1
|
Caprara GA, Peng AW. Mechanotransduction in mammalian sensory hair cells. Mol Cell Neurosci 2022; 120:103706. [PMID: 35218890 PMCID: PMC9177625 DOI: 10.1016/j.mcn.2022.103706] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
In the inner ear, the auditory and vestibular systems detect and translate sensory information regarding sound and balance. The sensory cells that transform mechanical input into an electrical signal in these systems are called hair cells. A specialized organelle on the apical surface of hair cells called the hair bundle detects mechanical signals. Displacement of the hair bundle causes mechanotransduction channels to open. The morphology and organization of the hair bundle, as well as the properties and characteristics of the mechanotransduction process, differ between the different hair cell types in the auditory and vestibular systems. These differences likely contribute to maximizing the transduction of specific signals in each system. This review will discuss the molecules essential for mechanotransduction and the properties of the mechanotransduction process, focusing our attention on recent data and differences between the auditory and vestibular systems.
Collapse
Affiliation(s)
- Giusy A Caprara
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Anthony W Peng
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| |
Collapse
|
2
|
Richardson GP, Petit C. Hair-Bundle Links: Genetics as the Gateway to Function. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033142. [PMID: 30617060 DOI: 10.1101/cshperspect.a033142] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Up to five distinct cell-surface specializations interconnect the stereocilia and the kinocilium of the mature hair bundle in some species: kinocilial links, tip links, top connectors, shaft connectors, and ankle links. In developing hair bundles, transient lateral links are prominent. Mutations in genes encoding proteins associated with these links cause Usher deafness/blindness syndrome or nonsyndromic (isolated) forms of human hereditary deafness, and mice with constitutive or conditional alleles of these genes have provided considerable insight into the molecular composition and function of the different links. We describe the structure of these links and review evidence showing CDH23 and PCDH15 are components of the tip, kinocilial, and transient-lateral links, that stereocilin (STRC) and protein tyrosine phosphatase (PTPRQ) are associated with top and shaft connectors, respectively, and that USH2A and ADGRV1 are associated with the ankle links. Whereas tip links are required for mechanoelectrical transduction, all link proteins play key roles in the normal development and/or the maintenance of hair bundle structure and function. Recent crystallographic and single-particle analyses of PCDH15 and CDH23 provide insight as to how the structure of tip link may contribute to the elastic element predicted to lie in series with the hair cell's mechanoelectrical transducer channel.
Collapse
Affiliation(s)
- Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Christine Petit
- Institut Pasteur, 75724 Paris Cedex 15, France.,Collège de France, 75231 Paris Cedex 05, France
| |
Collapse
|
3
|
Jaiganesh A, Narui Y, Araya-Secchi R, Sotomayor M. Beyond Cell-Cell Adhesion: Sensational Cadherins for Hearing and Balance. Cold Spring Harb Perspect Biol 2018; 10:a029280. [PMID: 28847902 PMCID: PMC6008173 DOI: 10.1101/cshperspect.a029280] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cadherins form a large family of proteins often involved in calcium-dependent cellular adhesion. Although classical members of the family can provide a physical bond between cells, a subset of special cadherins use their extracellular domains to interlink apical specializations of single epithelial sensory cells. Two of these cadherins, cadherin-23 (CDH23) and protocadherin-15 (PCDH15), form extracellular "tip link" filaments that connect apical bundles of stereocilia on hair cells essential for inner-ear mechanotransduction. As these bundles deflect in response to mechanical stimuli from sound or head movements, tip links gate hair-cell mechanosensitive channels to initiate sensory perception. Here, we review the unusual and diverse structural properties of these tip-link cadherins and the functional significance of their deafness-related missense mutations. Based on the structural features of CDH23 and PCDH15, we discuss the elasticity of tip links and models that bridge the gap between the nanomechanics of cadherins and the micromechanics of hair-cell bundles during inner-ear mechanotransduction.
