1
|
Nie L, Yao D, Chen S, Wang J, Pan C, Wu D, Liu N, Tang Z. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov 2023; 9:215. [PMID: 37393356 DOI: 10.1038/s41420-023-01532-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Due to the limited capacity of the adult mammalian brain to self-repair and regenerate, neurological diseases, especially neurodegenerative disorders and stroke, characterized by irreversible cellular damage are often considered as refractory diseases. Neural stem cells (NSCs) play a unique role in the treatment of neurological diseases for their abilities to self-renew and form different neural lineage cells, such as neurons and glial cells. With the increasing understanding of neurodevelopment and advances in stem cell technology, NSCs can be obtained from different sources and directed to differentiate into a specific neural lineage cell phenotype purposefully, making it possible to replace specific cells lost in some neurological diseases, which provides new approaches to treat neurodegenerative diseases as well as stroke. In this review, we outline the advances in generating several neuronal lineage subtypes from different sources of NSCs. We further summarize the therapeutic effects and possible therapeutic mechanisms of these fated specific NSCs in neurological disease models, with special emphasis on Parkinson's disease and ischemic stroke. Finally, from the perspective of clinical translation, we compare the strengths and weaknesses of different sources of NSCs and different methods of directed differentiation, and propose future research directions for directed differentiation of NSCs in regenerative medicine.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dabao Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430030, China
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, 430030, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Better Outcomes with Intranigral versus Intrastriatal Cell Transplantation: Relevance for Parkinson’s Disease. Cells 2022; 11:cells11071191. [PMID: 35406755 PMCID: PMC8997951 DOI: 10.3390/cells11071191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Intrastriatal embryonic ventral mesencephalon grafts have been shown to integrate, survive, and reinnervate the host striatum in clinical settings and in animal models of Parkinson’s disease. However, this ectopic location does not restore the physiological loops of the nigrostriatal pathway and promotes only moderate behavioral benefits. Here, we performed a direct comparison of the potential benefits of intranigral versus intrastriatal grafts in animal models of Parkinson’s disease. We report that intranigral grafts promoted better survival of dopaminergic neurons and that only intranigral grafts induced recovery of fine motor skills and normalized cortico-striatal responses. The increase in the number of toxic activated glial cells in host tissue surrounding the intrastriatal graft, as well as within the graft, may be one of the causes of the increased cell death observed in the intrastriatal graft. Homotopic localization of the graft and the subsequent physiological cell rewiring of the basal ganglia may be a key factor in successful and beneficial cell transplantation procedures.
Collapse
|
3
|
A combined cell and gene therapy approach for homotopic reconstruction of midbrain dopamine pathways using human pluripotent stem cells. Cell Stem Cell 2022; 29:434-448.e5. [PMID: 35180398 DOI: 10.1016/j.stem.2022.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/24/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022]
Abstract
Midbrain dopamine (mDA) neurons can be replaced in patients with Parkinson's disease (PD) in order to provide long-term improvement in motor functions. The limited capacity for long-distance axonal growth in the adult brain means that cells are transplanted ectopically, into the striatal target. As a consequence, several mDA pathways are not re-instated, which may underlie the incomplete restoration of motor function in patients. Here, we show that viral delivery of GDNF to the striatum, in conjunction with homotopic transplantation of human pluripotent stem-cell-derived mDA neurons, recapitulates brain-wide mDA target innervation. The grafts provided re-instatement of striatal dopamine levels and correction of motor function and also connectivity with additional mDA target nuclei not well innervated by ectopic grafts. These results demonstrate the remarkable capacity for achieving functional and anatomically precise reconstruction of long-distance circuitry in the adult brain by matching appropriate growth-factor signaling to grafting of specific cell types.
Collapse
|
4
|
González-Rodríguez P, Zampese E, Stout KA, Guzman JN, Ilijic E, Yang B, Tkatch T, Stavarache MA, Wokosin DL, Gao L, Kaplitt MG, López-Barneo J, Schumacker PT, Surmeier DJ. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature 2021; 599:650-656. [PMID: 34732887 PMCID: PMC9189968 DOI: 10.1038/s41586-021-04059-0] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 09/28/2021] [Indexed: 02/06/2023]
Abstract
Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson's disease1. Yet, whether this change contributes to Parkinson's disease pathogenesis is unclear2. Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism-which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson's disease paradigm3,4.
Collapse
Affiliation(s)
| | - Enrico Zampese
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kristen A Stout
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jaime N Guzman
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ema Ilijic
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ben Yang
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mihaela A Stavarache
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - David L Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lin Gao
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla and CIBERNED, Seville, Spain
| | - Michael G Kaplitt
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla and CIBERNED, Seville, Spain
| | | | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
5
|
Gordián-Vélez WJ, Chouhan D, España RA, Chen HI, Burdick JA, Duda JE, Cullen DK. Restoring lost nigrostriatal fibers in Parkinson's disease based on clinically-inspired design criteria. Brain Res Bull 2021; 175:168-185. [PMID: 34332016 DOI: 10.1016/j.brainresbull.2021.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a neurodegenerative disease affecting around 10 million people worldwide. The death of dopaminergic neurons in the substantia nigra and the axonal fibers that constitute the nigrostriatal pathway leads to a loss of dopamine in the striatum that causes the motor symptoms of this disease. Traditional treatments have focused on reducing symptoms, while therapies with human fetal or stem cell-derived neurons have centered on implanting these cells in the striatum to restore its innervation. An alternative approach is pathway reconstruction, which aims to rebuild the entire structure of neurons and axonal fibers of the nigrostriatal pathway in a way that matches its anatomy and physiology. This type of repair could be more capable of reestablishing the signaling mechanisms that ensure proper dopamine release in the striatum and regulation of other motor circuit regions in the brain. In this manuscript, we conduct a review of the literature related to pathway reconstruction as a treatment for Parkinson's disease, delve into the limitations of these studies, and propose the requisite design criteria to achieve this goal at a human scale. We then present our tissue engineering-based platform to fabricate hydrogel-encased dopaminergic axon tracts in vitro for later implantation into the brain to replace and reconstruct the pathway. These tissue-engineered nigrostriatal pathways (TE-NSPs) can be characterized and optimized for cell number and phenotype, axon growth lengths and rates, and the capacity for synaptic connectivity and dopamine release. We then show original data of advances in creating these constructs matching clinical design criteria using human iPSC-derived dopaminergic neurons and a hyaluronic acid hydrogel. We conclude with a discussion of future steps that are needed to further optimize human-scale TE-NSPs and translate them into clinical products.
Collapse
Affiliation(s)
- Wisberty J Gordián-Vélez
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Dimple Chouhan
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Rodrigo A España
- Department of Neurobiology & Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - H Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - John E Duda
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D Kacy Cullen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States.
| |
Collapse
|
6
|
Björklund A, Parmar M. Dopamine Cell Therapy: From Cell Replacement to Circuitry Repair. JOURNAL OF PARKINSONS DISEASE 2021; 11:S159-S165. [PMID: 33814467 PMCID: PMC8543294 DOI: 10.3233/jpd-212609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cell therapy for Parkinson's disease (PD) is aimed to replace the degenerated midbrain dopamine (mDA) neurons and restore DA neurotransmission in the denervated forebrain targets. A limitation of the intrastriatal grafting approach, which is currently used in clinical trials, is that the mDA neurons are implanted into the target area, in most cases the putamen, and not in the ventral midbrain where they normally reside. This ectopic location of the cells may limit their functionality due to the lack of appropriate afferent regulation from the host. Homotopic transplantation, into the substantia nigra, is now being pursued in rodent PD models as a way to achieve more complete circuitry repair. Intranigral grafts of mDA neurons, derived from human embryonic stem cells, have the capacity to re-establish the nigrostriatal and mesolimbic pathways in their entirety and restore dense functional innervations in striatal, limbic and cortical areas. Tracing of host afferent inputs using the rabies tracing technique shows that the afferent connectivity of grafts implanted in the nigra matches closely that of the intrinsic mDA system, suggesting a degree of circuitry reconstruction that exceeds what has been achieved before. This approach holds great promise, but to match the larger size of the human brain, and the 10 times greater distance between substantia nigra and its forebrain targets, it may be necessary to find ways to improve the growth capacity of the grafted mDA neurons, pointing to a combined approach where growth promoting factors are used to enhance the performance of mDA neuron grafts.
Collapse
Affiliation(s)
- Anders Björklund
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Malin Parmar
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Botulinum Neurotoxin-A Injected Intrastriatally into Hemiparkinsonian Rats Improves the Initiation Time for Left and Right Forelimbs in Both Forehand and Backhand Directions. Int J Mol Sci 2019; 20:ijms20040992. [PMID: 30823527 PMCID: PMC6412467 DOI: 10.3390/ijms20040992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 01/18/2023] Open
Abstract
Forelimb stepping is a widely used test for the assessment of forelimb akinesia in hemiparkinsonian (hemi-PD) rats. The initiation time (IT) is considered the most sensitive parameter in the stepping test procedure. Here we propose a novel, reliable, and simple method for the measurement of IT of both forelimbs in both forehand and backhand directions in rats. Evaluating the same videos taken for quantifying adjusting steps, IT measurements were done without additional experiments. This is in contrast to the classical approach introduced by Olsson et al. (1995), in which separate experiments are necessary. We successfully applied our approach to hemi-PD rats intrastriatally treated with botulinum neurotoxin-A (BoNT-A). In naïve rats, an IT of about 0.62 s was found, and in right-sided hemi-PD rats the IT of the left forepaw increased to about 3.62 s. These hemi-PD rats showed, however, reduced ITs of the impaired left forepaws 1 month and the second time 7 months after induction of hemi-PD via the injection of 1 ng BoNT-A into the ipsilateral striatum, depending on post BoNT-A survival time. The method described offers the possibility of a precise and animal-friendly evaluation of IT in rats, including the beneficial effect of BoNT-A treatment in hemi-PD rats.
