1
|
Tiddia G, Sergi L, Golosio B. Theoretical framework for learning through structural plasticity. Phys Rev E 2024; 110:044311. [PMID: 39562962 DOI: 10.1103/physreve.110.044311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/19/2024] [Indexed: 11/21/2024]
Abstract
A growing body of research indicates that structural plasticity mechanisms are crucial for learning and memory consolidation. Starting from a simple phenomenological model, we exploit a mean-field approach to develop a theoretical framework of learning through this kind of plasticity, capable of taking into account several features of the connectivity and pattern of activity of biological neural networks, including probability distributions of neuron firing rates, selectivity of the responses of single neurons to multiple stimuli, probabilistic connection rules, and noisy stimuli. More importantly, it describes the effects of stabilization, pruning, and reorganization of synaptic connections. This framework is used to compute the values of some relevant quantities used to characterize the learning and memory capabilities of the neuronal network in training and testing procedures as the number of training patterns and other model parameters vary. The results are then compared with those obtained through simulations with firing-rate-based neuronal network models.
Collapse
|
2
|
Cuestas Torres DM, Cardenas FP. Synaptic plasticity in Alzheimer's disease and healthy aging. Rev Neurosci 2021; 31:245-268. [PMID: 32250284 DOI: 10.1515/revneuro-2019-0058] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
The strength and efficiency of synaptic connections are affected by the environment or the experience of the individual. This property, called synaptic plasticity, is directly related to memory and learning processes and has been modeled at the cellular level. These types of cellular memory and learning models include specific stimulation protocols that generate a long-term strengthening of the synapses, called long-term potentiation, or a weakening of the said long-term synapses, called long-term depression. Although, for decades, researchers have believed that the main cause of the cognitive deficit that characterizes Alzheimer's disease (AD) and aging was the loss of neurons, the hypothesis of an imbalance in the cellular and molecular mechanisms of synaptic plasticity underlying this deficit is currently widely accepted. An understanding of the molecular and cellular changes underlying the process of synaptic plasticity during the development of AD and aging will direct future studies to specific targets, resulting in the development of much more efficient and specific therapeutic strategies. In this review, we classify, discuss, and describe the main findings related to changes in the neurophysiological mechanisms of synaptic plasticity in excitatory synapses underlying AD and aging. In addition, we suggest possible mechanisms in which aging can become a high-risk factor for the development of AD and how its development could be prevented or slowed.
Collapse
Affiliation(s)
- Diana Marcela Cuestas Torres
- Departamento de Psicología and Departamento de Biología, Laboratorio de Neurociencia y Comportamiento, Universidad de los Andes, Cra 1 N° 18A-12, CP 111711, Bogotá, Colombia
| | - Fernando P Cardenas
- Departamento de Psicología, Laboratorio de Neurociencia y Comportamiento, Universidad de los Andes, Cra 1 N° 18A-12, CP 111711, Bogotá, Colombia
| |
Collapse
|
3
|
Kuhlmann N, Wagner Valladolid M, Quesada-Ramírez L, Farrer MJ, Milnerwood AJ. Chronic and Acute Manipulation of Cortical Glutamate Transmission Induces Structural and Synaptic Changes in Co-cultured Striatal Neurons. Front Cell Neurosci 2021; 15:569031. [PMID: 33679324 PMCID: PMC7930618 DOI: 10.3389/fncel.2021.569031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
In contrast to the prenatal topographic development of sensory cortices, striatal circuit organization is slow and requires the functional maturation of cortical and thalamic excitatory inputs throughout the first postnatal month. While mechanisms regulating synapse development and plasticity are quite well described at excitatory synapses of glutamatergic neurons in the neocortex, comparatively little is known of how this translates to glutamate synapses onto GABAergic neurons in the striatum. Here we investigate excitatory striatal synapse plasticity in an in vitro system, where glutamate can be studied in isolation from dopamine and other neuromodulators. We examined pre-and post-synaptic structural and functional plasticity in GABAergic striatal spiny projection neurons (SPNs), co-cultured with glutamatergic cortical neurons. After synapse formation, medium-term (24 h) TTX silencing increased the density of filopodia, and modestly decreased dendritic spine density, when assayed at 21 days in vitro (DIV). Spine reductions appeared to require residual spontaneous activation of ionotropic glutamate receptors. Conversely, chronic (14 days) TTX silencing markedly reduced spine density without any observed increase in filopodia density. Time-dependent, biphasic changes to the presynaptic marker Synapsin-1 were also observed, independent of residual spontaneous activity. Acute silencing (3 h) did not affect presynaptic markers or postsynaptic structures. To induce rapid, activity-dependent plasticity in striatal neurons, a chemical NMDA receptor-dependent “long-term potentiation (LTP)” paradigm was employed. Within 30 min, this increased spine and GluA1 cluster densities, and the percentage of spines containing GluA1 clusters, without altering the presynaptic signal. The results demonstrate that the growth and pruning of dendritic protrusions is an active process, requiring glutamate receptor activity in striatal projection neurons. Furthermore, NMDA receptor activation is sufficient to drive glutamatergic structural plasticity in SPNs, in the absence of dopamine or other neuromodulators.
Collapse
Affiliation(s)
- Naila Kuhlmann
- Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada.,Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Lucía Quesada-Ramírez
- Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada
| | - Matthew J Farrer
- Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada.,McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Austen J Milnerwood
- Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada.,Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ, Essa MM, Guillemin GJ, Chandra R, Sakharkar MK. Dendritic spines: Revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:161-193. [PMID: 30654089 DOI: 10.1016/j.pnpbp.2019.01.005] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/04/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Dendritic spines are small, thin, specialized protrusions from neuronal dendrites, primarily localized in the excitatory synapses. Sophisticated imaging techniques revealed that dendritic spines are complex structures consisting of a dense network of cytoskeletal, transmembrane and scaffolding molecules, and numerous surface receptors. Molecular signaling pathways, mainly Rho and Ras family small GTPases pathways that converge on actin cytoskeleton, regulate the spine morphology and dynamics bi-directionally during synaptic activity. During synaptic plasticity the number and shapes of dendritic spines undergo radical reorganizations. Long-term potentiation (LTP) induction promote spine head enlargement and the formation and stabilization of new spines. Long-term depression (LTD) results in their shrinkage and retraction. Reports indicate increased spine density in the pyramidal neurons of autism and Fragile X syndrome patients and reduced density in the temporal gyrus loci of schizophrenic patients. Post-mortem reports of Alzheimer's brains showed reduced spine number in the hippocampus and cortex. This review highlights the spine morphogenesis process, the activity-dependent structural plasticity and mechanisms by which synaptic activity sculpts the dendritic spines, the structural and functional changes in spines during learning and memory using LTP and LTD processes. It also discusses on spine status in neurodegenerative diseases and the impact of nootropics and neuroprotective agents on the functional restoration of dendritic spines.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Srinivasa Rao Bolla
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Damam, Saudi Arabia
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Arehally Marappa Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J Guillemin
- Neuropharmacology Group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, Sydney, NSW 2109, Australia
| | - Ramesh Chandra
- Department of Chemistry, Ambedkar Centre for BioMedical Research, Delhi University, Delhi 110007, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
5
|
Mantilla CB, Zhan WZ, Gransee HM, Prakash YS, Sieck GC. Phrenic motoneuron structural plasticity across models of diaphragm muscle paralysis. J Comp Neurol 2018; 526:2973-2983. [PMID: 30411341 DOI: 10.1002/cne.24503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
Abstract
Structural plasticity in motoneurons may be influenced by activation history and motoneuron-muscle fiber interactions. The goal of this study was to examine the morphological adaptations of phrenic motoneurons following imposed motoneuron inactivity while controlling for diaphragm muscle inactivity. Well-characterized rat models were used including unilateral C2 spinal hemisection (SH; ipsilateral phrenic motoneurons and diaphragm muscle are inactive) and tetrodotoxin phrenic nerve blockade (TTX; ipsilateral diaphragm muscle is paralyzed while phrenic motoneuron activity is preserved). We hypothesized that inactivity of phrenic motoneurons would result in a decrease in motoneuron size, consistent with a homeostatic increase in excitability. Phrenic motoneurons were retrogradely labeled by ipsilateral diaphragm muscle injection of fluorescent dextrans or cholera toxin subunit B. Following 2 weeks of diaphragm muscle paralysis, morphological parameters of labeled ipsilateral phrenic motoneurons were assessed quantitatively using fluorescence confocal microscopy. Compared to controls, phrenic motoneuron somal volumes and surface areas decreased with SH, but increased with TTX. Total phrenic motoneuron surface area was unchanged by SH, but increased with TTX. Dendritic surface area was estimated from primary dendrite diameter using a power equation obtained from three-dimensional reconstructed phrenic motoneurons. Estimated dendritic surface area was not significantly different between control and SH, but increased with TTX. Similarly, TTX significantly increased total phrenic motoneuron surface area. These results suggest that ipsilateral phrenic motoneuron morphological adaptations are consistent with a normalization of motoneuron excitability following prolonged alterations in motoneuron activity. Phrenic motoneuron structural plasticity is likely more dependent on motoneuron activity (or descending input) than muscle fiber activity.
