1
|
Li X, Edén A, Malwade S, Cunningham JL, Bergquist J, Weidenfors JA, Sellgren CM, Engberg G, Piehl F, Gisslen M, Kumlien E, Virhammar J, Orhan F, Rostami E, Schwieler L, Erhardt S. Central and peripheral kynurenine pathway metabolites in COVID-19: Implications for neurological and immunological responses. Brain Behav Immun 2025; 124:163-176. [PMID: 39615604 DOI: 10.1016/j.bbi.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/31/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024] Open
Abstract
Long-term symptoms such as pain, fatigue, and cognitive impairments are commonly observed in individuals affected by coronavirus disease 2019 (COVID-19). Metabolites of the kynurenine pathway have been proposed to account for cognitive impairment in COVID-19 patients. Here, cerebrospinal fluid (CSF) and plasma levels of kynurenine pathway metabolites in 53 COVID-19 patients and 12 non-inflammatory neurological disease controls in Sweden were measured with an ultra-performance liquid chromatography-tandem mass spectrometry system (UPLC-MS/MS) and correlated with immunological markers and neurological markers. Single cell transcriptomic data from a previous study of 130 COVID-19 patients was used to investigate the expression of key genes in the kynurenine pathway. The present study reveals that the neuroactive kynurenine pathway metabolites quinolinic acid (QUIN) and kynurenic acid (KYNA) are increased in CSF in patients with acute COVID-19. In addition, CSF levels of kynurenine, ratio of kynurenine/tryptophan (rKT) and QUIN correlate with neurodegenerative markers. Furthermore, tryptophan is significantly decreased in plasma but not in the CSF. In addition, the kynurenine pathway is strongly activated in the plasma and correlates with the peripheral immunological marker neopterin. Single-cell transcriptomics revealed upregulated gene expressions of the rate-limiting enzyme indoleamine 2,3- dioxygenase1 (IDO1) in CD14+ and CD16+ monocytes that correlated with type II-interferon response exclusively in COVID-19 patients. In summary, our study confirms significant activation of the peripheral kynurenine pathway in patients with acute COVID-19 and, notably, this is the first study to identify elevated levels of kynurenine metabolites in the central nervous system associated with the disease. Our findings suggest that peripheral inflammation, potentially linked to overexpression of IDO1 in monocytes, activates the kynurenine pathway. Increased plasma kynurenine, crossing the blood-brain barrier, serves as a source for elevated brain KYNA and neurotoxic QUIN. We conclude that blocking peripheral-to-central kynurenine transport could be a promising strategy to protect against neurotoxic effects of QUIN in COVID-19 patients.
Collapse
Affiliation(s)
- Xueqi Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Arvid Edén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41685, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Disease, Gothenburg, 41685, Sweden
| | - Susmita Malwade
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Janet L Cunningham
- Department of Medical Science, Psychiatry, Uppsala University, Uppsala 75185, Sweden; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry─BMC, Uppsala University, Box 599, 751 24 Uppsala, Sweden; The ME/CFS Collaborative Research Centre at Uppsala University, 751 24 Uppsala, Sweden
| | | | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden; Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Fredrik Piehl
- Unit of Neuroimmunology, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm 17177, Sweden; Division of Neurology, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41685, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Disease, Gothenburg, 41685, Sweden; Public Health Agency of Sweden, Solna, Sweden
| | - Eva Kumlien
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala 75185, Sweden
| | - Johan Virhammar
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala 75185, Sweden
| | - Funda Orhan
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Elham Rostami
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden; Department of Medical Sciences, Neurology, Uppsala University, Uppsala 75185, Sweden
| | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
2
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
3
|
Ding EA, Kumar S. Neurofilament Biophysics: From Structure to Biomechanics. Mol Biol Cell 2024; 35:re1. [PMID: 38598299 PMCID: PMC11151108 DOI: 10.1091/mbc.e23-11-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Neurofilaments (NFs) are multisubunit, neuron-specific intermediate filaments consisting of a 10-nm diameter filament "core" surrounded by a layer of long intrinsically disordered protein (IDP) "tails." NFs are thought to regulate axonal caliber during development and then stabilize the mature axon, with NF subunit misregulation, mutation, and aggregation featuring prominently in multiple neurological diseases. The field's understanding of NF structure, mechanics, and function has been deeply informed by a rich variety of biochemical, cell biological, and mouse genetic studies spanning more than four decades. These studies have contributed much to our collective understanding of NF function in axonal physiology and disease. In recent years, however, there has been a resurgence of interest in NF subunit proteins in two new contexts: as potential blood- and cerebrospinal fluid-based biomarkers of neuronal damage, and as model IDPs with intriguing properties. Here, we review established principles and more recent discoveries in NF structure and function. Where possible, we place these findings in the context of biophysics of NF assembly, interaction, and contributions to axonal mechanics.
Collapse
Affiliation(s)
- Erika A. Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
4
|
Pukoli D, Polyák H, Rajda C, Vécsei L. Kynurenines and Neurofilament Light Chain in Multiple Sclerosis. Front Neurosci 2021; 15:658202. [PMID: 34113231 PMCID: PMC8185147 DOI: 10.3389/fnins.2021.658202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis is an autoimmune, demyelinating, and neurodegenerative disease of the central nervous system. In recent years, it has been proven that the kynurenine system plays a significant role in the development of several nervous system disorders, including multiple sclerosis. Kynurenine pathway metabolites have both neurotoxic and neuroprotective effects. Moreover, the enzymes of the kynurenine pathway play an important role in immunomodulation processes, among others, as well as interacting with neuronal energy balance and various redox reactions. Dysregulation of many of the enzymatic steps in kynurenine pathway and upregulated levels of these metabolites locally in the central nervous system, contribute to the progression of multiple sclerosis pathology. This process can initiate a pathogenic cascade, including microglia activation, glutamate excitotoxicity, chronic oxidative stress or accumulated mitochondrial damage in the axons, that finally disrupt the homeostasis of neurons, leads to destabilization of neuronal cell cytoskeleton, contributes to neuro-axonal damage and neurodegeneration. Neurofilaments are good biomarkers of the neuro-axonal damage and their level reliably indicates the severity of multiple sclerosis and the treatment response. There is increasing evidence that connections exist between the molecules generated in the kynurenine metabolic pathway and the change in neurofilament concentrations. Thus the alterations in the kynurenine pathway may be an important biomarker of the course of multiple sclerosis. In our present review, we report the possible relationship and connection between neurofilaments and the kynurenine system in multiple sclerosis based on the available evidences.
Collapse
Affiliation(s)
- Dániel Pukoli
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Neurology, Vaszary Kolos Hospital, Esztergom, Hungary
| | - Helga Polyák
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Cecilia Rajda
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Jia Z, Li Y. A possible mechanism for neurofilament slowing down in myelinated axon: Phosphorylation-induced variation of NF kinetics. PLoS One 2021; 16:e0247656. [PMID: 33711034 PMCID: PMC7954336 DOI: 10.1371/journal.pone.0247656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/10/2021] [Indexed: 11/18/2022] Open
Abstract
Neurofilaments(NFs) are the most abundant intermediate filaments that make up the inner volume of axon, with possible phosphorylation on their side arms, and their slow axonal transport by molecular motors along microtubule tracks in a “stop-and-go” manner with rapid, intermittent and bidirectional motion. The kinetics of NFs and morphology of axon are dramatically different between myelinate internode and unmyelinated node of Ranvier. The NFs in the node transport as 7.6 times faster as in the internode, and the distribution of NFs population in the internode is 7.6 folds as much as in the node of Ranvier. We hypothesize that the phosphorylation of NFs could reduce the on-track rate and slow down their transport velocity in the internode. By modifying the ‘6-state’ model with (a) an extra phosphorylation kinetics to each six state and (b) construction a new ‘8-state’ model in which NFs at off-track can be phosphorylated and have smaller on-track rate, our model and simulation demonstrate that the phosphorylation-induced decrease of on-track rate could slow down the NFs average velocity and increase the axonal caliber. The degree of phosphorylation may indicate the extent of velocity reduction. The Continuity equation used in our paper predicts that the ratio of NFs population is inverse proportional to the ratios of average velocity of NFs between node of Ranvier and internode. We speculate that the myelination of axon could increase the level of phosphorylation of NF side arms, and decrease the possibility of NFs to get on-track of microtubules, therefore slow down their transport velocity. In summary, our work provides a potential mechanism for understanding the phosphorylation kinetics of NFs in regulating their transport and morphology of axon in myelinated axons, and the different kinetics of NFs between node and internode.
Collapse
Affiliation(s)
- Zelin Jia
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Yinyun Li
- School of Systems Science, Beijing Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
6
|
Uher T, Schaedelin S, Srpova B, Barro C, Bergsland N, Dwyer M, Tyblova M, Vodehnalova K, Benkert P, Oechtering J, Leppert D, Naegelin Y, Krasensky J, Vaneckova M, Kubala Havrdova E, Kappos L, Zivadinov R, Horakova D, Kuhle J, Kalincik T. Monitoring of radiologic disease activity by serum neurofilaments in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/4/e714. [PMID: 32273481 PMCID: PMC7176248 DOI: 10.1212/nxi.0000000000000714] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022]
Abstract
Objective To determine whether serum neurofilament light chain (sNfL) levels are associated with recent MRI activity in patients with relapsing-remitting MS (RRMS). Methods This observational study included 163 patients (405 samples) with early RRMS from the Study of Early interferon-beta1a (IFN-β1a) Treatment (SET) cohort and 179 patients (664 samples) with more advanced RRMS from the Genome-Wide Association Study of Multiple Sclerosis (GeneMSA) cohort. Based on annual brain MRI, we assessed the ability of sNfL cutoffs to reflect the presence of combined unique active lesions, defined as new/enlarging lesion compared with MRI in the preceding year or contrast-enhancing lesion. The probability of active MRI lesions among patients with different sNfL levels was estimated with generalized estimating equations models. Results From the sNfL samples ≥90th percentile, 81.6% of the SET (OR = 3.4, 95% CI = 1.8-6.4) and 48.9% of the GeneMSA cohort samples (OR = 2.6, 95% CI = 1.7-3.9) was associated with radiological disease activity on MRI. The sNfL level between the 10th and 30th percentile was reflective of negligible MRI activity: 1.4% (SET) and 6.5% (GeneMSA) of patients developed ≥3 active lesions, 5.8% (SET) and 6.5% (GeneMSA) developed ≥2 active lesions, and 34.8% (SET) and 11.8% (GeneMSA) showed ≥1 active lesion on brain MRI. The sNfL level <10th percentile was associated with even lower MRI activity. Similar results were found in a subgroup of clinically stable patients. Conclusions Low sNfL levels (≤30th percentile) help identify patients with MS with very low probability of recent radiologic disease activity during the preceding year. This result suggests that in future, sNfL assessment may substitute the need for annual brain MRI monitoring in considerable number (23.1%–36.4%) of visits in clinically stable patients.