Collapse
|
8
|
Baker KA, Purdy MB, Sadi D, Mukhida K, Mendez I. A Sequential Intrastriatal Dopaminergic Graft Strategy in the Rodent Model for Parkinson's Disease: Implications for Graft Survival and Targeting. Cell Transplant 2017. [DOI: 10.3727/096020198389951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Optimal placement of intrastriatal dopaminergic grafts is likely crucial to optimize clinical recovery in Parkinson's disease (PD). The target sites of dopaminergic grafts vary among clinical trials and may partially explain the variable results in clinical efficacy reported thus far. In this study we hypothesized that a subsequent dopaminergic graft may promote functional recovery following a suboptimal initial graft. To test this hypothesis, rats with unilateral 6-hydroxydopamine lesions of the right nigrostriatal pathway were randomly divided into three groups. The first group received 900,000 fetal nigral cells in the medial striatum only (n = 6). The second group received 900,000 cells in both the medial and lateral striatum simultaneously (1.8 million total; n = 8). The final group received a second graft of 900,000 cells in the lateral striatum 6 weeks following initial transplantation of a medial graft (n = 6). Amphetamine-induced circling behavior was significantly reduced in both simultaneous and sequential graft groups at 9 and 12 weeks following transplantation of the initial graft. However, no recovery was noted in the single medial graft group at those time points. Furthermore, increased survival of dopaminergic cells was observed in the lateral graft of sequentially grafted animals compared with the medial graft. We conclude that a well-positioned subsequent graft can restore function in animals with a suboptimal initial graft and that the initial graft may improve survival of the second graft. These results are further discussed in relation to their important clinical implication for neural transplantation in PD.
Collapse
Affiliation(s)
- K. A. Baker
- Neural Transplantation Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
| | - M. B. Purdy
- Neural Transplantation Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
| | - D. Sadi
- Neural Transplantation Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
| | - K. Mukhida
- Neural Transplantation Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
| | - I. Mendez
- Neural Transplantation Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
- Department of Surgery (Division of Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
| |
Collapse
|
9
|
Suzuki T, Akimoto M, Imai H, Ueda Y, Mandai M, Yoshimura N, Swaroop A, Takahashi M. Chondroitinase ABC Treatment Enhances Synaptogenesis between Transplant and Host Neurons in Model of Retinal Degeneration. Cell Transplant 2017; 16:493-503. [PMID: 17708339 DOI: 10.3727/000000007783464966] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although recent studies revealed chondroitinase ABC (ChABC), an enzyme that degrades chondroitin sulfate proteoglycans, promotes CNS regeneration in vivo, the usefulness of its application for transplantation is not clear. We investigated if treatment with ChABC can promote synapse formation between graft and host neurons following retinal transplantation. Dissociated retinal cells were prepared from neonatal Nrl-GFP transgenic mice in which rod photoreceptors and their progenitor cells are labeled with GFP. Each cell suspension with or without ChABC (Nrl/ChABC group and Nrl group, respectively) was injected subretinally into the eyes of mice following chemically induced photoreceptor degeneration. The survival and functional integration of the transplanted photoreceptors were examined by histologically and electrophysio-logically. Up to 4 weeks after transplantation, almost all the grafted GFP+ photoreceptor cells were widely distributed at the outer margin of the host retina where the photoreceptor layer was located originally. In the Nrl/ChABC group, 33.6% of the GFP+ photoreceptors elaborated neurites horizontally or vertically, and 4.6% elaborated neurites toward the retina. These neurites extended over the glial seal at the graft–host interface, and established synaptic contacts with neurons in the host retina as determined by confocal microscopy and three-dimensional analysis. Although 30.7% cells (p = 0.68) elaborated neurites in the Nrl group, only 1.2% cells (p < 0.05) projected neurites towards the host tissue and synaptic contacts were rare. Our results illustrate the potential utility of ChABC for enhancing synaptogenesis between transplanted neurons and host retina.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Opthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Antipova VA, Holzmann C, Schmitt O, Wree A, Hawlitschka A. Botulinum Neurotoxin A Injected Ipsilaterally or Contralaterally into the Striatum in the Rat 6-OHDA Model of Unilateral Parkinson's Disease Differently Affects Behavior. Front Behav Neurosci 2017; 11:119. [PMID: 28680396 PMCID: PMC5478737 DOI: 10.3389/fnbeh.2017.00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) is one of the most frequent neurodegenerative disorders. The loss of dopaminergic neurons in the substantia nigra leads to a disinhibition of cholinergic interneurons in the striatum. Pharmacotherapeutical strategies of PD-related hypercholinism have numerous adverse side effects. We previously showed that ipsilateral intrastriatal injections of 1 ng in unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats inhibit apomorphine-induced rotation behavior significantly up to 6 months. In this study, we extended the behavioral testing of ipsilateral botulinum neurotoxin A (BoNT-A)-injection and additionally investigated the impact of intrastriatal BoNT-A-injections contralateral to the 6-OHDA-lesioned hemisphere on the basal ganglia circuity and motor functions. We hypothesized that the interhemispheric differences of acetylcholine (ACh) concentration seen in unilateral hemi-PD should be differentially and temporally influenced by the ipsilateral or contralateral injection of BoNT-A. Hemi-PD rats were injected with 1 ng BoNT-A or vehicle substance into either the ipsilateral or contralateral striatum 6 weeks after 6-OHDA-lesion and various behaviors were tested. In hemi-PD rats intrastriatal ipsilateral BoNT-A-injections significantly reduced apomorphine-induced rotations and increased amphetamine-induced rotations, but showed no significant improvement of forelimb usage and akinesia, lateralized sensorimotor integration and also no effect on spontaneous locomotor activity. However, intrastriatal BoNT-A-injections contralateral to the lesion led to a significant increase of the apomorphine-induced turning rate only 2 weeks after the treatment. The apomorphine-induced rotation rate decreases thereafter to a value below the initial rotation rate. Amphetamine-induced rotations were not significantly changed after BoNT-A-application in comparison to sham-treated animals. Forelimb usage was temporally improved by contralateral BoNT-A-injection at 2 weeks after BoNT-A. Akinesia and lateralized sensorimotor integration were also improved, but contralateral BoNT-A-injection had no significant effect on spontaneous locomotor activity. These long-ranging and different effects suggest that intrastriatally applied BoNT-A acts not only as an inhibitor of ACh release but also has long-lasting impact on transmitter expression and thereby on the basal ganglia circuitry. Evaluation of changes of transmitter receptors is subject of ongoing studies of our group.
Collapse
Affiliation(s)
- Veronica A. Antipova
- Institute of Anatomy, Rostock University Medical CenterRostock, Germany
- Institute of Macroscopic and Clinical Anatomy, Medical University of GrazGraz, Austria
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical CenterRostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical CenterRostock, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical CenterRostock, Germany
| | | |
Collapse
|
11
|
Fjodorova M, Torres EM, Dunnett SB. Transplantation site influences the phenotypic differentiation of dopamine neurons in ventral mesencephalic grafts in Parkinsonian rats. Exp Neurol 2017; 291:8-19. [PMID: 28131726 PMCID: PMC5354310 DOI: 10.1016/j.expneurol.2017.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 01/26/2023]
Abstract
Foetal midbrain progenitors have been shown to survive, give rise to different classes of dopamine neurons and integrate into the host brain alleviating Parkinsonian symptoms following transplantation in patients and animal models of the disease. Dopamine neuron subpopulations in the midbrain, namely A9 and A10, can be identified anatomically based on cell morphology and ascending axonal projections. G protein-gated inwardly rectifying potassium channel Girk2 and the calcium binding protein Calbindin are the two best available histochemical markers currently used to label (with some overlap) A9- and A10-like dopamine neuron subtypes, respectively, in tyrosine hydroxylase expressing neurons both in the midbrain and grafts. Both classes of dopamine neurons survive in grafts in the striatum and extend axonal projections to their normal dorsal and ventral striatal targets depending on phenotype. Nevertheless, grafts transplanted into the dorsal striatum, which is an A9 input nucleus, are enriched for dopamine neurons that express Girk2. It remains to be elucidated whether different transplantation sites favour the differential survival and/or development of concordant dopamine neuron subtypes within the grafts. Here we used rat foetal midbrain progenitors at two developmental stages corresponding to a peak in either A9 or A10 neurogenesis and examined their commitment to respective dopaminergic phenotypes by grafting cells into different forebrain regions that contain targets of either nigral A9 dopamine innervation (dorsal striatum), ventral tegmental area A10 dopamine innervation (nucleus accumbens and prefrontal cortex), or only sparse dopamine but rich noradrenaline innervation (hippocampus). We demonstrate that young (embryonic day, E12), but not older (E14), mesencephalic tissue and the transplant environment influence survival and functional integration of specific subtypes of dopamine neurons into the host brain. We also show that irrespective of donor age A9-like, Girk2-expressing neurons are more responsive to environmental cues in adopting a dopaminergic phenotype during differentiation post-grafting. These novel findings suggest that dopamine progenitors use targets of A9/A10 innervation in the transplantation site to complete maturation and the efficacy of foetal cell replacement therapy in patients may be improved by deriving midbrain tissue at earlier developmental stages than in current practice.