Collapse
Affiliation(s)
- Avinash Jaiganesh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Yoshie Narui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Raul Araya-Secchi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
4
|
Honda A, Kita T, Seshadri SV, Misaki K, Ahmed Z, Ladbury JE, Richardson GP, Yonemura S, Ladher RK. FGFR1-mediated protocadherin-15 loading mediates cargo specificity during intraflagellar transport in inner ear hair-cell kinocilia. Proc Natl Acad Sci U S A 2018; 115:8388-8393. [PMID: 30061390 PMCID: PMC6099903 DOI: 10.1073/pnas.1719861115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The mechanosensory hair cells of the inner ear are required for hearing and balance and have a distinctive apical structure, the hair bundle, that converts mechanical stimuli into electrical signals. This structure comprises a single cilium, the kinocilium, lying adjacent to an ensemble of actin-based projections known as stereocilia. Hair bundle polarity depends on kinociliary protocadherin-15 (Pcdh15) localization. Protocadherin-15 is found only in hair-cell kinocilia, and is not localized to the primary cilia of adjacent supporting cells. Thus, Pcdh15 must be specifically targeted and trafficked into the hair-cell kinocilium. Here we show that kinocilial Pcdh15 trafficking relies on cell type-specific coupling to the generic intraflagellar transport (IFT) transport mechanism. We uncover a role for fibroblast growth factor receptor 1 (FGFR1) in loading Pcdh15 onto kinociliary transport particles in hair cells. We find that on activation, FGFR1 binds and phosphorylates Pcdh15. Moreover, we find a previously uncharacterized role for clathrin in coupling this kinocilia-specific cargo with the anterograde IFT-B complex through the adaptor, DAB2. Our results identify a modified ciliary transport pathway used for Pcdh15 transport into the cilium of the inner ear hair cell and coordinated by FGFR1 activity.
Collapse
Affiliation(s)
- Akira Honda
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, 650-0047 Kobe, Japan
| | - Tomoko Kita
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, 650-0047 Kobe, Japan
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Hospital, 606-8507 Kyoto, Japan
| | | | - Kazuyo Misaki
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies, 650-0047 Kobe, Japan
- Department of Cell Biology, Tokushima University, 770-8503 Tokushima, Japan
| | - Zamal Ahmed
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Center for Biomolecular Structure and Function, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, BN1 9QG Brighton, United Kingdom
| | - Shigenobu Yonemura
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies, 650-0047 Kobe, Japan
- Department of Cell Biology, Tokushima University, 770-8503 Tokushima, Japan
| | - Raj K Ladher
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, 650-0047 Kobe, Japan;
- National Centre for Biological Sciences, 560-065 Bangalore, India
| |
Collapse
|
5
|
Narui Y, Sotomayor M. Tuning Inner-Ear Tip-Link Affinity Through Alternatively Spliced Variants of Protocadherin-15. Biochemistry 2018; 57:1702-1710. [PMID: 29443515 DOI: 10.1021/acs.biochem.7b01075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Human hearing relies upon the tip-to-tip interaction of two nonclassical cadherins, protocadherin-15 (PCDH15) and cadherin-23 (CDH23). Together, these proteins form a filament called the tip link that connects neighboring stereocilia of mechanosensitive hair cells. As sound waves enter the cochlea, the stereocilia deflect and tension is applied to the tip link, opening nearby transduction channels. Disruption of the tip link by loud sound or calcium chelators eliminates transduction currents and illustrates that tip-link integrity is critical for mechanosensing. Tip-link remodeling after disruption is a dynamic process, which can lead to the formation of atypical complexes that incorporate alternatively spliced variants of PCDH15. These variants are categorized into six groups (N1-N6) based upon differences in the first two extracellular cadherin (EC) repeats. Here, we characterized the two N-terminal EC repeats of all PCDH15 variants (pcdh15(N1) to pcdh15(N6)) and combined these variants to test complex formation. We solved the crystal structure of a new complex composed of CDH23 EC1-2 (cdh23) and pcdh15(N2) at 2.3 Å resolution and compared it to the canonical cdh23-pcdh15(N1) complex. While there were subtle structural differences, the binding affinity between cdh23 and pcdh15(N2) is ∼6 times weaker than cdh23 and pcdh15(N1) as determined by surface plasmon resonance analysis. Steered molecular dynamics simulations predict that the unbinding force of the cdh23-pcdh15(N2) complex can be lower than the canonical tip link. Our results demonstrate that alternative heterophilic tip-link structures form stable protein-protein interactions in vitro and suggest that homophilic PCDH15-PCDH15 tip links form through the interaction of additional EC repeats.
