA
| | - Jintanat Ananworanich
- Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam, and Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Julie A Ake
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon
| | - Kilian M Pohl
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | | | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Robert Paul
- University of Missouri, St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Lillethorup TP, Noer O, Alstrup AKO, Real CC, Stokholm K, Thomsen MB, Zaer H, Orlowski D, Mikkelsen TW, Glud AN, Nielsen EHT, Schacht AC, Winterdahl M, Brooks DJ, Sørensen JCH, Landau AM. Spontaneous Partial Recovery of Striatal Dopaminergic Uptake Despite Nigral Cell Loss in Asymptomatic MPTP-Lesioned Female Minipigs. Neurotoxicology 2022; 91:166-176. [DOI: 10.1016/j.neuro.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
|
3
|
Tanguay W, Ducrot C, Giguère N, Bourque MJ, Trudeau LE. Neonatal 6-OHDA lesion of the SNc induces striatal compensatory sprouting from surviving SNc dopaminergic neurons without VTA contribution. Eur J Neurosci 2021; 54:6618-6632. [PMID: 34470083 DOI: 10.1111/ejn.15437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022]
Abstract
Dopamine (DA) neurons of the substantia nigra pars compacta (SNc) are uniquely vulnerable to neurodegeneration in Parkinson's disease (PD). We hypothesize that their large axonal arbor is a key factor underlying their vulnerability, due to increased bioenergetic, proteostatic and oxidative stress. In keeping with this model, other DAergic populations with smaller axonal arbors are mostly spared during the course of PD and are more resistant to experimental lesions in animal models. Aiming to improve mouse PD models, we examined if neonatal partial SNc lesions could lead to adult mice with fewer SNc DA neurons that are endowed with larger axonal arbors because of compensatory mechanisms. We injected 6-hydroxydopamine (6-OHDA) unilaterally in the SNc at an early postnatal stage at a dose selected to induce loss of approximately 50% of SNc DA neurons. We find that at 10 and 90 days after the lesion, the axons of SNc DA neurons show massive compensatory sprouting, as revealed by the proportionally smaller decrease in tyrosine hydroxylase (TH) in the striatum compared with the loss of SNc DA neuron cell bodies. The extent and origin of this axonal sprouting was further investigated by AAV-mediated expression of eYFP in SNc or ventral tegmental area (VTA) DA neurons of adult mice. Our results reveal that SNc DA neurons have the capacity to substantially increase their axonal arbor size and suggest that mice designed to have reduced numbers of SNc DA neurons could potentially be used to develop better mouse models of PD, with elevated neuronal vulnerability.
Collapse
Affiliation(s)
- William Tanguay
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| | - Charles Ducrot
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Giguère
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Josée Bourque
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Programmed axon degeneration: from mouse to mechanism to medicine. Nat Rev Neurosci 2020; 21:183-196. [PMID: 32152523 DOI: 10.1038/s41583-020-0269-3] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 11/08/2022]
Abstract
Wallerian degeneration is a widespread mechanism of programmed axon degeneration. In the three decades since the discovery of the Wallerian degeneration slow (WldS) mouse, research has generated extensive knowledge of the molecular mechanisms underlying Wallerian degeneration, demonstrated its involvement in non-injury disorders and found multiple ways to block it. Recent developments have included: the detection of NMNAT2 mutations that implicate Wallerian degeneration in rare human diseases; the capacity for lifelong rescue of a lethal condition related to Wallerian degeneration in mice; the discovery of 'druggable' enzymes, including SARM1 and MYCBP2 (also known as PHR1), in Wallerian pathways; and the elucidation of protein structures to drive further understanding of the underlying mechanisms and drug development. Additionally, new data have indicated the potential of these advances to alleviate a number of common disorders, including chemotherapy-induced and diabetic peripheral neuropathies, traumatic brain injury, and amyotrophic lateral sclerosis.
Collapse
|
5
|
Monje MHG, Blesa J, García-Cabezas MÁ, Obeso JA, Cavada C. Changes in thalamic dopamine innervation in a progressive Parkinson's disease model in monkeys. Mov Disord 2019; 35:419-430. [PMID: 31800134 PMCID: PMC7154739 DOI: 10.1002/mds.27921] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Dopamine loss beyond the mesostriatal system might be relevant in pathogenic mechanisms and some clinical manifestations in PD. The primate thalamus is densely and heterogeneously innervated with dopaminergic axons, most of which express the dopamine transporter, as does the nigrostriatal system. We hypothesized that dopamine depletion may be present in the thalamus of the parkinsonian brain and set out to ascertain possible regional differences. METHODS The toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine was administered to adult macaque monkeys using a slow intoxication protocol. The treated macaques were classified into 2 groups according to their motor status: nonsymptomatic and parkinsonian. Dopamine innervation was studied with immunohistochemistry for the dopamine transporter. Topographic maps of the dopamine transporter-immunoreactive axon distribution were generated and the total length and length density of these axons stereologically estimated using a 3-dimensional fractionator. RESULTS Parkinsonian macaques exhibited lower dopamine transporter-immunoreactive axon length density than controls in mediodorsal and centromedian-parafascicular nuclei. Dopamine denervation in the mediodorsal nucleus was already noticeable in nonsymptomatic macaques and was even greater in parkinsonian macaques. Reticular nucleus dopamine transporter-immunoreactive axon length density presented an inverse pattern, increasing progressively to the maximum density seen in parkinsonian macaques. No changes were observed in ventral thalamic nuclei. Dopamine transporter-immunoreactive axon maps supported the quantitative findings. CONCLUSIONS Changes in the dopamine innervation of various thalamic nuclei are heterogeneous and start in the premotor parkinsonian stage. These changes may be involved in some poorly understood nonmotor manifestations of PD. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mariana H G Monje
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,HM-CINAC, HM Puerta del Sur University Hospital, Móstoles, and CEU-San Pablo University, Madrid, Spain
| | - Javier Blesa
- HM-CINAC, HM Puerta del Sur University Hospital, Móstoles, and CEU-San Pablo University, Madrid, Spain.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain
| | - Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - José A Obeso
- HM-CINAC, HM Puerta del Sur University Hospital, Móstoles, and CEU-San Pablo University, Madrid, Spain.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain
| | - Carmen Cavada
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Chitre NM, Bagwell MS, Murnane KS. The acute toxic and neurotoxic effects of 3,4-methylenedioxymethamphetamine are more pronounced in adolescent than adult mice. Behav Brain Res 2019; 380:112413. [PMID: 31809766 DOI: 10.1016/j.bbr.2019.112413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 01/31/2023]
Abstract
3,4-methylenedioxymethamphetamine (MDMA) recently achieved breakthrough status from the Food and Drug Administration (FDA) for post-traumatic stress disorder (PTSD). However, evidence indicates that exposure to toxic doses of MDMA can lead to long-lasting dysregulation of brain monoaminergic neurotransmitters, primarily from studies conducted in young adult rodents. To date, there is a paucity of data on whether toxic doses of MDMA can differentially affect neurotransmitter systems in adolescents and mature adults, which is an important question as adolescents and adults may be differentially vulnerable to MDMA abuse. In the current study, adolescent (6-7 weeks of age) and mature adult (16-18 weeks of age) male, Swiss-Webster mice were exposed to MDMA (20 mg/kg) using a binge-like dosing regimen (4 administrations spaced every 2 h). Acute lethality, acute hyperthermia, and acute decreases in body weight following MDMA administration were more pronounced in adolescent than adult mice. Likewise, acute loss of striatal dopamine neurochemistry was also exacerbated in adolescents, as determined by high-pressure liquid chromatography coupled to electrochemical detection. Exposure to MDMA induced greater turnover of dopamine into its major metabolite dihydroxyphenylacetic acid (DOPAC) in adolescents, but not in adults, suggesting a novel mechanism through which adolescents may show increased vulnerability to the acute toxic and neurotoxic effects of MDMA, or conversely that mature adults show greater protection. These data caution that MDMA exposure in adolescence may be particularly dangerous and that the therapeutic window for MDMA may differ between adolescents and mature adults.
Collapse
Affiliation(s)
- Neha Milind Chitre
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Monique Simone Bagwell
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Kevin Sean Murnane
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA.
| |
Collapse
|
7
|
Dougherty SE, Kajstura TJ, Jin Y, Chan-Cortés MH, Kota A, Linden DJ. Catecholaminergic axons in the neocortex of adult mice regrow following brain injury. Exp Neurol 2019; 323:113089. [PMID: 31697941 DOI: 10.1016/j.expneurol.2019.113089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/10/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022]
Abstract
Serotonin axons in the adult rodent brain can regrow and recover their function following several forms of injury including controlled cortical impact (CCI), a neocortical stab wound, or systemic amphetamine toxicity. To assess whether this capacity for regrowth is unique to serotonergic fibers, we used CCI and stab injury models to assess whether fibers from other neuromodulatory systems can also regrow following injury. Using tyrosine-hydoxylase (TH) immunohistochemistry we measured the density of catecholaminergic axons before and at various time points after injury. One week after CCI injury we observed a pronounced loss, across cortical layers, of TH+ axons posterior to the site of injury. One month after CCI injury the same was true of TH+ axons both anterior and posterior to the site of injury. This loss was followed by significant recovery of TH+ fiber density across cortical layers, both anterior and posterior to the site of injury, measured three months after injury. TH+ axon loss and recovery over weeks to months was also observed throughout cortical layers using the stab injury model. Double label immunohistochemistry revealed that nearly all TH+ axons in neocortical layer 1/2 are also dopamine-beta-hyroxylase+ (DBH+; presumed norepinephrine), while TH+ axons in layer 5 are a mixture of DBH+ and dopamine transporter+ types. This suggests that noradrenergic axons can regrow following CCI or stab injury in the adult mouse neocortex and leaves open the question of whether dopaminergic axons can do the same.