Collapse
Affiliation(s)
- Marija Fjodorova
- Brain Repair Group, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK.
| | - Eduardo M Torres
- Brain Repair Group, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | - Stephen B Dunnett
- Brain Repair Group, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| |
Collapse
|
12
|
Carballo-Molina OA, Sánchez-Navarro A, López-Ornelas A, Lara-Rodarte R, Salazar P, Campos-Romo A, Ramos-Mejía V, Velasco I. Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons. Tissue Eng Part A 2016; 22:850-61. [PMID: 27174503 PMCID: PMC4913502 DOI: 10.1089/ten.tea.2016.0008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
Cell therapy in experimental models of Parkinson's disease replaces the lost dopamine neurons (DAN), but we still need improved methods to guide dopaminergic axons (DAx) of grafted neurons to make proper connections. The protein Semaphorin 3C (Sema3C) attracts DAN axons and enhances their growth. In this work, we show that the hydrogel PuraMatrix, a self-assembling peptide-based matrix, incorporates Sema3C and releases it steadily during 4 weeks. We also tested if hydrogel-delivered Sema3C attracts DAx using a system of rat midbrain explants embedded in collagen gels. We show that Sema3C released by this hydrogel attracts DAx, in a similar way to pretectum, which is known to attract growing DAN axons. We assessed the effect of Sema3C on the growth of DAx using microfluidic devices. DAN from rat midbrain or those differentiated from human embryonic stem cells showed enhanced axonal extension when exposed to hydrogel-released Sema3C, similar to soluble Sema3C. Notably, DAN of human origin express the cognate Sema3C receptors, Neuropilin1 and Neuropilin2. These results show that PuraMatrix is able to incorporate and release Sema3C, and such delivery guides and promotes the axonal growth of DAN. This biocompatible hydrogel might be useful as a Sema3C carrier for in vivo studies in parkinsonian animal models.
Collapse
Affiliation(s)
- Oscar A. Carballo-Molina
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, México, D.F., México
- Laboratorio de Reprogramación Celular IFC/UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| | - Andrea Sánchez-Navarro
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, México, D.F., México
- Laboratorio de Reprogramación Celular IFC/UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| | - Adolfo López-Ornelas
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, México, D.F., México
- Laboratorio de Reprogramación Celular IFC/UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| | - Rolando Lara-Rodarte
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, México, D.F., México
- Laboratorio de Reprogramación Celular IFC/UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| | - Patricia Salazar
- GENYO: Centre for Genomics and Oncological Research Pfizer-University of Granada-Junta de Andalucía, PTS Granada, Spain
| | - Aurelio Campos-Romo
- Unidad Periférica de Neurociencias Facultad de Medicina-UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| | - Verónica Ramos-Mejía
- GENYO: Centre for Genomics and Oncological Research Pfizer-University of Granada-Junta de Andalucía, PTS Granada, Spain
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, México, D.F., México
- Laboratorio de Reprogramación Celular IFC/UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| |
Collapse
|
13
|
Abstract
The aim of stem cell therapy for Parkinson's disease is to reconstruct nigro-striatal neuronal pathways using endogenous neural stem/precursor cells or grafted dopaminergic neurons. As an alternative, transplantation of stem cell-derived dopaminergic neurons into the striatum has been attempted, with the aim of stimulating local synapse formation and/or release of dopamine and cytokines from grafted cells. Candidate stem cells include neural stem/precursor cells, embryonic stem cells and other stem/precursor cells. Among these, embryonic stem cells are pluripotent cells that proliferate extensively, making them a good potential donor source for transplantation. However, tumor formation and ethical issues present major problems for embryonic stem cell therapy. This review describes the current status of stem cell therapy for Parkinson's disease, as well as future research approaches from a clinical perspective.
Collapse
Affiliation(s)
- Jun Takahashi
- Kyoto University, Department of Biological Repair, Institute for Frontier Medical Sciences, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
14
|
Recovery from experimental parkinsonism by semaphorin-guided axonal growth of grafted dopamine neurons. Mol Ther 2013; 21:1579-91. [PMID: 23732989 DOI: 10.1038/mt.2013.78] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/24/2013] [Indexed: 12/20/2022] Open
Abstract
Cell therapy in animal models of Parkinson's disease (PD) is effective after intrastriatal grafting of dopamine (DA) neurons, whereas intranigral transplantation of dopaminergic cells does not cause consistent behavioral recovery. One strategy to promote axonal growth of dopaminergic neurons from the substantia nigra (SN) to the striatum is degradation of inhibitory components such as chondroitin sulphate proteoglycans (CSPG). An alternative is the guidance of DA axons by chemotropic agents. Semaphorins 3A and 3C enhance axonal growth of embryonic stem (ES) cell-derived dopaminergic neurons in vitro, while Semaphorin 3C also attracts them. We asked whether intranigral transplantation of DA neurons, combined with either degradation of CSPG or with grafts of Semaphorin 3-expressing cells, towards the striatum, is effective in establishing a new nigrostriatal dopaminergic pathway in rats with unilateral depletion of DA neurons. We found depolarization-induced DA release in dorsal striatum, DA axonal projections from SN to striatum, and concomitant behavioral improvement in Semaphorin 3-treated animals. These effects were absent in animals that received intranigral transplants combined with Chondroitinase ABC treatment, although partial degradation of CSPG was observed. These results are evidence that Semaphorin 3-directed long-distance axonal growth of dopaminergic neurons, resulting in behavioral improvement, is possible in adult diseased brains.
Collapse
|
15
|
A novel strategy for intrastriatal dopaminergic cell transplantation: sequential "nest" grafting influences survival and behavioral recovery in a rat model of Parkinson's disease. Exp Cell Res 2012; 318:2531-42. [PMID: 23010385 DOI: 10.1016/j.yexcr.2012.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 08/01/2012] [Accepted: 08/19/2012] [Indexed: 10/27/2022]
Abstract
Neural transplantation in experimental parkinsonism (PD) is limited by poor survival of grafted embryonic dopaminergic (DA) cells. In this proof-of-principle study we hypothesized that a first regular initial graft may create a "dopaminergic" environment similar to the perinatal substantia nigra and consequently stimulate a subsequent graft. Therefore, we grafted ventral mesencephalic neurons sequentially at different time intervals into the same target localization. Rats with a unilateral lesion of the dopamine neurons produced by injections of 6-hydroxydopamine (6-OHDA) received E14 ventral mesencephalon derived grafts into the DA-depleted striatum. In the control group we grafted all 6 deposits on the first day (d0). The other 4 groups received four graft deposits distributed over 2 implantation tracts followed by a second engraftment injected into the same site 3, 6, 14 and 21 days later. Quantitative assessment of the survival of tyrosine hydroxylase-immunoreactive neurons and graft volume revealed best results for those DA grafts implanted 6 days after the first one. In the present study, a model of short-interval sequential transplantation into the same target-site, so called "nest" grafts were established in the 6-OHDA rat model of PD which might become a useful tool to further elucidate the close neurotrophic and neurotopic interactions between the immediate graft vicinity and the cell suspension graft. In addition, we could show that the optimal milieu was established around the sixth day after the initial transplantation. This may also help to further optimize current transplantation strategies to restore the DA system in patients with PD.
Collapse
|
16
|
Pienaar IS, Lu B, Schallert T. Closing the gap between clinic and cage: sensori-motor and cognitive behavioural testing regimens in neurotoxin-induced animal models of Parkinson's disease. Neurosci Biobehav Rev 2012; 36:2305-24. [PMID: 22910679 DOI: 10.1016/j.neubiorev.2012.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/28/2012] [Accepted: 07/16/2012] [Indexed: 12/21/2022]
Abstract
Animal models that make use of chemical toxins to adversely affect the nigrostriatal dopaminergic pathway of rodents and primates have contributed significantly towards the development of symptomatic therapies for Parkinson's disease (PD) patients. Although their use in developing neuro-therapeutic and -regenerative compounds remains to be ascertained, toxin-based mammalian and a range of non-mammalian models of PD are important tools in the identification and validation of candidate biomarkers for earlier diagnosis, as well as in the development of novel treatments that are currently working their way into the clinic. Toxin models of PD have and continue to be important models to use for understanding the consequences of nigrostriatal dopamine cell loss. Functional assessment of these models is also a critical component for eventual translational success. Sensitive behavioural testing regimens for assessing the extent of dysfunction exhibited in the toxin models, the degree of protection or improvement afforded by potential treatment modalities, and the correlation of these findings with what is observed clinically in PD patients, ultimately determines whether a potential treatment moves to clinical trials. Here, we review existing published work that describes the use of such behavioural outcome measures associated with toxin models of parkinsonism. In particular, we focus on tests assessing sensorimotor and cognitive function, both of which are significantly and progressively impaired in PD.