Collapse
Affiliation(s)
- Carlos B Mantilla
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Wen-Zhi Zhan
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Heather M Gransee
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Tshuva RY, Korkotian E, Segal M. ORAI1-dependent synaptic plasticity in rat hippocampal neurons. Neurobiol Learn Mem 2017; 140:1-10. [DOI: 10.1016/j.nlm.2016.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/24/2016] [Indexed: 10/20/2022]
|
7
|
Segal M. Dendritic spines: Morphological building blocks of memory. Neurobiol Learn Mem 2016; 138:3-9. [PMID: 27311757 DOI: 10.1016/j.nlm.2016.06.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/22/2016] [Accepted: 06/12/2016] [Indexed: 12/22/2022]
Abstract
The introduction of novel technologies, including high resolution time lapse imaging in behaving animals, molecular modification of the genome and optogenetic control of neuronal excitability have revolutionized the ability to detect subcellular changes in the brain, associated with learning and memory. The sequence of molecular cascades leading to formation, longevity and erasure of memories are being addressed in growing number of studies. Still, major issues concerning the relationship between the morphology and physiology of dendritic spines and memory mechanisms and the functional, neuronal network relevance of such parameters remain unsettled. The present review will summarize recent studies related to the immediate and long lasting changes in density, morphology and function of dendritic spines and their parent neurons following exposure to plasticity-producing stimulation in vivo and in vitro. Standing issues such as the relations between volume/shape and longevity, with respect to different classes of memories in different brain regions will be addressed. These studies indicate that the rules governing the structure/function relations of dendritic spines and memory in the brain are still not conclusive.
Collapse
Affiliation(s)
- Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Rehovot 76100, Israel.
| |
Collapse
|
8
|
Waller JA, Chen F, Sánchez C. Vortioxetine promotes maturation of dendritic spines in vitro: A comparative study in hippocampal cultures. Neuropharmacology 2015; 103:143-54. [PMID: 26702943 DOI: 10.1016/j.neuropharm.2015.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/03/2015] [Accepted: 12/13/2015] [Indexed: 10/22/2022]
Abstract
Cognitive dysfunction is prevalent in patients with major depressive disorder (MDD), and cognitive impairments can persist after relief of depressive symptoms. The multimodal-acting antidepressant vortioxetine is an antagonist at 5-HT3, 5-HT7, and 5-HT1D receptors, a partial agonist at 5-HT1B receptors, an agonist at 5-HT1A receptors, and an inhibitor of the serotonin (5-HT) transporter (SERT) and has pro-cognitive properties. In preclinical studies, vortioxetine enhances long-term potentiation (LTP), a cellular correlate of neuroplasticity, and enhances memory in various cognitive tasks. However, the molecular mechanisms by which vortioxetine augments LTP and memory remain unknown. Dendritic spines are specialized, actin-rich microdomains on dendritic shafts and are major sites of most excitatory synapses. Since dendritic spine remodeling is implicated in synaptic plasticity and spine size dictates the strength of synaptic transmission, we assessed if vortioxetine, relative to other antidepressants including ketamine, duloxetine, and fluoxetine, plays a role in the maintenance of dendritic spine architecture in vitro. We show that vortioxetine, ketamine, and duloxetine induce spine enlargement. However, only vortioxetine treatment increased the number of spines in contact with presynaptic terminals. In contrast, fluoxetine had no effect on spine remodeling. These findings imply that the various 5-HT receptor mechanisms of vortioxetine may play a role in its effect on spine dynamics and in increasing the proportion of potentially functional synaptic contacts.
Collapse
Affiliation(s)
- Jessica A Waller
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Paramus, NJ 07652, USA
| | - Fenghua Chen
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, DK-8000 Aarhus C, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark
| | - Connie Sánchez
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Paramus, NJ 07652, USA.
| |
Collapse
|
9
|
Bencsik N, Szíber Z, Liliom H, Tárnok K, Borbély S, Gulyás M, Rátkai A, Szűcs A, Hazai-Novák D, Ellwanger K, Rácz B, Pfizenmaier K, Hausser A, Schlett K. Protein kinase D promotes plasticity-induced F-actin stabilization in dendritic spines and regulates memory formation. J Cell Biol 2015; 210:771-83. [PMID: 26304723 PMCID: PMC4555815 DOI: 10.1083/jcb.201501114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023] Open
Abstract
PKD regulates the stabilization of the F-actin network within dendritic spines upon chemically induced plasticity changes and is needed for proper hippocampal LTP and spatial memory formation. Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.
Collapse
Affiliation(s)
- Norbert Bencsik
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Zsófia Szíber
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Hanna Liliom
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Krisztián Tárnok
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Sándor Borbély
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Márton Gulyás
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| | - Anikó Rátkai
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Attila Szűcs
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| | - Diána Hazai-Novák
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, H-1400 Budapest, Hungary
| | - Kornelia Ellwanger
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Bence Rácz
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, H-1400 Budapest, Hungary
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| |
Collapse
|
10
|
Renault R, Sukenik N, Descroix S, Malaquin L, Viovy JL, Peyrin JM, Bottani S, Monceau P, Moses E, Vignes M. Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro. PLoS One 2015; 10:e0120680. [PMID: 25901914 PMCID: PMC4406441 DOI: 10.1371/journal.pone.0120680] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/05/2015] [Indexed: 11/19/2022] Open
Abstract
In this paper we report the combination of microfluidics, optogenetics and calcium imaging as a cheap and convenient platform to study synaptic communication between neuronal populations in vitro. We first show that Calcium Orange indicator is compatible in vitro with a commonly used Channelrhodopsine-2 (ChR2) variant, as standard calcium imaging conditions did not alter significantly the activity of transduced cultures of rodent primary neurons. A fast, robust and scalable process for micro-chip fabrication was developed in parallel to build micro-compartmented cultures. Coupling optical fibers to each micro-compartment allowed for the independent control of ChR2 activation in the different populations without crosstalk. By analyzing the post-stimuli activity across the different populations, we finally show how this platform can be used to evaluate quantitatively the effective connectivity between connected neuronal populations.
Collapse
Affiliation(s)
- Renaud Renault
- MSC (Université Paris-Diderot, CNRS-UMR 7057), 5 Rue Thomas Mann, 75013 Paris, France
- Physicochimie Curie (Institut Curie, CNRS-UMR 168, UPMC), Institut Curie, Centre de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France
- Department of Complex Systems, Weizmann Institute, Rehovot, Israel
| | - Nirit Sukenik
- Department of Complex Systems, Weizmann Institute, Rehovot, Israel
| | - Stéphanie Descroix
- Physicochimie Curie (Institut Curie, CNRS-UMR 168, UPMC), Institut Curie, Centre de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Laurent Malaquin
- Physicochimie Curie (Institut Curie, CNRS-UMR 168, UPMC), Institut Curie, Centre de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Jean-Louis Viovy
- Physicochimie Curie (Institut Curie, CNRS-UMR 168, UPMC), Institut Curie, Centre de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Jean-Michel Peyrin
- Biological Adaptation and Ageing (CNRS, UMR 8256), F-75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, B2A, Institut de Biologie Paris Seine, F-75005, Paris, France
| | - Samuel Bottani
- MSC (Université Paris-Diderot, CNRS-UMR 7057), 5 Rue Thomas Mann, 75013 Paris, France
| | - Pascal Monceau
- MSC (Université Paris-Diderot, CNRS-UMR 7057), 5 Rue Thomas Mann, 75013 Paris, France
| | - Elisha Moses
- Department of Complex Systems, Weizmann Institute, Rehovot, Israel
| | - Maéva Vignes
- Physicochimie Curie (Institut Curie, CNRS-UMR 168, UPMC), Institut Curie, Centre de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France
- Biological Adaptation and Ageing (CNRS, UMR 8256), F-75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, B2A, Institut de Biologie Paris Seine, F-75005, Paris, France
| |
Collapse
|
11
|
Fauth M, Wörgötter F, Tetzlaff C. The formation of multi-synaptic connections by the interaction of synaptic and structural plasticity and their functional consequences. PLoS Comput Biol 2015; 11:e1004031. [PMID: 25590330 PMCID: PMC4295841 DOI: 10.1371/journal.pcbi.1004031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022] Open
Abstract
Cortical connectivity emerges from the permanent interaction between neuronal activity and synaptic as well as structural plasticity. An important experimentally observed feature of this connectivity is the distribution of the number of synapses from one neuron to another, which has been measured in several cortical layers. All of these distributions are bimodal with one peak at zero and a second one at a small number (3–8) of synapses. In this study, using a probabilistic model of structural plasticity, which depends on the synaptic weights, we explore how these distributions can emerge and which functional consequences they have. We find that bimodal distributions arise generically from the interaction of structural plasticity with synaptic plasticity rules that fulfill the following biological realistic constraints: First, the synaptic weights have to grow with the postsynaptic activity. Second, this growth curve and/or the input-output relation of the postsynaptic neuron have to change sub-linearly (negative curvature). As most neurons show such input-output-relations, these constraints can be fulfilled by many biological reasonable systems. Given such a system, we show that the different activities, which can explain the layer-specific distributions, correspond to experimentally observed activities. Considering these activities as working point of the system and varying the pre- or postsynaptic stimulation reveals a hysteresis in the number of synapses. As a consequence of this, the connectivity between two neurons can be controlled by activity but is also safeguarded against overly fast changes. These results indicate that the complex dynamics between activity and plasticity will, already between a pair of neurons, induce a variety of possible stable synaptic distributions, which could support memory mechanisms. The connectivity between neurons is modified by different mechanisms. On a time scale of minutes to hours one finds synaptic plasticity, whereas mechanisms for structural changes at axons or dendrites may take days. One main factor determining structural changes is the weight of a connection, which, in turn, is adapted by synaptic plasticity. Both mechanisms, synaptic and structural plasticity, are influenced and determined by the activity pattern in the network. Hence, it is important to understand how activity and the different plasticity mechanisms influence each other. Especially how activity influences rewiring in adult networks is still an open question. We present a model, which captures these complex interactions by abstracting structural plasticity with weight-dependent probabilities. This allows for calculating the distribution of the number of synapses between two neurons analytically. We report that biologically realistic connection patterns for different cortical layers generically arise with synaptic plasticity rules in which the synaptic weights grow with postsynaptic activity. The connectivity patterns also lead to different activity levels resembling those found in the different cortical layers. Interestingly such a system exhibits a hysteresis by which connections remain stable longer than expected, which may add to the stability of information storage in the network.