Collapse
Affiliation(s)
- Yoshie Narui
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
6
|
Vanniya S P, Srisailapathy CRS, Kunka Mohanram R. The tip link protein Cadherin-23: From Hearing Loss to Cancer. Pharmacol Res 2018; 130:25-35. [PMID: 29421162 DOI: 10.1016/j.phrs.2018.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 11/26/2022]
Abstract
Cadherin-23 is an atypical member of the cadherin superfamily, with a distinctly long extracellular domain. It has been known to be a part of the tip links of the inner ear mechanosensory hair cells. Several studies have been carried out to understand the role of Cadherin-23 in the hearing mechanism and defects in the CDH23 have been associated with hearing impairment resulting from defective or absence of tip links. Recent studies have highlighted the role of Cadherin-23 in several pathological conditions, including cancer, suggesting the presence of several unknown functions. Initially, it was proposed that Cadherin-23 represents a yet unspecified subtype of Cadherins; however, no other proteins with similar characteristics have been identified, till date. It has a unique cytoplasmic domain that does not bear a β-catenin binding region, but has been demonstrated to mediate cell-cell adhesions. Several protein interacting partners have been identified for Cadherin-23 and the roles of their interactions in various cellular mechanisms are yet to be explored. This review summarizes the characteristics of Cadherin-23 and its roles in several pathologies including cancer.
Collapse
Affiliation(s)
- Paridhy Vanniya S
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Science, University of Madras, Taramani campus, Chennai, Tamilnadu, India
| | - C R Srikumari Srisailapathy
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Science, University of Madras, Taramani campus, Chennai, Tamilnadu, India
| | - Ramkumar Kunka Mohanram
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India.
| |
Collapse
|
7
|
Meese S, Cepeda AP, Gahlen F, Adams CM, Ficner R, Ricci AJ, Heller S, Reisinger E, Herget M. Activity-Dependent Phosphorylation by CaMKIIδ Alters the Ca 2+ Affinity of the Multi-C 2-Domain Protein Otoferlin. Front Synaptic Neurosci 2017; 9:13. [PMID: 29046633 PMCID: PMC5632675 DOI: 10.3389/fnsyn.2017.00013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/11/2017] [Indexed: 01/20/2023] Open
Abstract
Otoferlin is essential for fast Ca2+-triggered transmitter release from auditory inner hair cells (IHCs), playing key roles in synaptic vesicle release, replenishment and retrieval. Dysfunction of otoferlin results in profound prelingual deafness. Despite its crucial role in cochlear synaptic processes, mechanisms regulating otoferlin activity have not been studied to date. Here, we identified Ca2+/calmodulin-dependent serine/threonine kinase II delta (CaMKIIδ) as an otoferlin binding partner by pull-downs from chicken utricles and reassured interaction by a co-immunoprecipitation with heterologously expressed proteins in HEK cells. We confirmed the expression of CaMKIIδ in rodent IHCs by immunohistochemistry and real-time PCR. A proximity ligation assay indicates close proximity of the two proteins in rat IHCs, suggesting that otoferlin and CaMKIIδ also interact in mammalian IHCs. In vitro phosphorylation of otoferlin by CaMKIIδ revealed ten phosphorylation sites, five of which are located within C2-domains. Exchange of serines/threonines at phosphorylated sites into phosphomimetic aspartates reduces the Ca2+ affinity of the recombinant C2F domain 10-fold, and increases the Ca2+ affinity of the C2C domain. Concordantly, we show that phosphorylation of otoferlin and/or its interaction partners are enhanced upon hair cell depolarization and blocked by pharmacological CaMKII inhibition. We therefore propose that otoferlin activity is regulated by CaMKIIδ in IHCs.