Collapse
Affiliation(s)
- Tomas Uher
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia.
| | - Sabine Schaedelin
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Barbora Srpova
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Christian Barro
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Niels Bergsland
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Michael Dwyer
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Michaela Tyblova
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Karolina Vodehnalova
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Pascal Benkert
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Johanna Oechtering
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - David Leppert
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Yvonne Naegelin
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Jan Krasensky
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Manuela Vaneckova
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Eva Kubala Havrdova
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Ludwig Kappos
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Robert Zivadinov
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Dana Horakova
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Jens Kuhle
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| | - Tomas Kalincik
- From the Department of Medicine (T.U., T.K.), CORe, The University of Melbourne, Victoria, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., B.S., M.T., K.V., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic; Clinical Trial Unit (S.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel; Departments of Medicine, Biomedicine and Clinical Research (C.B., J.O., D.L., Y.N., L.K., J. Kuhle), Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Switzerland; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences (N.B., M.D., R.Z.), Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo; IRCCS "S. Maria Nascente" (N.B.), Don Carlo Gnocchi Foundation, Milan, Italy; Department of Radiology (J. Krasensky, M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, NY; and Department of Neurology (T.K.), The Royal Melbourne Hospital, Victoria, Australia
| |
Collapse
|
7
|
Alifirova VM, Kamenskikh EM, Koroleva ES. [Evaluation of serum neurofilament light chains levels for diagnosis, treatment monitoring and prognosis in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:7-13. [PMID: 31934983 DOI: 10.17116/jnevro2019119107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pathophysiological processes in multiple sclerosis frequently not diagnosed by clinicians become available for analysis only on the basis of paraclinical data (biomarkers). Nowadays neurofilament light chain can be defined as a promising biomarker for multiple sclerosis (MS). Neurofilaments are a structural part of normal neuronal processes consisting of light, intermediate and heavy chains. However, a damage of neurons such as neurodegeneration or axonal damage causes the escape of neurofilaments into extracellular space. Cutting-edge highly sensitive methods make it possible to detect neurofilament light chains not only in the cerebrospinal fluid but also in the blood serum thus opening the opportunities to utilize them in routine diagnosis in clinical practice. This review comprises existing data on the possible opportunities for research of serum neurofilament light chains in terms of exacerbations, effectiveness of basic therapy, assessment of individual disability, the atrophy of central nervous system structures. Also, there is some information on comparison of two methods: routine MRI of the brain with the contrast agents and detection of serum neurofilament light chains.
Collapse
Affiliation(s)
| | | | - E S Koroleva
- Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
8
|
Lee S, Eyer J, Letournel F, Boumil E, Hall G, Shea TB. Neurofilaments form flexible bundles during neuritogenesis in culture and in mature axons in situ. J Neurosci Res 2019; 97:1306-1318. [PMID: 31304612 DOI: 10.1002/jnr.24482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 11/07/2022]
Abstract
Neurofilaments (NFs) undergo cation-dependent phospho-mediated associations with each other and other cytoskeletal elements that support axonal outgrowth. Progressive NF-NF associations generate a resident, bundled population that undergoes exchange with transporting NFs. We examined the properties of bundled NFs. Bundles did not always display a fully linear profile but curved and twisted at various points along the neurite length. Bundles retracted faster than neurites and retracted bundles did not expand following extraction with Triton, indicating that they coiled passively rather than due to pressure from the cell. Bundles consisted of helically wound NFs, which may provide flexibility necessary for turning of growing axons during pathfinding. Interactions between NFs and other cytoskeletal elements may be disrupted en masse during neurite retraction or regionally during remodeling. It is suggested that bundles within long axons that cannot be fully retracted into the soma could provide maintain proximal support yet still allow more distal flexibility for remodeling and changing direction during pathfinding.
Collapse
Affiliation(s)
- Sangmook Lee
- Laboratory for Neuroscience, Department of Biology Science, UMass Lowell, Lowell, Massachusetts
| | - Joel Eyer
- Institut de Biologie en Santé PBH-IRIS, Universitaire d'Angers, Angers, France
| | | | - Edward Boumil
- Center for Vision Research, SUNY Upstate, Syracuse, New York
| | - Garth Hall
- Laboratory for Neuroscience, Department of Biology Science, UMass Lowell, Lowell, Massachusetts
| | - Thomas B Shea
- Laboratory for Neuroscience, Department of Biology Science, UMass Lowell, Lowell, Massachusetts
| |
Collapse
|
9
|
Alteration of O-GlcNAcylation affects assembly and axonal transport of neurofilament via phosphorylation. Neurosci Lett 2019; 698:97-104. [PMID: 30395884 DOI: 10.1016/j.neulet.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/26/2018] [Accepted: 11/01/2018] [Indexed: 01/03/2023]
Abstract
Neurofilaments (NFs), the most abundant cytoskeletal components in the mature neuron, are hyperphosphorylated and accumulated in the neuronal cell body of AD brain, and the abnormalities of NFs appear to contribute to neurodegeneration. Although previous studies have showed that O-GlcNAcylation and phosphorylation of NFs regulate each other reciprocally, the NFs O-GlcNAcylation and its effects on assembly and axonal transport are poorly explored. Here, we focus on the role of dysregulation of O-GlcNAcylation on structure and function of neurofilaments by corresponding phosphorylation. In the study, we found that decreased O-GlcNAcylation by intracerebroventricular administration of Alloxan, 6-diazo-5-oxonorleucine (Don) and okadaic acid (OA) in the rats resulted in increased phosphorylation with assembly of lower and shorter NFs. In contrast, in the sample of NAG-thiazoline (NAG-Ae) causing increased O-GlcNAcylation, NFs showed elongated filaments fibers and higher proportion of assembly. Furthermore, alloxan treatment induced abnormal accumulation of NFs bodies and delayed time of Fluorescence Recovery After Photobleaching (FRAP) in SK-N-SH cells, but the NAG-Ae treatment speeded up the axonal transport. Our experiments suggest that increased O-GlcNAcylation plays a key role in protecting the structure and function of NFs including filament assembly and axonal transport via decreased phosphorylation. These results expanded the function of O-GlcNAcylation in AD pathogenesis.
Collapse
|
10
|
Longitudinal analysis of serum neurofilament light chain: A potential therapeutic monitoring biomarker for multiple sclerosis. Mult Scler 2019; 26:659-667. [DOI: 10.1177/1352458519840757] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives: Serum neurofilament light chain (sNfL) has been proposed a potential biomarker in multiple sclerosis (MS) based on mainly cross-sectional observations in Western population. To clarify clinical implication of sNfL, we longitudinally analysed sNfL levels at multiple time points in Korean MS patients undergoing alemtuzumab therapy. Methods: Between 2016 and 2018, 144 sera from 17 MS patients treated with alemtuzumab at National Cancer Centre and 35 sera from 35 age- and gender-matched healthy controls (HCs) were collected for a longitudinal study with a mean 21-month follow-up. The sera were measured for sNfL levels using single molecule array. Patients were classified into two groups: evidence of disease activity (EDA) or no evidence of disease activity (NEDA). Results: During alemtuzumab therapy, sNfL levels in EDA patients were significantly higher than those in NEDA patients and HCs ( p < 0.001). In longitudinal analysis, the sNfL levels were consistently low in NEDA patients, while it consistently increased in radiologically and/or clinically active status in EDA patients. All sNfL levels in radiologically and/or clinically active status samples were higher than those in inactive status samples. Conclusion: These results suggest that sNfL is a promising monitoring biomarker for personalized therapeutics in MS patients.
Collapse
|
11
|
Dalla Costa G, Martinelli V, Sangalli F, Moiola L, Colombo B, Radaelli M, Leocani L, Furlan R, Comi G. Prognostic value of serum neurofilaments in patients with clinically isolated syndromes. Neurology 2019; 92:e733-e741. [PMID: 30635483 PMCID: PMC6382362 DOI: 10.1212/wnl.0000000000006902] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 12/14/2018] [Indexed: 01/21/2023] Open
Abstract
Objective To assess the prognostic role of serum neurofilament light chains (NfL) for clinically defined multiple sclerosis (CDMS) and McDonald 2017 multiple sclerosis (MS) in patients with clinically isolated syndromes (CIS). Methods We retrospectively analyzed data of patients admitted to our neurologic department between 2000 and 2015 for a first demyelinating event. We evaluated baseline serum NfL in addition to CSF, MRI, and clinical data. Results Among 222 patients who were enrolled (mean follow-up 100.6 months), 45 patients (20%) developed CDMS and 141 patients (63.5%) developed 2017 MS at 2 years. Serum NfL (median 22.0, interquartile range 11.6–40.4 pg/mL) was noticeably increased in patients with a recent relapse, with a high number of T2 and gadolinium-enhancing lesions at baseline MRI. Serum NfL was prognostic for both CDMS and McDonald 2017 MS, with a threefold and a twofold respective reduction in CDMS and 2017 MS risk in those patients with low and extremely low levels of NfL. The results remained unchanged subsequent to adjustment for such established MS prognostic factors as oligoclonal bands, Gd-enhancing lesions, and a high T2 lesion load at baseline MRI. NfL was associated with disability at baseline but not at follow-up. Conclusions Serum NfL have a prognostic value for CIS patient conversion to MS. NfL might play a twin role as biomarker in MS as peak level measurements can act as a quantitative marker of serious inflammatory activity, while steady-state levels can be a reflection of neurodegenerative and chronic inflammatory processes.