Collapse
Affiliation(s)
- Ilse S Pienaar
- Institute for Ageing and Health, Department of Neurology, The University of Newcastle, Newcastle-Upon-Tyne, United Kingdom.
| | | | | |
Collapse
|
17
|
Skilled motor control for the preclinical assessment of functional deficits and recovery following nigral and striatal cell transplantation. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
18
|
Gilmour TP, Piallat B, Lieu CA, Venkiteswaran K, Ramachandra R, Rao AN, Petticoffer AC, Berk MA, Subramanian T. The effect of striatal dopaminergic grafts on the neuronal activity in the substantia nigra pars reticulata and subthalamic nucleus in hemiparkinsonian rats. ACTA ACUST UNITED AC 2011; 134:3276-89. [PMID: 21911417 DOI: 10.1093/brain/awr226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The electrophysiological correlates of parkinsonism in the basal ganglia have been well studied in patients with Parkinson's disease and animal models. Separately, striatal dopaminergic cell transplantation has shown promise in ameliorating parkinsonian motor symptoms. However, the effect of dopaminergic grafts on basal ganglia electrophysiology has not thoroughly been investigated. In this study, we transplanted murine foetal ventral mesencephalic cells into rats rendered hemiparkinsonian by 6-hydroxydopamine injection. Three months after transplantation, extracellular and local field potential recordings were taken under urethane anaesthesia from the substantia nigra pars reticulata and subthalamic nucleus along with cortical electroencephalograms and were compared to recordings from normal and hemiparkinsonian controls. Recordings from cortical slow-wave activity and global activation states were analysed separately. Rats with histologically confirmed xenografts showed behavioural improvement measured by counting apomorphine-induced rotations and with the extended body axis test. Firing rates in both nuclei were not significantly different between control and grafted groups. However, burst firing patterns in both nuclei in the slow-wave activity state were significantly reduced (P < 0.05) in rats with large surviving grafts, compared to hemiparkinsonian controls. The neuronal firing entropies and oscillations in both nuclei were restored to normal levels in the large-graft group. Electroencephalogram spike-triggered averages also showed normalization in the slow-wave activity state (P < 0.05). These results suggest that local continuous dopaminergic stimulation exerts a normalizing effect on the downstream parkinsonian basal ganglia firing patterns. This novel finding is relevant to future preclinical and clinical investigations of cell transplantation and the development of next-generation therapies for Parkinson's disease that ameliorate pathophysiological neural activity and provide optimal recovery of function.
Collapse
Affiliation(s)
- Timothy P Gilmour
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Danielyan L, Schäfer R, von Ameln-Mayerhofer A, Bernhard F, Verleysdonk S, Buadze M, Lourhmati A, Klopfer T, Schaumann F, Schmid B, Koehle C, Proksch B, Weissert R, Reichardt HM, van den Brandt J, Buniatian GH, Schwab M, Gleiter CH, Frey WH. Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res 2011; 14:3-16. [PMID: 21291297 DOI: 10.1089/rej.2010.1130] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Safe and effective cell delivery remains one of the main challenges in cell-based therapy of neurodegenerative disorders. Graft survival, sufficient enrichment of therapeutic cells in the brain, and avoidance of their distribution throughout the peripheral organs are greatly influenced by the method of delivery. Here we demonstrate for the first time noninvasive intranasal (IN) delivery of mesenchymal stem cells (MSCs) to the brains of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. IN application (INA) of MSCs resulted in the appearance of cells in the olfactory bulb, cortex, hippocampus, striatum, cerebellum, brainstem, and spinal cord. Out of 1 × 10⁶ MSCs applied intranasally, 24% survived for at least 4.5 months in the brains of 6-OHDA rats as assessed by quantification of enhanced green fluorescent protein (EGFP) DNA. Quantification of proliferating cell nuclear antigen-positive EGFP-MSCs showed that 3% of applied MSCs were proliferative 4.5 months after application. INA of MSCs increased the tyrosine hydroxylase level in the lesioned ipsilateral striatum and substantia nigra, and completely eliminated the 6-OHDA-induced increase in terminal deoxynucleotidyl transferase (TdT)-mediated 2'-deoxyuridine, 5'-triphosphate (dUTP)-biotin nick end labeling (TUNEL) staining of these areas. INA of EGFP-labeled MSCs prevented any decrease in the dopamine level in the lesioned hemisphere, whereas the lesioned side of the control animals revealed significantly lower levels of dopamine 4.5 months after 6-OHDA treatment. Behavioral analyses revealed significant and substantial improvement of motor function of the Parkinsonian forepaw to up to 68% of the normal value 40-110 days after INA of 1 × 10⁶ cells. MSC-INA decreased the concentrations of inflammatory cytokines-interleukin-1β (IL-1β), IL-2, -6, -12, tumor necrosis factor (TNF), interferon-γ (IFN-γ, and granulocyte-macrophage colony-stimulating factor (GM-CSF)-in the lesioned side to their levels in the intact hemisphere. IN administration provides a highly promising noninvasive alternative to the traumatic surgical procedure of transplantation and allows targeted delivery of cells to the brain with the option of chronic application.
Collapse
Affiliation(s)
- Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Thompson LH, Grealish S, Kirik D, Björklund A. Reconstruction of the nigrostriatal dopamine pathway in the adult mouse brain. Eur J Neurosci 2009; 30:625-38. [DOI: 10.1111/j.1460-9568.2009.06878.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Gaillard A, Decressac M, Frappé I, Fernagut PO, Prestoz L, Besnard S, Jaber M. Anatomical and functional reconstruction of the nigrostriatal pathway by intranigral transplants. Neurobiol Dis 2009; 35:477-88. [PMID: 19616502 DOI: 10.1016/j.nbd.2009.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 07/10/2009] [Indexed: 12/31/2022] Open
Abstract
The main transplantation strategy in Parkinson's disease has been to place dopaminergic grafts not in their ontogenic site, the substantia nigra, but in their target area, the striatum with contrasting results. Here we have used green fluorescent protein transgenic mouse embryos as donors of ventral mesencephalic cells for transplantation into the pre-lesioned substantia nigra of an adult wild-type host. This allows distinguishing the transplanted cells and their projections from those of the host. Grafted cells integrated within the host mesencephalon and expressed the dopaminergic markers tyrosine hydroxylase, vesicular monoamine transporter 2 and dopamine transporter. Most of the dopaminergic cells within the transplant expressed the substantia nigra marker Girk2 while a lesser proportion expressed the ventral tegmental area marker calbindin. Mesencephalic transplants developed projections through the medial forebrain bundle to the striatum, increased striatal dopamine levels and restored normal behavior. Interestingly, only mesencephalic transplants were able to restore the nigrostriatal projections as dopamine neurons originating from embryonic olfactory bulb transplants send projections only in the close vicinity of the transplantation site that did not reach the striatum. Our results show for the first time the ability of intranigral foetal dopaminergic neurons grafts to restore the damaged nigrostriatal pathway in adult mice. Together with our previous findings of efficient embryonic transplantation within the pre-lesioned adult motor cortex, these results demonstrate that the adult brain is permissive to specific and long distance axonal growth. They further open new avenues in cell transplantation therapies applied for the treatment of neurodegenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Afsaneh Gaillard
- Institut de Physiologie et de Biologie Cellulaires, University of Poitiers, CNRS, 40 avenue recteur Pineau, 86022 Poitiers Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Miljan EA, Hines SJ, Pande P, Corteling RL, Hicks C, Zbarsky V, Umachandran M, Sowinski P, Richardson S, Tang E, Wieruszew M, Patel S, Stroemer P, Sinden JD. Implantation of c-mycER TAM immortalized human mesencephalic-derived clonal cell lines ameliorates behavior dysfunction in a rat model of Parkinson's disease. Stem Cells Dev 2009; 18:307-19. [PMID: 18554088 DOI: 10.1089/scd.2008.0078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human neural stem cells offer the hope that a cell therapy treatment for Parkinson's disease (PD) could be made widely available. In this study, we describe two clonal human neural cell lines, derived from two different 10-week-old fetal mesencephalic tissues and immortalized with the c-mycER(TAM) transgene. Under the growth control of 4-hydroxytamoxifen, both cell lines display stable long-term growth in culture with a normal karyotype. In vitro, these nestin-positive cells are able to differentiate into tyrosine hydroxylase (TH)-positive neurons and are multipotential. Implantation of the undifferentiated cells into the 6-OHDA substantia nigral lesioned rat model displayed sustained improvements in a number of behavioral tests compared with noncell-implanted, vehicle-injected controls over the course of 6 months. Histological analysis of the brains showed survival of the implanted cells but no evidence of differentiation into TH-positive neurons. An average increase of approximately 26% in host TH immunoreactivity in the lesioned dorsal striatum was observed in the cell-treated groups compared to controls, with no difference in loss of TH cell bodies in the lesioned substantia nigra. Further analysis of the cell lines identified a number of expressed trophic factors, providing a plausible explanation for the effects observed in vivo. The exact mechanisms by which the implanted human neural cell lines provide behavioral improvements in the PD model are not completely understood; however, these findings provide evidence that cell therapy can be a potent treatment for PD acting through a mechanism independent of dopaminergic neuronal cell replacement.