Collapse
Affiliation(s)
- Sandra Meese
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, and Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Göttingen, Germany
| | - Andreia P Cepeda
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Göttingen, Germany.,Molecular Biology of Cochlear Neurotransmission Group, Department of Otorhinolaryngology, University Medical Center Göttingen, and Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Felix Gahlen
- Department of Otorhinolaryngology, Head and Neck Surgery, Ruhr-University Bochum, Bochum, Germany
| | - Christopher M Adams
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA, United States
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, and Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Anthony J Ricci
- Department of Otolaryngology, Head and Neck Surgery, Stanford School of Medicine, Stanford, CA, United States
| | - Stefan Heller
- Department of Otolaryngology, Head and Neck Surgery, Stanford School of Medicine, Stanford, CA, United States
| | - Ellen Reisinger
- Molecular Biology of Cochlear Neurotransmission Group, Department of Otorhinolaryngology, University Medical Center Göttingen, and Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Meike Herget
- Department of Otolaryngology, Head and Neck Surgery, Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
8
|
Seki Y, Miyasaka Y, Suzuki S, Wada K, Yasuda SP, Matsuoka K, Ohshiba Y, Endo K, Ishii R, Shitara H, Kitajiri SI, Nakagata N, Takebayashi H, Kikkawa Y. A novel splice site mutation of myosin VI in mice leads to stereociliary fusion caused by disruption of actin networks in the apical region of inner ear hair cells. PLoS One 2017; 12:e0183477. [PMID: 28832620 PMCID: PMC5568226 DOI: 10.1371/journal.pone.0183477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/04/2017] [Indexed: 01/03/2023] Open
Abstract
An unconventional myosin encoded by the myosin VI gene (MYO6) contributes to hearing loss in humans. Homozygous mutations of MYO6 result in nonsyndromic profound congenital hearing loss, DFNB37. Kumamoto shaker/waltzer (ksv) mice harbor spontaneous mutations, and homozygous mutants exhibit congenital defects in balance and hearing caused by fusion of the stereocilia. We identified a Myo6c.1381G>A mutation that was found to be a p.E461K mutation leading to alternative splicing errors in Myo6 mRNA in ksv mutants. An analysis of the mRNA and protein expression in animals harboring this mutation suggested that most of the abnormal alternatively spliced isoforms of MYO6 are degraded in ksv mice. In the hair cells of ksv/ksv homozygotes, the MYO6 protein levels were significantly decreased in the cytoplasm, including in the cuticular plates. MYO6 and stereociliary taper-specific proteins were mislocalized along the entire length of the stereocilia of ksv/ksv mice, thus suggesting that MYO6 attached to taper-specific proteins at the stereociliary base. Histological analysis of the cochlear hair cells showed that the stereociliary fusion in the ksv/ksv mutants, developed through fusion between stereociliary bundles, raised cuticular plate membranes in the cochlear hair cells and resulted in incorporation of the bundles into the sheaths of the cuticular plates. Interestingly, the expression of the stereociliary rootlet-specific TRIO and F-actin binding protein (TRIOBP) was altered in ksv/ksv mice. The abnormal expression of TRIOBP suggested that the rootlets in the hair cells of ksv/ksv mice had excessive growth. Hence, these data indicated that decreased MYO6 levels in ksv/ksv mutants disrupt actin networks in the apical region of hair cells, thereby maintaining the normal structure of the cuticular plates and rootlets, and additionally provided a cellular basis for stereociliary fusion in Myo6 mutants.