Collapse
Affiliation(s)
- Sarah E Dougherty
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA
| | - Tymoteusz J Kajstura
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA
| | - Yunju Jin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA; Department of Neurobiology and Anatomy, University of Utah, School of Medicine, 20 South 2030 East, Room 320 BPRB, Salt Lake City, UT, USA
| | - Michelle H Chan-Cortés
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA
| | - Akhil Kota
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA
| | - David J Linden
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 916 Hunterian Building, Baltimore, MD, USA.
| |
Collapse
|
8
|
Giguère N, Delignat-Lavaud B, Herborg F, Voisin A, Li Y, Jacquemet V, Anand-Srivastava M, Gether U, Giros B, Trudeau LÉ. Increased vulnerability of nigral dopamine neurons after expansion of their axonal arborization size through D2 dopamine receptor conditional knockout. PLoS Genet 2019; 15:e1008352. [PMID: 31449520 PMCID: PMC6730950 DOI: 10.1371/journal.pgen.1008352] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/06/2019] [Accepted: 08/07/2019] [Indexed: 01/20/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Rare genetic mutations in genes such as Parkin, Pink1, DJ-1, α-synuclein, LRRK2 and GBA are found to be responsible for the disease in about 15% of the cases. A key unanswered question in PD pathophysiology is why would these mutations, impacting basic cellular processes such as mitochondrial function and neurotransmission, lead to selective degeneration of SNc DA neurons? We previously showed in vitro that SNc DA neurons have an extremely high rate of mitochondrial oxidative phosphorylation and ATP production, characteristics that appear to be the result of their highly complex axonal arborization. To test the hypothesis in vivo that axon arborization size is a key determinant of vulnerability, we selectively labeled SNc or VTA DA neurons using floxed YFP viral injections in DAT-cre mice and showed that SNc DA neurons have a much more arborized axon than those of the VTA. To further enhance this difference, which may represent a limiting factor in the basal vulnerability of these neurons, we selectively deleted in mice the DA D2 receptor (D2-cKO), a key negative regulator of the axonal arbour of DA neurons. In these mice, SNc DA neurons have a 2-fold larger axonal arborization, release less DA and are more vulnerable to a 6-OHDA lesion, but not to α-synuclein overexpression when compared to control SNc DA neurons. This work adds to the accumulating evidence that the axonal arborization size of SNc DA neurons plays a key role in their vulnerability in the context of PD. Parkinson’s disease motor symptoms have been linked to age-dependent degeneration of a class of neurons in the brain that release the chemical messenger dopamine. The reason for the selective loss of these neurons represents a key unsolved mystery. One hypothesis is that the neurons most at risk in this disease are those with the most extensive and complex connectivity in the brain, which would make these cells most dependent on high rates of mitochondrial energy production and expose them to higher rates of oxidative stress. Here we selectively deleted in dopamine neurons a key gene providing negative feedback control of the axonal arbor size of these neurons, in the objective of producing mice in which dopamine neurons have more extensive connectivity. We found that deletion of the dopamine D2 receptor gene in dopamine neurons leads to dopamine neurons with a longer and more complex axonal domain. We also found that in these mice, dopamine neurons in a region of the brain called the substantia nigra show increased vulnerability to a neurotoxin often used to model Parkinson’s disease in rodents. Our findings provide support for the hypothesis that the scale of a neuron’s connectivity directly influences its vulnerability to cellular stressors that trigger Parkinson’s disease.
Collapse
Affiliation(s)
- Nicolas Giguère
- Departments of pharmacology and physiology, Department of neurosciences, Central Nervous System Research Group (GRSNC), Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Benoît Delignat-Lavaud
- Departments of pharmacology and physiology, Department of neurosciences, Central Nervous System Research Group (GRSNC), Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Freja Herborg
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aurore Voisin
- Departments of pharmacology and physiology, Department of neurosciences, Central Nervous System Research Group (GRSNC), Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Yuan Li
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Vincent Jacquemet
- Department of pharmacology and physiology, Research Center of the Hôpital de Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | - Madhu Anand-Srivastava
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bruno Giros
- Department of Psychiatry, McGill University Faculty of Medicine, Douglas Mental Health University Institute, Montreal, Québec, Canada
| | - Louis-Éric Trudeau
- Departments of pharmacology and physiology, Department of neurosciences, Central Nervous System Research Group (GRSNC), Faculty of Medicine, Université de Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
9
|
Borgognon S, Cottet J, Moret V, Chatagny P, Carrara L, Fregosi M, Bloch J, Brunet JF, Rouiller EM, Badoud S. Fine Manual Dexterity Assessment After Autologous Neural Cell Ecosystem (ANCE) Transplantation in a Non-human Primate Model of Parkinson's Disease. Neurorehabil Neural Repair 2019; 33:553-567. [PMID: 31170868 DOI: 10.1177/1545968319850133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Autologous neural cell ecosystem (ANCE) transplantation improves motor recovery in MPTP monkeys. These motor symptoms were assessed using semi-quantitative clinical rating scales, widely used in many studies. However, limitations in terms of sensitivity, combined with relatively subjective assessment of their different items, make inter-study comparisons difficult to achieve. Objective. The aim of this study was to quantify the impact of MPTP intoxication in macaque monkeys on manual dexterity and assess whether ANCE can contribute to functional recovery. Methods. Four animals were trained to perform 2 manual dexterity tasks. After reaching a motor performance plateau, the animals were subjected to an MPTP lesion. After the occurrence of a spontaneous functional recovery plateau, all 4 animals were subjected to ANCE transplantation. Results. Two of 4 animals underwent a full spontaneous recovery before the ANCE transplantation, whereas the 2 other animals (symptomatic) presented moderate to severe Parkinson's disease (PD)-like symptoms affecting manual dexterity. The time to grasp small objects using the precision grip increased in these 2 animals. After ANCE transplantation, the 2 symptomatic animals underwent a significant functional recovery, reflected by a decrease in time to execute the different tasks, as compared with the post-lesion phase. Conclusions. Manual dexterity is affected in symptomatic MPTP monkeys. The 2 manual dexterity tasks reported here as pilot are pertinent to quantify PD symptoms and reliably assess a treatment in MPTP monkeys, such as the present ANCE transplantation, to be confirmed in a larger cohort of animals before future clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jocelyne Bloch
- 2 Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | | | | |
Collapse
|
10
|
Real CC, Doorduin J, Kopschina Feltes P, Vállez García D, de Paula Faria D, Britto LR, de Vries EF. Evaluation of exercise-induced modulation of glial activation and dopaminergic damage in a rat model of Parkinson's disease using [ 11C]PBR28 and [ 18F]FDOPA PET. J Cereb Blood Flow Metab 2019; 39:989-1004. [PMID: 29271291 PMCID: PMC6545619 DOI: 10.1177/0271678x17750351] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Evidence suggests that exercise can modulate neuroinflammation and neuronal damage. We evaluated if such effects of exercise can be detected with positron emission tomography (PET) in a rat model of Parkinson's disease (PD). Rats were unilaterally injected in the striatum with 6-hydroxydopamine (PD rats) or saline (controls) and either remained sedentary (SED) or were forced to exercise three times per week for 40 min (EX). Motor and cognitive functions were evaluated by the open field, novel object recognition, and cylinder tests. At baseline, day 10 and 30, glial activation and dopamine synthesis were assessed by [11C]PBR28 and [18F]FDOPA PET, respectively. PET data were confirmed by immunohistochemical analysis of microglial (Iba-1) / astrocyte (GFAP) activation and tyrosine hydroxylase (TH). [11C]PBR28 PET showed increased glial activation in striatum and hippocampus of PD rats at day 10, which had resolved at day 30. Exercise completely suppressed glial activation. Imaging results correlated well with post-mortem Iba-1 staining, but not with GFAP staining. [18F]FDOPA PET, TH staining and behavioral tests indicate that 6-OHDA caused damage to dopaminergic neurons, which was partially prevented by exercise. These results show that exercise can modulate toxin-induced glial activation and neuronal damage, which can be monitored noninvasively by PET.
Collapse
Affiliation(s)
- Caroline C Real
- 1 Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, University of São Paulo, São Paulo, SP, Brazil.,2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,3 Laboratory of Nuclear Medicine (LIM 43), University of São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Janine Doorduin
- 2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paula Kopschina Feltes
- 2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David Vállez García
- 2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daniele de Paula Faria
- 3 Laboratory of Nuclear Medicine (LIM 43), University of São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Luiz R Britto
- 1 Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, University of São Paulo, São Paulo, SP, Brazil
| | - Erik Fj de Vries
- 2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Seshadri A, Alladi PA. Divergent Expression Patterns of Drp1 and HSD10 in the Nigro-Striatum of Two Mice Strains Based on their MPTP Susceptibility. Neurotox Res 2019; 36:27-38. [PMID: 30993548 DOI: 10.1007/s12640-019-00036-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Alterations in the basal ganglia circuitry are critical events in the pathophysiology of Parkinson's disease (PD). We earlier compared MPTP-susceptible C57BL/6J and MPTP-resistant CD-1 mice to understand the differential prevalence of PD in different ethnic populations like Caucasians and Asian-Indians. The MPTP-resistant CD-1 mice had 33% more nigral neurons and lost only 15-17% of them following MPTP administration. In addition to other cytomorphological features, their basal ganglia neurons had higher calcium-buffering protein levels. During disease pathogenesis as well as in MPTP-induced parkinsonian models, the loss of nigral neurons is associated with reduction in mitochondrial complex-1. Under these conditions, mitochondria respond by undergoing fusion or fission. 17β-hydroxysteroid type 10, i.e., hydroxysteroid dehydrogenase10 (HSD10) and dynamin-related peptide1 (Drp1) are proteins involved in mitochondrial hyperfusion and fission, respectively. Each plays an important role in mitochondrial structure and homeostasis. Their role in determining susceptibility to the neurotoxin MPTP in basal ganglia is however unclear. We studied their expression using immunohistochemistry and Western blotting in the dorsolateral striatum, ventral tegmental area, and substantia nigra pars compacta (SNpc) of C57BL/6J and CD-1 mice. In the SNpc, which exhibits more neuron loss following MPTP, C57BL/6J had higher baseline Drp1 levels; suggesting persistence of fission under normal conditions. Whereas, HSD10 levels increased in CD-1 following MPTP administration. This suggests mitochondrial hyperfusion, as an attempt towards neuroprotection. Thus, the baseline differences in HSD10 and DRP1 levels as well as their contrasting MPTP-responses may be critical determinants of the magnitude of neuronal loss/survival. Similar differences may determine the variable susceptibility to PD in humans.
Collapse
Affiliation(s)
- Akshaya Seshadri
- Department of Neuroscience, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
- Department of Clinical Pharmacology and Toxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
12
|
Francardo V, Geva M, Bez F, Denis Q, Steiner L, Hayden MR, Cenci MA. Pridopidine Induces Functional Neurorestoration Via the Sigma-1 Receptor in a Mouse Model of Parkinson's Disease. Neurotherapeutics 2019; 16:465-479. [PMID: 30756361 PMCID: PMC6554374 DOI: 10.1007/s13311-018-00699-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pridopidine is a small molecule in clinical development for the treatment of Huntington's disease. It was recently found to have high binding affinity to the sigma-1 receptor, a chaperone protein involved in cellular defense mechanisms and neuroplasticity. Here, we have evaluated the neuroprotective and neurorestorative effects of pridopidine in a unilateral 6-hydroxydopamine (6-OHDA) lesion model of parkinsonism in mice. By 5 weeks of daily administration, a low dose of pridopidine (0.3 mg/kg) had significantly improved deficits in forelimb use (cylinder test, stepping test) and abolished the ipsilateral rotational bias typical of hemiparkinsonian animals. A higher dose of pridopidine (1 mg/kg) significantly improved only the rotational bias, with a trend towards improvement in forelimb use. The behavioral recovery induced by pridopidine 0.3 mg/kg was accompanied by a significant protection of nigral dopamine cell bodies, an increased dopaminergic fiber density in the striatum, and striatal upregulation of GDNF, BDNF, and phosphorylated ERK1/2. The beneficial effects of pridopidine 0.3 mg/kg were absent in 6-OHDA-lesioned mice lacking the sigma-1 receptor. Pharmacokinetic data confirmed that the effective dose of pridopidine reached brain concentrations sufficient to bind S1R. Our results are the first to show that pridopidine promotes functional neurorestoration in the damaged nigrostriatal system acting via the sigma-1 receptor.