Collapse
Affiliation(s)
- Michael Fauth
- Georg-August University Göttingen, Third Institute of Physics, Bernstein Center for Computational Neuroscience, Göttingen, Germany
- * E-mail:
| | - Florentin Wörgötter
- Georg-August University Göttingen, Third Institute of Physics, Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Christian Tetzlaff
- Georg-August University Göttingen, Third Institute of Physics, Bernstein Center for Computational Neuroscience, Göttingen, Germany
| |
Collapse
|
12
|
Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering. Proc Natl Acad Sci U S A 2014; 111:18733-8. [PMID: 25512503 DOI: 10.1073/pnas.1421285111] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The dementia of Alzheimer's disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat age-related cognitive decline.
Collapse
|
13
|
Saki K, Bahmani M, Rafieian-Kopaei M, Hassanzadazar H, Dehghan K, Bahmani F, Asadzadeh J. The most common native medicinal plants used for psychiatric and neurological disorders in Urmia city, northwest of Iran. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60754-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Paula-Lima AC, Adasme T, Hidalgo C. Contribution of Ca2+ release channels to hippocampal synaptic plasticity and spatial memory: potential redox modulation. Antioxid Redox Signal 2014; 21:892-914. [PMID: 24410659 DOI: 10.1089/ars.2013.5796] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE Memory is an essential human cognitive function. Consequently, to unravel the cellular and molecular mechanisms responsible for the synaptic plasticity events underlying memory formation, storage and loss represents a major challenge of present-day neuroscience. RECENT ADVANCES This review article first describes the wide-ranging functions played by intracellular Ca2+ signals in the activity-dependent synaptic plasticity processes underlying hippocampal spatial memory, and next, it focuses on how the endoplasmic reticulum Ca2+ release channels, the ryanodine receptors, and the inositol 1,4,5-trisphosphate receptors contribute to these processes. We present a detailed examination of recent evidence supporting the key role played by Ca2+ release channels in synaptic plasticity, including structural plasticity, and the formation/consolidation of spatial memory in the hippocampus. CRITICAL ISSUES Changes in cellular oxidative state particularly affect the function of Ca2+ release channels and alter hippocampal synaptic plasticity and the associated memory processes. Emphasis is placed in this review on how defective Ca2+ release, presumably due to increased levels of reactive oxygen species, may cause the hippocampal functional defects that are associated to aging and Alzheimer's disease (AD). FUTURE DIRECTIONS Additional studies should examine the precise molecular mechanisms by which Ca2+ release channels contribute to hippocampal synaptic plasticity and spatial memory formation/consolidation. Future studies should test whether redox-modified Ca2+ release channels contribute toward generating the intracellular Ca2+ signals required for sustained synaptic plasticity and hippocampal spatial memory, and whether loss of redox balance and oxidative stress, by altering Ca2+ release channel function, presumably contribute to the abnormal memory processes that occur during aging and AD.
Collapse
Affiliation(s)
- Andrea C Paula-Lima
- 1 Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile , Santiago, Chile
| | | | | |
Collapse
|
15
|
Mattison HA, Popovkina D, Kao JPY, Thompson SM. The role of glutamate in the morphological and physiological development of dendritic spines. Eur J Neurosci 2014; 39:1761-70. [PMID: 24661419 PMCID: PMC4043883 DOI: 10.1111/ejn.12536] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 02/05/2023]
Abstract
Dendritic spines form the postsynaptic half of the synapse but how they form during CNS development remains uncertain, as are the factors that promote their morphological and physiological maturation. One hypothesis posits that filopodia, long motile dendritic processes that are present prior to spine formation, are the precursors to spines. Another hypothesis posits that they form directly from the dendritic shaft. We used microphotolysis of caged glutamate to stimulate individual dendritic processes in young hippocampal slice cultures while recording their morphological and physiological responses. We observed that brief trains of stimuli delivered to immature processes triggered morphological changes within minutes that resulted, in about half of experiments, in a more mature, spine-like appearance such as decreased spine neck length and increased spine head width. We also observed that glutamate-induced inward currents elicited from immature processes were mostly or entirely mediated by NMDARs, whereas responses in those processes with a more mature morphology, regardless of actual developmental age, were mediated by both AMPARs and NMDARs. Consistent with this observation, glutamate-induced morphological changes were largely, but not entirely, prevented by blocking NMDARs. Our observations thus favor a model in which filopodia in the developing nervous system sense and respond to release of glutamate from developing axons, resulting in physiological and morphological maturation.
Collapse
Affiliation(s)
- Hayley A. Mattison
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Membrane Biology Training Program, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Dina Popovkina
- Meyerhoff Scholarship Program, University of Maryland, Baltimore County
| | - Joseph P. Y. Kao
- Membrane Biology Training Program, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Medical Biotechnology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Scott M. Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Membrane Biology Training Program, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
16
|
Hu F, Cui Y, Guo R, Chen J, Guo R, Shen N, Hua X, Mo L, Feng J. Spinal leptin contributes to the development of morphine antinociceptive tolerance by activating the STAT3-NMDA receptor pathway in rats. Mol Med Rep 2014; 10:923-30. [PMID: 24841769 DOI: 10.3892/mmr.2014.2250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 04/01/2014] [Indexed: 11/06/2022] Open
Abstract
Leptin, an adipokine synthesized mainly by non‑neuronal tissues, has been reported to contribute to the pathogenesis of neuropathic pain. It has been hypothesized that morphine tolerance and neuropathic pain share some common pathological mechanisms. The present study was designed to examine whether spinal leptin is implicated in the development of morphine antinociceptive tolerance, and whether spinal leptin induces the activation of signal transducer and activator of transcription 3 (STAT3) signaling pathway and the NR1 subunit of N‑methyl‑D‑aspartate (NMDA) receptor, in morphine antinociceptive tolerance in rats. The results demonstrated that intrathecal (i.t.) administration of a leptin antagonist (LA) prevented the development of morphine antinociceptive tolerance in rats. Further studies revealed that the levels of the spinal leptin and the leptin receptor (Ob‑R) were time‑dependently increased following chronic morphine treatment. Mechanistic examination indicated that chronic morphine triggered activation of the STAT3 pathway and an increase in the expression of the NR1 subunit of the NMDA receptor, which was ameliorated by i.t. administration of AG490 [a Janus kinase (JAK)‑STAT inhibitor]. The increased activation of STAT3 and the NR1 subunit was markedly attenuated by i.t. treatment with LA. In addition, the spinal administration of AG490 or MK‑801 (a non‑competitive NMDA receptor inhibitor) blocked the development of morphine antinociceptive tolerance. Taken together, these results have demonstrated, for the first time, to the best of our knowledge, that spinal leptin contributes to the development of morphine antinociceptive tolerance by activating the spinal STAT3‑NMDA receptor pathway.
Collapse
Affiliation(s)
- Fen Hu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yu Cui
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ruixian Guo
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jingfu Chen
- Department of Cardiovasology, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Runming Guo
- Department of Cardiovasology, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Ning Shen
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoxiao Hua
- Department of Anesthesiology, Huangpu Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Liqiu Mo
- Department of Anesthesiology, Huangpu Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Jianqiang Feng
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
17
|
Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 2014; 94:141-88. [PMID: 24382885 DOI: 10.1152/physrev.00012.2013] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, as well as the functions of dendritic spines in neurological/psychiatric diseases are being addressed in a growing number of recent studies. There are still unsettled issues with respect to spine formation and plasticity: Are spines formed first, followed by synapse formation, or are synapses formed first, followed by emergence of a spine? What are the immediate and long-lasting changes in spine properties following exposure to plasticity-producing stimulation? Is spine volume/shape indicative of its function? These and other issues are addressed in this review, which highlights the complexity of molecular pathways involved in regulation of spine structure and function, and which contributes to the understanding of central synaptic interactions in health and disease.
