1
|
Nakashima A, Takeuchi H. Roles of odorant receptors during olfactory glomerular map formation. Genesis 2024; 62:e23610. [PMID: 38874301 DOI: 10.1002/dvg.23610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
The organization of the olfactory glomerular map involves the convergence of olfactory sensory neurons (OSNs) expressing the same odorant receptor (OR) into glomeruli in the olfactory bulb (OB). A remarkable feature of the olfactory glomerular map formation is that the identity of OR instructs the topography of the bulb, resulting in thousands of discrete glomeruli in mice. Several lines of evidence indicate that ORs control the expression levels of various kinds of transmembrane proteins to form glomeruli at appropriate regions of the OB. In this review, we will discuss how the OR identity is decoded by OSNs into gene expression through intracellular regulatory mechanisms.
Collapse
Affiliation(s)
- Ai Nakashima
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Haruki Takeuchi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Raja R, Dumontier E, Phen A, Cloutier JF. Insertion of a neomycin selection cassette in the Amigo1 locus alters gene expression in the olfactory epithelium leading to region-specific defects in olfactory receptor neuron development. Genesis 2024; 62:e23594. [PMID: 38590146 DOI: 10.1002/dvg.23594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
During development of the nervous system, neurons connect to one another in a precisely organized manner. Sensory systems provide a good example of this organization, whereby the composition of the outside world is represented in the brain by neuronal maps. Establishing correct patterns of neural circuitry is crucial, as inaccurate map formation can lead to severe disruptions in sensory processing. In rodents, olfactory stimuli modulate a wide variety of behaviors essential for survival. The formation of the olfactory glomerular map is dependent on molecular cues that guide olfactory receptor neuron axons to broad regions of the olfactory bulb and on cell adhesion molecules that promote axonal sorting into specific synaptic units in this structure. Here, we demonstrate that the cell adhesion molecule Amigo1 is expressed in a subpopulation of olfactory receptor neurons, and we investigate its role in the precise targeting of olfactory receptor neuron axons to the olfactory bulb using a genetic loss-of-function approach in mice. While ablation of Amigo1 did not lead to alterations in olfactory sensory neuron axonal targeting, our experiments revealed that the presence of a neomycin resistance selection cassette in the Amigo1 locus can lead to off-target effects that are not due to loss of Amigo1 expression, including unexpected altered gene expression in olfactory receptor neurons and reduced glomerular size in the ventral region of the olfactory bulb. Our results demonstrate that insertion of a neomycin selection cassette into the mouse genome can have specific deleterious effects on the development of the olfactory system and highlight the importance of removing antibiotic resistance cassettes from genetic loss-of-function mouse models when studying olfactory system development.
Collapse
Affiliation(s)
- Reesha Raja
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Emilie Dumontier
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
| | - Alina Phen
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
| | - Jean-François Cloutier
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
3
|
Fang A, Yu CR. Activity-dependent formation of the topographic map and the critical period in the development of mammalian olfactory system. Genesis 2024; 62:e23586. [PMID: 38593162 PMCID: PMC11003738 DOI: 10.1002/dvg.23586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 04/11/2024]
Abstract
Neural activity influences every aspect of nervous system development. In olfactory systems, sensory neurons expressing the same odorant receptor project their axons to stereotypically positioned glomeruli, forming a spatial map of odorant receptors in the olfactory bulb. As individual odors activate unique combinations of glomeruli, this map forms the basis for encoding olfactory information. The establishment of this stereotypical olfactory map requires coordinated regulation of axon guidance molecules instructed by spontaneous activity. Recent studies show that sensory experiences also modify innervation patterns in the olfactory bulb, especially during a critical period of the olfactory system development. This review examines evidence in the field to suggest potential mechanisms by which various aspects of neural activity regulate axon targeting. We also discuss the precise functions served by neural plasticity during the critical period.
Collapse
Affiliation(s)
- Ai Fang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - C. Ron Yu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Kim BR, Rha MS, Cho HJ, Yoon JH, Kim CH. Spatiotemporal dynamics of the development of mouse olfactory system from prenatal to postnatal period. Front Neuroanat 2023; 17:1157224. [PMID: 37113675 PMCID: PMC10126376 DOI: 10.3389/fnana.2023.1157224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction The olfactory epithelium (OE) and olfactory bulb (OB) are the major components of the olfactory system and play critical roles in olfactory perception. However, the embryonic development of OE and OB by using the olfactory specific genes has not been comprehensively investigated yet. Most previous studies were limited to a specific embryonic stage, and very little is known, till date, about the development of OE. Methods The current study aimed to explore the development of mouse olfactory system by spatiotemporal analysis of the histological features by using the olfactory specific genes of olfactory system from the prenatal to postnatal period. Results We found that OE is divided into endo-turbinate, ecto-turbinate, and vomeronasal organs, and that putative OB with putative main and accessory OB is formed in the early developmental stage. The OE and OB became multilayered in the later developmental stages, accompanied by the differentiation of olfactory neurons. Remarkably, we found the development of layers of olfactory cilia and differentiation of OE to progress dramatically after birth, suggesting that the exposure to air may facilitate the final development of OE. Discussion Overall, the present study laid the groundwork for a better understanding of the spatial and temporal developmental events of the olfactory system.
Collapse
Affiliation(s)
- Bo-Ra Kim
- Department of Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Korea Mouse Sensory Phenotyping Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Korea Mouse Sensory Phenotyping Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Global Research Laboratory for Allergic Airway Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Korea Mouse Sensory Phenotyping Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Global Research Laboratory for Allergic Airway Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
- Taste Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- *Correspondence: Chang-Hoon Kim,
| |
Collapse
|
5
|
Dang P, Barnes DT, Cheng RP, Xu A, Moon YJ, Kodukula SS, Raper JA. Netrins and Netrin Receptors are Essential for Normal Targeting of Sensory Axons in the Zebrafish Olfactory Bulb. Neuroscience 2023; 508:19-29. [PMID: 35940453 PMCID: PMC9839495 DOI: 10.1016/j.neuroscience.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/17/2023]
Abstract
Olfactory sensory neurons that express related odorant receptors specifically target large identifiable neuropils called protoglomeruli when they first reach the olfactory bulb in the zebrafish. This crude odorant receptor-related mapping is further refined as odorant receptor-specific glomeruli segregate from protoglomeruli later in development. Netrins are a prominent class of axon guidance molecules whose contribution to olfactory circuit formation is poorly studied. Morpholino knock down experiments have suggested that Netrin/Dcc signaling is involved in normal protoglomerular targeting. Here we extend these findings with more detailed characterization and modeling of netrin expression, and by examining protoglomerular targeting in mutant lines fornetrin1a (ntn1a), netrin1b (ntn1b), and their receptorsunc5b,dcc, andneo1a. We confirm thatntn1a,ntn1b, anddccare required for normal protoglomerular guidance of a subset of olfactory sensory neurons that are labeled with the Tg(or111-7:IRES:Gal4) transgene. We also observe errors in the targeting of these axons inunc5bmutants, but not inneo1a mutants. Our findings are consistent with ntn1a andntn1bacting primarily as attractants for olfactory sensory neurons targeting the central zone protoglomerulus.
Collapse
Affiliation(s)
- Puneet Dang
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel T Barnes
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan P Cheng
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Alison Xu
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Yoon Ji Moon
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Sai Sripad Kodukula
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Razmara P, Pyle GG. Impact of Copper Nanoparticles and Copper Ions on Transcripts Involved in Neural Repair Mechanisms in Rainbow Trout Olfactory Mucosa. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:18-31. [PMID: 36525054 DOI: 10.1007/s00244-022-00969-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Olfactory mucosa is well known for its lifelong ability for regeneration. Regeneration of neurons and regrowth of severed axons are the most common neural repair mechanisms in olfactory mucosa. Nonetheless, exposure to neurotoxic contaminants, such as copper nanoparticles (CuNPs) and copper ions (Cu2+), may alter the reparative capacity of olfactory mucosa. Here, using RNA-sequencing, we investigated the molecular basis of neural repair mechanisms that were affected by CuNPs and Cu2+ in rainbow trout olfactory mucosa. The transcript profile of olfactory mucosa suggested that regeneration of neurons was inhibited by CuNPs. Exposure to CuNPs reduced the transcript abundances of pro-inflammatory proteins which are required to initiate neuroregeneration. Moreover, the transcript of genes encoding regeneration promoters, including canonical Wnt/β-catenin signaling proteins and developmental transcription factors, were downregulated in the CuNP-treated fish. The mRNA levels of genes regulating axonal regrowth, including the growth-promoting signals secreted from olfactory ensheathing cells, were mainly increased in the CuNP treatment. However, the reduced transcript abundances of a few cell adhesion molecules and neural polarity genes may restrict axonogenesis in the CuNP-exposed olfactory mucosa. In the Cu2+-treated olfactory mucosa, both neural repair strategies were initiated at the transcript level. The stimulation of repair mechanisms can lead to the recovery of Cu2+-induced olfactory dysfunction. These results indicated CuNPs and Cu2+ differentially affected the neural repair mechanism in olfactory mucosa. Exposure to CuNP had greater effects on the expression of genes involved in olfactory repair mechanisms relative to Cu2+ and dysregulated the transcripts associated with stem cell proliferation and neural reconstitution.