Collapse
Affiliation(s)
- Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC F11, Lund, Sweden
| | | | - Francesco Bez
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC F11, Lund, Sweden
| | - Quentin Denis
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC F11, Lund, Sweden
| | - Lilach Steiner
- Teva Pharmaceutical Industries Global Research and Development, Netanya, Israel
| | | | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC F11, Lund, Sweden.
| |
Collapse
|
13
|
Carrera I, Cacabelos R. Current Drugs and Potential Future Neuroprotective Compounds for Parkinson's Disease. Curr Neuropharmacol 2019; 17:295-306. [PMID: 30479218 PMCID: PMC6425078 DOI: 10.2174/1570159x17666181127125704] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/29/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022] Open
Abstract
The research progress of understanding the etiology and pathogenesis of Parkinson's disease (PD) has yet lead to the development of some clinical approaches intended to treat cognitive and behavioral symptoms, such as memory and perception disorders. Despite the major advances in different genetic causes and risk factors for PD, which share common pathways to cell dysfunction and death, there is not yet a complete model of PD that can be used to accurately predict the effect of drugs on disease progression. Clinical trials are also important to test any novel neuro-protective agent, and recently there have been great advances in the use of anti-inflammatory drugs and plant flavonoid antioxidants to protect against specific neuronal degeneration and its interference with lipid and cholesterol metabolism. The increasing knowledge of the molecular events underlying the degenerative process of PD has stimulated research to identify natural compounds capable of halting or slowing the progress of neural deterioration. Polyphenols and flavonoids, which play a neuroprotective role in a wide array of in vitro and in vivo models of neurological disorders, emerged from among the multi-target bio-agents found mainly in plants and microorganisms. This review presents a detailed overview of the multimodal activities of neuroprotective bio-agents tested so far, emphasizing their neurorescue/neuroregenerative activity. The brain-penetrating property of bioagents may make these compounds an important class of natural drugs for the treatment of neurodegenerative diseases. Although there are numerous studies demonstrating beneficial effects in the laboratory by identifying critical molecular targets, the clinical efficacy of these neuroprotective treatments remains to be proven accurately.
Collapse
Affiliation(s)
- Iván Carrera
- Address correspondence to this author at the Department of Health Biotechnology, EuroEspes Biomedical Research Center, 15165 Bergondo, Corunna, Spain; Tel: +34 981780505; E-mail:
| | | |
Collapse
|
14
|
Grandi LC, Di Giovanni G, Galati S. Reprint of “Animal models of early-stage Parkinson's disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms”. J Neurosci Methods 2018; 310:75-88. [DOI: 10.1016/j.jneumeth.2018.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
|
15
|
Abudukeyoumu N, Hernandez-Flores T, Garcia-Munoz M, Arbuthnott GW. Cholinergic modulation of striatal microcircuits. Eur J Neurosci 2018; 49:604-622. [PMID: 29797362 PMCID: PMC6587740 DOI: 10.1111/ejn.13949] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.
Collapse
Affiliation(s)
| | | | | | - Gordon W Arbuthnott
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
16
|
Chang HI, Chang YT, Tsai SJ, Huang CW, Hsu SW, Liu ME, Chang WN, Lien CY, Huang SH, Lee CC, Chang CC. MAOA-VNTR Genotype Effects on Ventral Striatum-Hippocampus Network in Alzheimer's Disease: Analysis Using Structural Covariance Network and Correlation with Neurobehavior Performance. Mol Neurobiol 2018; 56:4518-4529. [PMID: 30338484 DOI: 10.1007/s12035-018-1394-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 10/11/2018] [Indexed: 01/22/2023]
Abstract
Functional polymorphisms in the promoter region of the monoamine oxidase A (MAOA) gene are associated with brain MAOA activity and transcriptional efficiency in patients with Alzheimer's disease (AD). This study investigated structural covariance networks mediated by MAOA-variable number tandem repeat (VNTR) genotypes in patients with AD, and assessed whether this effect was associated with sex. A total of 193 patients with AD were classified into four genotype groups based on MAOA transcriptional efficiency (female low [L], low-high + high activity groups [LH + H]; male L, male H groups). Structural covariance networks were constructed focusing on triple-network and striatal networks. Covariance strength was analyzed in the four groups, and the genotype and sex main effects and their interactions were analyzed. Significant peak cluster volumes were correlated with neurobehavioral scores to establish the clinical significance. MAOA genotypes mediated the structural covariance strength on the dorsolateral prefrontal cortex (dLPFC)-caudate axis in both sexes, but a higher covariance strength was shown in the female L group and male H group. The independent effect of male sex was related to higher covariance strength in the frontal medial superior region in the dLPFC, dorsal caudate (DC), and ventral superior striatum (VSs) seeds. In contrast, female sex had higher covariance strength in the frontal opercular areas anchored by the dLPFC, DC, and VSs seeds. Topographies showing higher covariance strength with sex interactions were found in the male H group and female L group in the dLPFC supplementary motor axis, DC-SMA, and DC-precentral axis. In our patients with AD, MAOA-VNTR polymorphisms and sex had independent and interactive effects on structural covariance networks, of which the dLPFC-, VSs-, and DC-anchored networks represented major endophenotypes that determined cognitive outcomes. The sex-genotype interaction model suggested that male high activity and female low activity may modulate brain morphometric connectivity and determine cognitive scores.
Collapse
Affiliation(s)
- Hsin-I Chang
- Department of General Neurology, Cognitive and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, #123, Ta-Pei Road, Niaosung, Kaohsiung County, 833, Taiwan
- Institute of Human Resource Management, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ya-Ting Chang
- Department of General Neurology, Cognitive and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, #123, Ta-Pei Road, Niaosung, Kaohsiung County, 833, Taiwan
| | - Shih-Jen Tsai
- Psychiatric Department of Taipei Veterans General Hospital, Taipei, Taiwan
- Psychiatric Division, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Wei Huang
- Department of General Neurology, Cognitive and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, #123, Ta-Pei Road, Niaosung, Kaohsiung County, 833, Taiwan
| | - Shih-Wei Hsu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mu-En Liu
- Psychiatric Division, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Neng Chang
- Department of General Neurology, Cognitive and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, #123, Ta-Pei Road, Niaosung, Kaohsiung County, 833, Taiwan
| | - Chia-Yi Lien
- Department of General Neurology, Cognitive and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, #123, Ta-Pei Road, Niaosung, Kaohsiung County, 833, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Chang Lee
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Department of General Neurology, Cognitive and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, #123, Ta-Pei Road, Niaosung, Kaohsiung County, 833, Taiwan.
| |
Collapse
|
17
|
Grandi LC, Di Giovanni G, Galati S. Animal models of early-stage Parkinson's disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms. J Neurosci Methods 2018; 308:205-218. [PMID: 30107207 DOI: 10.1016/j.jneumeth.2018.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a common neurodegenerative disease characterized by a widely variety of motor and non-motor symptoms. While the motor deficits are only visible following a severe dopamine depletion, neurodegenerative process and some non-motor symptoms are manifested years before the motor deficits. Importantly, chronic degeneration of dopaminergic neurons leads to the development of compensatory mechanisms that play roles in the progression of the disease and the response to anti-parkinsonian therapies. The identification of these mechanisms will be of great importance for improving our understanding of factors with important contributions to the disease course and the underlying adaptive process. To date, most of the data obtained from animal models reflect the late, chronic, dopamine-depleted states, when compensatory mechanisms have already been established. Thus, adequate animal models with which researchers are able to dissect early- and late-phase mechanisms are necessary. Here, we reviewed the literature related to animal models of early-stage PD and pharmacological treatments capable of inducing acute dopamine impairments and/or depletion, such as reserpine, haloperidol and tetrodotoxin. We highlighted the advantages, limitations and the future prospective uses of these models, as well as their applications in the identification of novel agents for treating this neurological disorder.
Collapse
Affiliation(s)
- Laura Clara Grandi
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Switzerland
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Salvatore Galati
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Switzerland.
| |
Collapse
|
18
|
Spike discharge characteristic of the caudal mesencephalic reticular formation and pedunculopontine nucleus in MPTP-induced primate model of Parkinson disease. Neurobiol Dis 2018; 128:40-48. [PMID: 30086388 DOI: 10.1016/j.nbd.2018.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022] Open
Abstract
The pedunculopontine nucleus (PPN) included in the caudal mesencephalic reticular formation (cMRF) plays a key role in the control of locomotion and wake state. Regarding its involvement in the neurodegenerative process observed in Parkinson disease (PD), deep brain stimulation of the PPN was proposed to treat levodopa-resistant gait disorders. However, the precise role of the cMRF in the pathophysiology of PD, particularly in freezing of gait and other non-motor symptoms is still not clear. Here, using micro electrode recording (MER) in 2 primates, we show that dopamine depletion did not alter the mean firing rate of the overall cMRF neurons, particularly the putative non-cholinergic ones, but only a decreased activity of the regular neurons sub-group (though to be the cholinergic PPN neurons). Interestingly, a significant increase in the relative proportion of cMRF neurons with a burst pattern discharge was observed after MPTP intoxication. The present results question the hypothesis of an over-inhibition of the CMRF by the basal ganglia output structures in PD. The decreased activity observed in the regular neurons could explain some non-motor symptoms in PD regarding the strong involvement of the cholinergic neurons on the modulation of the thalamo-cortical system. The increased burst activity under dopamine depletion confirms that this specific spike discharge pattern activity also observed in other basal ganglia nuclei and in different pathologies could play a mojor role in the pathophysiology of the disease and could explain several symptoms of PD including the freezing of gait. The present data will have to be replicated in a larger number of animals and will have to investigate more in details how the modification of the spike discharge of the cMRF neurons in the parkinsonian state could alter functions such as locomotion and attentional state. This will ultimely allow a better comprehension of the pathophysiology of freezing of gait.
Collapse
|
19
|
Granado N, Ares-Santos S, Tizabi Y, Moratalla R. Striatal Reinnervation Process after Acute Methamphetamine-Induced Dopaminergic Degeneration in Mice. Neurotox Res 2018; 34:627-639. [PMID: 29934756 DOI: 10.1007/s12640-018-9925-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 01/03/2023]
Abstract
Methamphetamine (METH), an amphetamine derivate, may increase the risk of developing Parkinson's disease (PD). Human and animal studies have shown that METH produces persistent dopaminergic neurotoxicity in the nigrostriatal pathway, despite initial partial recovery. To determine the processes leading to early compensation, we studied the detailed morphology and distribution of tyrosine hydroxylase immunoreactive fibers (TH-ir) classified by their thickness (types I-IV) before and after METH. Applying three established neurotoxic regimens of METH: single high dose (1 × 30 mg/kg), multiple lower doses (3 × 5 mg/kg) or (3 × 10 mg/kg), we show that METH primarily damages type I fibers (the thinner ones), and to a much lesser extend types II-IV fibers including sterile axons. The striatal TH terminal partial recovery process, consisting of a progressive regrowth increases in types II, III, and IV fibers, demonstrated by co-localization of GAP-43, a sprouting marker, was observed 3 days post-METH treatment. In addition, we demonstrate the presence of growth-cone-like TH-ir structures, indicative of new terminal generation as well as improvement in motor functions after 3 days. A temporal relationship was observed between decreases in TH-expression and increases in silver staining, a marker of degeneration. Striatal regeneration was associated with an increase in astroglia and decrease in microglia expression, suggesting a possible role for the neuroimmune system in regenerative processes. Identification of regenerative compensatory mechanisms in response to neurotoxic agents could point to novel mechanisms in countering the neurotoxicity and/or enhancing the regenerative processes.