Collapse
Affiliation(s)
- Gloria Dalla Costa
- From the Department of Neurology (G.D.C., V.M., F.S., L.M., B.C., M.R., G.C.), Experimental Neurophysiology Research Unit (L.L.), and Neuroimmunology Research Unit (R.F.), San Raffaele Hospital, Milan, Italy
| | - Vittorio Martinelli
- From the Department of Neurology (G.D.C., V.M., F.S., L.M., B.C., M.R., G.C.), Experimental Neurophysiology Research Unit (L.L.), and Neuroimmunology Research Unit (R.F.), San Raffaele Hospital, Milan, Italy
| | - Francesca Sangalli
- From the Department of Neurology (G.D.C., V.M., F.S., L.M., B.C., M.R., G.C.), Experimental Neurophysiology Research Unit (L.L.), and Neuroimmunology Research Unit (R.F.), San Raffaele Hospital, Milan, Italy
| | - Lucia Moiola
- From the Department of Neurology (G.D.C., V.M., F.S., L.M., B.C., M.R., G.C.), Experimental Neurophysiology Research Unit (L.L.), and Neuroimmunology Research Unit (R.F.), San Raffaele Hospital, Milan, Italy
| | - Bruno Colombo
- From the Department of Neurology (G.D.C., V.M., F.S., L.M., B.C., M.R., G.C.), Experimental Neurophysiology Research Unit (L.L.), and Neuroimmunology Research Unit (R.F.), San Raffaele Hospital, Milan, Italy
| | - Marta Radaelli
- From the Department of Neurology (G.D.C., V.M., F.S., L.M., B.C., M.R., G.C.), Experimental Neurophysiology Research Unit (L.L.), and Neuroimmunology Research Unit (R.F.), San Raffaele Hospital, Milan, Italy
| | - Letizia Leocani
- From the Department of Neurology (G.D.C., V.M., F.S., L.M., B.C., M.R., G.C.), Experimental Neurophysiology Research Unit (L.L.), and Neuroimmunology Research Unit (R.F.), San Raffaele Hospital, Milan, Italy
| | - Roberto Furlan
- From the Department of Neurology (G.D.C., V.M., F.S., L.M., B.C., M.R., G.C.), Experimental Neurophysiology Research Unit (L.L.), and Neuroimmunology Research Unit (R.F.), San Raffaele Hospital, Milan, Italy
| | - Giancarlo Comi
- From the Department of Neurology (G.D.C., V.M., F.S., L.M., B.C., M.R., G.C.), Experimental Neurophysiology Research Unit (L.L.), and Neuroimmunology Research Unit (R.F.), San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
12
|
Chitnis T, Gonzalez C, Healy BC, Saxena S, Rosso M, Barro C, Michalak Z, Paul A, Kivisakk P, Diaz-Cruz C, Sattarnezhad N, Pierre IV, Glanz BI, Tomic D, Kropshofer H, Häring D, Leppert D, Kappos L, Bakshi R, Weiner HL, Kuhle J. Neurofilament light chain serum levels correlate with 10-year MRI outcomes in multiple sclerosis. Ann Clin Transl Neurol 2018; 5:1478-1491. [PMID: 30564615 PMCID: PMC6292183 DOI: 10.1002/acn3.638] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 11/24/2022] Open
Abstract
Objective To assess the value of annual serum neurofilament light (NfL) measures in predicting 10‐year clinical and MRI outcomes in multiple sclerosis (MS). Methods We identified patients in our center's Comprehensive Longitudinal Investigations in MS at Brigham and Women's Hospital (CLIMB) study enrolled within 5 years of disease onset, and with annual blood samples up to 10 years (n = 122). Serum NfL was measured using a single molecule array (SIMOA) assay. An automated pipeline quantified brain T2 hyperintense lesion volume (T2LV) and brain parenchymal fraction (BPF) from year 10 high‐resolution 3T MRI scans. Correlations between averaged annual NfL and 10‐year clinical/MRI outcomes were assessed using Spearman's correlation, univariate, and multivariate linear regression models. Results Averaged annual NfL values were negatively associated with year 10 BPF, which included averaged year 1–5 NfL values (unadjusted P < 0.01; adjusted analysis P < 0.01), and averaged values through year 10. Linear regression analyses of averaged annual NfL values showed multiple associations with T2LV, specifically averaged year 1–5 NfL (unadjusted P < 0.01; adjusted analysis P < 0.01). Approximately 15–20% of the BPF variance and T2LV could be predicted from early averaged annual NfL levels. Also, averaged annual NfL levels with fatigue score worsening between years 1 and 10 showed statistically significant associations. However, averaged NfL measurements were not associated with year 10 EDSS, SDMT or T25FW in this cohort. Interpretation Serum NfL measured during the first few years after the clinical onset of MS contributed to the prediction of 10‐year MRI brain lesion load and atrophy.
Collapse
Affiliation(s)
- Tanuja Chitnis
- Department of Neurology Partners Multiple Sclerosis Center Brigham and Women's Hospital Boston Massachusetts.,Harvard Medical School Boston Massachusetts 02115.,Ann Romney Center for Neurologic Disease Harvard Medical School Boston Massachusetts 02115
| | - Cindy Gonzalez
- Harvard Medical School Boston Massachusetts 02115.,Ann Romney Center for Neurologic Disease Harvard Medical School Boston Massachusetts 02115
| | - Brian C Healy
- Harvard Medical School Boston Massachusetts 02115.,Ann Romney Center for Neurologic Disease Harvard Medical School Boston Massachusetts 02115.,Massachusetts General Hospital Biostatistics Center Boston Massachusetts
| | - Shrishti Saxena
- Harvard Medical School Boston Massachusetts 02115.,Ann Romney Center for Neurologic Disease Harvard Medical School Boston Massachusetts 02115
| | - Mattia Rosso
- Harvard Medical School Boston Massachusetts 02115.,Ann Romney Center for Neurologic Disease Harvard Medical School Boston Massachusetts 02115
| | - Christian Barro
- Departments of Medicine, Biomedicine and Clinical Research Neurologic Clinic and Policlinic University Hospital Basel University of Basel Basel Switzerland
| | - Zuzanna Michalak
- Departments of Medicine, Biomedicine and Clinical Research Neurologic Clinic and Policlinic University Hospital Basel University of Basel Basel Switzerland
| | - Anu Paul
- Harvard Medical School Boston Massachusetts 02115.,Ann Romney Center for Neurologic Disease Harvard Medical School Boston Massachusetts 02115
| | - Pia Kivisakk
- Harvard Medical School Boston Massachusetts 02115.,Ann Romney Center for Neurologic Disease Harvard Medical School Boston Massachusetts 02115
| | - Camilo Diaz-Cruz
- Harvard Medical School Boston Massachusetts 02115.,Ann Romney Center for Neurologic Disease Harvard Medical School Boston Massachusetts 02115
| | - Neda Sattarnezhad
- Harvard Medical School Boston Massachusetts 02115.,Ann Romney Center for Neurologic Disease Harvard Medical School Boston Massachusetts 02115
| | - Isabelle V Pierre
- Harvard Medical School Boston Massachusetts 02115.,Ann Romney Center for Neurologic Disease Harvard Medical School Boston Massachusetts 02115
| | - Bonnie I Glanz
- Department of Neurology Partners Multiple Sclerosis Center Brigham and Women's Hospital Boston Massachusetts.,Harvard Medical School Boston Massachusetts 02115.,Ann Romney Center for Neurologic Disease Harvard Medical School Boston Massachusetts 02115
| | - Davorka Tomic
- Novartis Neuroscience Development Unit Basel Switzerland
| | | | - Dieter Häring
- Novartis Neuroscience Development Unit Basel Switzerland
| | - David Leppert
- Novartis Neuroscience Development Unit Basel Switzerland
| | - Ludwig Kappos
- Departments of Medicine, Biomedicine and Clinical Research Neurologic Clinic and Policlinic University Hospital Basel University of Basel Basel Switzerland
| | - Rohit Bakshi
- Department of Neurology Partners Multiple Sclerosis Center Brigham and Women's Hospital Boston Massachusetts.,Harvard Medical School Boston Massachusetts 02115.,Ann Romney Center for Neurologic Disease Harvard Medical School Boston Massachusetts 02115
| | - Howard L Weiner
- Department of Neurology Partners Multiple Sclerosis Center Brigham and Women's Hospital Boston Massachusetts.,Harvard Medical School Boston Massachusetts 02115.,Ann Romney Center for Neurologic Disease Harvard Medical School Boston Massachusetts 02115
| | - Jens Kuhle
- Departments of Medicine, Biomedicine and Clinical Research Neurologic Clinic and Policlinic University Hospital Basel University of Basel Basel Switzerland
| |
Collapse
|
13
|
Barro C, Benkert P, Disanto G, Tsagkas C, Amann M, Naegelin Y, Leppert D, Gobbi C, Granziera C, Yaldizli Ö, Michalak Z, Wuerfel J, Kappos L, Parmar K, Kuhle J. Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain 2018; 141:2382-2391. [DOI: 10.1093/brain/awy154] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/15/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Christian Barro
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Giulio Disanto
- Neurocentre of Southern Switzerland, Ospedale Civico, Lugano, Switzerland
| | - Charidimos Tsagkas
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael Amann
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Medical Image Analysis Center (MIAC AG), Basel, Switzerland
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Yvonne Naegelin
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Claudio Gobbi
- Neurocentre of Southern Switzerland, Ospedale Civico, Lugano, Switzerland
| | - Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University Basel, Switzerland
| | - Özgür Yaldizli
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Zuzanna Michalak
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Wuerfel
- Medical Image Analysis Center (MIAC AG), Basel, Switzerland
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University Basel, Switzerland
| | - Katrin Parmar
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
Boumil EF, Vohnoutka R, Lee S, Pant H, Shea TB. Assembly and turnover of neurofilaments in growing axonal neurites. Biol Open 2018; 7:bio.028795. [PMID: 29158321 PMCID: PMC5829495 DOI: 10.1242/bio.028795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neurofilaments (NFs) are thought to provide stability to the axon. We examined NF dynamics within axonal neurites of NB2a/d1 neuroblastoma by transient transfection with green fluorescent protein-tagged NF-heavy (GFP-H) under the control of a tetracycline-inducible promoter. Immunofluorescent and biochemical analyses demonstrated that GFP-H expressed early during neurite outgrowth associated with a population of centrally-situated, highly-phosphorylated crosslinked NFs along the length of axonal neurites (‘bundled NFs’). By contrast, GFP-H expressed after considerable neurite outgrowth displayed markedly reduced association with bundled NFs and was instead more evenly distributed throughout the axon. This differential localization was maintained for up to 2 weeks in culture. Once considerable neurite outgrowth had progressed, GFP that had previously associated with the NF bundle during early expression was irreversibly depleted by photobleaching. Cessation of expression allowed monitoring of NF turnover. GFP-H associated bundled NFs underwent slower decay than GFP-H associated with surrounding, less-phosphorylated NFs. Notably, GFP associated with bundled NFs underwent similar decay rates within the core and edges of this bundle. These results are consistent with previous demonstration of a resident NF population within axonal neurites, but suggest that this population is more dynamic than previously considered. Summary: Immunofluorescent and radiolabel analyses demonstrate that neurofilaments establish a resident population within growing axonal neurites that undergoes exchange with a surrounding, transporting pool.