Collapse
Affiliation(s)
- Parastoo Razmara
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
7
|
Dorrego-Rivas A, Grubb MS. Developing and maintaining a nose-to-brain map of odorant identity. Open Biol 2022; 12:220053. [PMID: 35765817 PMCID: PMC9240688 DOI: 10.1098/rsob.220053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the olfactory epithelium of the nose transduce chemical odorant stimuli into electrical signals. These signals are then sent to the OSNs' target structure in the brain, the main olfactory bulb (OB), which performs the initial stages of sensory processing in olfaction. The projection of OSNs to the OB is highly organized in a chemospatial map, whereby axon terminals from OSNs expressing the same odorant receptor (OR) coalesce into individual spherical structures known as glomeruli. This nose-to-brain map of odorant identity is built from late embryonic development to early postnatal life, through a complex combination of genetically encoded, OR-dependent and activity-dependent mechanisms. It must then be actively maintained throughout adulthood as OSNs experience turnover due to external insult and ongoing neurogenesis. Our review describes and discusses these two distinct and crucial processes in olfaction, focusing on the known mechanisms that first establish and then maintain chemospatial order in the mammalian OSN-to-OB projection.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S. Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
8
|
Wang IH, Murray E, Andrews G, Jiang HC, Park SJ, Donnard E, Durán-Laforet V, Bear DM, Faust TE, Garber M, Baer CE, Schafer DP, Weng Z, Chen F, Macosko EZ, Greer PL. Spatial transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles of odor processing. Nat Neurosci 2022; 25:484-492. [PMID: 35314823 PMCID: PMC9281876 DOI: 10.1038/s41593-022-01030-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
The olfactory system's ability to detect and discriminate between the vast array of chemicals present in the environment is critical for an animal's survival. In mammals, the first step of this odor processing is executed by olfactory sensory neurons, which project their axons to a stereotyped location in the olfactory bulb (OB) to form glomeruli. The stereotyped positioning of glomeruli in the OB suggests an importance for this organization in odor perception. However, because the location of only a limited subset of glomeruli has been determined, it has been challenging to determine the relationship between glomerular location and odor discrimination. Using a combination of single-cell RNA sequencing, spatial transcriptomics and machine learning, we have generated a map of most glomerular positions in the mouse OB. These observations significantly extend earlier studies and suggest an overall organizational principle in the OB that may be used by the brain to assist in odor decoding.
Collapse
Affiliation(s)
- I-Hao Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Greg Andrews
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hao-Ching Jiang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sung Jin Park
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Elisa Donnard
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Violeta Durán-Laforet
- Department of Neurobiology and Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Daniel M Bear
- Department of Psychology, Stanford University, Palo Alto, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Palo Alto, CA, USA
| | - Travis E Faust
- Department of Neurobiology and Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Manuel Garber
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christina E Baer
- Sanderson Center for Optical Imaging and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dorothy P Schafer
- Department of Neurobiology and Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Paul L Greer
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Ruiz Tejada Segura ML, Abou Moussa E, Garabello E, Nakahara TS, Makhlouf M, Mathew LS, Wang L, Valle F, Huang SSY, Mainland JD, Caselle M, Osella M, Lorenz S, Reisert J, Logan DW, Malnic B, Scialdone A, Saraiva LR. A 3D transcriptomics atlas of the mouse nose sheds light on the anatomical logic of smell. Cell Rep 2022; 38:110547. [PMID: 35320714 PMCID: PMC8995392 DOI: 10.1016/j.celrep.2022.110547] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
The sense of smell helps us navigate the environment, but its molecular architecture and underlying logic remain understudied. The spatial location of odorant receptor genes (Olfrs) in the nose is thought to be independent of the structural diversity of the odorants they detect. Using spatial transcriptomics, we create a genome-wide 3D atlas of the mouse olfactory mucosa (OM). Topographic maps of genes differentially expressed in space reveal that both Olfrs and non-Olfrs are distributed in a continuous and overlapping fashion over at least five broad zones in the OM. The spatial locations of Olfrs correlate with the mucus solubility of the odorants they recognize, providing direct evidence for the chromatographic theory of olfaction. This resource resolves the molecular architecture of the mouse OM and will inform future studies on mechanisms underlying Olfr gene choice, axonal pathfinding, patterning of the nervous system, and basic logic for the peripheral representation of smell.
Collapse
Affiliation(s)
- Mayra L Ruiz Tejada Segura
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | | | - Elisa Garabello
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy; Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Thiago S Nakahara
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Li Wang
- Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Filippo Valle
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | | | - Joel D Mainland
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michele Caselle
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | - Matteo Osella
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | - Stephan Lorenz
- Sidra Medicine, P.O. Box 26999, Doha, Qatar; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Johannes Reisert
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Darren W Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Luis R Saraiva
- Sidra Medicine, P.O. Box 26999, Doha, Qatar; Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
10
|
Wang Y, Zhao S, Peng W, Chen Y, Chi J, Che K, Wang Y. The Role of Slit-2 in Gestational Diabetes Mellitus and Its Effect on Pregnancy Outcome. Front Endocrinol (Lausanne) 2022; 13:889505. [PMID: 35813663 PMCID: PMC9261261 DOI: 10.3389/fendo.2022.889505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Slit guidance ligand 2 (Slit-2), as a member of the Slit family, can regulate the inflammatory response and glucose metabolism. The purpose of this study was to explore the expression of Slit-2 in maternal peripheral blood and neonatal cord blood of gestational diabetes mellitus (GDM) patients and its potential importance in disease progression. METHODS This study included 57 healthy pregnant women and 61 GDM patients. The levels of Slit-2, C-reactive protein (CRP), monocyte chemoattractant protein-1 (MCP-1), C-peptide (C-P), galectin-3(Gal-3), HbA1c, fasting blood glucose (FBG) and fasting insulin (FINS) in maternal peripheral blood and neonatal cord blood were detected by ELISA. Spearman's rank correlation test was used to assess the association between peripheral Slit-2 and inflammatory indicators, insulin resistance, and pregnancy outcomes. Logistic regression analysis was used to analyze the risk factors of GDM. RESULTS Slit-2 levels in maternal peripheral blood and neonatal cord blood of the GDM patients were higher than those of the HC. Slit-2 levels in maternal peripheral blood and neonatal cord blood of the GDM patients were positively correlated with inflammatory factors CRP and MCP-1 levels. The level of Slit-2 in the maternal peripheral blood of the GDM patients was positively correlated with the level of homeostasis model assessment insulin resistance (HOMA-IR) and HbA1c in maternal peripheral blood, but was negatively correlated with the level of homeostasis model assessment -β (HOMA-β). We also found that the Slit-2 level in the maternal peripheral blood of the GDM patients was negatively correlated with neonatal blood glucose, positively correlated with neonatal weight and independent of neonatal total bilirubin. CONCLUSION Our study suggests that the abnormal increase in Slit-2 in GDM may be related to its pathogenesis, and it was correlated with neonatal blood glucose and weight in patients with GDM, suggesting that Slit-2 may be a potential biomarker of GDM.
Collapse
Affiliation(s)
- Yan Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shihua Zhao
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Peng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Chen
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingwei Chi
- Qingdao Key Laboratory of Thyroid Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kui Che
- Qingdao Key Laboratory of Thyroid Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Yangang Wang,
| |
Collapse
|
11
|
Ito A, Imamura F. Expression of Maf family proteins in glutamatergic neurons of the mouse olfactory bulb. Dev Neurobiol 2021; 82:77-87. [PMID: 34679244 DOI: 10.1002/dneu.22859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022]
Abstract
The fate of neurons in the developing brain is largely determined by the combination of transcription factors they express. In particular, stem cells must follow different transcriptional cascades during differentiation in order to generate neurons with different neurotransmitter properties, such as glutamatergic and GABAergic neurons. In the mouse cerebral cortex, it has been shown that large Maf family proteins, MafA, MafB and c-Maf, regulate the development of specific types of GABAergic interneurons but are not expressed in glutamatergic neurons. In this study, we examined the expression of large Maf family proteins in the developing mouse olfactory bulb (OB) by immunohistochemistry and found that the cell populations expressing MafA and MafB are almost identical, and most of them express Tbr2. As Tbr2 is expressed in glutamatergic neurons in the OB, we further examined the expression of glutamatergic and GABAergic neuronal markers in MafA and MafB positive cells. The results showed that in the OB, MafA and MafB are expressed exclusively in glutamatergic neurons, but not in GABAergic neurons. We also found that few cells express c-Maf in the OB. These results indicate that, unlike the cerebral cortex, MafA and/or MafB may regulate the development of glutamatergic neurons in the developing OB. This study advances our knowledge about the development of glutamatergic neurons in the olfactory bulb, and also might suggest that mechanisms for the generation of projection neurons and interneurons differ between the cortex and the olfactory bulb, even though they both develop from the telencephalon.
Collapse
Affiliation(s)
- Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
12
|
Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map. BMC Biol 2021; 19:174. [PMID: 34452614 PMCID: PMC8394594 DOI: 10.1186/s12915-021-01116-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
In the olfactory system, odorant receptors (ORs) expressed at the cell membrane of olfactory sensory neurons detect odorants and direct sensory axons toward precise target locations in the brain, reflected in the presence of olfactory sensory maps. This dual role of ORs is corroborated by their subcellular expression both in cilia, where they bind odorants, and at axon terminals, a location suitable for axon guidance cues. Here, we provide an overview and discuss previous work on the role of ORs in establishing the topographic organization of the olfactory system and recent findings on the mechanisms of activation and function of axonal ORs.