Collapse
Affiliation(s)
- Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Avda Dr Arce 37, 28002, Madrid, Spain.,CIBERNED, ISCIII, Madrid, Spain
| | - Sara Ares-Santos
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Avda Dr Arce 37, 28002, Madrid, Spain.,CIBERNED, ISCIII, Madrid, Spain
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, USA
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Avda Dr Arce 37, 28002, Madrid, Spain. .,CIBERNED, ISCIII, Madrid, Spain.
| |
Collapse
|
20
|
Leak RK. Conditioning Against the Pathology of Parkinson's disease. CONDITIONING MEDICINE 2018; 1:143-162. [PMID: 30370426 PMCID: PMC6200356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Parkinson's disease is delayed in clinical onset, asymmetric in initial appearance, and slow in progression. One explanation for these characteristics may be a boost in natural defenses after early exposure to mild cellular stress. As the patient ages and resilience recedes, however, stress levels may become sufficiently high that toxic cellular responses can no longer be curbed, culminating in inverted U-shaped stress-response curves as a function of disease duration. If dopaminergic systems are indeed capable of responding to mild stress with effective natural defenses, experimental models of Parkinson's disease should adhere to the principles of preconditioning, whereby stress exposure fortifies cells and tempers the toxic sequelae of subsequent stressors. Here, I review evidence favoring the efficacy of preconditioning in dopaminergic systems. Recent animal work also raises the possibility that cross-hemispheric preconditioning may arrest the spread of asymmetric Parkinson's pathology to the other side of the brain. Indeed, compensatory homeostatic systems have long been hypothesized to maintain neurological function until a threshold of cell loss is exceeded and are often displayed as inverted U-shaped curves. However, some stress responses assume an exponential or sigmoidal profile as a function of disease severity, suggesting end-stage deceleration of disease processes. Thus, surviving dopaminergic neurons may become progressively harder to kill, with the dorsal nigral tier dying slower due to superior baseline defenses, inducible conditioning capacity, or delayed dorsomedial nigral spread of disease. In addition, compensatory processes may be useful as biomarkers to distinguish "responder patients" from "nonresponders" before clinical trials. However, another possibility is that defenses are already maximally conditioned in most patients and no further boost is possible. A third alternative is that genuinely diseased human cells cannot be conditioned, in contrast to preclinical models, none of which faithfully recapitulate age-related human conditions. Disease-related "conditioning deficiencies" would then explain how Parkinson's pathology takes root, progressively shrinks defenses, and eventually kills the patient.
Collapse
Affiliation(s)
- Rehana K. Leak
- For correspondence please address: Rehana K. Leak,
Ph.D., Graduate School of Pharmaceutical Sciences, Duquesne University, 600
Forbes Ave, Pittsburgh, PA 15282, ,
412.396.4734
| |
Collapse
|
21
|
Sgambato V, Tremblay L. Pathophysiology of dyskinesia and behavioral disorders in non-human primates: the role of serotonergic fibers. J Neural Transm (Vienna) 2018; 125:1145-1156. [PMID: 29502255 DOI: 10.1007/s00702-018-1871-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/27/2018] [Indexed: 12/26/2022]
Abstract
The MPTP monkey model of Parkinson's disease (PD) has allowed huge advances regarding the understanding of the pathological mechanisms of PD and L-DOPA-induced adverse effects. Among the main findings were the imbalance between the efferent striatal pathways in opposite directions between the hypokinetic and hyperkinetic states of PD. In both normal and parkinsonian monkeys, the combination of behavioral and anatomical studies has allowed the deciphering of the cortico-basal ganglia circuits involved in both movement and behavioral disorders. A major breakthrough has then been made regarding the hypothesis of the involvement of serotonergic fibers in the conversion of L-DOPA to dopamine when dopaminergic neurons are dying and to release it, in an uncontrolled manner, as serotonergic neurons are deprived from the machinery required for buffering dopamine from the synaptic cleft. The crucial involvement of serotonergic fibers underlying L-DOPA-induced dyskinesia (LID) has been demonstrated in both rodent and monkey models of PD, in which dyskinesia induced by L-DOPA is abolished following lesion of the serotonergic system. Moreover, the role of serotonergic fibers goes well beyond dyskinesia, as lesioning of such serotonergic fibers by MDMA in the monkey also decreased other L-DOPA-induced adverse effects such as impulsive compulsive behaviors and visual hallucinations. The same pathological mechanism, i.e., an imbalance between serotonin and dopamine terminals may, therefore, favor L-DOPA-induced adverse effects according to the basal ganglia territory it inhabits. Further non-human primate studies will be needed to demonstrate the role of such a pathological mechanism in both movement and behavioral disorders driven by L-DOPA therapy but also to determine the causal link between serotonin lesions and the expression of non-motor symptoms like apathy, depression and anxiety, frequently observed in PD patients.
Collapse
Affiliation(s)
- Véronique Sgambato
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Univ Lyon, CNRS, 69675, Bron, France.
| | - Léon Tremblay
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Univ Lyon, CNRS, 69675, Bron, France
| |
Collapse
|
22
|
Hou L, Chen W, Liu X, Qiao D, Zhou FM. Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson's Disease. Front Aging Neurosci 2017; 9:358. [PMID: 29163139 PMCID: PMC5675869 DOI: 10.3389/fnagi.2017.00358] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies indicate that physical activity and exercise may reduce the risk of developing Parkinson's disease (PD), and clinical observations suggest that physical exercise can reduce the motor symptoms in PD patients. In experimental animals, a profound observation is that exercise of appropriate timing, duration, and intensity can reduce toxin-induced lesion of the nigrostriatal dopamine (DA) system in animal PD models, although negative results have also been reported, potentially due to inappropriate timing and intensity of the exercise regimen. Exercise may also minimize DA denervation-induced medium spiny neuron (MSN) dendritic atrophy and other abnormalities such as enlarged corticostriatal synapse and abnormal MSN excitability and spiking activity. Taken together, epidemiological studies, clinical observations, and animal research indicate that appropriately dosed physical activity and exercise may not only reduce the risk of developing PD in vulnerable populations but also benefit PD patients by potentially protecting the residual DA neurons or directly restoring the dysfunctional cortico-basal ganglia motor control circuit, and these benefits may be mediated by exercise-triggered production of endogenous neuroprotective molecules such as neurotrophic factors. Thus, exercise is a universally available, side effect-free medicine that should be prescribed to vulnerable populations as a preventive measure and to PD patients as a component of treatment. Future research needs to establish standardized exercise protocols that can reliably induce DA neuron protection, enabling the delineation of the underlying cellular and molecular mechanisms that in turn can maximize exercise-induced neuroprotection and neurorestoration in animal PD models and eventually in PD patients.
Collapse
Affiliation(s)
- Lijuan Hou
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Wei Chen
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China.,Department of Exercise and Rehabilitation, Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Xiaoli Liu
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Decai Qiao
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| |
Collapse
|
23
|
Météreau E, Beaudoin-Gobert M, Duperrier S, Thobois S, Tremblay L, Sgambato-Faure V. Diffusion tensor imaging marks dopaminergic and serotonergic lesions in the Parkinsonian monkey. Mov Disord 2017; 33:298-309. [DOI: 10.1002/mds.27201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/24/2017] [Accepted: 08/27/2017] [Indexed: 12/31/2022] Open
Affiliation(s)
- Elise Météreau
- Université de Lyon, Centre National de la Recherche Scientifique, Institut des Sciences Cognitives Marc Jeannerod; Bron France
| | - Maude Beaudoin-Gobert
- Université de Lyon, Centre National de la Recherche Scientifique, Institut des Sciences Cognitives Marc Jeannerod; Bron France
| | - Sandra Duperrier
- Université de Lyon, Centre National de la Recherche Scientifique, Institut des Sciences Cognitives Marc Jeannerod; Bron France
| | - Stéphane Thobois
- Université de Lyon, Centre National de la Recherche Scientifique, Institut des Sciences Cognitives Marc Jeannerod; Bron France
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer; Lyon France
| | - Léon Tremblay
- Université de Lyon, Centre National de la Recherche Scientifique, Institut des Sciences Cognitives Marc Jeannerod; Bron France
| | - Véronique Sgambato-Faure
- Université de Lyon, Centre National de la Recherche Scientifique, Institut des Sciences Cognitives Marc Jeannerod; Bron France
| |
Collapse
|
24
|
Francardo V, Schmitz Y, Sulzer D, Cenci MA. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Exp Neurol 2017; 298:137-147. [PMID: 28988910 DOI: 10.1016/j.expneurol.2017.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
Disease-modifying treatments remain an unmet medical need in Parkinson's disease (PD). Such treatments can be operationally defined as interventions that slow down the clinical evolution to advanced disease milestones. A treatment may achieve this outcome by either inhibiting primary neurodegenerative events ("neuroprotection") or boosting compensatory and regenerative mechanisms in the brain ("neurorestoration"). Here we review experimental paradigms that are currently used to assess the neuroprotective and neurorestorative potential of candidate treatments in animal models of PD. We review some key molecular mediators of neuroprotection and neurorestoration in the nigrostriatal dopamine pathway that are likely to exert beneficial effects on multiple neural systems affected in PD. We further review past and current strategies to therapeutically stimulate these mediators, and discuss the preclinical evidence that exercise training can have neuroprotective and neurorestorative effects. A future translational task will be to combine behavioral and pharmacological interventions to exploit endogenous mechanisms of neuroprotection and neurorestoration for therapeutic purposes. This type of approach is likely to provide benefit to many PD patients, despite the clinical, etiological, and genetic heterogeneity of the disease.
Collapse
Affiliation(s)
- Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Yvonne Schmitz
- Departments Neurology, Psychiatry, Pharmacology, Columbia University Medical Center: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York 10032, NY, USA
| | - David Sulzer
- Departments Neurology, Psychiatry, Pharmacology, Columbia University Medical Center: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York 10032, NY, USA
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
25
|
Beier EE, Neal M, Alam G, Edler M, Wu LJ, Richardson JR. Alternative microglial activation is associated with cessation of progressive dopamine neuron loss in mice systemically administered lipopolysaccharide. Neurobiol Dis 2017; 108:115-127. [PMID: 28823928 DOI: 10.1016/j.nbd.2017.08.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/17/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammation arising from central and/or peripheral sources contributes to the pathogenesis of multiple neurodegenerative diseases including Parkinson's disease (PD). Emerging data suggest that differential activation of glia could lead to the pathogenesis and progression of PD. Here, we sought to determine the relationship between lipopolysaccharide (LPS) treatment, loss of dopaminergic neurons and differential activation of glia. Using a model of repeated injections with LPS (1mg/kg, i.p. for 4days), we found that LPS induced a 34% loss of dopamine neurons in the substantia nigra 19days after initiation of treatment, but no further cell loss was observed at 36days. LPS induced a strong pro-inflammatory response with increased mRNA expression of pro-inflammatory markers, including tumor necrosis factor-α (4.8-fold), inducible nitric oxide synthase (2.0-fold), interleukin-1 beta (8.9-fold), interleukin-6 (10.7-fold), and robust glial activation were observed at 1day after final dose of LPS. These pro-inflammatory genes were then reduced at 19days after treatment, when there was a rise in the anti-inflammatory genes Ym1 (1.8-fold) and arginase-1 (2.6-fold). Additionally, 36days after the last LPS injection there was a significant increase in interleukin-10 (2.1-fold) expression. The qPCR data results were supported by protein data, including cytokine measurements, western blotting, and immunofluorescence in brain microglia. Taken together, these data demonstrate that progressive neurodegeneration in the substantia nigra following LPS is likely arrested by microglia shifting to an anti-inflammatory phenotype. Thus, strategies to promote resolution of neuroinflammation may be a promising avenue to slow the progressive loss of dopamine neurons in PD.