Collapse
Affiliation(s)
- Erik A Miljan
- ReNeuron Ltd., Surrey Research Park, Guildford, Surrey, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Thompson LH, Björklund A. Transgenic reporter mice as tools for studies of transplantability and connectivity of dopamine neuron precursors in fetal tissue grafts. PROGRESS IN BRAIN RESEARCH 2009; 175:53-79. [PMID: 19660649 DOI: 10.1016/s0079-6123(09)17505-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Cell therapy for Parkinson's disease (PD) is based on the idea that new midbrain dopamine (mDA) neurons, implanted directly into the brain of the patient, can structurally and functionally replace those lost to the disease. Clinical trials have provided proof-of-principle that the grafted mDA neurons can survive and function after implantation in order to provide sustained improvement in motor function for some patients. Nonetheless, there are a number of issues limiting the application of this approach as mainstream therapy, including: the use of human fetal tissue as the only safe and reliable source of transplantable mDA neurons, and variability in the therapeutic outcome. Here we review recent progress in this area from investigations using rodent models of PD, paying particular attention to the use of transgenic reporter mice as tools for neural transplantation studies. Cell type-specific expression of reporter genes, such as green fluorescent protein, affords valuable technical advantages in transplantation experiments, such as the ability to selectively isolate specific cell fractions from mixed populations prior to grafting, and the unambiguous visualization of graft-derived dopamine neuron fiber patterns after transplantation. The results from these investigations have given new insights into the transplantability of mDA precursors as well as their connectivity after grafting and have interesting implications for the development of stem cell based approaches for the treatment of PD.
Collapse
Affiliation(s)
- Lachlan H Thompson
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
24
|
Mukhida K, Baghbaderani BA, Hong M, Lewington M, Phillips T, McLeod M, Sen A, Behie LA, Mendez I. Survival, differentiation, and migration of bioreactor-expanded human neural precursor cells in a model of Parkinson disease in rats. Neurosurg Focus 2008; 24:E8. [DOI: 10.3171/foc/2008/24/3-4/e7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Object
Fetal tissue transplantation for Parkinson disease (PD) has demonstrated promising results in experimental and clinical studies. However, the widespread clinical application of this therapeutic approach is limited by a lack of fetal tissue. Human neural precursor cells (HNPCs) are attractive candidates for transplantation because of their long-term proliferation activity. Furthermore, these cells can be reproducibly expanded in a standardized fashion in suspension bioreactors. In this study the authors sought to determine whether the survival, differentiation, and migration of HNPCs after transplantation depended on the region of precursor cell origin, intracerebral site of transplantation, and duration of their expansion.
Methods
Human neural precursor cells were isolated from the telencephalon, brainstem, ventral mesencephalon, and spinal cord of human fetuses 8–10 weeks of gestational age, and their differentiation potential characterized in vitro. After expansion in suspension bioreactors, the HNPCs were transplanted into the striatum and substantia nigra of parkinsonian rats. Histological analyses were performed 7 weeks posttransplantation.
Results
The HNPCs isolated from various regions of the neuraxis demonstrated diverse propensities to differentiate into astrocytes and neurons and could all successfully expand under standardized conditions in suspension bioreactors. At 7 weeks posttransplantation, survival and migration were significantly greater for HNPCs obtained from the more rostral brain regions. The HNPCs differentiated predominantly into astrocytes after transplantation into the striatum or substantia nigra regions, and thus no behavioral improvement was observed.
Conclusions
Understanding the regional differences in HNPC properties is prerequisite to their application for PD cell restoration strategies.
Collapse
Affiliation(s)
- Karim Mukhida
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Behnam A. Baghbaderani
- 2Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Murray Hong
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Matthew Lewington
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Timothy Phillips
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Marcus McLeod
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Arindom Sen
- 2Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Leo A. Behie
- 2Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Ivar Mendez
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| |
Collapse
|
25
|
Mukhida K, Hong M, Miles G, Phillips T, Baghbaderani B, McLeod M, Kobayashi N, Sen A, Behie L, Brownstone R, Mendez I. A multitarget basal ganglia dopaminergic and GABAergic transplantation strategy enhances behavioural recovery in parkinsonian rats. Brain 2008; 131:2106-26. [DOI: 10.1093/brain/awn149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
26
|
Haas SJP, Petrov S, Kronenberg G, Schmitt O, Wree A. Orthotopic transplantation of immortalized mesencephalic progenitors (CSM14.1 cells) into the substantia nigra of hemiparkinsonian rats induces neuronal differentiation and motoric improvement. J Anat 2007; 212:19-30. [PMID: 18036147 DOI: 10.1111/j.1469-7580.2007.00834.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neural progenitor cell grafting is a promising therapeutic option in the treatment of Parkinson's disease. In previous experiments we grafted temperature-sensitive immortalized CSM14.1 cells, derived from the ventral mesencephalon of E14-rats, bilaterally in the caudate putamen of adult hemiparkinsonian rats. In these studies we were not able to demonstrate either a therapeutic improvement or neuronal differentiation of transplanted cells. Here we examined whether CSM14.1 cells grafted bilaterally orthotopically in the substantia nigra of hemiparkinsonian rats have the potential to differentiate into dopaminergic neurons. Adult male rats received 6-hydroxydopamine into the right medial forebrain bundle, and successful lesions were evaluated with apomorphine-induced rotations 12 days after surgery. Two weeks after a successful lesion the animals received bilateral intranigral grafts consisting of either about 50 000 PKH26-labelled undifferentiated CSM14.1 cells (n = 16) or a sham-graft (n = 9). Rotations were evaluated 3, 6, 9 and 12 weeks post-grafting. Animals were finally perfused with 4% paraformaldehyde. Cryoprotected brain slices were prepared for immunohistochemistry using the freeze-thaw technique to preserve PKH26-labelling. Slices were immunostained against neuronal epitopes (NeuN, tyrosine hydroxylase) or glial fibrillary acidic protein. The CSM14.1-cell grafts significantly reduced the apomorphine-induced rotations 12 weeks post-grafting compared to the sham-grafts (P < 0.05). There was an extensive mediolateral migration (400-700 microm) of the PKH26-labelled cells within the host substantia nigra. Colocalization with NeuN or glial fibrillary acidic protein in transplanted cells was confirmed with confocal microscopy. No tyrosine hydroxylase-immunoreactive grafted cells were detectable. The therapeutic effect of the CSM14.1 cells could be explained either by their glial cell-derived neurotrophic factor-expression or their neural differentiation with positive effects on the basal ganglia neuronal networks.
Collapse
|
27
|
Mukhida K, Mendez I, McLeod M, Kobayashi N, Haughn C, Milne B, Baghbaderani B, Sen A, Behie LA, Hong M. Spinal GABAergic Transplants Attenuate Mechanical Allodynia in a Rat Model of Neuropathic Pain. Stem Cells 2007; 25:2874-85. [PMID: 17702982 DOI: 10.1634/stemcells.2007-0326] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Injury to the spinal cord or peripheral nerves can lead to the development of allodynia due to the loss of inhibitory tone involved in spinal sensory function. The potential of intraspinal transplants of GABAergic cells to restore inhibitory tone and thus decrease pain behaviors in a rat model of neuropathic pain was investigated. Allodynia of the left hind paw was induced in rats by unilateral L5- 6 spinal nerve root ligation. Mechanical sensitivity was assessed using von Frey filaments. Postinjury, transgenic fetal green fluorescent protein mouse GABAergic cells or human neural precursor cells (HNPCs) expanded in suspension bioreactors and differentiated into a GABAergic phenotype were transplanted into the spinal cord. Control rats received undifferentiated HNPCs or cell suspension medium only. Animals that received either fetal mouse GABAergic cell or differentiated GABAergic HNPC intraspinal transplants demonstrated a significant increase in paw withdrawal thresholds at 1 week post-transplantation that was sustained for 6 weeks. Transplanted fetal mouse GABAergic cells demonstrated immunoreactivity for glutamic acid decarboxylase and GABA that colocalized with green fluorescent protein. Intraspinally transplanted differentiated GABAergic HNPCs demonstrated immunoreactivity for GABA and beta-III tubulin. In contrast, intraspinal transplantation of undifferentiated HNPCs, which predominantly differentiated into astrocytes, or cell suspension medium did not affect any behavioral recovery. Intraspinally transplanted GABAergic cells can reduce allodynia in a rat model of neuropathic pain. In addition, HNPCs expanded in a standardized fashion in suspension bioreactors and differentiated into a GABAergic phenotype may be an alternative to fetal cells for cell-based therapies to treat chronic pain syndromes.
Collapse
Affiliation(s)
- Karim Mukhida
- Cell Restoration Laboratory, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Anderson L, Caldwell MA. Human neural progenitor cell transplants into the subthalamic nucleus lead to functional recovery in a rat model of Parkinson's disease. Neurobiol Dis 2007; 27:133-40. [PMID: 17587588 DOI: 10.1016/j.nbd.2007.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/21/2007] [Accepted: 03/27/2007] [Indexed: 01/03/2023] Open
Abstract
Despite the success of foetal nigral transplantation for the treatment of Parkinson's disease, supply limitations of tissue means that alternative sources must be found. Transplantation of human neural progenitor cells (HNPCs) may offer a solution, however few studies have shown functional recovery in animal models of PD without cell modification. Here we show that unmodified HNPC grafted into the subthalamic nucleus (STN) show excellent survival of up to 5 months and induce significant functional recovery following amphetamine-induced rotations within 4 weeks. For the first time we also show that HNPCs, which remain in an immature nestin-positive state, produce VEGF in vivo allowing further modification of the host brain. This suggests that even in the absence of cell replacement strategies utilising immature progenitor cells could be of real therapeutic value.