Collapse
|
18
|
Gipson CD, Kupchik YM, Kalivas PW. Rapid, transient synaptic plasticity in addiction. Neuropharmacology 2014; 76 Pt B:276-86. [PMID: 23639436 PMCID: PMC3762905 DOI: 10.1016/j.neuropharm.2013.04.032] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 12/20/2022]
Abstract
Chronic use of addictive drugs produces enduring neuroadaptations in the corticostriatal glutamatergic brain circuitry. The nucleus accumbens (NAc), which integrates cortical information and regulates goal-directed behavior, undergoes long-term morphological and electrophysiological changes that may underlie the increased susceptibility for relapse in drug-experienced individuals even after long periods of withdrawal. Additionally, it has recently been shown that exposure to cues associated with drug use elicits rapid and transient morphological and electrophysiological changes in glutamatergic synapses in the NAc. This review highlights these dynamic drug-induced changes in this pathway that are specific to a drug seeking neuropathology, as well as how these changes impair normal information processing and thereby contribute to the uncontrollable motivation to relapse. Future directions for relapse prevention and pharmacotherapeutic targeting of the rapid, transient synaptic plasticity in relapse are discussed. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Cassandra D Gipson
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Ave., BSB 403, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
19
|
Ron S, Dudai Y, Segal M. Overexpression of PKMζ alters morphology and function of dendritic spines in cultured cortical neurons. ACTA ACUST UNITED AC 2011; 22:2519-28. [PMID: 22123937 DOI: 10.1093/cercor/bhr323] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein kinase M zeta (PKMζ), an atypical isoform of protein kinase C (PKC), has been implicated in long-term maintenance of neuronal plasticity and memory. However, the cellular machinery involved in these functions has yet to be elucidated. Here, we investigated the effects of PKMζ overexpression on the morphology and function of cortical neurons in primary cultures. Transfection with a plasmid construct expressing the PKMζ gene modified the distribution of spine morphologies and reduced spine length, while leaving total spine density and dendritic branching unchanged. A significant increase in magnitude but not frequency of miniature excitatory post synaptic currents was detected in the PKMζ overexpressing cells. These results suggest that PKMζ is involved in regulation of dendritic spine structure and function, which may underlie its role in long-term synaptic and behavioral plasticity.
Collapse
Affiliation(s)
- Shiri Ron
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
20
|
Molnár E. Long-term potentiation in cultured hippocampal neurons. Semin Cell Dev Biol 2011; 22:506-13. [PMID: 21807105 DOI: 10.1016/j.semcdb.2011.07.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/23/2011] [Accepted: 07/01/2011] [Indexed: 10/18/2022]
Abstract
Studies performed on low-density primary neuronal cultures have enabled dissection of molecular and cellular changes during N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP). Various electrophysiological and chemical induction protocols were developed for the persistent enhancement of excitatory synaptic transmission in hippocampal neuronal cultures. The characterisation of these plasticity models confirmed that they share many key properties with the LTP of CA1 neurons, extensively studied in hippocampal slices using electrophysiological techniques. For example, LTP in dissociated hippocampal neuronal cultures is also dependent on Ca(2+) influx through post-synaptic NMDA receptors, subsequent activation and autophosphorylation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and an increase in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor insertion at the post-synaptic membrane. The availability of models of LTP in cultured hippocampal neurons significantly facilitated the monitoring of changes in endogenous postsynaptic receptor proteins and the investigation of the associated signalling mechanisms that underlie LTP. A central feature of LTP of excitatory synapses is the recruitment of AMPA receptors at the postsynaptic site. Results from the use of cell culture-based models started to establish the mechanism by which synaptic input controls a neuron's ability to modify its synapses in LTP. This review focuses on key features of various LTP induction protocols in dissociated hippocampal neuronal cultures and the applications of these plasticity models for the investigation of activity-induced changes in native AMPA receptors.
Collapse
Affiliation(s)
- Elek Molnár
- MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, UK.
| |
Collapse
|
21
|
Ivenshitz M, Segal M. Neuronal density determines network connectivity and spontaneous activity in cultured hippocampus. J Neurophysiol 2010; 104:1052-60. [PMID: 20554850 DOI: 10.1152/jn.00914.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of neuronal density on morphological and functional attributes of the evolving networks were studied in cultured dissociated hippocampal neurons. Plating at different densities affected connectivity among the neurons, such that sparse networks exhibited stronger synaptic connections between pairs of recorded neurons. This was associated with different patterns of spontaneous network activity with enhanced burst size but reduced burst frequency in the sparse cultures. Neuronal density also affected the morphology of the dendrites and spines of these neurons, such that sparse neurons had a simpler dendritic tree and fewer dendritic spines. Additionally, analysis of neurons transfected with PSD95 revealed that in sparse cultures the synapses are formed on the dendritic shaft, whereas in dense cultures the synapses are formed primarily on spine heads. These experiments provide important clues on the role of neuronal density in population activity and should yield new insights into the rules governing neuronal network connectivity.
Collapse
Affiliation(s)
- Miriam Ivenshitz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
22
|
Ovtscharoff W, Segal M, Goldin M, Helmeke C, Kreher U, Greenberger V, Herzog A, Michaelis B, Braun K. Electron microscopic 3D-reconstruction of dendritic spines in cultured hippocampal neurons undergoing synaptic plasticity. Dev Neurobiol 2008; 68:870-6. [PMID: 18327766 DOI: 10.1002/dneu.20627] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dendritic spines are assumed to constitute the locus of neuronal plasticity, and considerable effort has been focused on attempts to demonstrate that new memories are associated with the formation of new spines. However, few studies that have documented the appearance of spines after exposure to plasticity-producing paradigms could demonstrate that a new spine is touched by a bona fida presynaptic terminal. Thus, the functional significance of plastic dendritic spine changes is not clearly understood. We have used quantitative time lapse confocal imaging of cultured hippocampal neurons before and after their exposure to a conditioning medium which activates synaptic NMDA receptors. Following the experiment the cultures were prepared for 3D electron microscopic reconstruction of visually identified dendritic spines. We found that a majority of new, 1- to 2-h-old spines was touched by presynaptic terminals. Furthermore, when spines disappeared, the parent dendrites were sometime touched by a presynaptic bouton at the site where the previously identified spine had been located. We conclude that new spines are most likely to be functional and that pruned spines can be transformed into shaft synapses and thus maintain their functionality within the neuronal network.
Collapse
Affiliation(s)
- Wladimir Ovtscharoff
- Department of Zoology/Developmental Neurobiology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cohen D, Segal M, Reiner O. Doublecortin supports the development of dendritic arbors in primary hippocampal neurons. Dev Neurosci 2008; 30:187-99. [PMID: 18075265 DOI: 10.1159/000109862] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 02/02/2007] [Indexed: 12/14/2022] Open
Abstract
Doublecortin (DCX) is a microtubule-associated protein necessary for neuronal migration. In spite of its ubiquitous distribution in dendrites, its possible role in dendrite development has not yet been documented. The present study examined the effects of different expression levels of DCX on the arborization of dendrites in cultured hippocampal neurons. Reduced expression of DCX following RNAi transfection resulted in reduced branch points, total length and complexity of the dendrites. Overexpression of DCX resulted in an increase in branch points and complexity of the dendrites. In contrast to control green fluorescent protein cells, DCX-overexpressing cells maintained highly branched and complex dendritic trees when subjected to reduced neuronal activity by blockade of immature GABA(A) receptors. These results suggest that DCX supports developing dendrites, in addition to its role in neuronal migration.
Collapse
Affiliation(s)
- Dror Cohen
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel
| | | | | |
Collapse
|
24
|
Chen N, Napoli JL. All-trans-retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane-associated RARalpha. FASEB J 2007; 22:236-45. [PMID: 17712061 DOI: 10.1096/fj.07-8739com] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Differentiation and patterning in the developing nervous system require the vitamin A metabolite all-trans-retinoic acid (atRA). Recent data suggest that higher cognitive functions, such as creation of hippocampal memory, also require atRA and its receptors, RAR, through affecting synaptic plasticity. Here we show that within 30 min atRA increased dendritic growth approximately 2-fold, and PSD-95 and synaptophysin puncta intensity approximately 3-fold, in cultured mouse hippocampal neurons, suggesting increased synapse formation. atRA (10 nM) increased ERK1/2 phosphorylation within 10 min. In synaptoneurosomes, atRA rapidly increased phosphorylation of ERK1/2, its target 4E-BP, and p70S6K, and its substrate, ribosome protein S6, indicating activation of MAPK and mammalian target of rapamycin (mTOR). Immunofluorescence revealed intense dendritic expression of RARalpha in the mouse hippocampus and localization of RARalpha on the surfaces of primary cultures of hippocampal neurons, with bright puncta along soma and neurites. Surface biotinylation confirmed the locus of RARalpha expression. Knockdown of RARalpha by shRNA impaired atRA-induced spine formation and abolished dendritic growth. Prolonged atRA stimulation reduced surface/total RARalpha by 43%, suggesting internalization, whereas brain-derived nerve growth factor or bicuculline increased the ratio by approximately 1.8-fold. atRA increased translation in the somatodendritic compartment, similar to brain-derived nerve growth factor. atRA specifically increased dendritic translation and surface expression of the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate receptor (AMPAR) subunit 1 (GluR1), without affecting GluR2. These data provide mechanistic insight into atRA function in the hippocampus and identify a unique membrane-associated RARalpha that mediates rapid induction of neuronal translation by atRA.