Collapse
Affiliation(s)
- Edward F Boumil
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Rishel Vohnoutka
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Sangmook Lee
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Harish Pant
- Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 , USA
| | - Thomas B Shea
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
15
|
Barro C, Leocani L, Leppert D, Comi G, Kappos L, Kuhle J. Fluid biomarker and electrophysiological outcome measures for progressive MS trials. Mult Scler 2017; 23:1600-1613. [DOI: 10.1177/1352458517732844] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Progressive multiple sclerosis (MS) is characterized by insidious clinical worsening that is difficult to accurately quantify and predict. Biofluid markers and electrophysiological measures are potential candidate outcome measures in clinical trials, allowing the quantification of nervous damage occurring in the disease. Neurofilaments are highly specific neuronal proteins. They may have come closest to such applications by their higher concentrations repeatedly demonstrated in cerebrospinal fluid (CSF) in all stages of MS, during relapses, their responsiveness to disease-modifying treatments in relapsing and progressive MS and their associations with measures of inflammatory and degenerative magnetic resonance imaging (MRI) outcomes. Digital single-molecule array (Simoa) technology improves accuracy of bioassays in the quantification of neurofilament light chain (NfL) in serum and plasma. NfL seems to mark a common final path of neuroaxonal injury independent of specific causal pathways. CSF and blood levels of NfL are highly correlated across various diseases including MS, suggesting that blood measurements may be useful in assessing response to treatment and predicting future disease activity. Other biomarkers like matrix metalloproteinases, chemokines, or neurotrophic factors have not been studied to a similar extent. Such measures, especially in blood, need further validation to enter the trial arena or clinical practice. The broadening armamentarium of highly sensitive assay technologies in the future may shed even more light on patient heterogeneity and mechanisms leading to disability in MS. Evoked potentials (EPs) are used in clinical practice to measure central conduction of central sensorimotor pathways. They correlate with and predict the severity of clinical involvement of their corresponding function. Their validation for use in multicenter studies is still lacking, with the exception of visual EPs. If further validated, EPs and fluid biomarkers would represent useful outcome measures for clinical trials, being related to specific mechanisms of the ongoing pathologic changes.
Collapse
Affiliation(s)
- Christian Barro
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Letizia Leocani
- Department of Neurology and Institute of Experimental Neurology (INSPE), San Raffaele Hospital, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland/Novartis Pharma AG, Basel, Switzerland
| | - Giancarlo Comi
- Department of Neurology and Institute of Experimental Neurology (INSPE), San Raffaele Hospital, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Vohnoutka RB, Boumil EF, Liu Y, Uchida A, Pant HC, Shea TB. Influence of a GSK3β phosphorylation site within the proximal C-terminus of Neurofilament-H on neurofilament dynamics. Biol Open 2017; 6:1516-1527. [PMID: 28882840 PMCID: PMC5665472 DOI: 10.1242/bio.028522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation of the C-terminal tail of the heavy neurofilament subunit (NF-H) impacts neurofilament (NF) axonal transport and residence within axons by fostering NF-NF associations that compete with transport. We tested the role of phosphorylation of a GSK-3β consensus site (S493) located in the proximal portion of the NF-H tail in NF dynamics by transfection of NB2a/d1 cells with NF-H, where S493 was mutated to aspartic acid (S493D) or to alanine (S493A) to mimic constitutive phosphorylation and non-phosphorylation. S493D underwent increased transport into axonal neurites, while S493A displayed increased perikaryal NF aggregates that were decorated by anti-kinesin. Increased levels of S493A co-precipitated with anti-kinesin indicating that reduced transport of S493A was not due to reduced kinesin association but due to premature NF-NF interactions within perikarya. S493D displayed increased phospho-immunoreactivity within axonal neurites at downstream C-terminal sites attributable to mitogen-activated protein kinase and cyclin-dependent kinase 5. However, S493D was more prone to proteolysis following kinase inhibition, suggesting that S493 phosphorylation is an early event that alters sidearm configuration in a manner that promotes appropriate NF distribution. We propose a novel model for sidearm configuration. Summary: We demonstrate that phosphorylation of a critical site regulates neurofilament transport, proteolysis and interaction with other axonal cytoskeletal elements, and present evidence that it does so by altering protein conformation. This article has an associated First Person interview with the first author of the paper as part of the supplementary information.
Collapse
Affiliation(s)
| | - Edward F Boumil
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Yuguan Liu
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Atsuko Uchida
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| | - Harish C Pant
- Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B Shea
- Laboratory for Neuroscience, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
17
|
Pierozan P, Pessoa-Pureur R. Cytoskeleton as a Target of Quinolinic Acid Neurotoxicity: Insight from Animal Models. Mol Neurobiol 2017. [PMID: 28647871 DOI: 10.1007/s12035-017-0654-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytoskeletal proteins are increasingly recognized as having important roles as a target of the action of different neurotoxins. In the last years, several works of our group have shown that quinolinic acid (QUIN) was able to disrupt the homeostasis of the cytoskeleton of neural cells and this was associated with cell dysfunction and neurodegeneration. QUIN is an excitotoxic metabolite of tryptophan metabolism and its accumulation is associated with several neurodegenerative diseases. In the present review, we provide a comprehensive view of the actions of QUIN upstream of glutamate receptors, eliciting kinase/phosphatase signaling cascades that disrupt the homeostasis of the phosphorylation system associated with intermediate filament proteins of astrocytes and neurons. We emphasize the critical role of calcium in these actions and the evidence that misregulated cytoskeleton takes part of the cell response to the injury resulting in neurodegeneration in different brain regions, disrupted cell signaling in acute tissue slices, and disorganized cytoskeleton with altered cell morphology in primary cultures. We also discuss the interplay among misregulated cytoskeleton, oxidative stress, and cell-cell contact through gap junctions mediating the quinolinic acid injury in rat brain. The increasing amount of cross talks identified between cytoskeletal proteins and cellular signaling cascades reinforces the exciting possibility that cytoskeleton could be a new target in the neurotoxicity of QUIN and further studies will be necessary to develop strategies to protect the cytoskeleton and counteracts the cytotoxicity of this metabolite.
Collapse
Affiliation(s)
- Paula Pierozan
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
18
|
Abstract
Existing clinical outcomes of disease activity, including relapse rates, are inherently insensitive to the underlying pathological process in MS. Moreover, it is extremely difficult to measure clinical disability in patients, which is often a retrospective assessment, and definitely not within the time frame of a clinical trial. Biomarkers , conversely are more specific for a pathologic process and if used correctly can prove invaluable in the diagnosis, stratification and monitoring of disease activity, including any subclinical activity which is not visible to the naked eye. In this chapter, we discuss the development of neurofilaments as surrogate outcomes of disability in MS. The validation and qualification are vital steps in biomarker development and to gaining acceptance in scientific community, and the pitfalls leading up to this are also discussed.