Collapse
Affiliation(s)
- Yuta Seki
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuki Miyasaka
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Division of Experimental Animals, Center for Promotion of Medical Research and Education, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Sari Suzuki
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kenta Wada
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Laboratory of Animal Biotechnology, Department of Bioproduction, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
| | - Shumpei P Yasuda
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kunie Matsuoka
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasuhiro Ohshiba
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kentaro Endo
- Histology Laboratory, Advanced Technical Support Department, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Rie Ishii
- Laboratory for Transgenic Technology, Animal Research Division, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Animal Research Division, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shin-Ichiro Kitajiri
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
9
|
Olt J, Allen CE, Marcotti W. In vivo physiological recording from the lateral line of juvenile zebrafish. J Physiol 2016; 594:5427-38. [PMID: 27161862 PMCID: PMC5043028 DOI: 10.1113/jp271794] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/04/2016] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Zebrafish provide a unique opportunity to investigate in vivo sensory transduction in mature hair cells. We have developed a method for studying the biophysical properties of mature hair cells from the lateral line of juvenile zebrafish. The method involves application of the anaesthetic benzocaine and intubation to maintain ventilation and oxygenation through the gills. The same approach could be used for in vivo functional studies in other sensory and non-sensory systems from juvenile and adult zebrafish. ABSTRACT Hair cells are sensory receptors responsible for transducing auditory and vestibular information into electrical signals, which are then transmitted with remarkable precision to afferent neurons. The zebrafish lateral line is emerging as an excellent in vivo model for genetic and physiological analysis of hair cells and neurons. However, research has been limited to larval stages because zebrafish become protected from the time of independent feeding under European law (from 5.2 days post-fertilization (dpf) at 28.5°C). In larval zebrafish, the functional properties of most of hair cells, as well as those of other excitable cells, are still immature. We have developed an experimental protocol to record electrophysiological properties from hair cells of the lateral line in juvenile zebrafish. We found that the anaesthetic benzocaine at 50 mg l(-1) was an effective and safe anaesthetic to use on juvenile zebrafish. Concentrations up to 300 mg l(-1) did not affect the electrical properties or synaptic vesicle release of juvenile hair cells, unlike the commonly used anaesthetic MS-222, which reduces the size of basolateral membrane K(+) currents. Additionally, we implemented a method to maintain gill movement, and as such respiration and blood oxygenation, via the intubation of > 21 dpf zebrafish. The combination of benzocaine and intubation provides an experimental platform to investigate the physiology of mature hair cells from live zebrafish. More generally, this method would allow functional studies involving live imaging and electrophysiology from juvenile and adult zebrafish.
Collapse
Affiliation(s)
- Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Claire E Allen
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
10
|
Abstract
Vestibular hair cell bundles in the inner ear each contain a single kinocilium that has the classic 9+2 axoneme microtubule structure. Kinocilia transmit movement of the overlying otoconial membrane mass and cupula to the mechanotransducing portion of the hair cell bundle. Here, we describe how force-deflection techniques can be used to measure turtle utricle kinocilium shaft and base rotational stiffness. In this approach, kinocilia are modeled as homogenous cylindrical rods and their deformation examined as both isotropic Euler-Bernoulli beams (bending only) and transversely isotropic Timoshenko beams (combined shear and bending). The measurements fit the transversely isotropic model much better with flexural rigidity EI=10,400 pN μm(2) (95% confidence interval: 7182-13,630) and shear rigidity kGA=247 pN (180-314), resulting in a shear modulus (G=1.9 kPa) that was four orders of magnitude less than Young's modulus (E=14.1 MPa), indicating that significant shear deformation occurs within deflected kinocilia. The base rotational stiffness (κ) was measured following BAPTA treatment to break the kinocilial links that bind the kinocilium to the bundle along its shaft, and κ was measured as 177±47 pN μm/rad. These parameters are important for understanding how forces arising from head movement are transduced and encoded.