Collapse
Affiliation(s)
- Na Chen
- Nutritional Science and Toxicology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
25
|
Coecke S, Goldberg AM, Allen S, Buzanska L, Calamandrei G, Crofton K, Hareng L, Hartung T, Knaut H, Honegger P, Jacobs M, Lein P, Li A, Mundy W, Owen D, Schneider S, Silbergeld E, Reum T, Trnovec T, Monnet-Tschudi F, Bal-Price A. Workgroup report: incorporating in vitro alternative methods for developmental neurotoxicity into international hazard and risk assessment strategies. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:924-31. [PMID: 17589601 PMCID: PMC1892131 DOI: 10.1289/ehp.9427] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 02/06/2007] [Indexed: 05/16/2023]
Abstract
This is the report of the first workshop on Incorporating In Vitro Alternative Methods for Developmental Neurotoxicity (DNT) Testing into International Hazard and Risk Assessment Strategies, held in Ispra, Italy, on 19-21 April 2005. The workshop was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) and jointly organized by ECVAM, the European Chemical Industry Council, and the Johns Hopkins University Center for Alternatives to Animal Testing. The primary aim of the workshop was to identify and catalog potential methods that could be used to assess how data from in vitro alternative methods could help to predict and identify DNT hazards. Working groups focused on two different aspects: a) details on the science available in the field of DNT, including discussions on the models available to capture the critical DNT mechanisms and processes, and b) policy and strategy aspects to assess the integration of alternative methods in a regulatory framework. This report summarizes these discussions and details the recommendations and priorities for future work.
Collapse
Affiliation(s)
- Sandra Coecke
- ECVAM-European Centre for the Validation of Alternative Methods, Institute for Health and Consumer Protection, European Commission, Joint Research Center, Ispra, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Korkotian E, Segal M. Morphological constraints on calcium dependent glutamate receptor trafficking into individual dendritic spine. Cell Calcium 2006; 42:41-57. [PMID: 17187855 DOI: 10.1016/j.ceca.2006.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 11/14/2006] [Accepted: 11/16/2006] [Indexed: 11/28/2022]
Abstract
Glutamate receptor trafficking into dendritic spines is a pivotal step in synaptic plasticity, yet the relevance of plasticity-producing rise of [Ca2+]i and of spine morphology to subsequent delivery of glutamate receptors into dendritic spine heads are still not well understood. Following chemical induction of LTP, an increase in eGFP-GluR1 fluorescence in short but not long dendritic spines of cultured hippocampal neurons was found. Repeated flash photolysis of caged calcium, which produced a transient rise of [Ca2+]i inside spine heads caused a selective, actin and protein synthesis dependent increase of eGFP-GluR1 in these spines. Strikingly, GluR1 increase was correlated with the ability of a calcium transient generated in the spine head to diffuse into the parent dendrite, and inversely correlated with the length of the spine: short spines were more likely to raise GluR1 than long ones. These observations link, for the first time, calcium transients in dendritic spines with spine morphology and its ability to undergo synaptic plasticity.
Collapse
Affiliation(s)
- Eduard Korkotian
- Department of Neurobiology, The Weizmann Institute, Rehovot 76100, Israel
| | | |
Collapse
|
27
|
Abstract
After a language has been learned and then forgotten, relearning some words appears to facilitate spontaneous recovery of other words. More generally, relearning partially forgotten associations induces recovery of other associations in humans, an effect we call free-lunch learning (FLL). Using neural network models, we prove that FLL is a necessary consequence of storing associations as distributed representations. Specifically, we prove that (1) FLL becomes increasingly likely as the number of synapses (connection weights) increases, suggesting that FLL contributes to memory in neurophysiological systems, and (2) the magnitude of FLL is greatest if inactive synapses are removed, suggesting a computational role for synaptic pruning in physiological systems. We also demonstrate that FLL is different from generalization effects conventionally associated with neural network models. As FLL is a generic property of distributed representations, it may constitute an important factor in human memory.
Collapse
Affiliation(s)
- J V Stone
- Psychology Department, Sheffield University, Sheffield S10 2TP, England.
| | | |
Collapse
|
28
|
Sapoznik S, Ivenshitz M, Segal M. Age-dependent glutamate induction of synaptic plasticity in cultured hippocampal neurons. Learn Mem 2006; 13:719-27. [PMID: 17101873 PMCID: PMC1783625 DOI: 10.1101/lm.351706] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A common denominator for the induction of morphological and functional plasticity in cultured hippocampal neurons involves the activation of excitatory synapses. We now demonstrate massive morphological plasticity in mature cultured hippocampal neurons caused by a brief exposure to glutamate. This plasticity involves a slow, 70%-80% increase in spine cross-section area associated with a significant reduction in the width of dendrites. These changes are age dependent and expressed only in cells >18 d in vitro (DIV). Activation of both NMDARs and AMPARs as well as a sustained rise of internal calcium levels are necessary for induction of this plasticity. On the other hand, blockade of network activity or mGluRs does not abolish the observed morphological plasticity. Electrophysiologically, a brief exposure to glutamate induces an increase in the magnitude of EPSCs evoked between pairs of neurons, as well as in mEPSC frequency and amplitude, in mature but not young cultures. These results demonstrate an age-dependent, rapid and robust morphological and functional change in cultured central neurons that may contribute to their ability to express long term synaptic plasticity.
Collapse
Affiliation(s)
- Stav Sapoznik
- Department of Neurobiology, the Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miriam Ivenshitz
- Department of Neurobiology, the Weizmann Institute of Science, Rehovot 76100, Israel
- Corresponding author.E-mail ; fax 972-8-9344140
| | - Menahem Segal
- Department of Neurobiology, the Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
29
|
Korkotian E, Segal M. Spatially confined diffusion of calcium in dendrites of hippocampal neurons revealed by flash photolysis of caged calcium. Cell Calcium 2006; 40:441-9. [PMID: 17064764 DOI: 10.1016/j.ceca.2006.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 11/19/2022]
Abstract
The extent of diffusion of a locally evoked calcium surge in dendrites of cultured hippocampal neurons was studied by flash photolysis of caged EGTA. Cells were transfected with pDsRed for visualization, preincubated with caged NP-EGTA (AM) and Fluo-4 (AM) at room temperature and imaged in a PASCAL confocal microscope. Pulses of UV laser light within an active sphere of about 1 micro m(2) produced a rise of Fluo-4 fluorescence transients in dendrites which peaked at 1 ms and decayed exponentially with a fast (8-10 ms) time constant. A slower decay component was uncovered following incubation with thapsigargin. Lateral diffusion of [Ca(2+)]i did not vary significantly among different size dendrites being symmetric and reaching about 3-3.5 micro mm at a diffusion rate of 0.8 micro mm/ms on both sides of the photolysis center. Fluo-4 was also replaced by the membrane-bound Fluo-NOMO (AM) or by the 'heavy' Calcium Green dextran (CGd) loaded through a patch pipette. Similar rates of diffusion were found in these cases, indicating that the diffusion is not of the dye complexed to calcium but of genuine free calcium ions. Interestingly, presence of a dendritic spine at the focus of photolysis significantly reduced [Ca(2+)]i spread while the focal transient remained unaffected. Finally, [Ca(2+)]i diffused about twice as far from the photolysis sphere in glass tubes of a similar diameter to that of a dendrite, indicating that intrinsic calcium uptake mechanisms in the dendrite determine the diffusion of calcium away from its original site of rise.
Collapse
Affiliation(s)
- Eduard Korkotian
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel.
| | | |
Collapse
|
30
|
Murmu MS, Salomon S, Biala Y, Weinstock M, Braun K, Bock J. Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. Eur J Neurosci 2006; 24:1477-87. [PMID: 16965544 DOI: 10.1111/j.1460-9568.2006.05024.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Both chronic stress in adulthood and episodes of stress in the early postnatal period have been shown to interfere with neuronal development in limbic prefrontal cortical regions. The present study in rats showed for the first time that the development of layer II/III pyramidal neurons in the dorsal anterior cingulate (ACd) and orbitofrontal cortex (OFC) is significantly affected in offspring of mothers exposed to stress during pregnancy. In prenatally stressed (PS) male rat pups the ACd and OFC showed significantly lower spine densities on the apical dendrite (ACd, -20%; OFC, -25%), on basal dendrites reduced spine densities where found only in the OFC (-20% in PS males). Moreover, in both cortical areas a significant reduction of dendritic length was observed in PS males compared to control offspring, which was confined to the apical dendrites (ACd, -30%, OFC, -26%). Sholl analysis revealed that these alterations were accompanied by a significantly reduced complexity of the dendritic trees in both cortical regions. PS females displayed reductions of dendritic spine densities in the ACd and OFC on both the basal (ACd, -21%; OFC, -20%) and apical dendrites (ACd, -21%; OFC, -21%), however, in contrast to the findings in PS males, no dendritic atrophy was detected in the PS females. These findings demonstrate that gestational stress leads to significant alterations of prefrontal neuronal structure in the offspring of the stressed mothers in a sex-specific manner.
Collapse
Affiliation(s)
- Meena Sriti Murmu
- Institute of Biology, Department of Zoology and Developmental Neurobiology, Otto von Guericke University, Brenneckestr. 6, 39118 Magdeburg Germany
| | | | | | | | | | | |
Collapse
|
31
|
Fishbein I, Segal M. Miniature synaptic currents become neurotoxic to chronically silenced neurons. Cereb Cortex 2006; 17:1292-306. [PMID: 16835294 DOI: 10.1093/cercor/bhl037] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
When deprived of spontaneous ongoing network activity by chronic exposure to tetrodotoxin (TTX), cultured cortical neurons retract their dendrites, lose dendritic spines, and degenerate over a period of 1-2 weeks. Electrophysiological properties of these slowly degenerating neurons prior to their death are normal, but they express very large miniature excitatory postsynaptic currents (mEPSCs). Chronic blockade of these mEPSCs by the alpha-amino-5-hydroxy-3-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist 6,7-Dinitroquinoxaline-2,3-dione (DNQX) had no effect of its own on cell survival, yet, paradoxically, it protected the TTX-silenced neurons from degenerating. TTX-treated neurons also exhibited deficient Ca(2+) clearance mechanisms. Thus, upscaled mEPSCs are sufficient to trigger apoptotic processes in otherwise chronically silenced neurons.