Collapse
Affiliation(s)
- Simona Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy. .,Neuroscience Institute CNR, Via Orus 2, 35129, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padova Neuroscience Center, Padua, Italy.
| |
Collapse
|
13
|
Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res 2021; 12:735-757. [PMID: 33491126 PMCID: PMC7829061 DOI: 10.1007/s13346-020-00891-5] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Over the past 10 years, the interest in intranasal drug delivery in pharmaceutical R&D has increased. This review article summarises information on intranasal administration for local and systemic delivery, as well as for CNS indications. Nasal delivery offers many advantages over standard systemic delivery systems, such as its non-invasive character, a fast onset of action and in many cases reduced side effects due to a more targeted delivery. There are still formulation limitations and toxicological aspects to be optimised. Intranasal drug delivery in the field of drug development is an interesting delivery route for the treatment of neurological disorders. Systemic approaches often fail to efficiently supply the CNS with drugs. This review paper describes the anatomical, histological and physiological basis and summarises currently approved drugs for administration via intranasal delivery. Further, the review focuses on toxicological considerations of intranasally applied compounds and discusses formulation aspects that need to be considered for drug development.
Collapse
Affiliation(s)
- Lea-Adriana Keller
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Olivia Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Andreas Popp
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| |
Collapse
|
14
|
Lodovichi C. Topographic organization in the olfactory bulb. Cell Tissue Res 2021; 383:457-472. [PMID: 33404841 PMCID: PMC7873094 DOI: 10.1007/s00441-020-03348-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
The ability of the olfactory system to detect and discriminate a broad spectrum of odor molecules with extraordinary sensitivity relies on a wide range of odorant receptors and on the distinct architecture of neuronal circuits in olfactory brain areas. More than 1000 odorant receptors, distributed almost randomly in the olfactory epithelium, are plotted out in two mirror-symmetric maps of glomeruli in the olfactory bulb, the first relay station of the olfactory system. How does such a precise spatial arrangement of glomeruli emerge from a random distribution of receptor neurons? Remarkably, the identity of odorant receptors defines not only the molecular receptive range of sensory neurons but also their glomerular target. Despite their key role, odorant receptors are not the only determinant, since the specificity of neuronal connections emerges from a complex interplay between several molecular cues and electrical activity. This review provides an overview of the mechanisms underlying olfactory circuit formation. In particular, recent findings on the role of odorant receptors in regulating axon targeting and of spontaneous activity in the development and maintenance of synaptic connections are discussed.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Neuroscience Institute CNR, Department of Biomedical Science, Veneto Institute of Molecular Medicine, Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
15
|
Abstract
In mammals, odor information detected by olfactory sensory neurons is converted to a topographic map of activated glomeruli in the olfactory bulb. Mitral cells and tufted cells transmit signals sequentially to the olfactory cortex for behavioral outputs. To elicit innate behavioral responses, odor signals are directly transmitted by distinct subsets of mitral cells from particular functional domains in the olfactory bulb to specific amygdala nuclei. As for the learned decisions, input signals are conveyed by tufted cells as well as by mitral cells to the olfactory cortex. Behavioral scene cells link the odor information to the valence cells in the amygdala to elicit memory-based behavioral responses. Olfactory decision and perception take place in relation to the respiratory cycle. How is the sensory quality imposed on the olfactory inputs for behavioral outputs? How are the two types of odor signals, innate and learned, processed during respiration? Here, we review recent progress on the study of neural circuits involved in decision making in the mouse olfactory system.
Collapse
Affiliation(s)
- Kensaku Mori
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan;
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Fukui 910-1197, Japan;
| |
Collapse
|
16
|
Sakano H. Developmental regulation of olfactory circuit formation in mice. Dev Growth Differ 2020; 62:199-213. [PMID: 32112394 PMCID: PMC7318115 DOI: 10.1111/dgd.12657] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
In mammals, odorants induce various behavioral responses that are critical to the survival of the individual and species. Binding signals of odorants to odorant receptors (ORs) expressed in the olfactory epithelia are converted to an odor map, a pattern of activated glomeruli, in the olfactory bulb (OB). This topographic map is used to identify odorants for memory‐based learned decisions. In the embryo, a coarse olfactory map is generated in the OB by a combination of dorsal‐ventral and anterior‐posterior targeting of olfactory sensory neurons (OSNs), using specific sets of axon‐guidance molecules. During the process of OSN projection, odor signals are sorted into distinct odor qualities in separate functional domains in the OB. Odor information is then conveyed by the projection neurons, mitral/tufted cells, to various regions in the olfactory cortex, particularly to the amygdala for innate olfactory decisions. Although the basic architecture of hard‐wired circuits is generated by a genetic program, innate olfactory responses are modified by neonatal odor experience in an activity‐dependent manner. Stimulus‐driven OR activity promotes post‐synaptic events and dendrite selection in the responding glomeruli making them larger. As a result, enhanced odor inputs in neonates establish imprinted olfactory memory that induces attractive responses in adults, even when the odor quality is innately aversive. In this paper, I will provide an overview of the recent progress made in the olfactory circuit formation in mice.
Collapse
Affiliation(s)
- Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
17
|
Sánchez-Guardado L, Lois C. Lineage does not regulate the sensory synaptic input of projection neurons in the mouse olfactory bulb. eLife 2019; 8:46675. [PMID: 31453803 PMCID: PMC6744224 DOI: 10.7554/elife.46675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Lineage regulates the synaptic connections between neurons in some regions of the invertebrate nervous system. In mammals, recent experiments suggest that cell lineage determines the connectivity of pyramidal neurons in the neocortex, but the functional relevance of this phenomenon and whether it occurs in other neuronal types remains controversial. We investigated whether lineage plays a role in the connectivity of mitral and tufted cells, the projection neurons in the mouse olfactory bulb. We used transgenic mice to sparsely label neuronal progenitors and observed that clonally related neurons receive synaptic input from olfactory sensory neurons expressing different olfactory receptors. These results indicate that lineage does not determine the connectivity between olfactory sensory neurons and olfactory bulb projection neurons.
Collapse
Affiliation(s)
- Luis Sánchez-Guardado
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
18
|
Vaddadi N, Iversen K, Raja R, Phen A, Brignall A, Dumontier E, Cloutier JF. Kirrel2 is differentially required in populations of olfactory sensory neurons for the targeting of axons in the olfactory bulb. Development 2019; 146:dev.173310. [PMID: 31142543 DOI: 10.1242/dev.173310] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/15/2019] [Indexed: 01/25/2023]
Abstract
The formation of olfactory maps in the olfactory bulb (OB) is crucial for the control of innate and learned mouse behaviors. Olfactory sensory neurons (OSNs) expressing a specific odorant receptor project axons into spatially conserved glomeruli within the OB and synapse onto mitral cell dendrites. Combinatorial expression of members of the Kirrel family of cell adhesion molecules has been proposed to regulate OSN axonal coalescence; however, loss-of-function experiments have yet to establish their requirement in this process. We examined projections of several OSN populations in mice that lacked either Kirrel2 alone, or both Kirrel2 and Kirrel3. Our results show that Kirrel2 and Kirrel3 are dispensable for the coalescence of MOR1-3-expressing OSN axons to the most dorsal region (DI) of the OB. In contrast, loss of Kirrel2 caused MOR174-9- and M72-expressing OSN axons, projecting to the DII region, to target ectopic glomeruli. Our loss-of-function approach demonstrates that Kirrel2 is required for axonal coalescence in subsets of OSNs that project axons to the DII region and reveals that Kirrel2/3-independent mechanisms also control OSN axonal coalescence in certain regions of the OB.
Collapse
Affiliation(s)
- Neelima Vaddadi
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Katrine Iversen
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Reesha Raja
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Alina Phen
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Alexandra Brignall
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Emilie Dumontier
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada
| | - Jean-François Cloutier
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada .,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| |
Collapse
|
19
|
Gruner HN, Kim M, Mastick GS. Robo1 and 2 Repellent Receptors Cooperate to Guide Facial Neuron Cell Migration and Axon Projections in the Embryonic Mouse Hindbrain. Neuroscience 2019; 402:116-129. [PMID: 30685539 PMCID: PMC6435285 DOI: 10.1016/j.neuroscience.2019.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 11/19/2022]
Abstract
The facial nerve is necessary for our ability to eat, speak, and make facial expressions. Both the axons and cell bodies of the facial nerve undergo a complex embryonic developmental pattern involving migration of the cell bodies caudally and tangentially through rhombomeres, and simultaneously the axons projecting to exit the hindbrain to form the facial nerve. Our goal in this study was to test the functions of the chemorepulsive receptors Robo1 and Robo2 in facial neuron migration and axon projection by analyzing genetically marked motor neurons in double-mutant mouse embryos through the migration time course, E10.0-E13.5. In Robo1/2 double mutants, axon projection and cell body migration errors were more severe than in single mutants. Most axons did not make it to their motor exit point, and instead projected into and longitudinally within the floor plate. Surprisingly, some facial neurons had multiple axons exiting and projecting into the floor plate. At the same time, a subset of mutant facial cell bodies failed to migrate caudally, and instead either streamed dorsally toward the exit point or shifted into the floor plate. We conclude that Robo1 and Robo2 have redundant functions to guide multiple aspects of the complex cell migration of the facial nucleus, as well as regulating axon trajectories and suppressing formation of ectopic axons.