Collapse
|
11
|
Indzhykulian AA, Stepanyan R, Nelina A, Spinelli KJ, Ahmed ZM, Belyantseva IA, Friedman TB, Barr-Gillespie PG, Frolenkov GI. Molecular remodeling of tip links underlies mechanosensory regeneration in auditory hair cells. PLoS Biol 2013; 11:e1001583. [PMID: 23776407 PMCID: PMC3679001 DOI: 10.1371/journal.pbio.1001583] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/02/2013] [Indexed: 11/18/2022] Open
Abstract
Sound detection by inner ear hair cells requires tip links that interconnect mechanosensory stereocilia and convey force to yet unidentified transduction channels. Current models postulate a static composition of the tip link, with protocadherin 15 (PCDH15) at the lower and cadherin 23 (CDH23) at the upper end of the link. In terminally differentiated mammalian auditory hair cells, tip links are subjected to sound-induced forces throughout an organism's life. Although hair cells can regenerate disrupted tip links and restore hearing, the molecular details of this process are unknown. We developed a novel implementation of backscatter electron scanning microscopy to visualize simultaneously immuno-gold particles and stereocilia links, both of only a few nanometers in diameter. We show that functional, mechanotransduction-mediating tip links have at least two molecular compositions, containing either PCDH15/CDH23 or PCDH15/PCDH15. During regeneration, shorter tip links containing nearly equal amounts of PCDH15 at both ends appear first. Whole-cell patch-clamp recordings demonstrate that these transient PCDH15/PCDH15 links mediate mechanotransduction currents of normal amplitude but abnormal Ca(2+)-dependent decay (adaptation). The mature PCDH15/CDH23 tip link composition is re-established later, concomitant with complete recovery of adaptation. Thus, our findings provide a molecular mechanism for regeneration and maintenance of mechanosensory function in postmitotic auditory hair cells and could help identify elusive components of the mechanotransduction machinery.
Collapse
Affiliation(s)
- Artur A. Indzhykulian
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ruben Stepanyan
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Anastasiia Nelina
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kateri J. Spinelli
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Zubair M. Ahmed
- Division of Pediatric Ophthalmology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Peter G. Barr-Gillespie
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gregory I. Frolenkov
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
12
|
Shin JB, Krey JF, Hassan A, Metlagel Z, Tauscher AN, Pagana JM, Sherman NE, Jeffery ED, Spinelli KJ, Zhao H, Wilmarth PA, Choi D, David LL, Auer M, Barr-Gillespie PG. Molecular architecture of the chick vestibular hair bundle. Nat Neurosci 2013; 16:365-74. [PMID: 23334578 PMCID: PMC3581746 DOI: 10.1038/nn.3312] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/17/2012] [Indexed: 12/31/2022]
Abstract
Hair bundles of the inner ear have a specialized structure and protein composition that underlies their sensitivity to mechanical stimulation. Using mass spectrometry, we identified and quantified >1,100 proteins, present from a few to 400,000 copies per stereocilium, from purified chick bundles; 336 of these were significantly enriched in bundles. Bundle proteins that we detected have been shown to regulate cytoskeleton structure and dynamics, energy metabolism, phospholipid synthesis and cell signaling. Three-dimensional imaging using electron tomography allowed us to count the number of actin-actin cross-linkers and actin-membrane connectors; these values compared well to those obtained from mass spectrometry. Network analysis revealed several hub proteins, including RDX (radixin) and SLC9A3R2 (NHERF2), which interact with many bundle proteins and may perform functions essential for bundle structure and function. The quantitative mass spectrometry of bundle proteins reported here establishes a framework for future characterization of dynamic processes that shape bundle structure and function.