Collapse
Affiliation(s)
- Eric E Beier
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, United States
| | - Matthew Neal
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Gelerah Alam
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Melissa Edler
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Jason R Richardson
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, United States; Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, United States.
| |
Collapse
|
26
|
Mendes-Oliveira J, Lopes Campos F, Videira RA, Baltazar G. GPER activation is effective in protecting against inflammation-induced nigral dopaminergic loss and motor function impairment. Brain Behav Immun 2017; 64:296-307. [PMID: 28450223 DOI: 10.1016/j.bbi.2017.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/29/2022] Open
Abstract
Increasing evidence suggest that excessive inflammatory responses from overactivated microglia play a critical role in Parkinson's disease (PD), contributing to, or exacerbating, nigral dopaminergic (DA) degeneration. Recent results from our group and others demonstrated that selective activation of G protein-coupled estrogen receptor (GPER) with the agonist G1 can protect DA neurons from 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxins. However, it is not known whether modulation of microglial responses is one of the mechanisms by which G1 exerts its DA neuroprotective effects. We analyzed, in the N9 microglial cell line, the effect of G1 on microglial activation induced by lipopolysaccharide (LPS) exposure. The results revealed that G1 significantly decrease phagocytic activity, expression of inducible nitric oxide synthase (iNOS) and release of nitric oxide (NO) induced by LPS. To determine the relevance of this anti-inflammatory effect to the protection of nigral DA cells, the effect of G1 was analyzed in male mice injected unilaterally in the substantia nigra (SN) with LPS. Although G1 treatment did not decrease LPS-induced increase of ionized calcium binding adaptor molecule 1 (iba-1) positive cells it significantly reduced interleukin-1beta (IL-1β), cluster of differentiation 68 (CD68) and iNOS mRNA levels, and totally inhibited nigral DA cell loss and, as a consequence, protected the motor function. In summary, our findings demonstrated that the G1 agonist is able to modulate microglial responses and to protect DA neurons and motor functions against a lesion induced by an inflammatory insult. Since G1 lacks the feminizing effects associated with agonists of the classical estrogen receptors (ERs), the use of G1 to selectively activate the GPER may be a promising strategy for the development of new therapeutics for the treatment of PD and other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Julieta Mendes-Oliveira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Filipa Lopes Campos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Rita Alexandra Videira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Graça Baltazar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
27
|
Huot P, Sgambato-Faure V, Fox SH, McCreary AC. Serotonergic Approaches in Parkinson's Disease: Translational Perspectives, an Update. ACS Chem Neurosci 2017; 8:973-986. [PMID: 28460160 DOI: 10.1021/acschemneuro.6b00440] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) has long been seen as a disorder caused by degeneration of the dopaminergic system, leading to the classic motor manifestations of the disease. However, there is now overwhelming evidence that PD is more than a disease merely caused by dopamine depletion. It is well-known that a myriad of other neurotransmitters are affected by the disease process. One such neurotransmitter is serotonin (5-HT). 5-HT has been shown to play a role in several motor and nonmotor manifestations of PD, including tremor, cognition, depression and psychosis. 5-HT also seems to play a critical role in L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia. A breadth of preclinical studies and clinical trials have been conducted that aimed at modulating the 5-HT system in order to alleviate depression, cognitive deficits, psychosis, and dyskinesia. In this Review, we summarize recent advances in the 5-HT field in PD, but with a translational emphasis. We start by presenting a novel nonhuman primate model of PD that presents with dual dopamine and 5-HT lesions. We then present preclinical and clinical data that introduce new concepts, such as the use of biased and partial agonists, as well as molecules recently introduced to the field of PD, such as eltoprazine, pimavanserin, nelotanserin, and SYN-120, to enhance therapeutic benefit while minimizing adverse events, notably on parkinsonian disability.
Collapse
Affiliation(s)
- Philippe Huot
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada
- Department
of Pharmacology, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Unité
des Troubles du Mouvement André Barbeau, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2L 4M1, Canada
- Division
of Neurology, Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Véronique Sgambato-Faure
- Institute of Cognitive
Neuroscience Marc Jeannerod, UMR 5229 CNRS, 69 675 Cedex Bron, France
- University Lyon 1, 69100 Villeurbanne, France
| | - Susan H. Fox
- Movement
Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, ON M5T2S8, Canada
| | - Andrew C. McCreary
- Janssen Vaccines & Prevention B.V., Archimedesweg 4, 2333 CN Leiden, The Netherlands
| |
Collapse
|
28
|
Garcia PC, Real CC, Britto LR. The Impact of Short and Long-Term Exercise on the Expression of Arc and AMPARs During Evolution of the 6-Hydroxy-Dopamine Animal Model of Parkinson's Disease. J Mol Neurosci 2017; 61:542-552. [PMID: 28243821 DOI: 10.1007/s12031-017-0896-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022]
Abstract
The loss of nigral dopaminergic neurons typical in Parkinson's disease (PD) is responsible for hyperexcitability of medium spiny neurons resulting in abnormal corticostriatal glutamatergic synaptic drive. Considering the neuroprotective effect of exercise, the changes promoted by exercise on AMPA-type glutamate receptors (AMPARs), and the role of activity-regulated cytoskeleton-associated protein (Arc) in the AMPARs trafficking, we studied the impact of short and long-term treadmill exercise during evolution of the unilateral 6-hydroxy-dopamine (6-OHDA) animal model of PD. Wistar rats were divided into sedentary and exercised groups, with and without lesion by 6-OHDA and followed up to 4 months. The exercised groups were subjected to a moderate treadmill exercise 3×/week. We measured the proteins tyrosine hydroxylase (TH), Arc, GluA1, and GluA2/3 in the striatum, substantia nigra, and motor cortex. Our results showed a higher reduction of TH expression in all sedentary groups when compared to all exercised groups in striatum and substantia nigra. In general, larger changes occurred in the striatum in the first and third months after training. After 1 month of exercise, there was significant increase of GluA2/3 with concomitant reduction of GluA1 and Arc. As a balanced system, these changes were reversed in the third month, showing an increase of Arc and GluA1 and decrease of GluA2/3. Similar results for GluAs and Arc were observed in the motor cortex of the exercised animals. These modifications may be relevant for corticostriatal circuits in PD, since the exercise-dependent plasticity can modulate GluAs expression and maybe neuronal excitability.
Collapse
Affiliation(s)
- P C Garcia
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, University of São Paulo, Av Prof Lineu Prestes, 1524, Room 239, São Paulo, SP, 05508-000, Brazil.
| | - C C Real
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, University of São Paulo, Av Prof Lineu Prestes, 1524, Room 239, São Paulo, SP, 05508-000, Brazil
| | - L R Britto
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, University of São Paulo, Av Prof Lineu Prestes, 1524, Room 239, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
29
|
Yue F, Zeng S, Tang R, Tao G, Chan P. MPTP Induces Systemic Parkinsonism in Middle-Aged Cynomolgus Monkeys: Clinical Evolution and Outcomes. Neurosci Bull 2016; 33:17-27. [PMID: 27699717 DOI: 10.1007/s12264-016-0069-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/11/2016] [Indexed: 01/14/2023] Open
Abstract
In this study, we developed a systemic PD model in middle-aged cynomolgus monkeys using individualized low-dose MPTP, to explore effective indicators for the early prediction of clinical outcomes. MPTP was not stopped until the animals showed typical PD motor symptoms on days 10 to 13 after MPTP administration when the Kurlan score reached 10; this abrogated the differences in individual susceptibility to MPTP. The clinical symptoms persisted, peaking on days 3 to 12 after MPTP withdrawal (rapid progress stage), and then the Kurlan score plateaued. A Kurlan score at the end of the rapid progress stage >15 reflected stable or slowly-progressive PD, while a score <15 indicated spontaneous recovery. The entire clinical evolution and outcome of the systemic PD model was characterized in this study, thus providing options for therapeutic and translational research.
Collapse
Affiliation(s)
- Feng Yue
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.,Key Laboratory on Parkinson's Disease, Beijing, 100053, China
| | - Sien Zeng
- Department of Pathology, Guilin Medical College, Guilin, 541001, China
| | - Rongping Tang
- Wincon TheraCells Biotechnologies Co., Ltd., Nanning, 530003, China
| | - Guoxian Tao
- Wincon TheraCells Biotechnologies Co., Ltd., Nanning, 530003, China
| | - Piu Chan
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China. .,Key Laboratory on Parkinson's Disease, Beijing, 100053, China.
| |
Collapse
|
30
|
Bez F, Francardo V, Cenci MA. Dramatic differences in susceptibility to l-DOPA-induced dyskinesia between mice that are aged before or after a nigrostriatal dopamine lesion. Neurobiol Dis 2016; 94:213-25. [DOI: 10.1016/j.nbd.2016.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/08/2016] [Accepted: 06/11/2016] [Indexed: 12/26/2022] Open
|
31
|
Pittman JT, Dodd CA, Klein BG. Immunohistochemical Changes in the Mouse Striatum Induced by the Pyrethroid Insecticide Permethrin. Int J Toxicol 2016; 22:359-70. [PMID: 14555407 DOI: 10.1177/109158180302200504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have linked insecticide exposure and Parkinson's disease. In addition, some insecticides produce damage or physiological disruption within the dopaminergic nigrostriatal pathway of non-humans. This study employed immunohistochemical analysis in striatum of the C57BL/6 mouse to clarify tissue changes suggested by previous pharmacological studies of the pyrethroid insecticide permethrin. Dopamine transporter, tyrosine hydroxylase, and glial fibrillary acidic protein immunoreactivities were examined in caudate-putamen to distinguish changes in amount of dopamine transporter immunoreactive protein from degeneration or other damage to dopaminergic neuropil. Weight-matched pairs of pesticide-treated and vehicle-control mice were dosed and sacrificed on the same days. Permethrin at 0.8, 1.5 and 3.0 mg/kg were the low doses and at 200 mg/kg the high dose. Brains from matched pairs of mice were processed on the same slides using the avidin-biotin technique. Four fields were morphometrically located in each of the serial sections of caudateputamen, digitally photographed, and immunopositive image pixels were counted and compared between members of matched pairs of permethrin-treated and vehicle-control mice. For low doses, only 3.0 mg/kg produced a significant decrease in dopamine transporter immunostaining. The high dose of permethrin did not produce a significant change in dopamine transporter or tyrosine hydroxylase immunostaining, but resulted in a significant increase in glial fibrillary acidic protein immunostaining. These data suggest that a low dose of permethrin can reduce the amount of dopamine transporter immunoreactive protein in the caudate-putamen. They also suggest that previously reported reductions in dopamine uptake of striatal synaptosomes of high-dose mice may be due to nondegenerative tissue damage within this region as opposed to reductions of dopamine transporter protein or death of nigrostriatal terminals. These data provide further evidence that insecticides can affect the primary neurodegenerative substrate of Parkinson's disease.