Collapse
Affiliation(s)
- Hannah N. Gruner
- Department of Biology, University of Nevada, 1664 N Virginia St, Reno, NV 89557, USA.
| | - Minkyung Kim
- Department of Biology, University of Nevada, 1664 N Virginia St, Reno, NV 89557, USA.
| | - Grant S. Mastick
- Department of Biology, University of Nevada, 1664 N Virginia St, Reno, NV 89557, USA.
| |
Collapse
|
20
|
Dang P, Fisher SA, Stefanik DJ, Kim J, Raper JA. Coordination of olfactory receptor choice with guidance receptor expression and function in olfactory sensory neurons. PLoS Genet 2018; 14:e1007164. [PMID: 29385124 PMCID: PMC5809090 DOI: 10.1371/journal.pgen.1007164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/12/2018] [Accepted: 12/25/2017] [Indexed: 11/18/2022] Open
Abstract
Olfactory sensory neurons choose to express a single odorant receptor (OR) from a large gene repertoire and extend axons to reproducible, OR-specific locations within the olfactory bulb. This developmental process produces a topographically organized map of odorant experience in the brain. The axon guidance mechanisms that generate this pattern of connectivity, as well as those that coordinate OR choice and axonal guidance receptor expression, are incompletely understood. We applied the powerful approach of single-cell RNA-seq on newly born olfactory sensory neurons (OSNs) in young zebrafish larvae to address these issues. Expression profiles were generated for 56 individual Olfactory Marker Protein (OMP) positive sensory neurons by single-cell (SC) RNA-seq. We show that just as in mouse OSNs, mature zebrafish OSNs typically express a single predominant OR transcript. Our previous work suggests that OSN targeting is related to the OR clade from which a sensory neuron chooses to express its odorant receptor. We categorized each of the mature cells based on the clade of their predominantly expressed OR. Transcripts expressed at higher levels in each of three clade-related categories were identified using Penalized Linear Discriminant Analysis (PLDA). A genome-wide approach was used to identify membrane-associated proteins that are most likely to have guidance-related activity. We found that OSNs that choose to express an OR from a particular clade also express specific subsets of potential axon guidance genes and transcription factors. We validated our identification of candidate axon guidance genes for one clade of OSNs using bulk RNA-seq from a subset of transgene-labeled neurons that project to a single protoglomerulus. The differential expression patterns of selected candidate guidance genes were confirmed using fluorescent in situ hybridization. Most importantly, we observed axonal mistargeting in knockouts of three candidate axonal guidance genes identified in this analysis: nrp1a, nrp1b, and robo2. In each case, targeting errors were detected in the subset of axons that normally express these transcripts at high levels, and not in the axons that express them at low levels. Our findings demonstrate that specific, functional, axonal guidance related genes are expressed in subsets of OSNs that that can be categorized by their patterns of OR expression.
Collapse
Affiliation(s)
- Puneet Dang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, United States of America
| | - Stephen A. Fisher
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Derek J. Stefanik
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jonathan A. Raper
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
21
|
Movahedi K, Grosmaitre X, Feinstein P. Odorant receptors can mediate axonal identity and gene choice via cAMP-independent mechanisms. Open Biol 2017; 6:rsob.160018. [PMID: 27466441 PMCID: PMC4967819 DOI: 10.1098/rsob.160018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/01/2016] [Indexed: 01/24/2023] Open
Abstract
Odorant receptors (ORs) control several aspects of cell fate in olfactory sensory neurons (OSNs), including singular gene choice and axonal identity. The mechanisms of OR-induced axon guidance have been suggested to principally rely on G-protein signalling. Here, we report that for a subset of OSNs, deleting G proteins or altering their levels of signalling does not affect axonal identity. Signalling-deficient ORs or surrogate receptors that are unable to couple to Gs/Golf still provide axons with distinct identities and the anterior–posterior targeting of axons does not correlate with the levels of cAMP produced by genetic modifications. In addition, we refine the models of negative feedback by showing that ectopic ORs can be robustly expressed without suppressing endogenous gene choice. In conclusion, our results uncover a new feature of ORs, showing that they can instruct axonal identity and regulate olfactory map formation independent of canonical G-protein signalling and cAMP production.
Collapse
Affiliation(s)
- Kiavash Movahedi
- Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt, Germany Myeloid Cell Immunology Laboratory, VIB Inflammation Research Center, Ghent, Belgium Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Paul Feinstein
- Department of Biological Sciences, Hunter College and The Graduate Center Biochemistry, Biology and Biopsychology and Behavioral Neuroscience Programs, CUNY, New York, NY, USA
| |
Collapse
|
22
|
Taroc EZM, Prasad A, Lin JM, Forni PE. The terminal nerve plays a prominent role in GnRH-1 neuronal migration independent from proper olfactory and vomeronasal connections to the olfactory bulbs. Biol Open 2017; 6:1552-1568. [PMID: 28970231 PMCID: PMC5665474 DOI: 10.1242/bio.029074] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gonadotropin-releasing hormone-1 (GnRH-1) neurons (GnRH-1 ns) migrate from the developing olfactory pit into the hypothalamus during embryonic development. Migration of the GnRH-1 neurons is required for mammalian reproduction as these cells control release of gonadotropins from the anterior pituitary gland. Disturbances in GnRH-1 ns migration, GnRH-1 synthesis, secretion or signaling lead to varying degrees of hypogonadotropic hypogonadism (HH), which impairs pubertal onset and fertility. HH associated with congenital olfactory defects is clinically defined as Kallmann Syndrome (KS). The association of olfactory defects with HH in KS suggested a potential direct relationship between defective olfactory axonal routing, lack of olfactory bulbs (OBs) and aberrant GnRH-1 ns migration. However, it has never been experimentally proven that the formation of axonal connections of the olfactory/vomeronasal neurons to their functional targets are necessary for the migration of GnRH-1 ns to the hypothalamus. Loss-of-function of the Arx-1 homeobox gene leads to the lack of proper formation of the OBs with abnormal axonal termination of olfactory sensory neurons (
Yoshihara et al., 2005). Our data prove that correct development of the OBs and axonal connection of the olfactory/vomeronasal sensory neurons to the forebrain are not required for GnRH-1 ns migration, and suggest that the terminal nerve, which forms the GnRH-1 migratory scaffold, follows different guidance cues and differs in gene expression from olfactory/vomeronasal sensory neurons. Summary: Our work reveals that correct olfactory bulb development is not required for GnRH-1 neuronal migration. This study challenges the idea that GnRH-1 neuronal migration to the hypothalamus relies on correct routing of the olfactory and vomeronasal neurons and supports the existence of the TN in mammals.
Collapse
Affiliation(s)
- Ed Zandro M Taroc
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Aparna Prasad
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Jennifer M Lin
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Paolo E Forni
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| |
Collapse
|
23
|
Shao X, Lakhina V, Dang P, Cheng RP, Marcaccio CL, Raper JA. Olfactory sensory axons target specific protoglomeruli in the olfactory bulb of zebrafish. Neural Dev 2017; 12:18. [PMID: 29020985 PMCID: PMC5637265 DOI: 10.1186/s13064-017-0095-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/24/2017] [Indexed: 01/08/2023] Open
Abstract
Background The axons of Olfactory Sensory Neurons (OSNs) project to reproducible target locations within the Olfactory Bulb (OB), converting odorant experience into a spatial map of neural activity. We characterized the initial targeting of OSN axons in the zebrafish, a model system suitable for studying axonal targeting early in development. In this system the initial targets of OSN axons are a small number of distinct, individually identifiable neuropilar regions called protoglomeruli. Previously, Olfactory Marker Protein-expressing and TRPC2-expressing classes of OSNs were shown to project to specific, non-overlapping sets of protoglomeruli, indicating that particular subsets of OSNs project to specific protoglomerular targets. We set out to map the relationship between the classical Odorant Receptor (OR) an OSN chooses to express and the protoglomerulus its axon targets. Methods A panel of BACs were recombineered so that the axons of OSNs choosing to express modified ORs were fluorescently labeled. Axon projections were followed into the olfactory bulb to determine the protoglomeruli in which they terminated. Results RNA-seq demonstrates that OSNs express a surprisingly wide variety of ORs and Trace Amine Associated Receptors (TAARs) very early when sensory axons are arriving in the bulb. Only a single OR is expressed in any given OSN even at these early developmental times. We used a BAC expression technique to map the trajectories of OSNs expressing specific odorant receptors. ORs can be divided into three clades based upon their sequence similarities. OSNs expressing ORs from two of these clades project to the CZ protoglomerulus, while OSNs expressing ORs from the third clade project to the DZ protoglomerulus. In contrast, OSNs expressing a particular TAAR project to multiple protoglomeruli. Neither OR choice nor axonal targeting are related to the position an OSN occupies within the olfactory pit. Conclusions Our results demonstrate that it is not the choice of a particular OR, but of one from a category of ORs, that is related to initial OSN target location within the olfactory bulb. These choices are not related to OSN position within the olfactory epithelium.
Collapse
Affiliation(s)
- Xin Shao
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Vanisha Lakhina
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Puneet Dang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ryan P Cheng
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Christina L Marcaccio
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA. .,, 105 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Kam JWK, Dumontier E, Baim C, Brignall AC, Mendes da Silva D, Cowan M, Kennedy TE, Cloutier JF. RGMB and neogenin control cell differentiation in the developing olfactory epithelium. Development 2017; 143:1534-46. [PMID: 27143755 DOI: 10.1242/dev.118638] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/29/2016] [Indexed: 12/25/2022]
Abstract
Cellular interactions are key for the differentiation of distinct cell types within developing epithelia, yet the molecular mechanisms engaged in these interactions remain poorly understood. In the developing olfactory epithelium (OE), neural stem/progenitor cells give rise to odorant-detecting olfactory receptor neurons (ORNs) and glial-like sustentacular (SUS) cells. Here, we show in mice that the transmembrane receptor neogenin (NEO1) and its membrane-bound ligand RGMB control the balance of neurons and glial cells produced in the OE. In this layered epithelium, neogenin is expressed in progenitor cells, while RGMB is restricted to adjacent newly born ORNs. Ablation of Rgmb via gene-targeting increases the number of dividing progenitor cells in the OE and leads to supernumerary SUS cells. Neogenin loss-of-function phenocopies these effects observed in Rgmb(-/-) mice, supporting the proposal that RGMB-neogenin signaling regulates progenitor cell numbers and SUS cell production. Interestingly, Neo1(-/-) mice also exhibit increased apoptosis of ORNs, implicating additional ligands in the neogenin-dependent survival of ORNs. Thus, our results indicate that RGMB-neogenin-mediated cell-cell interactions between newly born neurons and progenitor cells control the ratio of glia and neurons produced in the OE.