Collapse
Affiliation(s)
- Jung-Bum Shin
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kindt KS, Finch G, Nicolson T. Kinocilia mediate mechanosensitivity in developing zebrafish hair cells. Dev Cell 2012; 23:329-41. [PMID: 22898777 DOI: 10.1016/j.devcel.2012.05.022] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/15/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
Mechanosensitive cilia are vital to signaling and development across many species. In sensory hair cells, sound and movement are transduced by apical hair bundles. Each bundle is comprised of a single primary cilium (kinocilium) flanked by multiple rows of actin-filled projections (stereocilia). Extracellular tip links that interconnect stereocilia are thought to gate mechanosensitive channels. In contrast to stereocilia, kinocilia are not critical for hair-cell mechanotransduction. However, by sequentially imaging the structure of hair bundles and mechanosensitivity of individual lateral-line hair cells in vivo, we uncovered a central role for kinocilia in mechanosensation during development. Our data demonstrate that nascent hair cells require kinocilia and kinocilial links for mechanosensitivity. Although nascent hair bundles have correct planar polarity, the polarity of their responses to mechanical stimuli is initially reversed. Later in development, a switch to correctly polarized mechanosensitivity coincides with the formation of tip links and the onset of tip-link-dependent mechanotransduction.
Collapse
Affiliation(s)
- Katie S Kindt
- Howard Hughes Medical Institute, Oregon Hearing Research Center, 3181 SW Sam Jackson Park Road, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
14
|
Sahly I, Dufour E, Schietroma C, Michel V, Bahloul A, Perfettini I, Pepermans E, Estivalet A, Carette D, Aghaie A, Ebermann I, Lelli A, Iribarne M, Hardelin JP, Weil D, Sahel JA, El-Amraoui A, Petit C. Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice. ACTA ACUST UNITED AC 2012; 199:381-99. [PMID: 23045546 PMCID: PMC3471240 DOI: 10.1083/jcb.201202012] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms underlying retinal dystrophy in Usher syndrome type I (USH1) remain unknown because mutant mice lacking any of the USH1 proteins-myosin VIIa, harmonin, cadherin-23, protocadherin-15, sans-do not display retinal degeneration. We found here that, in macaque photoreceptor cells, all USH1 proteins colocalized at membrane interfaces (i) between the inner and outer segments in rods and (ii) between the microvillus-like calyceal processes and the outer segment basolateral region in rods and cones. This pattern, conserved in humans and frogs, was mediated by the formation of an USH1 protein network, which was associated with the calyceal processes from the early embryonic stages of outer segment growth onwards. By contrast, mouse photoreceptors lacked calyceal processes and had no USH1 proteins at the inner-outer segment interface. We suggest that USH1 proteins form an adhesion belt around the basolateral region of the photoreceptor outer segment in humans, and that defects in this structure cause the retinal degeneration in USH1 patients.
Collapse
Affiliation(s)
- Iman Sahly
- Institut de la vision, Syndrome de Usher et autres Atteintes Rétino-Cochléaires, 75012 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kikkawa Y, Seki Y, Okumura K, Ohshiba Y, Miyasaka Y, Suzuki S, Ozaki M, Matsuoka K, Noguchi Y, Yonekawa H. Advantages of a mouse model for human hearing impairment. Exp Anim 2012; 61:85-98. [PMID: 22531723 DOI: 10.1538/expanim.61.85] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Hearing is a major factor in human quality of life. Mouse models are important tools for discovering the genes that are responsible for genetic hearing loss, and these models often allow the processes that regulate the onset of deafness in humans to be analyzed. Thus far, in the study of hearing and deafness, at least 400 mutants with hearing impairments have been identified in laboratory mouse populations. Analysis of through a combination of genetic, morphological, and physiological studies is revealing valuable insights into the ontogenesis, morphogenesis, and function of the mammalian ear. This review discusses the advantages of the mouse models of human hearing impairment and highlights the identification of the molecules required for stereocilia development in the inner ear hair cells by analysis of various mouse mutants.
Collapse
Affiliation(s)
- Yoshiaki Kikkawa
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Auditory and vestibular hair cell stereocilia: relationship between functionality and inner ear disease. The Journal of Laryngology & Otology 2011; 125:991-1003. [PMID: 21774850 DOI: 10.1017/s0022215111001459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The stereocilia of the inner ear are unique cellular structures which correlate anatomically with distinct cochlear functions, including mechanoelectrical transduction, cochlear amplification, adaptation, frequency selectivity and tuning. Their function is impaired by inner ear stressors, by various types of hereditary deafness, syndromic hearing loss and inner ear disease (e.g. Ménière's disease). The anatomical and physiological characteristics of stereocilia are discussed in relation to inner ear malfunctions.