Collapse
|
19
|
Boumil E, Vohnoutka R, Lee S, Shea TB. Early expression of the high molecular weight neurofilament subunit attenuates axonal neurite outgrowth. Neurosci Lett 2015. [DOI: 10.1016/j.neulet.2015.07.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Abdelhak A, Junker A, Brettschneider J, Kassubek J, Ludolph AC, Otto M, Tumani H. Brain-Specific Cytoskeletal Damage Markers in Cerebrospinal Fluid: Is There a Common Pattern between Amyotrophic Lateral Sclerosis and Primary Progressive Multiple Sclerosis? Int J Mol Sci 2015; 16:17565-88. [PMID: 26263977 PMCID: PMC4581209 DOI: 10.3390/ijms160817565] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 11/25/2022] Open
Abstract
Many neurodegenerative disorders share a common pathophysiological pathway involving axonal degeneration despite different etiological triggers. Analysis of cytoskeletal markers such as neurofilaments, protein tau and tubulin in cerebrospinal fluid (CSF) may be a useful approach to detect the process of axonal damage and its severity during disease course. In this article, we review the published literature regarding brain-specific CSF markers for cytoskeletal damage in primary progressive multiple sclerosis and amyotrophic lateral sclerosis in order to evaluate their utility as a biomarker for disease progression in conjunction with imaging and histological markers which might also be useful in other neurodegenerative diseases associated with affection of the upper motor neurons. A long-term benefit of such an approach could be facilitating early diagnostic and prognostic tools and assessment of treatment efficacy of disease modifying drugs.
Collapse
Affiliation(s)
- Ahmed Abdelhak
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Göttingen, Robert-Koch-Str 40, 37075 Göttingen, Germany.
| | | | - Jan Kassubek
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Markus Otto
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Hayrettin Tumani
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| |
Collapse
|
21
|
Lee S, Shea TB. The high molecular weight neurofilament subunit plays an essential role in axonal outgrowth and stabilization. Biol Open 2014; 3:974-81. [PMID: 25260918 PMCID: PMC4197446 DOI: 10.1242/bio.20149779] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neurofilaments (NFs) are thought to provide structural support to mature axons via crosslinking of cytoskeletal elements mediated by the C-terminal region of the high molecular weight NF subunit (NF-H). Herein, we inhibited NF-H expression in differentiating mouse NB2a/d1 cells with shRNA directed against murine NF-H without affecting other NF subunits, microtubules or actin. shRNA-mediated NF-H knockdown not only in compromised of late-stage axonal neurite stabilization but also compromised early stages of axonal neurite elongation. Expression of exogenous rat NF-H was able to compensate for knockdown of endogenous NF-H and restored the development and stabilization of axonal neurites. This rescue was prevented by simultaneous treatment with shRNA that inhibited both rat and murine NF-H, or by expression of exogenous rat NF-H lacking the C-terminal sidearm during knockdown of endogenous NF-H. Demonstration of a role for NF-H in the early stages of axonal elaboration suggests that axonal stabilization is not delayed until synaptogenesis, but rather that the developing axon undergoes sequential NF-H-mediated stabilization along its length in a proximal–distal manner, which supports continued pathfinding in distal, unstabilized regions.
Collapse
Affiliation(s)
- Sangmook Lee
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts at Lowell, Lowell, MA 01854, USA
| | - Thomas B Shea
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts at Lowell, Lowell, MA 01854, USA
| |
Collapse
|
22
|
Lee S, Pant HC, Shea TB. Divergent and convergent roles for kinases and phosphatases in neurofilament dynamics. J Cell Sci 2014; 127:4064-77. [PMID: 25015294 DOI: 10.1242/jcs.153346] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C-terminal neurofilament phosphorylation mediates cation-dependent self-association leading to neurofilament incorporation into the stationary axonal cytoskeleton. Multiple kinases phosphorylate the C-terminal domains of the heavy neurofilament subunit (NF-H), including cyclin-dependent protein kinase 5 (CDK5), mitogen-activated protein kinases (MAPKs), casein kinase 1 and 2 (CK1 and CK2) and glycogen synthase kinase 3β (GSK3β). The respective contributions of these kinases have been confounded because they phosphorylate multiple substrates in addition to neurofilaments and display extensive interaction. Herein, differentiated NB2a/d1 cells were transfected with constructs expressing GFP-tagged NF-H, isolated NF-H sidearms and NF-H lacking the distal-most 187 amino acids. Cultures were treated with roscovitine, PD98059, Li(+), D4476, tetrabromobenzotriazole and calyculin, which are active against CDK5, MKK1 (also known as MAP2K1), GSK3β, CK1, CK2 and protein phosphatase 1 (PP1), respectively. Sequential phosphorylation by CDK5 and GSK3β mediated the neurofilament-neurofilament associations. The MAPK pathway (i.e. MKK1 to ERK1/2) was found to downregulate GSK3β, and CK1 activated PP1, both of which promoted axonal transport and restricted neurofilament-neurofilament associations to axonal neurites. The MAPK pathway and CDK5, but not CK1 and GSK3β, inhibited neurofilament proteolysis. These findings indicate that phosphorylation of neurofilaments by the proline-directed MAPK pathway and CDK5 counterbalance the impact of phosphorylation of neurofilaments by the non-proline-directed CK1 and GSK3β.
Collapse
Affiliation(s)
- Sangmook Lee
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Harish C Pant
- Cytoskeletal Protein Regulation Section, NIH, NINDS, Bethesda, MD 20892, USA
| | - Thomas B Shea
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
23
|
Snider NT, Omary MB. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 2014; 15:163-77. [PMID: 24556839 PMCID: PMC4079540 DOI: 10.1038/nrm3753] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intermediate filaments (IFs) are cytoskeletal and nucleoskeletal structures that provide mechanical and stress-coping resilience to cells, contribute to subcellular and tissue-specific biological functions, and facilitate intracellular communication. IFs, including nuclear lamins and those in the cytoplasm (keratins, vimentin, desmin, neurofilaments and glial fibrillary acidic protein, among others), are functionally regulated by post-translational modifications (PTMs). Proteomic advances highlight the enormous complexity and regulatory potential of IF protein PTMs, which include phosphorylation, glycosylation, sumoylation, acetylation and prenylation, with novel modifications becoming increasingly appreciated. Future studies will need to characterize their on-off mechanisms, crosstalk and utility as biomarkers and targets for diseases involving the IF cytoskeleton.
Collapse
Affiliation(s)
- Natasha T. Snider
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| |
Collapse
|
24
|
Holmgren A, Bouhy D, De Winter V, Asselbergh B, Timmermans JP, Irobi J, Timmerman V. Charcot-Marie-Tooth causing HSPB1 mutations increase Cdk5-mediated phosphorylation of neurofilaments. Acta Neuropathol 2013; 126:93-108. [PMID: 23728742 PMCID: PMC3963106 DOI: 10.1007/s00401-013-1133-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/03/2013] [Accepted: 05/21/2013] [Indexed: 01/21/2023]
Abstract
Mutations in the small heat shock protein HSPB1 (HSP27) are a cause of axonal Charcot-Marie-Tooth neuropathy (CMT2F) and distal hereditary motor neuropathy. To better understand the effect of mutations in HSPB1 on the neuronal cytoskeleton, we stably transduced neuronal cells with wild-type and mutant HSPB1 and investigated axonal transport of neurofilaments (NFs). We observed that mutant HSPB1 affected the binding of NFs to the anterograde motor protein kinesin, reducing anterograde transport of NFs. These deficits were associated with an increased phosphorylation of NFs and cyclin-dependent kinase Cdk5. As Cdk5 mediates NF phosphorylation, inhibition of Cdk5/p35 restored NF phosphorylation level, as well as NF binding to kinesin in mutant HSPB1 neuronal cells. Altogether, we demonstrate that HSPB1 mutations induce hyperphosphorylation of NFs through Cdk5 and reduce anterograde transport of NFs.
Collapse
Affiliation(s)
- Anne Holmgren
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
| | - Delphine Bouhy
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
| | - Vicky De Winter
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
| | - Bob Asselbergh
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2020 Antwerpen, Belgium
| | - Joy Irobi
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
| | - Vincent Timmerman
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| |
Collapse
|
25
|
|
26
|
Holmgren A, Bouhy D, Timmerman V. Neurofilament phosphorylation and their proline-directed kinases in health and disease. J Peripher Nerv Syst 2012; 17:365-76. [DOI: 10.1111/j.1529-8027.2012.00434.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Shea TB, Lee S. The discontinuous nature of neurofilament transport accommodates both establishment and repair of the axonal neurofilament array. Cytoskeleton (Hoboken) 2012; 70:67-73. [PMID: 23124969 DOI: 10.1002/cm.21087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 12/19/2022]
Abstract
Neurofilaments (NFs) provide structural support to axons. Timely and regional deposition of NFs is essential during axonogenesis, since progressive stabilization of proximal axons is essential to support continued pathfinding of distal axonal regions. NFs undergo short bursts of microtubule-mediated axonal transport interspersed by prolonged pauses. We demonstrate herein that it is this unique "on-off" method of axonal transport, coupled with the ability of NFs to form cation-dependent, phosphomediated lateral associations that allow neurons to mediate the orderly transition from exploratory process to stabilized axon following synaptogenesis. We further demonstrate how this transport method provides for NF maintenance following maturation and encompasses the potential for regeneration.
Collapse
Affiliation(s)
- Thomas B Shea
- Department of Biological Sciences, Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts, Lowell, One University Avenue, Lowell, MA 01854, USA.
| | | |
Collapse
|
28
|
Sunil N, Lee S, Shea TB. Interference with kinesin-based anterograde neurofilament axonal transport increases neurofilament-neurofilament bundling. Cytoskeleton (Hoboken) 2012; 69:371-9. [PMID: 22434685 DOI: 10.1002/cm.21030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 03/15/2012] [Indexed: 12/28/2022]
Abstract
Neurofilaments (NFs) associate with each other and with other cytoskeletal elements to form a lattice that supports the mature axon. Phosphorylation contributes to formation of this stationary population of NFs by fostering cation-dependent interactions among NF sidearms. Association of NFs with the stationary phase indirectly competes with NF axonal transport by withdrawing NFs from kinesin-dependent motility along microtubules. We therefore hypothesized that inhibition of anterograde NF transport may increase incorporation into the stationary phase. To test this hypothesis, we treated differentiated NB2a/d1 cells expressing GFP-tagged NF subunits with monastrol, a specific inhibitor of kinesin-5. Monastrol significantly inhibited anterograde axonal transport of NF-H but not NF-M, and increased the incorporation of newly-transported NF subunits into axonal NF bundles. These findings support the notion that NF transport and bundling exert opposing forces on axonal NF dynamics, and that inhibition of anterograde transport of NFs can increase their incorporation into the stationary phase.