Collapse
Affiliation(s)
- Joseph Wai Keung Kam
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4
| | - Emilie Dumontier
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4
| | - Christopher Baim
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4
| | - Alexandra C Brignall
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4
| | - David Mendes da Silva
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, Rua Larga, Coimbra 3004-517, Portugal
| | - Mitra Cowan
- Centre de Recherches du Centre Hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, Canada H2X 0A9
| | - Timothy E Kennedy
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Anatomy and Cell Biology, McGill University, 3640 University, Montréal, Québec, Canada H3A 0C7
| | - Jean-François Cloutier
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Anatomy and Cell Biology, McGill University, 3640 University, Montréal, Québec, Canada H3A 0C7
| |
Collapse
|
25
|
Eerdunfu, Ihara N, Ligao B, Ikegaya Y, Takeuchi H. Differential timing of neurogenesis underlies dorsal-ventral topographic projection of olfactory sensory neurons. Neural Dev 2017; 12:2. [PMID: 28193234 PMCID: PMC5307877 DOI: 10.1186/s13064-017-0079-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/06/2017] [Indexed: 11/25/2022] Open
Abstract
Background The mammalian primary olfactory system has a spatially-ordered projection in which olfactory sensory neurons (OSNs) located in the dorsomedial (DM) and ventrolateral (VL) region of the olfactory epithelium (OE) send their axons to the dorsal and ventral region of the olfactory bulb (OB), respectively. We previously found that OSN axonal projections occur sequentially, from the DM to the VL region of the OE. The differential timing of axonal projections is important for olfactory map formation because early-arriving OSN axons secrete guidance cues at the OB to help navigate late-arriving OSN axons. We hypothesized that the differential timing of axonal projections is regulated by the timing of OSN neurogenesis. To test this idea, we investigated spatiotemporal patterns of OSN neurogenesis during olfactory development. Methods and results To determine the time of OSN origin, we used two thymidine analogs, BrdU and EdU, which can be incorporated into cells in the S-phase of the cell-cycle. We injected these two analogs at different developmental time points and analyzed distribution patterns of labeled OSNs. We found that OSNs with different dates of origin were differentially distributed in the OE. The majority of OSNs generated at the early stage of development were located in the DM region of the OE, whereas OSNs generated at the later stage of development were preferentially located in the VL region of the OE. Conclusions These results indicate that the number of OSNs is sequentially increased from the DM to the VL axis of the OE. Moreover, the temporal sequence of OSN proliferation correlates with that of axonal extension and emergence of glomerular structures in the OB. Thus, we propose that the timing of OSN neurogenesis regulates that of OSN axonal projection and thereby helps preserve the topographic order of the olfactory glomerular map along the dorsal–ventral axis of the OB. Electronic supplementary material The online version of this article (doi:10.1186/s13064-017-0079-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eerdunfu
- Division of Innate Immunity, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, 108-8639, Japan
| | - Naoki Ihara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, 113-0033, Japan
| | - Bao Ligao
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, 113-0033, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Haruki Takeuchi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, 113-0033, Japan. .,Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
26
|
Jaafar C, Omais S, Al Lafi S, El Jamal N, Noubani M, Skaf L, Ghanem N. Role of Rb during Neurogenesis and Axonal Guidance in the Developing Olfactory System. Front Mol Neurosci 2016; 9:81. [PMID: 27667971 PMCID: PMC5016521 DOI: 10.3389/fnmol.2016.00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/24/2016] [Indexed: 11/19/2022] Open
Abstract
The Retinoblastoma protein, Rb, was shown to regulate distinct aspects of neurogenesis in the embryonic and adult brain besides its primary role in cell cycle control. It is still unknown, however, whether Rb is required for tissue morphogenesis and the establishment of synaptic connections between adjacent tissues during development. We have investigated here the role of Rb during development of the olfactory system (OS), which heavily relies on reciprocal interactions between the olfactory epithelium (OE) and the olfactory bulb (OB). We show that mice carrying a telencephalic-specific deletion of Rb display several neurogenic defects in the OS during late development. In the OE, loss of Rb leads to ectopic proliferation of late-born progenitors (Tuj-1+), abnormal radial migration and terminal maturation of olfactory sensory neurons (OSNs). In the OB, deletion of Rb causes severe lamination defects with loss of clear boundaries between distinct layers. Importantly, starting around E15.5 when OB glomerulogenesis is initiated, many OSNs axons that project along the olfactory nerve layer (ONL) fail to properly innervate the nascent bulb, thus resulting in partial loss of connectivity between OE-OB and gradual neuronal degeneration in both tissues peaking at birth. This deficiency correlates with deregulated expressions of two key chemo-repellant molecules, Robo2/Slit1 and Nrp2/Sema3F that control the formation of dorsal-ventral topographic map of OSNs connections with OB glomeruli. This study highlights a critical requirement for Rb during neurogenesis and the establishment of proper synaptic connections inside the OS during development.
Collapse
Affiliation(s)
- Carine Jaafar
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Saad Omais
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Sawsan Al Lafi
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Nadim El Jamal
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Mohammad Noubani
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Larissa Skaf
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut Beirut, Lebanon
| |
Collapse
|
27
|
Taku AA, Marcaccio CL, Ye W, Krause GJ, Raper JA. Attractant and repellent cues cooperate in guiding a subset of olfactory sensory axons to a well-defined protoglomerular target. Development 2016; 143:123-32. [PMID: 26732841 DOI: 10.1242/dev.127985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Olfactory sensory axons target well-defined intermediate targets in the zebrafish olfactory bulb called protoglomeruli well before they form odorant receptor-specific glomeruli. A subset of olfactory sensory neurons are labeled by expression of the or111-7:IRES:GAL4 transgene whose axons terminate in the central zone (CZ) protoglomerulus. Previous work has shown that some of these axons misproject to the more dorsal and anterior dorsal zone (DZ) protoglomerulus in the absence of Netrin 1/Dcc signaling. In search of additional cues that guide these axons to the CZ, we found that Semaphorin 3D (Sema3D) is expressed in the anterior bulb and acts as a repellent that pushes them towards the CZ. Further analysis indicates that Sema3D signaling is mediated through Nrp1a, while Nrp2b also promotes CZ targeting but in a Sema3D-independent manner. nrp1a, nrp2b and dcc transcripts are detected in or111-7 transgene-expressing neurons early in development and both Nrp1a and Dcc act cell-autonomously in sensory neurons to promote accurate targeting to the CZ. dcc and nrp1a double mutants have significantly more DZ misprojections than either single mutant, suggesting that the two signaling systems act independently and in parallel to direct a specific subset of sensory axons to their initial protoglomerular target.
Collapse
Affiliation(s)
- Alemji A Taku
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Christina L Marcaccio
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Wenda Ye
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Gregory J Krause
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Regeneration and rewiring of rodent olfactory sensory neurons. Exp Neurol 2016; 287:395-408. [PMID: 27264358 DOI: 10.1016/j.expneurol.2016.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 12/24/2022]
Abstract
The olfactory sensory neurons are the only neurons in the mammalian nervous system that not only regenerate naturally and in response to injury, but also project to specific targets in the brain. The stem cells in the olfactory epithelium commit to both neuronal and non-neuronal lineages depending on the environmental conditions. They provide a continuous supply of new neurons. A newly generated neuron must express a specific odorant receptor gene and project to a central target consist of axons expressing the same receptor type. Recent studies have provided insights into this highly regulated, complex process. However, the molecular mechanisms that determine the regenerative capacity of stem cells, and the ability of newly generated neurons in directing their axons toward specific targets, remain elusive. Here we review progresses and controversies in the field and offer testable models.
Collapse
|
29
|
Nishizumi H, Sakano H. Developmental regulation of neural map formation in the mouse olfactory system. Dev Neurobiol 2015; 75:594-607. [PMID: 25649346 DOI: 10.1002/dneu.22268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 11/06/2022]
Abstract
In the mouse olfactory system, various odorants are detected by approximately 1000 different odorant receptors (ORs) expressed in the olfactory sensory neurons (OSNs). It is well established that each OSN expresses only one functional OR gene in a monoallelic manner. Furthermore, OSN axons expressing the same OR converge to a set of glomeruli in the olfactory bulb (OB). During embryonic development, a coarse map is formed by the combination of two genetically programmed processes. One is OR-independent axonal projection along the dorsal-ventral (D-V) axis, and the other is OR-dependent projection along the anterior-posterior (A-P) axis. D-V projection is regulated by the anatomical location of OSNs within the olfactory epithelium (OE), whereas A-P projection is instructed by expressed OR molecules using cyclic adenosine monophosphate (cAMP) signals. After birth, the map is further refined in an activity-dependent manner by its conversion from a continuous to a discrete map through segregation of glomerular structures. Here, we summarize recent progress from our laboratory in understanding neural map formation in the mouse olfactory system.