Collapse
Affiliation(s)
- Julian T Pittman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
32
|
Schroll H, Hamker FH. Basal Ganglia dysfunctions in movement disorders: What can be learned from computational simulations. Mov Disord 2016; 31:1591-1601. [PMID: 27393040 DOI: 10.1002/mds.26719] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/23/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
The basal ganglia are a complex neuronal system that is impaired in several movement disorders, including Parkinson's disease, Huntington's disease, and dystonia. Empirical studies have provided valuable insights into the brain dysfunctions underlying these disorders. The systems-level perspective, however, of how patients' motor, cognitive, and emotional impairments originate from known brain dysfunctions has been a challenge to empirical investigations. These causal relations have been analyzed via computational modeling, a method that describes the simulation of interacting brain processes in a computer system. In this article, we review computational insights into the brain dysfunctions underlying Parkinson's disease, Huntington's disease, and dystonia, with particular foci on dysfunctions of the dopamine system, basal ganglia pathways, and neuronal oscillations. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Henning Schroll
- Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Fred H Hamker
- Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
33
|
Turgeon M, Lustig C, Meck WH. Cognitive Aging and Time Perception: Roles of Bayesian Optimization and Degeneracy. Front Aging Neurosci 2016; 8:102. [PMID: 27242513 PMCID: PMC4870863 DOI: 10.3389/fnagi.2016.00102] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022] Open
Abstract
This review outlines the basic psychological and neurobiological processes associated with age-related distortions in timing and time perception in the hundredths of milliseconds-to-minutes range. The difficulty in separating indirect effects of impairments in attention and memory from direct effects on timing mechanisms is addressed. The main premise is that normal aging is commonly associated with increased noise and temporal uncertainty as a result of impairments in attention and memory as well as the possible reduction in the accuracy and precision of a central timing mechanism supported by dopamine-glutamate interactions in cortico-striatal circuits. Pertinent to these findings, potential interventions that may reduce the likelihood of observing age-related declines in timing are discussed. Bayesian optimization models are able to account for the adaptive changes observed in time perception by assuming that older adults are more likely to base their temporal judgments on statistical inferences derived from multiple trials than on a single trial's clock reading, which is more susceptible to distortion. We propose that the timing functions assigned to the age-sensitive fronto-striatal network can be subserved by other neural networks typically associated with finely-tuned perceptuo-motor adjustments, through degeneracy principles (different structures serving a common function).
Collapse
Affiliation(s)
- Martine Turgeon
- Douglas Mental Health University Institute, McGill UniversityMontreal, QC, Canada
| | - Cindy Lustig
- Department of Psychology, University of MichiganAnn Arbor, MI, USA
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke UniversityDurham, NC, USA
| |
Collapse
|
34
|
Manza P, Zhang S, Li CR, Leung H. Resting-state functional connectivity of the striatum in early-stage Parkinson's disease: Cognitive decline and motor symptomatology. Hum Brain Mapp 2016; 37:648-62. [PMID: 26566885 PMCID: PMC4843498 DOI: 10.1002/hbm.23056] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/23/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by changes to dopaminergic function in the striatum and a range of cognitive and motor deficits. Neuroimaging studies have repeatedly shown differences in activation and functional connectivity patterns of the striatum between symptomatic individuals with Parkinson's disease and healthy controls. However, the presence and severity of cognitive and motor symptoms seem to differ dramatically among individuals with Parkinson's disease at the early-stages. To investigate the neural basis of such heterogeneity, we examined the resting state functional connectivity patterns of caudate and putamen subdivisions in relation to cognitive and motor impairments among 62 early-stage individuals with Parkinson's disease (21 females, 23 drug naive, ages 39-77 years, average UPDRS motor scores off medication = 18.56, average H&Y stage = 1.66). We also explored how changes in striatal connectivity relate to changes in symptomatology over a year. There are two main findings. First, higher motor deficit rating was associated with weaker coupling between anterior putamen and midbrain including substantia nigra. Intriguingly, steeper declines in functional connectivity between these regions were associated with greater declines in motor function over the course of 1 year. Second, decline in cognitive function, particularly in the memory and visuospatial domains, was associated with stronger coupling between the dorsal caudate and the rostral anterior cingulate cortex. These findings remained significant after controlling for age, medication, gender, and education. In sum, our findings suggest that cognitive decline and motor deficit are each associated with a differentiable pattern of functional connectivity of striatal subregions. Hum Brain Mapp 37:648-662, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter Manza
- Department of PsychologyIntegrative Neuroscience Program, Stony Brook UniversityStony BrookNew York
| | - Sheng Zhang
- Department of PsychiatryYale UniversityNew HavenConnecticut
| | - Chiang‐Shan R. Li
- Department of PsychiatryYale UniversityNew HavenConnecticut
- Department of NeurobiologyYale UniversityNew HavenConnecticut
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenConnecticut
| | - Hoi‐Chung Leung
- Department of PsychologyIntegrative Neuroscience Program, Stony Brook UniversityStony BrookNew York
| |
Collapse
|
35
|
Wu T, Zhang J, Hallett M, Feng T, Hou Y, Chan P. Neural correlates underlying micrographia in Parkinson's disease. Brain 2015; 139:144-60. [PMID: 26525918 DOI: 10.1093/brain/awv319] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/16/2015] [Indexed: 11/14/2022] Open
Abstract
Micrographia is a common symptom in Parkinson's disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks.
Collapse
Affiliation(s)
- Tao Wu
- 1 Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China 2 Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Centre of Beijing Institute for Brain Disorders, Beijing, China
| | - Jiarong Zhang
- 1 Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China 2 Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Centre of Beijing Institute for Brain Disorders, Beijing, China
| | - Mark Hallett
- 3 Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tao Feng
- 2 Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Centre of Beijing Institute for Brain Disorders, Beijing, China 4 China National Clinical Research Centre for Neurological Diseases, Beijing, China 5 Department of Neurology, Centre for Neurodegenerative Disease, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanan Hou
- 1 Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China 2 Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Centre of Beijing Institute for Brain Disorders, Beijing, China
| | - Piu Chan
- 1 Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China 2 Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Centre of Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
36
|
CX3CR1 Disruption Differentially Influences Dopaminergic Neuron Degeneration in Parkinsonian Mice Depending on the Neurotoxin and Route of Administration. Neurotox Res 2015; 29:364-80. [PMID: 26403659 DOI: 10.1007/s12640-015-9557-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/03/2015] [Accepted: 08/18/2015] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons accompanied by an inflammatory reaction. The neuron-derived chemokine fractalkine (CX3CL1) is an exclusive ligand for the receptor CX3CR1 expressed on microglia. The CX3CL1/CX3CR1 signaling is important for sustaining microglial activity. Using a recently developed PD model, in which the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin is delivered intranasally, we hypothesized that CX3CR1 could play a role in neurotoxicity and glial activation. For this, we used CX3CR1 knock-in mice and compared results with those obtained using the classical PD models through intraperitonal MPTP or intrastriatal 6-hydroxydopamine (6-OHDA). The striatum from all genotypes (CX3CR1(+/+), CX3CR1(+/GFP) and CX3CR1-deficient mice) showed a significant dopaminergic depletion after intranasal MPTP inoculation. In contrast to that, we could not see differences in the number of dopaminergic neurons in the substantia nigra of CX3CR1-deficient animals. Similarly, after 6-OHDA infusion, the CX3CR1 deletion decreased the amphetamine-induced turning behavior observed in CX3CR1(+/GFP) mice. After the 6-OHDA inoculation, a minor dopaminergic neuronal loss was observed in the substantia nigra from CX3CR1-deficient mice. Distinctly, a more extensive neuronal cell loss was observed in the substantia nigra after the intraperitoneal MPTP injection in CX3CR1 disrupted animals, corroborating previous results. Intranasal and intraperitoneal MPTP inoculation induced a similar microgliosis in CX3CR1-deficient mice but a dissimilar change in the astrocyte proliferation in the substantia nigra. Nigral astrocyte proliferation was observed only after intraperitoneal MPTP inoculation. In conclusion, intranasal MPTP and 6-OHDA lesion in CX3CR1-deficient mice yield no nigral dopaminergic neuron loss, linked to the absence of astroglial proliferation.
Collapse
|
37
|
Lindenbach D, Conti MM, Ostock CY, Dupre KB, Bishop C. Alterations in primary motor cortex neurotransmission and gene expression in hemi-parkinsonian rats with drug-induced dyskinesia. Neuroscience 2015; 310:12-26. [PMID: 26363150 DOI: 10.1016/j.neuroscience.2015.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/20/2015] [Accepted: 09/04/2015] [Indexed: 02/05/2023]
Abstract
Treatment of Parkinson's disease (PD) with dopamine replacement relieves symptoms of poverty of movement, but often causes drug-induced dyskinesias. Accumulating clinical and pre-clinical evidence suggests that the primary motor cortex (M1) is involved in the pathophysiology of PD and that modulating cortical activity may be a therapeutic target in PD and dyskinesia. However, surprisingly little is known about how M1 neurotransmitter tone or gene expression is altered in PD, dyskinesia or associated animal models. The present study utilized the rat unilateral 6-hydroxydopamine (6-OHDA) model of PD/dyskinesia to characterize structural and functional changes taking place in M1 monoamine innervation and gene expression. 6-OHDA caused dopamine pathology in M1, although the lesion was less severe than in the striatum. Rats with 6-OHDA lesions showed a PD motor impairment and developed dyskinesia when given L-DOPA or the D1 receptor agonist, SKF81297. M1 expression of two immediate-early genes (c-Fos and ARC) was strongly enhanced by either L-DOPA or SKF81297. At the same time, expression of genes specifically involved in glutamate and GABA signaling were either modestly affected or unchanged by lesion and/or treatment. We conclude that M1 neurotransmission and signal transduction in the rat 6-OHDA model of PD/dyskinesia mirror features of human PD, supporting the utility of the model to study M1 dysfunction in PD and the elucidation of novel pathophysiological mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- D Lindenbach
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, USA
| | - M M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, USA
| | - C Y Ostock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, USA
| | - K B Dupre
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, USA
| | - C Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, USA.
| |
Collapse
|
38
|
Müller-Oehring EM, Sullivan EV, Pfefferbaum A, Huang NC, Poston KL, Bronte-Stewart HM, Schulte T. Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson's disease. Brain Imaging Behav 2015; 9:619-38. [PMID: 25280970 PMCID: PMC4385510 DOI: 10.1007/s11682-014-9317-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Parkinson's disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG-cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen-medial parietal and pallidum-occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate-supramarginal gyrus and pallidum-inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal-cortical connectivity, specifically between caudate-prefrontal, caudate-precuneus, and putamen-motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance.