Collapse
Affiliation(s)
- Ianai Fishbein
- Department of Neurobiology, The Weizmann Institute, Rehovot 76100, Israel
| | | |
Collapse
|
32
|
Chang JC, Brewer GJ, Wheeler BC. Neuronal network structuring induces greater neuronal activity through enhanced astroglial development. J Neural Eng 2006; 3:217-26. [PMID: 16921205 DOI: 10.1088/1741-2560/3/3/004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The confluence of micropatterning, microfabricated multielectrode arrays, and low-density neuronal culture techniques make possible the growth of patterned neuronal circuits overlying multielectrode arrays. Previous studies have shown synaptic interaction within patterned cultures which was more active on average than random cultures. In our present study, we found patterned cultures to have up to five times more astrocytes and three times more neurons than random cultures. In addition, faster development of synapses is also seen in patterned cultures. Together, this yielded greater overall neuronal activity as evaluated by the number of active electrodes. Our finding of astrocytic proliferation within serum-free culture is also novel.
Collapse
Affiliation(s)
- John C Chang
- Department of Radiology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
33
|
Abstract
We studied the lysophosphatidic acid receptor-1 (LPA1) gene, which we found to be expressed endogenously in cultured hippocampal neurons, and in vivo in young (1-week-old) rat brain slices. Overexpressed green fluorescent protein (GFP)-tagged, membrane-associated LPA1 accumulated in a punctate manner over the entire dendritic tree and caused an increase in dendritic spine density. About half of the dendritic spines in the LPA1-transfected neurons displayed distinct fluorescent puncta, and this subset of spines was also substantially larger than puncta-free, LPA1-transfected or control GFP spines. This phenotype could also be seen in cells transfected with a ligand-binding, defective mutant and is therefore not dependent on interaction with an ambient ligand. While spontaneous miniature excitatory synaptic currents were of the same amplitudes, they decayed slower in LPA1-transfected neurons compared with GFP controls. We propose that LPA1 may play a role in the formation and modulation of the dendritic spine synapse.
Collapse
Affiliation(s)
- Yair Pilpel
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel.
| | | |
Collapse
|
34
|
Morita M, Susuki J, Amino H, Yoshiki F, Moizumi S, Kudo Y. Use of the exogenous Drosophila octopamine receptor gene to study Gq-coupled receptor-mediated responses in mammalian neurons. Neuroscience 2006; 137:545-53. [PMID: 16289891 DOI: 10.1016/j.neuroscience.2005.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2004] [Revised: 08/31/2005] [Accepted: 09/03/2005] [Indexed: 10/25/2022]
Abstract
Diverse excitatory and inhibitory neuronal responses are mediated via Gq-coupled receptors, but the lack of a systematic comparison of different receptors or neurons has hindered a better understanding of these responses. Such a comparison may be provided by an exogenous receptor that is activated by compounds that have no effect on endogenous receptors. We therefore expressed an invertebrate biogenic amine receptor, the Drosophila octopamine receptor, in rat cortical neurons and compared octopamine receptor-mediated responses with those mediated by the group I metabotropic glutamate receptor, the endogenous Gq-coupled receptor in rat cortical neurons. Stimulation of either receptor did not result in a calcium response in octopamine receptor-expressing neurons, although octopamine preferentially elicited a calcium increase in octopamine receptor-expressing PC12h cells, while enhancing the neuronal depolarization-induced calcium increase and the electrical excitability. The increased excitability was caused by inward currents resulting from a reduction in the leak current, which was voltage-independent and blocked by genistein, a non-selective tyrosine kinase inhibitor. These results show that, in cortical neurons, exogenous octopamine receptor in mushroom bodies activated the same cell signaling pathway as endogenous metabotropic glutamate receptor, suggesting that the diverse neuronal responses mediated by Gq-coupled receptors are due to the properties of different neurons, rather than to the properties of the receptors.
Collapse
Affiliation(s)
- M Morita
- Laboratory of Cellular Neurobiology, School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1, Horinouchi, Hachioji, 192-0392, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Itsykson P, Ilouz N, Turetsky T, Goldstein RS, Pera MF, Fishbein I, Segal M, Reubinoff BE. Derivation of neural precursors from human embryonic stem cells in the presence of noggin. Mol Cell Neurosci 2005; 30:24-36. [PMID: 16081300 DOI: 10.1016/j.mcn.2005.05.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 04/13/2005] [Accepted: 05/20/2005] [Indexed: 12/23/2022] Open
Abstract
The utilization of human embryonic stem cells (hESC) for basic and applied research is hampered by limitations in directing their differentiation. Empirical poorly defined methods are currently used to develop cultures enriched for distinct cell types. Here, we report the derivation of neural precursors (NPs) from hESC in a defined culture system that includes the bone morphogenetic protein antagonist noggin. When hESC are cultured as floating aggregates in defined medium and BMP signaling is repressed by noggin, non-neural differentiation is suppressed, and the cell aggregates develop into spheres highly enriched for proliferating NPs. The NPs can differentiate into astrocytes, oligodendrocytes, and mature electrophysiologically functional neurons. During prolonged propagation, the differentiation potential of the NPs shifts from neuronal to glial fate. The presented noggin-dependent controlled conversion of hESC into NPs is valuable for the study of human neurogenesis, the development of new drugs, and is an important step towards the potential utilization of hESC in neural transplantation therapy.
Collapse
Affiliation(s)
- Pavel Itsykson
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy and The Department of Gynecology, Hadassah University Hospital, Ein-Kerem, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pilpel Y, Segal M. Rapid WAVE dynamics in dendritic spines of cultured hippocampal neurons is mediated by actin polymerization. J Neurochem 2005; 95:1401-10. [PMID: 16190876 DOI: 10.1111/j.1471-4159.2005.03467.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Wiskott-Aldrich syndrome protein family Verprolin-homologous protein (WAVE) complex has been proposed to link Rho GTPase activity with actin polymerization but its role in neuronal plasticity has never been documented. We now examined the presence, distribution and dynamics of WAVE3 in cultured hippocampal neurons. WAVE3 was localized to dendritic spines via its N-terminal domain. Green fluorescent protein (GFP)-tagged WAVE3 clusters demonstrate an F-actin-dependent high rate of local motility. Constitutive Rac activation translocates WAVE3 (via the N-terminus), to the leading edge of lamellipodia. Also, spinogenesis is associated with actin-based motility of the WAVE3 protein. Brain specific WAVE1 showed similar localization and effects on spine density. Cytoplasmic fragile X mental retardation protein interacting protein (CYFIP) and non-catalytic region of tyrosine kinase adaptor protein 1 (NCK-1), proteins that are assumed to complex with WAVE, have a somewhat similar cellular distribution and motility. We propose that the WAVE complex is a downstream effector of the Rac signaling cascade, localized to sites of novel synaptic contacts by means of its N-terminal domain, to guide local actin polymerization needed for morphological plasticity of neurons.
Collapse
Affiliation(s)
- Yair Pilpel
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel
| | | |
Collapse
|
37
|
Stewart MG, Medvedev NI, Popov VI, Schoepfer R, Davies HA, Murphy K, Dallérac GM, Kraev IV, Rodríguez JJ. Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices. Eur J Neurosci 2005; 21:3368-78. [PMID: 16026474 DOI: 10.1111/j.1460-9568.2005.04174.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Examination of the morphological correlates of long-term potentiation (LTP) in the hippocampus requires the analysis of both the presynaptic and postsynaptic elements. However, ultrastructural measurements of synapses and dendritic spines following LTP induced via tetanic stimulation presents the difficulty that not all synapses examined are necessarily activated. To overcome this limitation, and to ensure that a very large proportion of the synapses and spines examined have been potentiated, we induced LTP in acute hippocampal slices of adult mice by addition of tetraethylammonium (TEA) to a modified CSF containing an elevated concentration of Ca(2+) and no Mg(+). Quantitative electron microscope morphometric analyses and three-dimensional (3-D) reconstructions of both dendritic spines and postsynaptic densities (PSDs) in CA1 stratum radiatum were made on serial ultrathin sections. One hour after chemical LTP induction the proportion of macular (unperforated) synapses decreased (50%) whilst the number of synapses with simple perforated and complex PSDs (nonmacular) increased significantly (17%), without significant changes in volume and surface area of the PSD. In addition, the surface area of mushroom spines increased significantly (13%) whilst there were no volume differences in either mushroom or thin spines, or in surface area of thin spines. CA1 stratum radiatum contained multiple-synapse en passant axons as well as multiple-synapse spines, which were unaffected by chemical LTP. Our results suggest that chemical LTP induces active dendritic spine remodelling and correlates with a change in the weight and strength of synaptic transmission as shown by the increase in the proportion of nonmacular synapses.