Collapse
Affiliation(s)
- Neethu Sunil
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
| | | | | |
Collapse
|
29
|
Lee WC, Chen YY, Kan D, Chien CL. A neuronal death model: overexpression of neuronal intermediate filament protein peripherin in PC12 cells. J Biomed Sci 2012; 19:8. [PMID: 22252275 PMCID: PMC3282651 DOI: 10.1186/1423-0127-19-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/17/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Abnormal accumulation of neuronal intermediate filament (IF) is a pathological indicator of some neurodegenerative disorders. However, the underlying neuropathological mechanisms of neuronal IF accumulation remain unclear. A stable clone established from PC12 cells overexpressing a GFP-Peripherin fusion protein (pEGFP-Peripherin) was constructed for determining the pathway involved in neurodegeneration by biochemical, cell biology, and electronic microscopy approaches. In addition, pharmacological approaches to preventing neuronal death were also examined. RESULTS Results of this study showed that TUNEL positive reaction could be detected in pEGFP-Peripherin cells. Swollen mitochondria and endoplasmic reticulum (ER) were seen by electron microscopy in pEGFP-Peripherin cells on day 8 of nerve growth factor (NGF) treatment. Peripherin overexpression not only led to the formation of neuronal IF aggregate but also causes aberrant neuronal IF phosphorylation and mislocation. Western blots showed that calpain, caspase-12, caspase-9, and caspase-3 activity was upregulated. Furthermore, treatment with calpain inhibitor significantly inhibited cell death. CONCLUSIONS These results suggested that the cytoplasmic neuronal IF aggregate caused by peripherin overexpression may induce aberrant neuronal IF phosphorylation and mislocation subsequently trapped and indirectly damaged mitochondria and ER. We suggested that the activation of calpain, caspase-12, caspase-9, and caspase-3 were correlated to the dysfunction of the ER and mitochondria in our pEGFP-Peripherin cell model. The present study suggested that pEGFP-Peripherin cell clones could be a neuronal death model for future studies in neuronal IFs aggregate associated neurodegeneration.
Collapse
Affiliation(s)
- Wen-Ching Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei, 100, Taiwan
| | - Yun-Yu Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei, 100, Taiwan
| | - Daphne Kan
- Center of Genomic Medicine, National Taiwan University, Jen-Ai Road, Taipei, 100, Taiwan
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei, 100, Taiwan
- Center of Genomic Medicine, National Taiwan University, Jen-Ai Road, Taipei, 100, Taiwan
| |
Collapse
|
30
|
Shea TB, Lee S. Neurofilament phosphorylation regulates axonal transport by an indirect mechanism: a merging of opposing hypotheses. Cytoskeleton (Hoboken) 2011; 68:589-95. [PMID: 21990272 DOI: 10.1002/cm.20535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/22/2011] [Indexed: 01/22/2023]
Abstract
Neurofilaments (NFs) are among the most abundant constituents of the axonal cytoskeleton. NFs consist of four subunits, termed NF-H, NF-M and NF-L, corresponding to heavy, medium and light in reference to their molecular mass and α-internexin. Phosphorylation of the C-terminal "sidearms" of NF-H and NF-M regulates the ability of NFs to form a cytoskeletal lattice that supports the mature axon. C-terminal phosphorylation events have classically been considered to regulate NF axonal transport. By contrast, studies demonstrating that NF axonal transport was not accelerated following sidearm deletion provided evidence that phosphorylation does not regulate NF transport. Herein, we demonstrate how comparison of transport and distribution of differentially phosphorylated NFs along axons identify common ground between these hypotheses and may resolve this controversy.
Collapse
Affiliation(s)
- Thomas B Shea
- Department of Biological Sciences, Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts-Lowell, Lowell, Massachusetts 01854, USA.
| | | |
Collapse
|
31
|
Riboldi G, Nizzardo M, Simone C, Falcone M, Bresolin N, Comi GP, Corti S. ALS genetic modifiers that increase survival of SOD1 mice and are suitable for therapeutic development. Prog Neurobiol 2011; 95:133-48. [PMID: 21816207 DOI: 10.1016/j.pneurobio.2011.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/19/2011] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a frequently fatal motor neuron disease without any cure. To find molecular therapeutic targets, several studies crossed transgenic ALS murine models with animals transgenic for some ALS target genes. We aimed to revise the new discoveries and new works in this field. We selected the 10 most promising genes, according to their capability when down-regulated or up-regulated in ALS animal models, for increasing life span and mitigating disease progression: XBP-1, NogoA and NogoB, dynein, heavy and medium neurofilament, NOX1 and NOX2, MLC-mIGF-1, NSE-VEGF, and MMP-9. Interestingly, some crucial modifier genes have been described as being involved in common pathways, the most significant of which are inflammation and cytoskeletal activities. The endoplasmic reticulum also seems to play an important role in ALS pathogenesis, as it is involved in different selected gene pathways. In addition, these genes have evident links to each other, introducing the hypothesis of a single unknown, common pathway involving all of these identified genes and others to be discovered.
Collapse
Affiliation(s)
- Giulietta Riboldi
- Department of Neurological Sciences, Dino Ferrari Centre, University of Milan, IRCCS Fondazione Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Hares K, Kemp K, Gray E, Scolding N, Wilkins A. Neurofilament dot blot assays: Novel means of assessing axon viability in culture. J Neurosci Methods 2011; 198:195-203. [DOI: 10.1016/j.jneumeth.2011.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/23/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
|
33
|
Lee S, Sunil N, Tejada JM, Shea TB. Differential roles of kinesin and dynein in translocation of neurofilaments into axonal neurites. J Cell Sci 2011; 124:1022-31. [PMID: 21363889 DOI: 10.1242/jcs.079046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neurofilament (NF) subunits translocate within axons as short NFs, non-filamentous punctate structures ('puncta') and diffuse material that might comprise individual subunits and/or oligomers. Transport of NFs into and along axons is mediated by the microtubule (MT) motor proteins kinesin and dynein. Despite being characterized as a retrograde motor, dynein nevertheless participates in anterograde NF transport through associating with long MTs or the actin cortex through its cargo domain; relatively shorter MTs associated with the motor domain are then propelled in an anterograde direction, along with any linked NFs. Here, we show that inhibition of dynein function, through dynamitin overexpression or intracellular delivery of anti-dynein antibody, selectively reduced delivery of GFP-tagged short NFs into the axonal hillock, with a corresponding increase in the delivery of puncta, suggesting that dynein selectively delivered short NFs into axonal neurites. Nocodazole-mediated depletion of short MTs had the same effect. By contrast, intracellular delivery of anti-kinesin antibody inhibited anterograde transport of short NFs and puncta to an equal extent. These findings suggest that anterograde axonal transport of linear NFs is more dependent upon association with translocating MTs (which are themselves translocated by dynein) than is transport of NF puncta or oligomers.
Collapse
Affiliation(s)
- Sangmook Lee
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts, One University Avenue, Lowell, MA 01854, USA
| | | | | | | |
Collapse
|
34
|
Lu CH, Kalmar B, Malaspina A, Greensmith L, Petzold A. A method to solubilise protein aggregates for immunoassay quantification which overcomes the neurofilament “hook” effect. J Neurosci Methods 2011; 195:143-50. [DOI: 10.1016/j.jneumeth.2010.11.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/10/2010] [Accepted: 11/23/2010] [Indexed: 01/07/2023]
|
35
|
Lee S, Sunil N, Shea TB. C-terminal neurofilament phosphorylation fosters neurofilament-neurofilament associations that compete with axonal transport. Cytoskeleton (Hoboken) 2010; 68:8-17. [PMID: 20862740 DOI: 10.1002/cm.20488] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 09/16/2010] [Indexed: 12/20/2022]
Abstract
Neurofilaments (NFs) associate with each other and with other cytoskeletal elements to form a lattice that supports the mature axon. Phosphorylation contributes to formation of this structure by fostering cation-dependent interactions among NF sidearms. By inducing NF bundling, phosphorylation impedes their axonal transport. To examine the impact of the known NF kinase cdk5 on these phenomena, transfected cells with constructs expressing GFP-tagged NF-H sidearms (lacking the rod domain to preclude assembly) with and without site-directed mutagenesis of 7 cdk5 consensus sites, and monitored the impact on NF transport and association with the axonal NF bundle. These mutations did not alter transport but pseudo-phosphorylated mutants displayed a greater association with axonal NF bundles. By contrast, these same mutations in full-length NF-H altered NF transport as well as bundling. Since isolated sidearms cannot assemble, they can only interact with NFs via a single sidearm-sidearm interaction, while assembled NFs can form multiple such interactions. These finding suggest that individual sidearm-sidearm interactions are dynamic and do not persist long enough to slow NF transport, and that bundle formation and maintenance depends upon both the long half-life of NF polymers and the establishment of multiple phosphorylation-dependent sidearm-mediated interactions among NFs.