Collapse
Affiliation(s)
- Eva M Müller-Oehring
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, 94305-5723, USA.
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA.
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, 94305-5723, USA
| | - Adolf Pfefferbaum
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, 94305-5723, USA
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA
| | - Neng C Huang
- Valley Parkinson Clinic, Los Gatos, CA, 95032, USA
| | - Kathleen L Poston
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Helen M Bronte-Stewart
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tilman Schulte
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA
| |
Collapse
|
39
|
Wu T, Hallett M, Chan P. Motor automaticity in Parkinson's disease. Neurobiol Dis 2015; 82:226-234. [PMID: 26102020 DOI: 10.1016/j.nbd.2015.06.014] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022] Open
Abstract
Bradykinesia is the most important feature contributing to motor difficulties in Parkinson's disease (PD). However, the pathophysiology underlying bradykinesia is not fully understood. One important aspect is that PD patients have difficulty in performing learned motor skills automatically, but this problem has been generally overlooked. Here we review motor automaticity associated motor deficits in PD, such as reduced arm swing, decreased stride length, freezing of gait, micrographia and reduced facial expression. Recent neuroimaging studies have revealed some neural mechanisms underlying impaired motor automaticity in PD, including less efficient neural coding of movement, failure to shift automated motor skills to the sensorimotor striatum, instability of the automatic mode within the striatum, and use of attentional control and/or compensatory efforts to execute movements usually performed automatically in healthy people. PD patients lose previously acquired automatic skills due to their impaired sensorimotor striatum, and have difficulty in acquiring new automatic skills or restoring lost motor skills. More investigations on the pathophysiology of motor automaticity, the effect of L-dopa or surgical treatments on automaticity, and the potential role of using measures of automaticity in early diagnosis of PD would be valuable.
Collapse
Affiliation(s)
- Tao Wu
- Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China.
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Piu Chan
- Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
40
|
Frontal and striatal alterations associated with psychopathic traits in adolescents. Psychiatry Res 2015; 231:333-40. [PMID: 25676553 PMCID: PMC4871259 DOI: 10.1016/j.pscychresns.2015.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/15/2014] [Accepted: 01/16/2015] [Indexed: 11/21/2022]
Abstract
Neuroimaging research has demonstrated a range of structural deficits in adults with psychopathy, but little is known about structural correlates of psychopathic tendencies in adolescents. Here we examined structural magnetic resonance imaging (sMRI) data obtained from 14-year-old adolescents (n=108) using tensor-based morphometry (TBM) to isolate global and localized differences in brain tissue volumes associated with psychopathic traits in this otherwise healthy developmental population. We found that greater levels of psychopathic traits were correlated with increased brain tissue volumes in the left putamen, left ansa peduncularis, right superiomedial prefrontal cortex, left inferior frontal cortex, right orbitofrontal cortex, and right medial temporal regions and reduced brain tissues volumes in the right middle frontal cortex, left superior parietal lobule, and left inferior parietal lobule. Post hoc analyses of parcellated regional volumes also showed putamen enlargements to correlate with increased psychopathic traits. Consistent with earlier studies, findings suggest poor decision-making and emotional dysregulation associated with psychopathy may be due, in part, to structural anomalies in frontal and temporal regions whereas striatal structural variations may contribute to sensation-seeking and reward-driven behavior in psychopathic individuals. Future studies will help clarify how disturbances in brain maturational processes might lead to the developmental trajectory from psychopathic tendencies in adolescents to adult psychopathy.
Collapse
|
41
|
Wu T, Hou Y, Hallett M, Zhang J, Chan P. Lateralization of brain activity pattern during unilateral movement in Parkinson's disease. Hum Brain Mapp 2015; 36:1878-91. [PMID: 25644527 DOI: 10.1002/hbm.22743] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 02/01/2023] Open
Abstract
We investigated the lateralization of brain activity pattern during performance of unilateral movement in drug-naïve Parkinson's disease (PD) patients with only right hemiparkinsonian symptoms. Functional MRI was obtained when the subjects performed strictly unilateral right hand movement. A laterality index was calculated to examine the lateralization. Patients had decreased activity in the left putamen and left supplementary motor area, but had increased activity in the right primary motor cortex, right premotor cortex, left postcentral gyrus, and bilateral cerebellum. The laterality index was significantly decreased in PD patients compared with controls (0.41 ± 0.14 vs. 0.84 ± 0.09). The connectivity from the left putamen to cortical motor regions and cerebellum was decreased, while the interactions between the cortical motor regions, cerebellum, and right putamen were increased. Our study demonstrates that in early PD, the lateralization of brain activity during unilateral movement is significantly reduced. The dysfunction of the striatum-cortical circuit, decreased transcallosal inhibition, and compensatory efforts from cortical motor regions, cerebellum, and the less affected striatum are likely reasons contributing to the reduced motor lateralization. The disruption of the lateralized brain activity pattern might be a reason underlying some motor deficits in PD, like mirror movements or impaired bilateral motor coordination.
Collapse
Affiliation(s)
- Tao Wu
- Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | | | | | | | | |
Collapse
|
42
|
Hou Y, Wu X, Hallett M, Chan P, Wu T. Frequency-dependent neural activity in Parkinson's disease. Hum Brain Mapp 2014; 35:5815-33. [PMID: 25045127 PMCID: PMC6869429 DOI: 10.1002/hbm.22587] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 11/10/2022] Open
Abstract
The brainstem and basal ganglia are important in the pathophysiology of Parkinson's disease (PD). Reliable and sensitive detection of neural activity changes in these regions should be helpful in scientific and clinical research on PD. In this study, we used resting state functional MRI and amplitude of low frequency fluctuation (ALFF) methods to examine spontaneous neural activity in 109 patients with PD. We examined activity in two frequency bands, slow-4 (between 0.027 and 0.073 Hz) and slow-5 (0.010-0.027 Hz). Patients had decreased ALFF in the striatum and increased ALFF in the midbrain, and changes were more significant in slow-4. Additionally, changes in slow-4 in both basal ganglia and midbrain correlated with the severity of the parkinsonism. The ALFF in the caudate nucleus positively correlated with the dose of levodopa, while the ALFF in the putamen negatively correlated with the disease duration in both slow-4 and slow-5 bands. In addition, the ALFF in the rostral supplementary motor area negatively correlated with bradykinesia subscale scores. Our findings show that with a large cohort of patients and distinguishing frequency bands, neural modulations in the brainstem and striatum in PD can be detected and may have clinical relevance. The physiological interpretation of these changes needs to be determined.
Collapse
Affiliation(s)
- Yanan Hou
- Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of NeurobiologyBeijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory on Parkinson's DiseaseParkinson Disease Center of Beijing Institute for Brain DisordersBeijingChina
| | - Xuemin Wu
- Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of NeurobiologyBeijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory on Parkinson's DiseaseParkinson Disease Center of Beijing Institute for Brain DisordersBeijingChina
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology BranchNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMaryland
| | - Piu Chan
- Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of NeurobiologyBeijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory on Parkinson's DiseaseParkinson Disease Center of Beijing Institute for Brain DisordersBeijingChina
| | - Tao Wu
- Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of NeurobiologyBeijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory on Parkinson's DiseaseParkinson Disease Center of Beijing Institute for Brain DisordersBeijingChina
| |
Collapse
|
43
|
Raineri M, González B, Rivero-Echeto C, Muñiz JA, Gutiérrez ML, Ghanem CI, Cadet JL, García-Rill E, Urbano FJ, Bisagno V. Differential effects of environment-induced changes in body temperature on modafinil's actions against methamphetamine-induced striatal toxicity in mice. Neurotox Res 2014; 27:71-83. [PMID: 25261212 DOI: 10.1007/s12640-014-9493-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022]
Abstract
Methamphetamine (METH) exposure can produce hyperthermia that might lead to toxicity and death. Modafinil is a wake-promoting compound that is also been prescribed off-label to treat METH dependence. Modafinil has shown neuroprotective properties against METH harmful effects in animal models. The goal of the present study was to test if the prevention of hyperthermia might play a role on the neuroprotective actions of modafinil against METH toxicity using various ambient temperatures. METH was administered to female C57BL/6 mice in a binge regimen: 4 × 5 mg/kg, 2 h apart; modafinil (90 mg/kg) was injected twice, 1 h before first and fourth METH injections. Drugs were given at cold ambient temperature (14 °C) or hot ambient temperature (29 °C). Body temperature was measured during treatments. Brains were dissected out 6 days after treatments and processed for tyrosine hydroxylase (TH), dopamine transporter (DAT), GFAP and c-Fos immunohistochemistry. Exposure to hot ambient temperature exacerbated METH toxicity evidenced by striatal reductions in TH and DAT and increased GFAP immmunoreactivity. Modafinil counteracted reductions in TH and DAT, but failed to block astroglial activation. At both ambient temperatures tested modafinil did induce increments in GFAP, but the magnitude was significantly lower than the one induced by METH. Both drugs induced increases in c-Fos positive nuclei; modafinil did not block this effect. Our results suggest that protective effects of modafinil against METH-induced neurotoxicity may be dependent, in part, to its hypothermic effects. Nevertheless, modafinil maintained some protective properties on METH-induced alterations in the striatum at different ambient temperatures.
Collapse
Affiliation(s)
- Mariana Raineri
- Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (ININFA-UBA-CONICET), Ciudad Autónoma de Buenos Aires, Junín 956, piso 5, C1113, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vezoli J, Dzahini K, Costes N, Wilson CRE, Fifel K, Cooper HM, Kennedy H, Procyk E. Increased DAT binding in the early stage of the dopaminergic lesion: a longitudinal [11C]PE2I binding study in the MPTP-monkey. Neuroimage 2014; 102 Pt 2:249-61. [PMID: 25108180 DOI: 10.1016/j.neuroimage.2014.07.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/24/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022] Open
Abstract
The delayed appearance of motor symptoms in PD poses a crucial challenge for early detection of the disease. We measured the binding potential of the selective dopamine active transporter (DAT) radiotracer [(11)C]PE2I in MPTP-treated macaque monkeys, thus establishing a detailed profile of the nigrostriatal DA status following MPTP intoxication and its relation to induced motor and non-motor symptoms. Clinical score and cognitive performance were followed throughout the study. We measured longitudinally in vivo the non-displaceable binding potential to DAT in premotor, motor-recovered (i.e. both non-symptomatic) and symptomatic MPTP-treated monkeys. Results show an unexpected and pronounced dissociation between clinical scores and [(11)C]PE2I-BP(ND) during the premotor phase i.e. DAT binding in the striatum of premotor animals was increased around 20%. Importantly, this broad increase of DAT binding in the caudate, ventral striatum and anterior putamen was accompanied by i) deteriorated cognitive performance, showing a likely causal role of the observed hyperdopaminergic state (Cools, 2011; Cools and D'Esposito, 2011) and ii) an asymmetric decrease of DAT binding at a focal point of the posterior putamen, suggesting that increased DAT is one of the earliest, intrinsic compensatory mechanisms. Following spontaneous recovery from motor deficits, DAT binding was greatly reduced as recently shown in-vivo with other radiotracers (Blesa et al., 2010, 2012). Finally, high clinical scores were correlated to considerably low levels of DAT only after the induction of a stable parkinsonian state. We additionally show that the only striatal region which was significantly correlated to the degree of motor impairments is the ventral striatum. Further research on this period should allow better understanding of DA compensation at premature stages of PD and potentially identify new diagnosis and therapeutic index.