Collapse
Affiliation(s)
- M G Stewart
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Górska-Andrzejak J, Keller A, Raabe T, Kilianek L, Pyza E. Structural daily rhythms in GFP-labelled neurons in the visual system of Drosophila melanogaster. Photochem Photobiol Sci 2005; 4:721-6. [PMID: 16121283 DOI: 10.1039/b417023g] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the visual system of Drosophila melanogaster, two classes of interneurons in the first optic neuropil, or lamina, the monopolar cells L1 and L2, show rhythmic circadian changes in the shape and size of their axons. In the present study we have used the GAL4-UAS system to target the GFP expression to the L2 cells in D. melanogaster and to examine morphological changes in the cell body, nucleus, axon and dendritic spines. Our results showed that in addition to changes in the caliber of its axon, L2 also shows daily changes in the morphology of its dendritic spines, differences which are most pronounced at the beginning of the night. There are also changes in the sizes of the cells' nuclei in the lamina cortex, which are largest at the beginning and in the middle of day, in females and males, respectively. In contrast to the axon and dendrites, L2's soma does not change size significantly during the day or night. The observed changes clearly indicate the cyclical modulation of the structure of the L2 interneurons. These changes seem to be regulated by a circadian clock, which exhibits certain differences between the sexes.
Collapse
Affiliation(s)
- J Górska-Andrzejak
- Zoological Museum, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland
| | | | | | | | | |
Collapse
|
39
|
Abstract
A recent flurry of time-lapse imaging studies of live neurons have tried to address the century-old question: what morphological changes in dendritic spines can be related to long-term memory? Changes that have been proposed to relate to memory include the formation of new spines, the enlargement of spine heads and the pruning of spines. These observations also relate to a more general question of how stable dendritic spines are. The objective of this review is to critically assess the new data and to propose much needed criteria that relate spines to memory, thereby allowing progress in understanding the morphological basis of memory.
Collapse
Affiliation(s)
- Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Rehovot, 76100 Israel.
| |
Collapse
|
40
|
Tolias KF, Bikoff JB, Burette A, Paradis S, Harrar D, Tavazoie S, Weinberg RJ, Greenberg ME. The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 2005; 45:525-38. [PMID: 15721239 DOI: 10.1016/j.neuron.2005.01.024] [Citation(s) in RCA: 304] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 10/22/2004] [Accepted: 01/14/2005] [Indexed: 01/19/2023]
Abstract
NMDA-type glutamate receptors play a critical role in the activity-dependent development and structural remodeling of dendritic arbors and spines. However, the molecular mechanisms that link NMDA receptor activation to changes in dendritic morphology remain unclear. We report that the Rac1-GEF Tiam1 is present in dendrites and spines and is required for their development. Tiam1 interacts with the NMDA receptor and is phosphorylated in a calcium-dependent manner in response to NMDA receptor stimulation. Blockade of Tiam1 function with RNAi and dominant interfering mutants of Tiam1 suggests that Tiam1 mediates effects of the NMDA receptor on dendritic development by inducing Rac1-dependent actin remodeling and protein synthesis. Taken together, these findings define a molecular mechanism by which NMDA receptor signaling controls the growth and morphology of dendritic arbors and spines.
Collapse
MESH Headings
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Animals
- Animals, Newborn
- Blotting, Western/methods
- Brain/cytology
- Brain/metabolism
- Calcium/metabolism
- Cell Line
- Cell Size/drug effects
- Cloning, Molecular/methods
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/metabolism
- Dendritic Spines/physiology
- Dendritic Spines/ultrastructure
- Drug Interactions
- Egtazic Acid/pharmacology
- Ephrin-B1/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Glutamic Acid/pharmacology
- Green Fluorescent Proteins/metabolism
- Guanine Nucleotide Exchange Factors
- Humans
- Immunohistochemistry/methods
- Immunoprecipitation/methods
- Microscopy, Immunoelectron/methods
- Models, Neurological
- Neoplasm Proteins
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Proteins/antagonists & inhibitors
- Proteins/metabolism
- RNA, Antisense/pharmacology
- RNA, Small Interfering
- Rats
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/classification
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synaptosomes/metabolism
- T-Lymphoma Invasion and Metastasis-inducing Protein 1
- Tetrodotoxin/pharmacology
- Time Factors
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/metabolism
- Transfection/methods
- Valine/analogs & derivatives
- Valine/pharmacology
- p21-Activated Kinases
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Kimberley F Tolias
- Neurobiology Program, Children's Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Knafo S, Libersat F, Barkai E. Dynamics of learning-induced spine redistribution along dendrites of pyramidal neurons in rats. Eur J Neurosci 2005; 21:927-35. [PMID: 15787699 DOI: 10.1111/j.1460-9568.2005.03936.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously shown that olfactory-discrimination (OD) learning is accompanied by enhanced spine density along proximal apical dendrites of layer II pyramidal neurons in the piriform (olfactory) cortex. Here we studied the temporal dynamics of learning-induced modifications in dendritic spine density throughout the dendritic trees of these neurons. We observed a transient increase in proximal apical spine density after OD learning, suggesting a strengthening of intrinsic excitatory inputs interconnecting neurons within the olfactory cortex. By contrast, the afferent pathway receiving direct input from the olfactory bulb shows spine pruning, suggesting that the connectivity is weakened. The changes in spine density can be attributed to a net change in number of spines, as the morphometric parameters of the dendrites are unaffected by learning. We suggest that spine density changes may represent a mechanism of selective synaptic reorganization required for olfactory learning consolidation.
Collapse
Affiliation(s)
- Shira Knafo
- Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University, Geersheva, Israel
| | | | | |
Collapse
|
42
|
Korkotian E, Holcman D, Segal M. Dynamic regulation of spine-dendrite coupling in cultured hippocampal neurons. Eur J Neurosci 2004; 20:2649-63. [PMID: 15548208 DOI: 10.1111/j.1460-9568.2004.03691.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We investigated the role of dendritic spine morphology in spine-dendrite calcium communication using novel experimental and theoretical approaches. A transient rise in [Ca2+]i was produced in individual spine heads of Fluo-4-loaded cultured hippocampal neurons by flash photolysis of caged calcium. Following flash photolysis in the spine head, a delayed [Ca2+]i transient was detected in the parent dendrites of only short, but not long, spines. Delayed elevated fluorescence in the dendrite of the short spines was also seen with a membrane-bound fluorophore and fluorescence recovery from bleaching of a calcium-bound fluorophore had a much slower kinetics, indicating that the dendritic fluorescence change reflects a genuine diffusion of free [Ca2+]i from the spine head to the parent dendrite. Calcium diffusion between spine head and the parent dendrite was regulated by calcium stores as well as by a Na-Ca exchanger. Spine length varied with the recent history of the [Ca2+]i variations in the spine, such that small numbers of calcium transients resulted in elongation of spines whereas large numbers of calcium transients caused shrinkage of the spines. Consequently, spine elongation resulted in a complete isolation of the spine from the dendrite, while shrinkage caused an enhanced coupling with the parent dendrite. These studies highlight a dynamically regulated coupling between a dendritic spine head and its parent dendrite.
Collapse
Affiliation(s)
- Eduard Korkotian
- Department of Neurobiology, The Weizmann Institute, Rehovot 76100, Israel
| | | | | |
Collapse
|
43
|
Bock J, Gruss M, Becker S, Braun K. Experience-induced changes of dendritic spine densities in the prefrontal and sensory cortex: correlation with developmental time windows. ACTA ACUST UNITED AC 2004; 15:802-8. [PMID: 15371297 DOI: 10.1093/cercor/bhh181] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study provides evidence for the hypothesis that the extent and the direction of experience-induced synaptic changes in cortical areas correlates with time windows of neuronal as well as endocrine development. Repeated brief exposure to maternal separation prior to the stress hyporesponsive period (SHRP) of the hypothalamic-pituitary-adrenal (HPA) axis induced significantly reduced dendritic spine density (-16%) in layer II/III pyramidal neurons of the anterior cingulate cortex (ACd) of 21-day-old rats, whereas separation after termination of the SHRP resulted in increased spine densities (+16%) in this neuron type. In addition, rats of both groups displayed elevated basal plasma levels of corticosterone at this age. Separation during the SHRP (postnatal days 5-7) did not influence spine density in the ACd, and basal corticosterone levels remained unchanged. In contrast, pyramidal neurons in the somatosensory cortex (SSC) displayed significantly enhanced spine densities (up to 52% increase) independent from the time of separation. These results indicate that alterations in the synaptic balance in limbic and sensory cortical regions in response to early emotional experience are region-specific and related to the maturational stage of endocrine and neuronal systems.
Collapse
Affiliation(s)
- Jörg Bock
- Institute of Biology, Department of Zoology and Developmental Neurobiology, Otto von Guericke Unversity, Brenneckestr. 6, 39118 Magdeburg Germany.
| | | | | | | |
Collapse
|
44
|
Pilpel Y, Segal M. Activation of PKC induces rapid morphological plasticity in dendrites of hippocampal neurons via Rac and Rho-dependent mechanisms. Eur J Neurosci 2004; 19:3151-64. [PMID: 15217371 DOI: 10.1111/j.0953-816x.2004.03380.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Activation of protein kinase C (PKC) produced a novel and rapid formation of lamellae over large surfaces of dendrites in cultured hippocampal neurons. This action was dendrite-specific, involved a postsynaptic locus of activation of PKC and required actin polymerization, but not activation of Erk. Over-expression of active Rho-A GTPase converted a mature, highly branched and spiny neuron into a primitive, non-branching, aspiny neuron. Overexpression of active Rac1 caused massive lamellae formation in the transfected neurons. These morphologically aberrant neurons retained synaptic connectivity with adjacent, normal neurons, as well as the ability to form lamellae in response to PKC. On the other hand, transfection with a dominant negative Rac-N17 or a toxin C3, Rho-A-inactivating plasmid blocked lamellae formation by PKC, but did not prevent PKC-induced plasticity of synaptic currents. These data indicate that PKC activates two independent molecular pathways, one of which involves Rac1 and Rho-A, to produce massive actin-based structural plasticity in dendrites and spines.