Collapse
Affiliation(s)
- Sangmook Lee
- Department of Biological Sciences, Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts, Lowell, Massachusetts 01854, USA
| | | | | |
Collapse
|
36
|
Kushkuley J, Metkar S, Chan WKH, Lee S, Shea TB. Aluminum induces neurofilament aggregation by stabilizing cross-bridging of phosphorylated c-terminal sidearms. Brain Res 2010; 1322:118-23. [PMID: 20132798 DOI: 10.1016/j.brainres.2010.01.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/24/2010] [Accepted: 01/27/2010] [Indexed: 01/08/2023]
Abstract
Exposure to neurotoxin aluminum neurotoxicity is accompanied by the perikaryal accumulation of tangles of phosphorylated neurofilaments (NFs). We examined their formation and reversibility under cell-free conditions. AlCl3 induced dose-dependent formation of NF aggregates, ultimately incorporating 100% of detectable NFs. The same concentration of CaCl2 induced approximately 25% of NFs to form longitudinal dimers and did not induce aggregation. AlCl3 induced similar percentages of aggregates in the presence or absence of CaCl2, and CaCl2 could not reduce pre-formed aggregates. CaCl(2)-induced dimers and AlCl(3)-induced aggregates were prevented by prior NF dephosphorylation. While CaCl(2)-induced dimers were dissociated by phosphatase treatment, AlCl(3)-induced aggregates were only reduced by approximately 50%, suggesting that aggregates may sequester phosphorylation sites. Since phosphatases regulate NF phosphorylation within perikarya, inhibition of NF dephosphorylation by aluminum would promote perikaryal NF phosphorylation and foster precocious phospho-dependent NF-NF associations. These findings are consistent with the notion that prolonged interactions induced among phospho-NFs by the trivalent aluminum impairs axonal transport and promotes perikaryal aggregation.
Collapse
Affiliation(s)
- Jacob Kushkuley
- Center for Cellular Neurobiology and Neurodegeneration Research, Departments of Biological Sciences and Biochemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | | | | | | | | |
Collapse
|
37
|
Kushkuley J, Chan WKH, Lee S, Eyer J, Leterrier JF, Letournel F, Shea TB. Neurofilament cross-bridging competes with kinesin-dependent association of neurofilaments with microtubules. J Cell Sci 2009; 122:3579-86. [PMID: 19737816 DOI: 10.1242/jcs.051318] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The phosphorylation of neurofilaments (NFs) has long been considered to regulate their axonal transport rate and in doing so to provide stability to mature axons. Axons contain a centrally situated ;bundle' of closely opposed phospho-NFs that display a high degree of NF-NF associations and phospho-epitopes, surrounded by less phosphorylated ;individual' NFs that are often associated with kinesin and microtubules (MTs). Bundled NFs transport substantially slower than the surrounding individual NFs and might represent a resident population that stabilizes axons and undergoes replacement by individual NFs. To examine this possibility, fractions enriched in bundled NFs and individual NFs were generated from mice and NB2a/d1 cells by sedimentation of cytoskeletons over a sucrose cushion. More kinesin was recovered within individual versus bundled NF fractions. Individual but not bundled NFs aligned with purified MTs under cell-free conditions. The percentage of NFs that aligned with MTs was increased by the addition of kinesin, and inhibited by anti-kinesin antibodies. Bundles dissociated following incubation with EGTA or alkaline phosphatase, generating individual NFs that retained or were depleted of phospho-epitopes, respectively. These dissociated NFs aligned with MTs at a level identical to those originally isolated as individual NFs regardless of phosphorylation state. EGTA-mediated dissociation of bundles was prevented and reversed by excess Ca(2+), whereas individual NFs did not associate in the presence of excess Ca(2+). These findings confirm that bundling competes with NF-MT association, and provide a mechanism by which C-terminal NF phosphorylation might indirectly contribute to the observed slowing in axonal transport of phospho-NFs.
Collapse
Affiliation(s)
- Jacob Kushkuley
- Center for Cellular Neurobiology and Neurodegeneration Research, Departments of Biological Sciences and Biochemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Gov NS. Physical model for the width distribution of axons. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2009; 29:337-344. [PMID: 19579039 DOI: 10.1140/epje/i2009-10476-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/21/2009] [Accepted: 06/08/2009] [Indexed: 05/28/2023]
Abstract
The distribution of widths of axons was recently investigated, and was found to have a distinct peak at an optimized value. The optimized axon width at the peak may arise from the conflicting demands of minimizing energy consumption and assuring signal transmission reliability. The distribution around this optimized value is found to have a distinct non-Gaussian shape, with an exponential "tail". We propose here a mechanical model whereby this distribution arises from the interplay between the elastic energy of the membrane surrounding the axon core, the osmotic pressure induced by the neurofilaments inside the axon bulk, and active processes that remodel the microtubules and neurofilaments inside the axon. The axon's radius of curvature can be determined by the cell's control of the osmotic pressure difference across the membrane, the membrane tension or by changing the composition of the different components of the membrane. We find that the osmotic pressure, determined by the neurofilaments, seems to be the dominant control parameter.
Collapse
Affiliation(s)
- N S Gov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
39
|
Shea TB, Lee S, Kushkuley J, Dubey M, Chan WKH. Neurofilament dynamics: a tug of war by microtubule motors. FUTURE NEUROLOGY 2009. [DOI: 10.2217/fnl.09.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Structural support for axons, which can consist of volumes thousands of times larger than the neuronal perikaryon, is provided in part by neurofilaments (NFs), the major fibrous constituent of the axonal cytoskeleton. Most NFs undergo anterograde transport (towards the synapse or growth cone), while a few undergo retrograde transport (back towards the perikaryon). Some NFs exhibit an extended residence time along axons, which allows NFs to provide structural support to the axon yet minimizes NF turnover, which would otherwise impart a prohibitive metabolic burden upon the neuron. Herein, we explore known and hypothesized roles for microtubule motors in transport and distribution of NFs along axons. We present evidence that those NFs that display extended residence along axons are critically dependent upon surrounding microtubules, and that simultaneous interaction with multiple microtubule motors provides the architectural force regulating their distribution.
Collapse
Affiliation(s)
- Thomas B Shea
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Sangmook Lee
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Jacob Kushkuley
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Maya Dubey
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Walter K-H Chan
- Center for Cellular Neurobiology & Neurodegeneration Research, Departments of Biological Sciences & Biochemistry, University of Massachusetts–Lowell, One University Avenue, Lowell, MA 01854, USA
| |
Collapse
|
40
|
Leterrier JF, Janmey PA, Eyer J. Microtubule-independent regulation of neurofilament interactions in vitro by neurofilament-bound ATPase activities. Biochem Biophys Res Commun 2009; 384:37-42. [PMID: 19379708 DOI: 10.1016/j.bbrc.2009.04.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 04/11/2009] [Indexed: 12/21/2022]
Abstract
Neurofilaments (NFs), the major neuronal intermediate filaments, form networks in vitro that mimic the axonal NF bundles. This report presents evidence for previously unknown regulation of the interactions between NFs by NF-associated ATPases. Two opposite effects on NF gelation in vitro occur at low and high ATP concentration. These findings support the hypothesis that NF bundles in situ are dynamic structures, and raise the possibility that ATP-hydrolyzing mechanoenzymes regulate their organization.
Collapse
Affiliation(s)
- J F Leterrier
- Dpt Neurosciences, UMR CNRS 6187, PBS, Universite de Poitiers, Poitiers Cedex, France.
| | | | | |
Collapse
|
41
|
Izmiryan A, Franco CA, Paulin D, Li Z, Xue Z. Synemin isoforms during mouse development: Multiplicity of partners in vascular and neuronal systems. Exp Cell Res 2009; 315:769-83. [DOI: 10.1016/j.yexcr.2008.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/21/2008] [Accepted: 12/07/2008] [Indexed: 11/25/2022]
|
42
|
Shea TB, Chan WKH, Kushkuley J, Lee S. Organizational dynamics, functions, and pathobiological dysfunctions of neurofilaments. Results Probl Cell Differ 2009; 48:29-45. [PMID: 19554281 DOI: 10.1007/400_2009_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurofilament phosphorylation has long been considered to regulate their axonal transport rate, and in doing so it provides stability to mature axons. We evaluate the collective evidence to date regarding how neurofilament C-terminal phosphorylation may regulate axonal transport. We present a few suggestions for further experimentation in this area, and expand upon previous models for axonal NF dynamics. We present evidence that the NFs that display extended residence along axons are critically dependent upon the surrounding microtubules, and that simultaneous interaction with multiple microtubule motors provides the architectural force that regulates their distribution. Finally, we address how C-terminal phosphorylation is regionally and temporally regulated by a balance of kinase and phosphatase activities, and how misregulation of this balance might contribute to motor neuron disease.
Collapse
Affiliation(s)
- Thomas B Shea
- Departments of Biological Sciences and Biochemistry, Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, England.
| | | | | | | |
Collapse
|
43
|
Abstract
Typically patients with multiple sclerosis (MS) experience acute episodes of neurological dysfunction, which recover followed, at a later stage, by slow and insidious accumulation of disability (disease progression). Disease progression reflects axon damage and loss within the central nervous system. However, the precise mechanism of axon injury in MS is not clear. Inflammation occurring during acute relapses undoubtedly causes some degree of acute axon damage, but epidemiological data and treatment studies have suggested that inflammation alone is not the sole cause of axonopathy. Indeed, there appears to be dissociation between inflammation and disease progression once a certain level of clinical disability has been reached because immune suppression in patients who have established disease progression does not halt the slow decrease of function. The slow and insidious loss of neurological function that occurs during the progressive phase of the disease implies a degenerative process. Whether axon drop-out occurs at these later stages because of previous inflammatory damage to axons; because of low grade inflammation causing damage to already vulnerable demyelinated axons; because of loss of trophic environment for axons to survive; or as part of a completely independent neurodegenerative process is not clear. Understanding disease mechanisms involved in the axonopathy of MS allows for the development of rational therapies for disease progression.