Collapse
Affiliation(s)
- Lucy Anderson
- Centre for Brain Repair and Department of Clinical Neurosciences, University Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK
| | | |
Collapse
|
29
|
Feng Y, Zengmin T, Shuang L, Quanjun Z, Yaming W, Qiuxing H. Local effects of dexamethasone on immune reaction in neural transplantation. Transpl Immunol 2007; 18:126-9. [PMID: 18005856 DOI: 10.1016/j.trim.2007.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Accepted: 05/22/2007] [Indexed: 11/28/2022]
Abstract
This study was performed to see whether local injection of dexamethasone may protect the neural grafts from immunological rejection and increase the successive rate of graft. Rats with unilateral 6-hydroxydopamine lesions of the mesostriatal dopamine pathway received fetal ventral mesencephalic (FVM) cells and dexamethasone in two regions of the striatum and showed significant (P<0.001) reduction in rotational asymmetry as compared to the non-immunosuppressed group. A significantly greater number of total TH-ir cells (P<0.001) and fewer number of total GFAP -ir cells (P<0.001) and inflammatory cells were observed in the striatum of animals in immunosuppressed group than those in non-immunosuppressed group. This results indicated that local injection of dexamethasone could not only reduce the immune rejection and increase the survival grafted cell but also avoid the side effects brought by long systemic administer of immunosuppressant.
Collapse
Affiliation(s)
- Yin Feng
- Institute of Neurosurgery, General Hospital of Navy, Beijing, China.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Parkinson's disease (PD) affects more than 1 million people in the United States, which makes it one of the most common age-related neurodegenerative disorders, second only to Alzheimer disease. In light of this significant health problem, this review places emphasis on the exciting prospect of using stem cells as an emerging therapeutic option in this neurologic field. To that goal, the authors first describe the clinical, genetic, and pathologic features of PD and proceed with discussing notions about disease mechanism as well as current medical and surgical treatments before focusing on the advantages, limitations, and feasibility of stem cell therapy.
Collapse
Affiliation(s)
- Amitabh Gupta
- Department of Neurology, John Hopkins Hospital, Pathology 509, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | |
Collapse
|
31
|
Abstract
Human embryonic stem cells (hESCs) may serve as the most enduring source of transplantable cells for Parkinson's disease patients. Accumulating experience in the transplantation of fetal midbrain tissue or cells into Parkinson's disease patients has set the stage for hESC therapy, but has also opened new controversies on the value and appropriate design of cell therapy. hESCs can be directed to differentiate into nigral dopaminergic neurons with high efficiency. The clinical use of hESCs will depend on their growth in controlled conditions, on whether safety can be proven, and on improving the survival of hESC-derived dopaminergic neurons in the host brain.
Collapse
Affiliation(s)
- Tamir Ben-Hur
- Hadassah University Medical Center, Department of Neurology, Ein Kerem, PO Box 12,000, Jerusalem 91120, Israel
| |
Collapse
|
32
|
Goren B, Kahveci N, Eyigor O, Alkan T, Korfali E, Ozluk K. Effects of intranigral vs intrastriatal fetal mesencephalic neural grafts on motor behavior disorders in a rat Parkinson model. ACTA ACUST UNITED AC 2005; 64 Suppl 2:S33-41. [PMID: 16256839 DOI: 10.1016/j.surneu.2005.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND Numerous experimental and clinical studies have shown that intrastriatal fetal mesencephalic grafts grow, survive, and reinnervate host brain tissue, resulting in partial recovery of motor deficits. In addition, pharmacological evidence indicates that these grafts increase dopamine secretion in lesioned brain. However, to date, no grafting method has completely restored the nigrostriatal pathway, and there is no consensus on optimal graft numbers or locations. This study compared outcomes with multiple striatal grafts vs a single intranigral graft in a rat model of Parkinson disease. METHODS Forty-one female Wistar rats weighing 200 to 250 g were used. First, baseline rotational behavior testing with amphetamine injection was done to identify each animal's dominant nigrostriatal pathway (left vs right hemisphere). Some rats then received a unilateral intranigral injection of 6-hydroxydopamine (4 microL [8 microg]) to produce the Parkinson model lesion, and rotational testing was repeated. One group of the lesioned rats received a single intranigral injection of suspended fetal ventral mesencephalic cells (n = 11), and another received multiple intrastriatal grafts of the same type (n = 11). RESULTS Both grafted groups showed significant improvement on rotational testing with amphetamine and apomorphine at 6 weeks "postgrafting" (P < .001 for "postlesioning" vs postgrafting results in each of the 2 groups); however, the animals with multiple intrastriatal grafts showed complete recovery from motor asymmetry, whereas the rats with single intranigral grafts showed only partial improvement. CONCLUSION The findings indicate that multiple intrastriatal grafts result in significantly greater functional improvement than single intranigral grafts in this rat Parkinson model.
Collapse
Affiliation(s)
- Bulent Goren
- Department of Physiology, Uludag University School of Medicine, 16059 Bursa, Turkey
| | | | | | | | | | | |
Collapse
|
33
|
Inden M, Kim DH, Qi M, Kitamura Y, Yanagisawa D, Nishimura K, Tsuchiya D, Takata K, Hayashi K, Taniguchi T, Yoshimoto K, Shimohama S, Sumi S, Inoue K. Transplantation of mouse embryonic stem cell-derived neurons into the striatum, subthalamic nucleus and substantia nigra, and behavioral recovery in hemiparkinsonian rats. Neurosci Lett 2005; 387:151-6. [PMID: 16023291 DOI: 10.1016/j.neulet.2005.06.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 05/13/2005] [Accepted: 06/11/2005] [Indexed: 10/25/2022]
Abstract
Usefulness of the in vitro and in vivo generation of neural precursors from embryonic stem (ES) cells has been widely discussed, but functional recovery in animal models of Parkinson's disease (PD) is not fully understood. The aim of this study was to investigate a transplantation strategy for PD by assessing whether double-transplants in the striatum (ST) and substantia nigra (SN), or ST and subthalamic nucleus (STN) induce functional recovery in 6-hydroxydopamine-lesioned rats. Methamphetamine-induced rotation was significantly reduced by transplantation of mouse ES cell-derived neurons into the ST, but not the STN or SN alone. Double-transplantation was also effective at recovering rotational behavior. Although immunoreactivity for tyrosine hydroxylase (TH) was almost completely lost in the ipsilateral striatum in hemiparkinsonian rats, TH immunoreactivity was detected in transplanted cells and sprouting fibers in the ST, STN and SN. These results suggest that both the involvement of ST as a place of transplantation and the number of ES cell-derived neurons are essential factors for efficacy on hemiparkinsonian behaviors.
Collapse
Affiliation(s)
- Masatoshi Inden
- Department of Neurobiology, 21st Century COE Program, Kyoto Pharmaceutical University, Misasagi Yamashina-ku, Kyoto 607-8414, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bartlett LE, Mendez I. Dopaminergic reinnervation of the globus pallidus by fetal nigral grafts in the rodent model of Parkinson's disease. Cell Transplant 2005; 14:119-27. [PMID: 15881421 DOI: 10.3727/000000005783983241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The current neural transplantation strategy for Parkinson's disease (PD) involves the dopaminergic reinnervation of the striatum (STR). Although up to 85% reinnervation of the STR has been attained by neural transplantation, functional recovery in animal models and transplanted patients is incomplete. This limitation may be due to an incomplete restoration of the dopaminergic input to other basal ganglia structures such as the external segment of the globus pallidus (GPe, homologue of the rodent GP), which normally receives dopaminergic input from the substantia nigra (SN). As part of our investigation into a multiple grafting strategy for PD, we have explored the effects of dopaminergic grafts in the GP of rodents with unilateral 6-hydroxydopamine (6-OHDA) lesions. In this experiment, lesioned rats received either 300,000 fetal ventral mesencephalic (FVM) cells or a sham injection into the GP. Functional assessment consisted of rotational behavior at 3 and 6 weeks posttransplantation. A fluorogold tracer study was conducted to rule out any behavioral improvement due to striatal outgrowth of the GP graft. Sections were stained for glial fibrillary acidic protein (GFAP) to assess the degree of trauma in the GP by the graft in comparison to the sham injection. Immunohistochemistry for tyrosine hydroxylase (TH) was performed after transplantation to assess graft survival. Animals with GP grafts demonstrated a significant improvement in rotational behavior at 3 and 6 weeks posttransplantation (p < 0.05) while sham control animals did not improve. All animals receiving FVM cells showed TH-immunoreactive grafts in the GP posttransplantation. TH-positive neurons in the GP showed no double labeling with an intrastriatal injection of fluorogold, indicating that behavioral improvement was not due to striatal innervation by the GP graft. These observations suggest that functional recovery was the result of dopaminergic reinnervation of the GP and that this nucleus may be a potential target for neural transplantation in clinical PD.