Collapse
Affiliation(s)
- Yair Pilpel
- Department of Neurobiology, The Weizmann Institute, Rehovot, 76100, Israel
| | | |
Collapse
|
45
|
Nordeen KW, Nordeen EJ. Synaptic and Molecular Mechanisms Regulating Plasticity during Early Learning. Ann N Y Acad Sci 2004; 1016:416-37. [PMID: 15313788 DOI: 10.1196/annals.1298.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many behaviors are learned most easily during a discrete developmental period, and it is generally agreed that these "sensitive periods" for learning reflect the developmental regulation of molecular or synaptic properties that underlie experience-dependent changes in neural organization and function. Avian song learning provides one example of such temporally restricted learning, and several features of this behavior and its underlying neural circuitry make it a powerful model for studying how early experience sculpts neural and behavioral organization. Here we describe evidence that within the basal ganglia-thalamocortical loop implicated in vocal learning, song acquisition engages N-methyl-d-aspartate receptors (NMDARs), as well as signal transduction cascades strongly implicated in other instances of learning. Furthermore, NMDAR phenotype changes in parallel with developmental and seasonal periods for vocal plasticity. We also review recent studies in the avian song system that challenge the popular notion that sensitive periods for learning reflect developmental changes in the NMDAR that alter thresholds for synaptic plasticity.
Collapse
Affiliation(s)
- Kathy W Nordeen
- Department of Brain & Cognitive Science, University of Rochester, Rochester, NY 14627-0268, USA.
| | | |
Collapse
|
46
|
Amateau SK, McCarthy MM. Induction of PGE2 by estradiol mediates developmental masculinization of sex behavior. Nat Neurosci 2004; 7:643-50. [PMID: 15156148 DOI: 10.1038/nn1254] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 04/23/2004] [Indexed: 11/08/2022]
Abstract
Adult male sexual behavior in mammals requires the neuronal organizing effects of gonadal steroids during a sensitive perinatal period. During development, estradiol differentiates the rat preoptic area (POA), an essential brain region in the male copulatory circuit. Here we report that increases in prostaglandin-E(2) (PGE(2)), resulting from changes in cyclooxygenase-2 (COX-2) regulation induced by perinatal exposure to estradiol, are necessary and sufficient to organize the crucial neural substrate that mediates male sexual behavior. Briefly preventing prostaglandin synthesis in newborn males with the COX inhibitor indomethacin permanently downregulates markers of dendritic spines in the POA and severely impairs male sexual behavior. Developmental exposure to the COX inhibitor aspirin results in mild impairment of sexual behavior. Conversely, administration of PGE(2) to newborn females masculinizes the POA and leads to male sex behavior in adults, thereby highlighting the pathway of steroid-independent brain masculinization. Our findings show that PGE(2) functions as a downstream effector of estradiol to permanently masculinize the brain.
Collapse
Affiliation(s)
- Stuart K Amateau
- Program in Neuroscience and Department of Physiology, University of Maryland at Baltimore School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
47
|
Rauch SL, Wright CI, Martis B, Busa E, McMullin KG, Shin LM, Dale AM, Fischl B. A magnetic resonance imaging study of cortical thickness in animal phobia. Biol Psychiatry 2004; 55:946-52. [PMID: 15110739 DOI: 10.1016/j.biopsych.2003.12.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 12/18/2003] [Accepted: 12/23/2003] [Indexed: 11/28/2022]
Abstract
BACKGROUND Despite the high prevalence of specific phobia (SP), its neural substrates remain undetermined. Although an initial series of functional neuroimaging studies have implicated paralimbic and sensory cortical regions in the pathophysiology of SP, to date contemporary morphometric neuroimaging methods have not been applied to test specific hypotheses regarding structural abnormalities. METHODS Morphometric magnetic resonance imaging (MRI) methods were used to measure regional cortical thickness in 10 subjects with SP (animal type) and 20 healthy comparison (HC) subjects. RESULTS Consistent with a priori hypotheses, between-group differences in cortical thickness were found within paralimbic and sensory cortical regions. Specifically, in comparison with the HC group, the SP group exhibited increased cortical thickness in bilateral insular, bilateral pregenual anterior cingulate, and bilateral posterior cingulate cortex as well as left visual cortical regions. CONCLUSIONS Taken together, these structural findings parallel results from initial functional imaging studies that implicate paralimbic and sensory cortical regions in the mediating anatomy of SP symptoms. Further research will be necessary to replicate these findings and to determine their specificity as well as their pathophysiologic significance.
Collapse
Affiliation(s)
- Scott L Rauch
- Department of Psychiatry, Massachusetts General Hospital-East, 2nd Floor, Building 149, 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Korkotian E, Oron D, Silberberg Y, Segal M. Confocal microscopic imaging of fast UV-laser photolysis of caged compounds. J Neurosci Methods 2004; 133:153-9. [PMID: 14757356 DOI: 10.1016/j.jneumeth.2003.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Using a pulsed UV laser in a confocal scanning microscope, we present a relatively cheap, accurate and efficient method for fast UV laser flash photolysis of caged molecules in two-dimensional cultured neurons. The laser light is introduced through the imaging optics, can be localized by a parallel red laser and can photolyse a sphere of less than 1 microm2, and evoke local fluorescence changes in the imaged neurons. Caged glutamate and caged fluorescein are used to illustrate a disparity between spines and their parent dendrites at a sub-micron resolution.
Collapse
Affiliation(s)
- Eduard Korkotian
- Department of Neurobiology, The Weizmann Institute, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
49
|
Popov VI, Davies HA, Rogachevsky VV, Patrushev IV, Errington ML, Gabbott PLA, Bliss TVP, Stewart MG. Remodelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation(ltp): A serial section electron micrograph study in the dentate gyrus in the anaesthetised rat. Neuroscience 2004; 128:251-62. [PMID: 15350638 DOI: 10.1016/j.neuroscience.2004.06.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2004] [Indexed: 11/30/2022]
Abstract
In anaesthetised rats, long-term potentiation (LTP) was induced unilaterally in the dentate gyrus by tetanic stimulation of the perforant path. Animals were killed 6 h after LTP induction and dendritic spines and synapses in tetanised and untetanised (contralateral) hippocampal tissue from the middle molecular layer (MML) were examined in the electron microscope using stereological analysis. Three-dimensional reconstructions were also used for the first time in LTP studies in vivo, with up to 130 ultrathin serial sections analysed per MML dendritic segment. A volume sampling procedure revealed no significant changes in hippocampal volume after LTP and an unbiased counting method demonstrated no significant changes in synapse density in potentiated compared with control tissue. In the potentiated hemisphere, there were changes in the proportion of different spine types and their synaptic contacts. We found an increase in the percentage of synapses on thin dendritic spines, a decrease in synapses on both stubby spines and dendritic shafts, but no change in the proportion of synapses on mushroom spines. Analysis of three-dimensional reconstructions of thin and mushroom spines following LTP induction revealed a significant increase in their volume and area. We also found an increase in volume and area of unperforated (macular) and perforated (segmented) postsynaptic densities. Our data demonstrate that whilst there is no change in synapse density 6 h after the induction of LTP in vivo, there is a considerable restructuring of pre-existing synapses, with shaft and stubby spines transforming to thin dendritic spines, and mushroom spines changing only in shape and volume.
Collapse
Affiliation(s)
- V I Popov
- The Open University, Department of Biological Sciences, Milton Keynes MK7 6AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Dhanrajan TM, Lynch MA, Kelly A, Popov VI, Rusakov DA, Stewart MG. Expression of long-term potentiation in aged rats involves perforated synapses but dendritic spine branching results from high-frequency stimulation alone. Hippocampus 2004; 14:255-64. [PMID: 15098730 PMCID: PMC3369534 DOI: 10.1002/hipo.10172] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Evidence for morphological substrates of long-term changes in synaptic efficacy is controversial, partly because it is difficult to employ an unambiguous control. We have used a high-frequency stimulation protocol in vivo to induce long-term potentiation (LTP) in the hippocampal dentate gyrus of aged (22-month-old) rats and have found a clear distinction between animals that sustain LTP and those that fail to sustain it. The "failure group" was used as a specific/"like-with-like" control for morphological changes associated with the expression of LTP per se. Quantitative optical and electron microscopy was used to analyze large populations of dendritic spines and excitatory perforant path synapses; LTP was found to be associated with an increase in numbers of segmented (perforated) postsynaptic densities in spine synapses. In contrast, an increase in the number of branched spines appears to result from high-frequency stimulation alone. These data shed light on the current controversy about the expression mechanism of LTP.
Collapse
Affiliation(s)
| | | | - Aine Kelly
- Department of Physiology, Trinity College, Dublin, Ireland
| | - Victor I. Popov
- Department of Biological Sciences, The Open University, Milton Keynes, United Kingdom
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Dmitri A. Rusakov
- Department of Biological Sciences, The Open University, Milton Keynes, United Kingdom
- Institute of Neurology, University College London, London, United Kingdom
| | - Michael G. Stewart
- Department of Biological Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|