Collapse
Affiliation(s)
- Hirofumi Nishizumi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hitoshi Sakano
- Department of Brain Function, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| |
Collapse
|
30
|
Locatelli FF, Rela L. Mosaic activity patterns and their relation to perceptual similarity: open discussions on the molecular basis and circuitry of odor recognition. J Neurochem 2014; 131:546-53. [PMID: 25123415 DOI: 10.1111/jnc.12931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 02/04/2023]
Abstract
Enormous advances have been made in the recent years in regard to the mechanisms and neural circuits by which odors are sensed and perceived. Part of this understanding has been gained from parallel studies in insects and rodents that show striking similarity in the mechanisms they use to sense, encode, and perceive odors. In this review, we provide a short introduction to the functioning of olfactory systems from transduction of odorant stimuli into electrical signals in sensory neurons to the anatomical and functional organization of the networks involved in neural representation of odors in the central nervous system. We make emphasis on the functional and anatomical architecture of the first synaptic relay of the olfactory circuit, the olfactory bulb in vertebrates and the antennal lobe in insects. We discuss how the exquisite and conserved architecture of this structure is established and how different odors are encoded in mosaic activity patterns. Finally, we discuss the validity of methods used to compare activation patterns in relation to perceptual similarity.
Collapse
Affiliation(s)
- Fernando F Locatelli
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE-CONICET, Argentina
| | | |
Collapse
|
31
|
Login H, Butowt R, Bohm S. Activity-dependent and graded BACE1 expression in the olfactory epithelium is mediated by the retinoic acid metabolizing enzyme CYP26B1. Brain Struct Funct 2014; 220:2143-57. [PMID: 24797530 DOI: 10.1007/s00429-014-0783-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/17/2014] [Indexed: 11/24/2022]
Abstract
It is well established that environmental influences play a key role in sculpting neuronal connectivity in the brain. One example is the olfactory sensory map of topographic axonal connectivity. While intrinsic odorant receptor signaling in olfactory sensory neurons (OSN) determines anterior-posterior counter gradients of the axonal guidance receptors Neuropilin-1 and Plexin-A1, little is known about stimulus-dependent gradients of protein expression, which correlates with the functional organization of the olfactory sensory map along its dorsomedial (DM)-ventrolateral (VL) axis. Deficiency of the Alzheimer's β-secretase BACE1, which is expressed in a DM(low)-VL(high) gradient, results in OSN axon targeting errors in a DM > VL and gene dose-dependent manner. We show that expression of BACE1 and the all-trans retinoic acid (RA)-degrading enzyme Cyp26B1 form DM-VL counter gradients in the olfactory epithelium. Analyses of mRNA and protein levels in OSNs after naris occlusion, in mice deficient in the olfactory cyclic nucleotide-gated channel and in relation to onset of respiration, show that BACE1 and Cyp26B1 expression in OSNs inversely depend on neuronal activity. Overexpression of a Cyp26B1 or presence of a dominant negative RA receptor transgene selectively in OSNs, inhibit BACE1 expression while leaving the DM(low)-VL(high) gradient of the axonal guidance protein Neuropilin-2 intact. We conclude that stimulus-dependent neuronal activity can control the expression of the RA catabolic enzyme Cyp26B1 and downstream genes such as BACE1. This result is pertinent to an understanding of the mechanisms by which a topographic pattern of connectivity is achieved and modified as a consequence of graded gene expression and sensory experience.
Collapse
Affiliation(s)
- Hande Login
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | | | | |
Collapse
|
32
|
Neural map formation in the mouse olfactory system. Cell Mol Life Sci 2014; 71:3049-57. [PMID: 24638094 PMCID: PMC4111858 DOI: 10.1007/s00018-014-1597-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 01/19/2023]
Abstract
In the mouse olfactory system, odorants are detected by ~1,000 different odorant receptors (ORs) produced by olfactory sensory neurons (OSNs). Each OSN expresses only one functional OR species, which is referred to as the “one neuron–one receptor” rule. Furthermore, OSN axons bearing the same OR converge to a specific projection site in the olfactory bulb (OB) forming a glomerular structure, i.e., the “one glomerulus–one receptor” rule. Based on these basic rules, binding signals of odorants detected by OSNs are converted to topographic information of activated glomeruli in the OB. During development, the glomerular map is formed by the combination of two genetically programmed processes: one is OR-independent projection along the dorsal–ventral axis, and the other is OR-dependent projection along the anterior-posterior axis. The map is further refined in an activity-dependent manner during the neonatal period. Here, we summarize recent progress of neural map formation in the mouse olfactory system.
Collapse
|
33
|
Aoki M, Takeuchi H, Nakashima A, Nishizumi H, Sakano H. Possible roles of Robo1+ ensheathing cells in guiding dorsal-zone olfactory sensory neurons in mouse. Dev Neurobiol 2013; 73:828-40. [PMID: 23821580 DOI: 10.1002/dneu.22103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 11/06/2022]
Abstract
In the mouse olfactory system, the anatomical locations of olfactory sensory neurons (OSNs) correlate with their axonal projection sites along the dorsoventral axis of the olfactory bulb (OB). We have previously reported that Neuropilin-2 expressed by ventral-zone OSNs contributes to the segregation of dorsal and ventral OSN axons, and that Slit is acting as a negative land mark to restrict the projection of Robo2+, early-arriving OSN axons to the embryonic OB. Here, we report that another guidance receptor, Robo1, also plays an important role in guiding OSN axons. Knockout mice for Robo1 demonstrated defects in targeting of OSN axons to the OB. Although Robo1 is colocalized with dorsal-zone OSN axons, it is not produced by OSNs, but instead by olfactory ensheathing cells. These findings indicate a novel strategy of axon guidance in the mouse olfactory system during development.
Collapse
Affiliation(s)
- Mari Aoki
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, 113-0032, Japan
| | | | | | | | | |
Collapse
|
34
|
James G, Foster SR, Key B, Beverdam A. The expression pattern of EVA1C, a novel Slit receptor, is consistent with an axon guidance role in the mouse nervous system. PLoS One 2013; 8:e74115. [PMID: 24040182 PMCID: PMC3767613 DOI: 10.1371/journal.pone.0074115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 08/01/2013] [Indexed: 11/18/2022] Open
Abstract
The Slit/Robo axon guidance families play a vital role in the formation of neural circuitry within select regions of the developing mouse nervous system. Typically Slits signal through the Robo receptors, however they also have Robo-independent functions. The novel Slit receptor Eva-1, recently discovered in C. elegans, and the human orthologue of which is located in the Down syndrome critical region on chromosome 21, could account for some of these Robo independent functions as well as provide selectivity to Robo-mediated axon responses to Slit. Here we investigate the expression of the mammalian orthologue EVA1C in regions of the developing mouse nervous system which have been shown to exhibit Robo-dependent and -independent responses to Slit. We report that EVA1C is expressed by axons contributing to commissures, tracts and nerve pathways of the developing spinal cord and forebrain. Furthermore it is expressed by axons that display both Robo-dependent and -independent functions of Slit, supporting a role for EVA1C in Slit/Robo mediated neural circuit formation in the developing nervous system.
Collapse
Affiliation(s)
- Gregory James
- School of Biomedical Science, University of Queensland, Brisbane, Australia
| | - Simon R. Foster
- School of Biomedical Science, University of Queensland, Brisbane, Australia
| | - Brian Key
- School of Biomedical Science, University of Queensland, Brisbane, Australia
- * E-mail: (BK); (AB)
| | - Annemiek Beverdam
- School of Biomedical Science, University of Queensland, Brisbane, Australia
- * E-mail: (BK); (AB)
| |
Collapse
|
35
|
Prince JEA, Brignall AC, Cutforth T, Shen K, Cloutier JF. Kirrel3 is required for the coalescence of vomeronasal sensory neuron axons into glomeruli and for male-male aggression. Development 2013; 140:2398-408. [PMID: 23637329 DOI: 10.1242/dev.087262] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The accessory olfactory system controls social and sexual interactions in mice that are crucial for survival. Vomeronasal sensory neurons (VSNs) form synapses with dendrites of second order neurons in glomeruli of the accessory olfactory bulb (AOB). Axons of VSNs expressing the same vomeronasal receptor coalesce into multiple glomeruli within spatially conserved regions of the AOB. Here we examine the role of the Kirrel family of transmembrane proteins in the coalescence of VSN axons within the AOB. We find that Kirrel2 and Kirrel3 are differentially expressed in subpopulations of VSNs and that their expression is regulated by activity. Although Kirrel3 expression is not required for early axonal guidance events, such as fasciculation of the vomeronasal tract and segregation of apical and basal VSN axons in the AOB, it is necessary for proper coalescence of axons into glomeruli. Ablation of Kirrel3 expression results in disorganization of the glomerular layer of the posterior AOB and formation of fewer, larger glomeruli. Furthermore, Kirrel3(-/-) mice display a loss of male-male aggression in a resident-intruder assay. Taken together, our results indicate that differential expression of Kirrels on vomeronasal axons generates a molecular code that dictates their proper coalescence into glomeruli within the AOB.