Collapse
Affiliation(s)
- L E Bartlett
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, B3H 4H7, Canada
| | | |
Collapse
|
35
|
Baker KA, Mendez I. Long distance selective fiber outgrowth of transplanted hNT neurons in white matter tracts of the adult rat brain. J Comp Neurol 2005; 486:318-30. [PMID: 15846787 DOI: 10.1002/cne.20477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Terminally differentiated neurons derived from a human teratocarcinoma cell line (NT2N or hNT neurons) are promising as a cell source for transplantation, as they have been shown to be safe for transplantation in humans. We have shown previously that hNT neurons can express a catecholaminergic phenotype in a rat Parkinson model. In this study, we investigated the long-term survival and ability of hNT neurons to express tyrosine hydroxylase and reconstruct the dopamine-denervated nigrostriatal pathway. Hemiparkinsonian rats received grafts of 400,000 viable hNT neurons into each of the denervated striatum and substantia nigra. Robust hNT grafts were detected up to 24 weeks posttransplantation, although few cells expressed tyrosine hydroxylase. Many hNT fibers were often associated with ipsilateral and contralateral white matter tracts--corpus callosum, rostral migratory stream, optic tract, and external capsule. Fewer fibers were associated with the superior cerebellar peduncle, medial lemniscus, and nigrostriatal pathway. Axons also projected into the frontal cortex and extended parallel to the surface of the brain in the superficial cortical layers. These pathways were seen in all grafted animals, suggesting that specific guidance cues exist in the adult brain governing hNT fiber outgrowth. Injured adult axons and transplanted embryonic neuronal axons rarely extend for such distances in the adult nervous system. We propose that elucidating the factors promoting and guiding hNT axonal outgrowth could provide important clues to enhancing regeneration and target reinnervation in the adult brain, two factors of critical importance for cell restoration strategies aimed at brain repair.
Collapse
Affiliation(s)
- K Adam Baker
- Neural Transplantation Laboratory, Department of Anatomy, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
36
|
Mehta A, Chesselet MF. Effect of GABA(A) receptor stimulation in the subthalamic nucleus on motor deficits induced by nigrostriatal lesions in the rat. Exp Neurol 2005; 193:110-7. [PMID: 15817269 DOI: 10.1016/j.expneurol.2005.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2004] [Revised: 12/23/2004] [Accepted: 01/04/2005] [Indexed: 11/23/2022]
Abstract
Inhibition of the subthalamic nucleus by lesions or GABAergic agonists improves motor symptoms in monkeys or humans with a loss of nigrostriatal dopaminergic neurons, a characteristic of Parkinson's disease. In rats, nigrostriatal lesions induce deficits in a variety of motor tests that are ameliorated by dopaminergic agonists. However, the validity of these tests to predict the beneficial effects of subthalamic inhibition is not known. We have examined the effects of an intrasubthalamic injection of the GABA(A) receptor agonist muscimol (0.1 microg/0.1 microL) in intact rats and in rats with a unilateral nigrostriatal lesion. Muscimol induced a mild ipsiversive rotation in sham-operated (control) rats and blocked contraversive rotations induced by apomorphine in lesioned rats. In addition, in the cylinder test of limb use asymmetry, muscimol decreased the ipsilateral bias after lesion without inducing any significant effect in sham-operated controls. In the forced-step test, however, 0.1 microg (but not 0.01 microg) of muscimol into the subthalamic nucleus induced a behavioral bias by markedly decreasing the number of adjusting steps of the contralateral limb in control rats, similar to the effect of a nigrostriatal lesion. Neither dose improved performance in this test in rats with lesions, and the higher dose exacerbated the deficit. The data support a beneficial role of stimulating subthalamic GABA(A) receptors for akinesia but also reveal negative behavioral effects of this treatment and suggest that the cylinder and forced-step tests measure different aspects of behavioral deficits after dopaminergic lesions.
Collapse
Affiliation(s)
- Arpesh Mehta
- Department of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, B114, Reed Neurological Research Center, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | | |
Collapse
|
37
|
Poulton NP, Muir GD. Treadmill training ameliorates dopamine loss but not behavioral deficits in hemi-parkinsonian rats. Exp Neurol 2005; 193:181-97. [PMID: 15817277 DOI: 10.1016/j.expneurol.2004.12.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/19/2004] [Accepted: 12/06/2004] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to investigate whether locomotor training could ameliorate neurochemical changes and behavioral deficits in the 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease. It has been recently demonstrated that forelimb motor training, or brief treadmill training, can attenuate dopamine loss and some deficits in forelimb usage in this animal model. Nevertheless, it is not known whether locomotor training could result in an amelioration of locomotor deficits. Rats were lesioned with 6-OHDA injected intracerebrally and randomly assigned to one of 3 groups: early treadmill trained, late treadmill trained and untrained. Animals in the early trained group underwent 2 x 20 min treadmill sessions daily for 30 days, beginning 24 h after 6-OHDA injection. Late trained animals underwent the same training regime beginning 7 days post-injection. All animals were assessed on their abilities to perform several behavioral tasks designed to test locomotor and forelimb movement abilities prior to 6-OHDA injection and at 3 and 6 weeks post-injection. Treadmill training resulted in the attenuation of dopamine depletion in the striatum compared to non-treadmill trained animals, as measured by in vivo apomorphine-induced rotations and post-mortem dopamine analysis. Nevertheless, treadmill training produced essentially no difference in behavioral deficits on most tests compared to untrained animals. We discuss the possible reasons for the discrepancies with previous studies, including differences in lesioning, training regimes and methods of behavioral assessment. We conclude that treadmill training does not ameliorate locomotor deficits in the 6-OHDA model of Parkinson's disease, even though this same training results in attenuation of dopamine loss in the striatum.
Collapse
Affiliation(s)
- Nadine P Poulton
- Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada S7N 5B4
| | | |
Collapse
|
38
|
Mendez I, Sanchez-Pernaute R, Cooper O, Viñuela A, Ferrari D, Björklund L, Dagher A, Isacson O. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson's disease. ACTA ACUST UNITED AC 2005; 128:1498-510. [PMID: 15872020 PMCID: PMC2610438 DOI: 10.1093/brain/awh510] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the first post-mortem analysis of two patients with Parkinson's disease who received fetal midbrain transplants as a cell suspension in the striatum, and in one case also in the substantia nigra. These patients had a favourable clinical evolution and positive 18F-fluorodopa PET scans and did not develop motor complications. The surviving transplanted dopamine neurons were positively identified with phenotypic markers of normal control human substantia nigra (n = 3), such as tyrosine hydroxylase, G-protein-coupled inward rectifying current potassium channel type 2 (Girk2) and calbindin. The grafts restored the cell type that provides specific dopaminergic innervation to the most affected striatal regions in the parkinsonian brain. Such transplants were able to densely reinnervate the host putamen with new dopamine fibres. The patients received only 6 months of standard immune suppression, yet by post-mortem analysis 3-4 years after surgery the transplants appeared only mildly immunogenic to the host brain, by analysis of microglial CD45 and CD68 markers. This study demonstrates that, using these methods, dopamine neuronal replacement cell therapy can be beneficial for patients with advanced disease, and that changing technical approaches could have a favourable impact on efficacy and adverse events following neural transplantation.
Collapse
Affiliation(s)
- Ivar Mendez
- Dalhousie University and Queen Elizabeth II Health Science Center, Division of Neurosurgery and Neuroscience, Halifax
| | - Rosario Sanchez-Pernaute
- Harvard University and McLean Hospital, NINDS Udall Parkinson’s Disease Research Center of Excellence, Belmont, MA, USA
| | - Oliver Cooper
- Harvard University and McLean Hospital, NINDS Udall Parkinson’s Disease Research Center of Excellence, Belmont, MA, USA
| | - Angel Viñuela
- Harvard University and McLean Hospital, NINDS Udall Parkinson’s Disease Research Center of Excellence, Belmont, MA, USA
| | - Daniela Ferrari
- Harvard University and McLean Hospital, NINDS Udall Parkinson’s Disease Research Center of Excellence, Belmont, MA, USA
| | - Lars Björklund
- Harvard University and McLean Hospital, NINDS Udall Parkinson’s Disease Research Center of Excellence, Belmont, MA, USA
| | - Alain Dagher
- McGill University and Montreal Neurological Institute, McConnel Brain Imaging Centre, Montreal, Canada
| | - Ole Isacson
- Harvard University and McLean Hospital, NINDS Udall Parkinson’s Disease Research Center of Excellence, Belmont, MA, USA
| |
Collapse
|
39
|
Mena-Segovia J, Favila R, Giordano M. Long-term effects of striatal lesions on c-Fos immunoreactivity in the pedunculopontine nucleus. Eur J Neurosci 2004; 20:2367-76. [PMID: 15525278 DOI: 10.1111/j.1460-9568.2004.03696.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The basal ganglia are a group of subcortical nuclei classically thought to be involved in the control of movement, and they have reciprocal connections with the cortex, thalamus and structures in the brainstem. Recent findings suggest that the basal ganglia interact with structures involved in the control of the sleep-waking cycle. The pedunculopontine tegmental nucleus (PPN) maintains a close relationship with the basal ganglia and is intimately involved in the regulation of wakefulness and REM sleep. This study evaluated changes in activity of PPN neurons following striatal kainic acid-induced lesions. Rats were injected in the anterodorsal striatum with either kainic acid or vehicle and allowed to recover for 7 or 30 days. The results showed an increase in the number of c-Fos+ cells in the PPN 30 days but not 7 days after the striatal lesion, when motor hyperactivity was no longer detected. In addition, we found a significant correlation between the ventricular brain ratio, as an indicator of lesion size, and the number of c-Fos+ cells in the PPN. Furthermore, the spatial distribution of cell types suggested that most c-Fos+ cells in the PPN were not cholinergic. These results provide new insights into the functional relationship between the basal ganglia and the PPN and suggest that the striatum, through its indirect influence on the PPN, may contribute to the regulation of wakefulness and cortical activation.