Collapse
Affiliation(s)
- Julien Vezoli
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France.
| | - Kwamivi Dzahini
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France; Primastem (LifeStemCells), Bron, France
| | | | - Charles R E Wilson
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France
| | - Karim Fifel
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France
| | - Howard M Cooper
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France
| | - Henry Kennedy
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France
| | - Emmanuel Procyk
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France
| |
Collapse
|
45
|
Abstract
Parkinson's disease (PD) displays a greater prevalence and earlier age at onset in men. This review addresses the concept that sex differences in PD are determined, largely, by biological sex differences in the NSDA system which, in turn, arise from hormonal, genetic and environmental influences. Current therapies for PD rely on dopamine replacement strategies to treat symptoms, and there is an urgent, unmet need for disease modifying agents. As a significant degree of neuroprotection against the early stages of clinical or experimental PD is seen, respectively, in human and rodent females compared with males, a better understanding of brain sex dimorphisms in the intact and injured NSDA system will shed light on mechanisms which have the potential to delay, or even halt, the progression of PD. Available evidence suggests that sex-specific, hormone-based therapeutic agents hold particular promise for developing treatments with optimal efficacy in men and women.
Collapse
|
46
|
Wu T, Liu J, Zhang H, Hallett M, Zheng Z, Chan P. Attention to Automatic Movements in Parkinson's Disease: Modified Automatic Mode in the Striatum. Cereb Cortex 2014; 25:3330-42. [PMID: 24925772 DOI: 10.1093/cercor/bhu135] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated neural correlates when attending to a movement that could be made automatically in healthy subjects and Parkinson's disease (PD) patients. Subjects practiced a visuomotor association task until they could perform it automatically, and then directed their attention back to the automated task. Functional MRI was obtained during the early-learning, automatic stage, and when re-attending. In controls, attention to automatic movement induced more activation in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex, and rostral supplementary motor area. The motor cortex received more influence from the cortical motor association regions. In contrast, the pattern of the activity and connectivity of the striatum remained at the level of the automatic stage. In PD patients, attention enhanced activity in the DLPFC, premotor cortex, and cerebellum, but the connectivity from the putamen to the motor cortex decreased. Our findings demonstrate that, in controls, when a movement achieves the automatic stage, attention can influence the attentional networks and cortical motor association areas, but has no apparent effect on the striatum. In PD patients, attention induces a shift from the automatic mode back to the controlled pattern within the striatum. The shifting between controlled and automatic behaviors relies in part on striatal function.
Collapse
Affiliation(s)
- Tao Wu
- Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Jun Liu
- Department of Radiology, Nankai University Affiliated Hospital, Tianjin, China
| | - Hejia Zhang
- Electrical and Computer Engineering Department, Rice University, Houston, TX, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zheng Zheng
- Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Piu Chan
- Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
47
|
Potts LF, Wu H, Singh A, Marcilla I, Luquin MR, Papa SM. Modeling Parkinson's disease in monkeys for translational studies, a critical analysis. Exp Neurol 2014; 256:133-43. [PMID: 24070854 PMCID: PMC3962841 DOI: 10.1016/j.expneurol.2013.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/07/2013] [Accepted: 09/16/2013] [Indexed: 01/03/2023]
Abstract
The non-human primate MPTP model of Parkinson's disease is an essential tool for translational studies. However, the currently used methodologies to produce parkinsonian monkeys do not follow unified criteria, and the applied models may often fall short of reproducing the characteristics of patients in clinical trials. Pooling of data from the parkinsonian monkeys produced in our Centers provided the opportunity to evaluate thoroughly the behavioral outcomes that may be considered for appropriate modeling in preclinical studies. We reviewed records from 108 macaques including rhesus and cynomolgus species used to model moderate to advanced parkinsonism with systemic MPTP treatment. The attained motor disability and the development of levodopa-induced dyskinesias, as primary outcomes, and the occurrence of clinical complications and instability of symptoms were all analyzed for correlations with the parameters of MPTP administration and for estimation of sample sizes. Results showed that frequently the MPTP-treated macaque can recapitulate the phenotype of patients entering clinical trials, but to produce this model consistently it is important to adapt the MPTP exposure tightly according to individual animal responses. For studies of reduced animal numbers it is also important to produce stable models, and stability of parkinsonism in macaques critically depends on reaching "marked" motor disability. The analyzed data also led to put forward recommendations for successfully producing the primate MPTP model of Parkinson's disease for translational studies.
Collapse
Affiliation(s)
- Lisa F Potts
- Yerkes National Primate Research Center, Emory University School of Medicine, Neuroscience Building, Atlanta, GA 30329, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Arun Singh
- Yerkes National Primate Research Center, Emory University School of Medicine, Neuroscience Building, Atlanta, GA 30329, USA
| | - Irene Marcilla
- Laboratory of Regenerative Therapy, Department of Neurology and Neuroscience Division, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Maria R Luquin
- Laboratory of Regenerative Therapy, Department of Neurology and Neuroscience Division, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Stella M Papa
- Yerkes National Primate Research Center, Emory University School of Medicine, Neuroscience Building, Atlanta, GA 30329, USA; Department of Neurology, Emory University School of Medicine, 6000 WMRC, 101 Woodruff Circle, Atlanta, GA 30322, USA.
| |
Collapse
|
48
|
Tian L, Karimi M, Brown CA, Loftin SK, Perlmutter JS. In vivo measures of nigrostriatal neuronal response to unilateral MPTP treatment. Brain Res 2014; 1571:49-60. [PMID: 24845719 DOI: 10.1016/j.brainres.2014.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 01/01/2023]
Abstract
A single unilateral intracarotid infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into non-human primates causes injury to the nigrostriatal pathway including nigral cell bodies, axons and striatal terminal fields. In this model, motor parkinsonism correlates well with the loss of nigral dopaminergic cell bodies but only correlates with in vitro measures of nigrostriatal terminal fields when nigral cell loss does not exceed 50%. The goals of this study are to determine the relationship of motor parkinsonism with the degree of injury to nigrostriatal axons, as reflected by in vitro fiber length density measures, and compare in vivo with in vitro measures of striatal terminal fields. We determined axon integrity by measuring fiber length density with tyrosine hydroxylase (TH) immunohistology and dopamine transporter (DAT) density with DAT immunohistology. We then calculated the terminal arbor size and compared these measures with previously published data of quantified in vivo positron emission tomography (PET) measures of presynaptic dopaminergic neurons, autoradiographic measures of DAT and vesicular monoamine transporter type 2 (VMAT2), striatal dopamine, nigral cell counts, and parkinsonian motor ratings in the same animals. Our data demonstrate that in vivo and in vitro measures of striatal terminal fields correlate with each other regardless of the method of measurement. PET-based in vivo striatal measures accurately reflect in vitro measures of DAT and VMAT2. Terminal arbor size and other terminal field measures correlate with nigral TH immunoreactive (TH-ir) cell counts only when nigral TH-ir cell loss does not exceed 50%. Fiber length density was the only striatal measure that linearly correlated with motor ratings (Spearman: r=-0.81, p<0.001, n=16).
Collapse
Affiliation(s)
- LinLin Tian
- Neurology, Washington University, St. Louis, MO 63110, USA
| | | | - Chris A Brown
- Neurology, Washington University, St. Louis, MO 63110, USA
| | - Susan K Loftin
- Neurology, Washington University, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Neurology, Washington University, St. Louis, MO 63110, USA; Radiology, Washington University, St. Louis, MO 63110, USA; Neurobiology, Washington University, St. Louis, MO 63110, USA; Occupational Therapy, Washington University, St. Louis, MO 63110, USA; Physical Therapy, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
49
|
McFarland NR, Dimant H, Kibuuka L, Ebrahimi-Fakhari D, Desjardins CA, Danzer KM, Danzer M, Fan Z, Schwarzschild MA, Hirst W, McLean PJ. Chronic treatment with novel small molecule Hsp90 inhibitors rescues striatal dopamine levels but not α-synuclein-induced neuronal cell loss. PLoS One 2014; 9:e86048. [PMID: 24465863 PMCID: PMC3896461 DOI: 10.1371/journal.pone.0086048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022] Open
Abstract
Hsp90 inhibitors such as geldanamycin potently induce Hsp70 and reduce cytotoxicity due to α-synuclein expression, although their use has been limited due to toxicity, brain permeability, and drug design. We recently described the effects of a novel class of potent, small molecule Hsp90 inhibitors in cells overexpressing α-synuclein. Screening yielded several candidate compounds that significantly reduced α-synuclein oligomer formation and cytotoxicity associated with Hsp70 induction. In this study we examined whether chronic treatment with candidate Hsp90 inhibitors could protect against α-synuclein toxicity in a rat model of parkinsonism. Rats were injected unilaterally in the substantia nigra with AAV8 expressing human α-synuclein and then treated with drug for approximately 8 weeks by oral gavage. Chronic treatment with SNX-0723 or the more potent, SNX-9114 failed to reduce dopaminergic toxicity in the substantia nigra compared to vehicle. However, SNX-9114 significantly increased striatal dopamine content suggesting a positive neuromodulatory effect on striatal terminals. Treatment was generally well tolerated, but higher dose SNX-0723 (6–10 mg/kg) resulted in systemic toxicity, weight loss, and early death. Although still limited by potential toxicity, Hsp90 inhibitors tested herein demonstrate oral efficacy and possible beneficial effects on dopamine production in a vertebrate model of parkinsonism that warrant further study.
Collapse
Affiliation(s)
- Nikolaus R. McFarland
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (NRM); (PJM)
| | - Hemi Dimant
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Laura Kibuuka
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Darius Ebrahimi-Fakhari
- Division of Neurology and Inherited Metabolic Diseases, Children’s Hospital, Heidelberg University Hospital, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Cody A. Desjardins
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Karin M. Danzer
- Deparment of Neurology, Universitatsklinikum Ulm, Ulm, Germany
| | - Michael Danzer
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Zhanyun Fan
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Michael A. Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Warren Hirst
- Pfizer Neuroscience Research Unit, Cambridge, Massachusetts, United States of America
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
- * E-mail: (NRM); (PJM)
| |
Collapse
|
50
|
Rodríguez S, Uchida K, Nakayama H. Immunohistochemical changes of nigrostriatal tyrosine hydroxylase and dopamine transporter in the golden hamster after a single intrastriatal injection of 6-hydroxydopamine. ACTA ACUST UNITED AC 2013; 65:463-8. [DOI: 10.1016/j.etp.2012.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/25/2012] [Indexed: 10/28/2022]
|