Collapse
Affiliation(s)
- Janet E A Prince
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec, H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
36
|
James G, Key B, Beverdam A. The E3 ubiquitin ligase Mycbp2 genetically interacts with Robo2 to modulate axon guidance in the mouse olfactory system. Brain Struct Funct 2013; 219:861-74. [PMID: 23525682 DOI: 10.1007/s00429-013-0540-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/09/2013] [Indexed: 11/24/2022]
Abstract
The E3 ubiquitin ligase Mycbp2 and it homologues play an important role in axon guidance and synaptogenesis in Drosophila, Caenorhabditis elegans, zebrafish and mouse. Despite this conserved function, the molecular and cellular basis of Mycbp2-dependent axon guidance remains largely unclear. We have examined here the effect of the loss-of-MYCBP2 function on the topography of the olfactory sensory neuron projection from the nasal cavity to the olfactory bulb in mice. A subpopulation of olfactory sensory axons failed to project to the dorsal surface of the olfactory bulb causing abnormal topography in this neural pathway. These defects were similar to the olfactory bulb phenotype in loss-of-ROBO2 function mice. While mice heterozygous for either Mycbp2 or Robo2 were normal, mice double heterozygous for these two genes produced severe defects in the olfactory system. Therefore, Mycbp2 and Robo2 were found to cooperate within a genetic network that has profound effects on axon guidance. The Mycbp2 phenotype could be partly explained by aberrant patterning of olfactory sensory neurons residing in the dorsal compartment of the nasal cavity. Some of these neurons fail to appropriately express Robo2 which is consistent with their aberrant projection to the ventral olfactory bulb. These results provide the first evidence linking an ubiquitin ligase to an axon guidance receptor during pathfinding in the developing mammalian nervous system.
Collapse
Affiliation(s)
- G James
- Brain Growth and Regeneration Lab, School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | | | | |
Collapse
|
37
|
Dishevelled proteins are associated with olfactory sensory neuron presynaptic terminals. PLoS One 2013; 8:e56561. [PMID: 23437169 PMCID: PMC3577874 DOI: 10.1371/journal.pone.0056561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/11/2013] [Indexed: 11/28/2022] Open
Abstract
Olfactory sensory neurons (OSNs) project their axons from the olfactory epithelium toward the olfactory bulb (OB) in a heterogeneous and unsorted arrangement. However, as the axons approach the glomerular layer of the OB, axons from OSNs expressing the same odorant receptor (OR) sort and converge to form molecularly homogeneous glomeruli. Axon guidance cues, cell adhesion molecules, and OR induced activity have been implicated in the final targeting of OSN axons to specific glomeruli. Less understood, and often controversial, are the mechanisms used by OSN axons to initially navigate from the OE toward the OB. We previously demonstrated a role for Wnt and Frizzled (Fz) molecules in OSN axon extension and organization within the olfactory nerve. Building on that we now turned our attention to the downstream signaling cascades from Wnt-Fz interactions. Dishevelled (Dvl) is a key molecule downstream of Fz receptors. Three isoforms of Dvl with specific as well as overlapping functions are found in mammals. Here, we show that Dvl-1 expression is restricted to OSNs in the dorsal recess of the nasal cavity, and labels a unique subpopulation of glomeruli. Dvl-2 and Dvl-3 have a widespread distribution in both the OE and OB. Both Dvl-1 and Dvl-2 are associated with intra-glomerular pre-synaptic OSN terminals, suggesting a role in synapse formation/stabilization. Moreover, because Dvl proteins were observed in all OSN axons, we hypothesize that they are important determinants of OSN cell differentiation and axon extension.
Collapse
|
38
|
Lodovichi C, Belluscio L. Odorant receptors in the formation of the olfactory bulb circuitry. Physiology (Bethesda) 2012; 27:200-12. [PMID: 22875451 DOI: 10.1152/physiol.00015.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In mammals, smell is mediated by odorant receptors expressed by sensory neurons in the nose. These specialized receptors are found both on olfactory sensory neurons' cilia and axon terminals. Although the primary function of ciliary odorant receptors is to detect odorants, their axonal role remains unclear but is thought to involve axon guidance. This review discusses findings that show axonal odorant receptors are indeed functional and capable of modulating neural connectivity.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Venetian Institute of Molecular Medicine, and Institute of Neuroscience-CNR, Padua, Italy
| | | |
Collapse
|
39
|
Cariboni A, Andrews WD, Memi F, Ypsilanti AR, Zelina P, Chedotal A, Parnavelas JG. Slit2 and Robo3 modulate the migration of GnRH-secreting neurons. Development 2012; 139:3326-31. [PMID: 22912413 PMCID: PMC3424043 DOI: 10.1242/dev.079418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are born in the nasal placode and migrate along olfactory and vomeronasal axons to reach the forebrain and settle in the hypothalamus, where they control reproduction. The molecular cues that guide their migration have not been fully identified, but are thought to control either cell movement directly or the patterning of their axonal substrates. Using genetically altered mouse models we show that the migration of GnRH neurons is directly modulated by Slit2 and Robo3, members of the axon guidance Slit ligand and Robo receptor families. Mice lacking Slit2 or Robo3 have a reduced number of GnRH neurons in the forebrain, but a normal complement of their supporting axons, pointing to a direct role for these molecules in GnRH neuron migration.
Collapse
Affiliation(s)
- Anna Cariboni
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT UK.
| | | | | | | | | | | | | |
Collapse
|
40
|
Miyasaka N, Wanner AA, Li J, Mack-Bucher J, Genoud C, Yoshihara Y, Friedrich RW. Functional development of the olfactory system in zebrafish. Mech Dev 2012; 130:336-46. [PMID: 23010553 DOI: 10.1016/j.mod.2012.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 11/29/2022]
Abstract
The olfactory system has become a popular model to study the function of neuronal circuits and the molecular and cellular mechanisms underlying the development of neurons and their connections. An excellent model to combine studies of function and development is the zebrafish because it not only permits sophisticated molecular and genetic analyses of development, but also functional measurements of neuronal activity patterns in the intact brain. This article reviews insights into the functional development of the olfactory system that have been obtained in zebrafish. The focus is on the specification of olfactory sensory neurons (OSNs), the mechanisms controlling odorant receptor expression and OSN identity, the pathfinding of OSN axons towards target glomeruli in the olfactory bulb (OB), the development of glomeruli and functional topographic maps in the OB, and the development of inhibitory interneurons in the OB.
Collapse
Affiliation(s)
- Nobuhiko Miyasaka
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Cho JH, Kam JWK, Cloutier JF. Slits and Robo-2 regulate the coalescence of subsets of olfactory sensory neuron axons within the ventral region of the olfactory bulb. Dev Biol 2012; 371:269-79. [PMID: 22981605 DOI: 10.1016/j.ydbio.2012.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/16/2022]
Abstract
Olfactory sensory neurons (OSNs) project their axons to second-order neurons in the olfactory bulb (OB) to form a precise glomerular map and these stereotypic connections are crucial for accurate odorant information processing by animals. To form these connections, olfactory sensory neuron (OSN) axons respond to axon guidance molecules that direct their growth and coalescence. We have previously implicated the axon guidance receptor Robo-2 in the accurate coalescence of OSN axons within the dorsal region of the OB (Cho et al., 2011). Herein, we have examined whether Robo-2 and its ligands, the Slits, contribute to the formation of an accurate glomerular map within more ventral regions of the OB. We have ablated expression of Robo-2 in OSNs and assessed the targeting accuracy of axons expressing either the P2 or MOR28 olfactory receptors, which innervate two different regions of the ventral OB. We show that P2-positive axons, which express Robo-2, coalesce into glomeruli more ventrally and form additional glomeruli in the OB of robo-2(lox/lox);OMP-Cre mice. We also demonstrate that Robo-2-mediated targeting of P2 axons along the dorsoventral axis of the OB is controlled by Slit-1 and Slit-3 expression. Interestingly, although MOR28-positive OSNs only express low levels of Robo-2, a reduced number of MOR28-positive glomeruli is observed in the OB of robo-2(lox/lox);OMP-Cre mice. Taken together, our results demonstrate that Slits and Robo-2 are required for the formation of an accurate glomerular map in the ventral region of the OB.
Collapse
Affiliation(s)
- Jin H Cho
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec, Canada H3A 2B4
| | | | | |
Collapse
|
42
|
Morphological phenotypes of olfactory ensheathing cells display different migratory responses upon Slit-2. Exp Cell Res 2012; 318:1889-900. [DOI: 10.1016/j.yexcr.2012.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 05/11/2012] [Accepted: 05/24/2012] [Indexed: 11/18/2022]
|
43
|
Abstract
Semaphorins are key players in the control of neural circuit development. Recent studies have uncovered several exciting and novel aspects of neuronal semaphorin signalling in various cellular processes--including neuronal polarization, topographical mapping and axon sorting--that are crucial for the assembly of functional neuronal connections. This progress is important for further understanding the many neuronal and non-neuronal functions of semaphorins and for gaining insight into their emerging roles in the perturbed neural connectivity that is observed in some diseases. This Review discusses recent advances in semaphorin research, focusing on novel aspects of neuronal semaphorin receptor regulation and previously unexplored cellular functions of semaphorins in the nervous system.
Collapse
|
44
|
Matsuo T, Rossier DA, Kan C, Rodriguez I. The wiring of Grueneberg ganglion axons is dependent on neuropilin 1. Development 2012; 139:2783-91. [PMID: 22745317 DOI: 10.1242/dev.077008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Grueneberg ganglion is a specialized olfactory sensor. In mice, its activation induces freezing behavior. The topographical map corresponding to the central projections of its sensory axons is poorly defined, as well as the guidance molecules involved in its establishment. We took a transgenic approach to label exclusively Grueneberg sensory neurons and their axonal projections. We observed that a stereotyped convergence map in a series of coalescent neuropil-rich structures is already present at birth. These structures are part of a peculiar and complex neuronal circuit, composed of a chain of glomeruli organized in a necklace pattern that entirely surrounds the trunk of the olfactory bulb. We found that the necklace chain is composed of two different sets of glomeruli: one exclusively innervated by Grueneberg ganglion neurons, the other by axonal inputs from the main olfactory neuroepithelium. Combining the transgenic Grueneberg reporter mouse with a conditional null genetic approach, we then show that the axonal wiring of Grueneberg neurons is dependent on neuropilin 1 expression. Neuropilin 1-deficient Grueneberg axonal projections lose their strict and characteristic avoidance of vomeronasal glomeruli, glomeruli that are innervated by secondary neurons expressing the repulsive guidance cue and main neuropilin 1 ligand Sema3a. Taken together, our observations represent a first step in the understanding of the circuitry and the coding strategy used by the Grueneberg system.