Collapse
Affiliation(s)
- Juan Mena-Segovia
- Department of Behavioural and Cognitive Neurobiology, Institute for Neurobiology, UNAM, Campus Juriquilla,Querétaro, Qro. 76230, Mexico
| | | | | |
Collapse
|
40
|
Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 2004; 10 Suppl:S42-50. [PMID: 15272269 DOI: 10.1038/nm1064] [Citation(s) in RCA: 676] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 03/30/2004] [Indexed: 02/08/2023]
Abstract
Recent progress shows that neurons suitable for transplantation can be generated from stem cells in culture, and that the adult brain produces new neurons from its own stem cells in response to injury. These findings raise hope for the development of stem cell therapies in human neurodegenerative disorders. Before clinical trials are initiated, we need to know much more about how to control stem cell proliferation and differentiation into specific phenotypes, induce their integration into existing neural and synaptic circuits, and optimize functional recovery in animal models closely resembling the human disease.
Collapse
Affiliation(s)
- Olle Lindvall
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Department of Clinical Neuroscience, Wallenberg Neuroscience Center, University Hospital, SE-221 84 Lund, Sweden.
| | | | | |
Collapse
|
41
|
Nakagawa M, Ohgoh M, Nishizawa Y, Ogura H. Dopaminergic agonists and muscarinic antagonists improve lateralization in hemiparkinsonian rats in a novel exploratory Y-maze. J Pharmacol Exp Ther 2004; 309:737-44. [PMID: 14755005 DOI: 10.1124/jpet.103.059519] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the degeneration of nigrostriatal dopaminergic neurons. Its primary clinical symptoms are akinesia, tremor, and rigidity, which usually start from one side, resembling the lateralization in hemiparkinsonian rats having 6-hydroxydopamine-induced unilateral lesion of the medial forebrain bundle. A novel exploratory Y-maze was designed to detect the lateralization of hemiparkinsonian rats in terms of biased turns in the maze. Dopamine agonists levodopa (L-3,4-dihydroxyphenylalanine, 10-30 mg/kg) and apomorphine (0.1-0.3 mg/kg), but not methamphetamine (0.5-2 mg/kg), improved the lateralization in the rat model. However, high doses of the dopamine agonists, 30 and 0.3 mg/kg, respectively, caused small movements in the arms that seemed to parallel the increase in counts per turn in the Y-maze. Interestingly, the muscarinic antagonists trihexyphenidyl and scopolamine improved lateralization moderately, while increasing total turns, an index of locomotive activity. (-)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) (0.3 mg/kg), an N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, increased total counts, but did not alleviate the lateralization. The alpha2-adrenoceptor antagonist idazoxan (1 and 10 mg/kg) and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (1 and 3 mg/kg), a non-NMDA glutamate receptor antagonist, did not affect any of the indices. These findings suggest that the clinical action of drugs on unbalanced movement in PD could be predicted by measuring their effects on lateralization of the 6-hydroxydopamine-lesioned rat model in this exploratory Y-maze.
Collapse
Affiliation(s)
- Makoto Nakagawa
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan.
| | | | | | | |
Collapse
|
42
|
Burnstein RM, Foltynie T, He X, Menon DK, Svendsen CN, Caldwell MA. Differentiation and migration of long term expanded human neural progenitors in a partial lesion model of Parkinson’s disease. Int J Biochem Cell Biol 2004; 36:702-13. [PMID: 15010333 DOI: 10.1016/j.biocel.2003.11.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 10/27/2003] [Accepted: 11/03/2003] [Indexed: 10/26/2022]
Abstract
Human neural progenitor cells (HNPCs) can be expanded in large numbers for significant periods of time to provide a reliable source of neural cells for transplantation in neurodegenerative disorders such as Parkinson's disease (PD). In the present study, HNPCs isolated from embryonic cortex were expanded as neurospheres in cell culture for 10 months. Just prior to transplantation, a proportion of the HNPCs were treated in a "predifferentiation" protocol in combination with the neurotropic factor NT4, in order to yield significant numbers of neurons. For transplantation, either undifferentiated HNPCs, or predifferentiated HNPCs were transplanted into the substantia nigra of a rat model of Parkinson's disease. At 12 weeks, there was good survival with proliferation of transplanted HNPCs occurring after transplantation but ceasing before the animals were sacrificed. Transplants of predifferentiated cells contained a higher proportion of neurons. The presence of a lesion in the striatum had a significant influence on the migration of transplanted cells from the substantia nigra into the striatum. There was no significant behavioural recovery or effect of transplanted HNPCs on the loss of dopaminergic cells from the host brain. In conclusion, HNPCs may provide a source of cells for use in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Rowan M Burnstein
- Cambridge Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 2PY, UK
| | | | | | | | | | | |
Collapse
|
43
|
Mena-Segovia J, Giordano M. Striatal dopaminergic stimulation produces c-Fos expression in the PPT and an increase in wakefulness. Brain Res 2003; 986:30-8. [PMID: 12965227 DOI: 10.1016/s0006-8993(03)03167-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Striatal activation can modify activity in cortical areas related to specific striatal functions possibly through a process of disinhibition within the basal ganglia. Anatomical studies have shown substantial GABAergic innervation from these nuclei to the pedunculopontine tegmental nucleus (PPT). Thus, dopaminergic stimulation of the striatum could produce PPT disinhibition and result in non-specific cortical activation. To test this hypothesis, d-amphetamine was infused both into the striatum of freely moving rats for motor and electrocorticographic recordings, and into the striatum of animals under deep anesthesia for c-Fos immunohistochemistry. The results show that intrastriatal amphetamine increases wakefulness independent of motor activity, and it increases c-Fos expression in the PPT and adjacent areas. They also suggest that the striatum participates in non-specific cortical activation probably as a result of its relationship with the PPT.
Collapse
Affiliation(s)
- Juan Mena-Segovia
- Department of Behavioral and Cognitive Neurobiology, Instituto de Neurobiología, Campus UNAM Juriquilla, 76230, Querétaro, QRO 76230, Mexico.
| | | |
Collapse
|
44
|
Winkler C, Bentlage C, Cenci MA, Nikkhah G, Björklund A. Regulation of neuropeptide mRNA expression in the basal ganglia by intrastriatal and intranigral transplants in the rat Parkinson model. Neuroscience 2003; 118:1063-77. [PMID: 12732251 DOI: 10.1016/s0306-4522(03)00007-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that intrastriatal transplants of dopamine (DA)-rich fetal ventral mesencephalic (VM) tissue can correct denervation-induced changes in the cellular expression of neuropeptide and receptor mRNAs in the rat Parkinson model. However, with the standard transplantation approach normalization of all cellular parameters has not been obtained. This may be due either to the incomplete striatal reinnervation achieved by these transplants, or to the ectopic placement of the grafts. In the present study we have used a microtransplantation approach to obtain a more complete reinnervation of the denervated striatum (20 micrograft deposits spread over the entire structure). Neurons were also implanted directly into the substantia nigra. In rats with multiple intrastriatal VM transplants the lesion-induced upregulation of mRNAs encoding for preproenkephalin (PPE), the D(2)-type DA-receptor, and the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD(67)) was normalized throughout the striatum, whereas the lesion-induced downregulation of preprotachykinin mRNA was unaffected. Intranigral grafts of either fetal DA-rich VM tissue or GABA-rich striatal tissue did not induce any changes in striatal neuropeptide and D(2)-receptor mRNA expression despite significant behavioral improvement. Comparison of the behavioral data with levels of neuropeptide expression showed that in rats with intrastriatal VM transplants a complete normalization of striatal PPE and GAD(67) mRNA expression did not translate into a complete recovery of spontaneous motor behaviors. The results show that extensive DA reinnervation of the host striatum by multiple VM microtransplants is insufficient to obtain full recovery of all lesion-induced changes at both the cellular and the behavioral level. A full reconstruction of the nigrostriatal pathway or, alternatively, modulation of basal ganglia function by grafting in non-striatal regions may be required to further improve the functional outcome in the DA-denervated brain.
Collapse
Affiliation(s)
- C Winkler
- Lund University, Wallenberg Neuroscience Center, Department of Physiological Sciences, BMC A11, S-22184. , Sweden
| | | | | | | | | |
Collapse
|
45
|
Linazasoro G. Grafts in parkinsonism. J Neurosurg 2002; 97:1250-1; author reply 1251. [PMID: 12450056 DOI: 10.3171/jns.2002.97.5.1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
|