Collapse
Affiliation(s)
- A Wilkins
- Department of Neurology, Institute of Clinical Neurosciences, University of Bristol, Frenchay Hospital, Bristol, UK.
| | | |
Collapse
|
44
|
Abstract
Neurofilament (NF) phosphorylation has long been considered to regulate axonal transport rate and in doing so to provide stability to mature axons. Studies utilizing mice in which the C-terminal region of NF subunits (which contains the vast majority of phosphorylation sites) has been deleted has prompted an ongoing challenge to this hypothesis. We evaluate the collective evidence to date for and against a role for NF C-terminal phosphorylation in regulation of axonal transport and in providing structural support for axons, including some novel studies from our laboratory. We present a few suggestions for further experimentation in this area, and expand upon previous models for axonal NF dynamics. Finally, we address how C-terminal phosphorylation is regionally and temporally regulated by a balance of kinase and phosphatase activities, and how misregulation of this balance can contribute to motor neuron disease.
Collapse
Affiliation(s)
- Thomas B Shea
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.
| | | |
Collapse
|
45
|
Wang QS, Zhang CL, Hou LY, Zhao XL, Yang XW, Xie KQ. Involvement of cyclin-dependent kinase 5 in 2,5-hexanedione-induced neuropathy. Toxicology 2008; 248:1-7. [DOI: 10.1016/j.tox.2008.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 02/28/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
|
46
|
Wang QS, Hou LY, Zhang CL, Song FY, Xie KQ. Changes of cytoskeletal proteins in nerve tissues and serum of rats treated with 2,5-hexanedione. Toxicology 2007; 244:166-78. [PMID: 18177991 DOI: 10.1016/j.tox.2007.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 11/13/2007] [Accepted: 11/14/2007] [Indexed: 11/26/2022]
Abstract
To investigate the mechanisms and biomarker of the neuropathy induced by 2,5-hexanedione (HD), male Wistar rats were administrated HD at dosage of 200 or 400mg/kg for 8 weeks (five-times per week). All rats were sacrificed after 8 weeks of treatment and the cerebrum cortex (CC), spinal cord (SC) and sciatic nerves (SN) were dissected, homogenized and used for the determination of cytoskeletal proteins by western blotting. The levels of neurofilaments (NFs) subunits (NF-L, NF-M and NF-H) in nerve tissues of 200 and 400mg/kg HD rats significantly decreased in both the supernatant and pellet fractions. Furthermore, significant negative correlations between NFs levels and gait abnormality were observed. As for microtubule (MT) and microfilament (MF) proteins, the levels of alpha-tubulin, beta-tubulin and beta-actin in the supernatant and pellet fraction of SN significantly decreased in 200 and 400mg/kg HD rats and correlated negatively with gait abnormality. However, the contents of MT and MF proteins in CC and SC were inconsistently affected and had no significant correlation with gait abnormality. The levels of NF-L and NF-H in serum significantly increased, while NF-M, alpha-tubulin, beta-tubulin and beta-actin contents remain unchanged. A significant positive correlation (R=0.9427, P<0.01) was observed between gait abnormality and NF-H level in serum as the intoxication went on. These findings suggested that HD intoxication resulted in a progressive decline of cytoskeletal protein contents, which might be relevant to the mechanisms of HD-induced neuropathy. NF-H was the most sensitive index, which may serve as a good indicator for neurotoxicity of n-hexane or HD.
Collapse
Affiliation(s)
- Qing-Shan Wang
- Institute of Toxicology, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | | | | | | | | |
Collapse
|
47
|
DeFuria J, Shea TB. Arsenic inhibits neurofilament transport and induces perikaryal accumulation of phosphorylated neurofilaments: Roles of JNK and GSK-3β. Brain Res 2007; 1181:74-82. [DOI: 10.1016/j.brainres.2007.04.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/04/2007] [Accepted: 04/07/2007] [Indexed: 11/15/2022]
|
48
|
Motil J, Dubey M, Chan WKH, Shea TB. Inhibition of dynein but not kinesin induces aberrant focal accumulation of neurofilaments within axonal neurites. Brain Res 2007; 1164:125-31. [PMID: 17640622 DOI: 10.1016/j.brainres.2006.09.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 09/29/2006] [Accepted: 09/30/2006] [Indexed: 01/25/2023]
Abstract
Studies from several laboratories indicate that the microtubule motors kinesin and dynein respectively participate in anterograde and retrograde axonal transport of neurofilaments. Inhibition of dynein function by transfection with a construct expressing dynamitin or intracellular delivery of anti-dynein antibodies accelerates anterograde transport, which has been interpreted to indicate that the opposing action of both motors mediates the normal distribution of neurofilaments along axons. Herein, we demonstrate that, while expression of relatively low levels of exogenous dynamitin indeed accelerated anterograde neurofilament transport along axonal neurites in culture, expression of progressively increasing levels of dynamitin induced focal accumulation of neurofilaments within axonal neurites and eventually caused neurite retraction. Inhibition of kinesin inhibited anterograde transport, but did not induce similar focal accumulations. These findings are consistent with studies indicating that perturbations in dynein activity can contribute to the aberrant accumulations of neurofilaments that accompany ALS/motor neuron disease.
Collapse
Affiliation(s)
- Jennifer Motil
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | | | | | | |
Collapse
|
49
|
Bannerman PG, Hahn A. Enhanced visualization of axonopathy in EAE using thy1-YFP transgenic mice. J Neurol Sci 2007; 260:23-32. [PMID: 17493638 DOI: 10.1016/j.jns.2007.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 02/17/2007] [Accepted: 03/21/2007] [Indexed: 10/23/2022]
Abstract
It is widely accepted that chronic disabilities in multiple sclerosis (MS) patients are due in part to neuronal damage. The central aim of this study was to characterize axonal disruption in the spinal cord of mice with myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (MOG-EAE), a model of progressive MS. To accomplish this goal, we induced MOG-EAE in thy1-yellow fluorescent (thy-YFP)-transgenic mice in which all spinal motorneurons express the YFP reporter protein. We demonstrate that a build-up of YFP fluorescence occurs in profiles reminiscent of tortuous fragmented axons and axonal spheroids/globules as seen in various neurodegenerative/neuroinflammatory diseases. Approximately two-thirds of these damaged axons were decorated by the monoclonal antibody SMI 32, which recognizes hypophosphorylated neurofilament-H (hypoP-NF-H), an established marker of CNS axonal pathology. Unexpectedly, one third of damaged axons were hypoP-NF-H negative but could be visualized by their expression of the YFP transgene, whilst the remaining profiles were hypoP-NF-H positive but did not exhibit YFP fluorescence. Thus, using YFP transgenic mice in conjunction with hypoP-NF-H immunoreactivity provides a more comprehensive depiction of axonopathy in the ventral-lateral aspect of lumbosacral spinal cord in MOG-EAE. When YFP fluorescence was used in conjunction with a monoclonal antibody that recognizes CD11b; a marker of subsets of inflammatory cells, we were able to discern evidence of an early inflammatory attack on white matter axons. Finally, we show the accumulation of hyperphosphorylated neurofilament-H (hyperP-NF-H) expression in YFP+, lesioned WM areas and in a subpopulation of neuronal perikarya in the lumbar spinal cords of EAE mice.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibody Specificity/immunology
- Axons/immunology
- Axons/pathology
- CD11 Antigens/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Genes, Reporter/genetics
- Immunohistochemistry
- Luminescent Proteins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Motor Neurons/immunology
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/physiopathology
- Myelitis/immunology
- Myelitis/pathology
- Myelitis/physiopathology
- Neurofilament Proteins/immunology
- Neurofilament Proteins/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Spinal Cord/immunology
- Spinal Cord/pathology
- Spinal Cord/physiopathology
- Staining and Labeling/methods
- Thy-1 Antigens/genetics
- Thy-1 Antigens/immunology
- Wallerian Degeneration/immunology
- Wallerian Degeneration/pathology
- Wallerian Degeneration/physiopathology
Collapse
Affiliation(s)
- P G Bannerman
- Neurology Research, Shriners Hospital for Children, Sacramento, CA 95817, United States.
| | | |
Collapse
|
50
|
Wagner OI, Rammensee S, Korde N, Wen Q, Leterrier JF, Janmey PA. Softness, strength and self-repair in intermediate filament networks. Exp Cell Res 2007; 313:2228-35. [PMID: 17524395 PMCID: PMC2709732 DOI: 10.1016/j.yexcr.2007.04.025] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/01/2007] [Accepted: 04/05/2007] [Indexed: 11/24/2022]
Abstract
One cellular function of intermediate filaments is to provide cells with compliance to small deformations while strengthening them when large stresses are applied. How IFs accomplish this mechanical role is revealed by recent studies of the elastic properties of single IF protein polymers and by viscoelastic characterization of the networks they form. IFs are unique among cytoskeletal filaments in withstanding large deformations. Single filaments can stretch to more than 3 times their initial length before breaking, and gels of IF withstand strains greater than 100% without damage. Even after mechanical disruption of gels formed by crossbridged neurofilaments, the elastic modulus of these gels rapidly recovers under conditions where gels formed by actin filaments are irreversibly ruptured. The polyelectrolyte properties of IFs may enable crossbridging by multivalent counterions, but identifying the mechanisms by which IFs link into bundles and networks in vivo remains a challenge.
Collapse
Affiliation(s)
- Oliver I. Wagner
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania. 3340 Smith Walk, Philadelphia, PA 19104, USA
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan (R.O.C.)
| | - Sebastian Rammensee
- Technische Universität, München, Physik-Department E22 Biophysik James-Franck-Str. 1, 85747 Garching, Germany
| | - Neha Korde
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania. 3340 Smith Walk, Philadelphia, PA 19104, USA
| | - Qi Wen
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania. 3340 Smith Walk, Philadelphia, PA 19104, USA
| | | | - Paul A. Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania. 3340 Smith Walk, Philadelphia, PA 19104, USA
- correspondance to: Paul Janmey, Institute for Medicine and Engineering, University of Pennsylvania, 1010 Vagelos Laboratories, 3340 Smith Walk, Philadelphia, PA 19104, Tel: 215.573.7380; lab: 215.573.9787, Fax: 215.573.6815,
| |
Collapse
|