Collapse
Affiliation(s)
- Tomohiko Matsuo
- Department of Genetics and Evolution and National Research Center Frontiers in Genetics, University of Geneva, Geneva 4, Switzerland
| | | | | | | |
Collapse
|
45
|
Sadrian B, Cheng TW, Shull O, Gong Q. Rap1gap2 regulates axon outgrowth in olfactory sensory neurons. Mol Cell Neurosci 2012; 50:272-82. [PMID: 22732430 DOI: 10.1016/j.mcn.2012.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 12/30/2022] Open
Abstract
Olfactory sensory neurons (OSNs) extend their axons from the nasal epithelium to their odorant receptor-dependent locations in the olfactory bulb. Previous studies have identified several membrane proteins along the projection pathway, and on OSN axons themselves, which regulate this process; however, little is known about the signaling mechanisms through which these factors act. We have identified and characterized Rap1gap2, a novel small GTPase regulator, in OSNs during early postnatal mouse development. Rap1gap2 overexpression limits neurite outgrowth and branching in Neuro-2a cells, and counteracts Rap1-induced augmentation of neurite outgrowth. Rap1gap2 expression is developmentally regulated within OSNs, with high expression in early postnatal stages that ultimately drops to undetectable levels by adulthood. This temporal pattern coincides with an early postnatal plastic period of OSN innervation refinement at the OB glomerular layer. Rap1gap2 stunts OSN axon outgrowth when overexpressed in vitro, while knock-down of Rap1gap2 transcript results in a significant increase in axon length. These results indicate an important role of Rap1gap2 in OSN axon growth dynamics during early postnatal development.
Collapse
Affiliation(s)
- Benjamin Sadrian
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
46
|
IgSF8: a developmentally and functionally regulated cell adhesion molecule in olfactory sensory neuron axons and synapses. Mol Cell Neurosci 2012; 50:238-49. [PMID: 22687584 DOI: 10.1016/j.mcn.2012.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 05/10/2012] [Accepted: 05/28/2012] [Indexed: 01/08/2023] Open
Abstract
Here, we investigated an Immunoglobulin (Ig) superfamily protein IgSF8 which is abundantly expressed in olfactory sensory neuron (OSN) axons and their developing synapses. We demonstrate that expression of IgSF8 within synaptic neuropil is transitory, limited to the period of glomerular formation. Glomerular expression decreases after synaptic maturation and compartmental glomerular organization is achieved, although expression is maintained at high levels within the olfactory nerve layer (ONL). Immunoprecipitations indicate that IgSF8 interacts with tetraspanin CD9 in the olfactory bulb (OB). CD9 is a component of tetraspanin-enriched microdomains (TEMs), specialized microdomains of the plasma membrane known to regulate cell morphology, motility, invasion, fusion and signaling, in both the nervous and immune systems, as well as in tumors. In vitro, both IgSF8 and CD9 localize to puncta within axons and growth cones of OSNs, consistent with TEM localization. When the olfactory epithelium (OE) was lesioned, forcing OSN regeneration en masse, IgSF8 was once again able to be detected in OSN axon terminals as synapses were reestablished. Finally, we halted synaptic maturation within glomeruli by unilaterally blocking functional activity and found that IgSF8 did not undergo exclusion from this subcellular compartment and instead continued to be detected in adult glomeruli. These data support the hypothesis that IgSF8 facilitates OSN synapse formation.
Collapse
|
47
|
Netrin/DCC signaling guides olfactory sensory axons to their correct location in the olfactory bulb. J Neurosci 2012; 32:4440-56. [PMID: 22457493 DOI: 10.1523/jneurosci.4442-11.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Olfactory sensory neurons expressing particular olfactory receptors project to specific reproducible locations within the bulb. The axonal guidance cues that organize this precise projection pattern are only beginning to be identified. To aid in their identification and characterization, we generated a transgenic zebrafish line, OR111-7:IRES:Gal4, in which a small subset of olfactory sensory neurons is labeled. Most sensory neurons expressing the OR111-7 transgene project to a specific location within the bulb, the central zone protoglomerulus, while a smaller number project to the lateral glomerulus 1 protoglomerulus. Inhibiting Netrin/DCC (deleted in colorectal cancer) signaling perturbs the ability of OR111-7-expressing axons to enter the olfactory bulb and alters their patterns of termination within the bulb. The Netrin receptor DCC is expressed in olfactory sensory neurons around the time that they elaborate their axons, netrin1a is expressed near the medial-most margin of the olfactory bulb, and netrin1b is expressed within the ventral region of the bulb. Loss of Netrin/DCC signaling components causes some OR111-7-expressing sensory axons to wander posteriorly after exiting the olfactory pit, away from netrin-expressing areas in the bulb. OR111-7-expressing axons that enter the bulb target the central zone less precisely than normal, spreading away from netrin-expressing regions. These pathfinding errors can be corrected by the reexpression of DCC within OR111-7 transgene-expressing neurons in DCC morphant embryos. These findings implicate Netrins as the only known attractants for olfactory sensory neurons, first drawing OR111-7-expressing axons into the bulb and then into the ventromedially positioned central zone protoglomerulus.
Collapse
|
48
|
Sokolowski K, Corbin JG. Wired for behaviors: from development to function of innate limbic system circuitry. Front Mol Neurosci 2012; 5:55. [PMID: 22557946 PMCID: PMC3337482 DOI: 10.3389/fnmol.2012.00055] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/04/2012] [Indexed: 12/22/2022] Open
Abstract
The limbic system of the brain regulates a number of behaviors that are essential for the survival of all vertebrate species including humans. The limbic system predominantly controls appropriate responses to stimuli with social, emotional, or motivational salience, which includes innate behaviors such as mating, aggression, and defense. Activation of circuits regulating these innate behaviors begins in the periphery with sensory stimulation (primarily via the olfactory system in rodents), and is then processed in the brain by a set of delineated structures that primarily includes the amygdala and hypothalamus. While the basic neuroanatomy of these connections is well-established, much remains unknown about how information is processed within innate circuits and how genetic hierarchies regulate development and function of these circuits. Utilizing innovative technologies including channel rhodopsin-based circuit manipulation and genetic manipulation in rodents, recent studies have begun to answer these central questions. In this article we review the current understanding of how limbic circuits regulate sexually dimorphic behaviors and how these circuits are established and shaped during pre- and post-natal development. We also discuss how understanding developmental processes of innate circuit formation may inform behavioral alterations observed in neurodevelopmental disorders, such as autism spectrum disorders, which are characterized by limbic system dysfunction.
Collapse
Affiliation(s)
- Katie Sokolowski
- Children's National Medical Center, Center for Neuroscience Research, Children's Research Institute, Washington DC, USA
| | | |
Collapse
|
49
|
Schwarting GA, Henion TR. Regulation and function of axon guidance and adhesion molecules during olfactory map formation. J Cell Biochem 2012; 112:2663-71. [PMID: 21618591 DOI: 10.1002/jcb.23203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The olfactory system presents a practical model for investigating basic mechanisms involved in patterning connections between peripheral sensory neurons and central targets. Our understanding of olfactory map formation was advanced greatly by the discovery of cAMP signaling as an important determinant of glomerular positioning in the olfactory bulb. Additionally, several cell adhesion molecules have been identified recently that are proposed to regulate homotypic interactions among projecting axons. From these studies a model has emerged to partially explain the wiring of axons from widely dispersed neuron populations in the nasal cavity to relatively stereotyped glomerular positions. These advances have revitalized interest in axon guidance molecules in establishing olfactory topography, but also open new questions regarding how these patterns of guidance cues are established and function, and what other pathways, such as glycosylation, might be involved. This review summarizes the current state of this field and the important molecules that impact on cAMP-dependent mechanism in olfactory axon guidance.
Collapse
Affiliation(s)
- Gerald A Schwarting
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | |
Collapse
|
50
|
Imai T, Sakano H. Axon-axon interactions in neuronal circuit assembly: lessons from olfactory map formation. Eur J Neurosci 2012; 34:1647-54. [PMID: 22103421 DOI: 10.1111/j.1460-9568.2011.07817.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During the development of the nervous system, neurons often connect axons and dendrites over long distances, which are navigated by chemical cues. During the past few decades, studies on axon guidance have focused on chemical cues provided by the axonal target or intermediate target. However, recent studies have shed light on the roles and mechanisms underlying axon-axon interactions during neuronal circuit assembly. The roles of axon-axon interactions are best exemplified in recent studies on olfactory map formation in vertebrates. Pioneer-follower interaction is essential for the axonal pathfinding process. Pre-target axon sorting establishes the anterior-posterior map order. The temporal order of axonal projection is converted to dorsal-ventral topography with the aid of secreted molecules provided by early-arriving axons. An activity-dependent process to form a discrete map also depends on axon sorting. Thus, an emerging principle of olfactory map formation is the 'self-organisation' of axons rather than the 'lock and key' matching between axons and targets. In this review, we discuss how axon-axon interactions contribute to neuronal circuit assembly.
Collapse
Affiliation(s)
- Takeshi Imai
- Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | |
Collapse
|