Collapse
|
17
|
Spoon C, Grant W. Biomechanics of hair cell kinocilia: experimental measurement of kinocilium shaft stiffness and base rotational stiffness with Euler-Bernoulli and Timoshenko beam analysis. ACTA ACUST UNITED AC 2011; 214:862-70. [PMID: 21307074 DOI: 10.1242/jeb.051151] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vestibular hair cell bundles in the inner ear contain a single kinocilium composed of a 9+2 microtubule structure. Kinocilia play a crucial role in transmitting movement of the overlying mass, otoconial membrane or cupula to the mechanotransducing portion of the hair cell bundle. Little is known regarding the mechanical deformation properties of the kinocilium. Using a force-deflection technique, we measured two important mechanical properties of kinocilia in the utricle of a turtle, Trachemys (Pseudemys) scripta elegans. First, we measured the stiffness of kinocilia with different heights. These kinocilia were assumed to be homogenous cylindrical rods and were modeled as both isotropic Euler-Bernoulli beams and transversely isotropic Timoshenko beams. Two mechanical properties of the kinocilia were derived from the beam analysis: flexural rigidity (EI) and shear rigidity (kGA). The Timoshenko model produced a better fit to the experimental data, predicting EI=10,400 pN μm(2) and kGA=247 pN. Assuming a homogenous rod, the shear modulus (G=1.9 kPa) was four orders of magnitude less than Young's modulus (E=14.1 MPa), indicating that significant shear deformation occurs within deflected kinocilia. When analyzed as an Euler-Bernoulli beam, which neglects translational shear, EI increased linearly with kinocilium height, giving underestimates of EI for shorter kinocilia. Second, we measured the rotational stiffness of the kinocilium insertion (κ) into the hair cell's apical surface. Following BAPTA treatment to break the kinocilial links, the kinocilia remained upright, and κ was measured as 177±47 pN μm rad(-1). The mechanical parameters we quantified are important for understanding how forces arising from head movement are transduced and encoded by hair cells.
Collapse
Affiliation(s)
- Corrie Spoon
- Department of Biomedical Engineering, College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
18
|
Alagramam KN, Goodyear RJ, Geng R, Furness DN, van Aken AFJ, Marcotti W, Kros CJ, Richardson GP. Mutations in protocadherin 15 and cadherin 23 affect tip links and mechanotransduction in mammalian sensory hair cells. PLoS One 2011; 6:e19183. [PMID: 21532990 PMCID: PMC3080917 DOI: 10.1371/journal.pone.0019183] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 03/29/2011] [Indexed: 11/26/2022] Open
Abstract
Immunocytochemical studies have shown that protocadherin-15 (PCDH15) and cadherin-23 (CDH23) are associated with tip links, structures thought to gate the mechanotransducer channels of hair cells in the sensory epithelia of the inner ear. The present report describes functional and structural analyses of hair cells from Pcdh15av3J (av3J), Pcdh15av6J (av6J) and Cdh23v2J (v2J) mice. The av3J and v2J mice carry point mutations that are predicted to introduce premature stop codons in the transcripts for Pcdh15 and Cdh23, respectively, and av6J mice have an in-frame deletion predicted to remove most of the 9th cadherin ectodomain from PCDH15. Severe disruption of hair-bundle morphology is observed throughout the early-postnatal cochlea in av3J/av3J and v2J/v2J mice. In contrast, only mild-to-moderate bundle disruption is evident in the av6J/av6J mice. Hair cells from av3J/av3J mice are unaffected by aminoglycosides and fail to load with [3H]-gentamicin or FM1-43, compounds that permeate the hair cell's mechanotransducer channels. In contrast, hair cells from av6J/av6J mice load with both FM1-43 and [3H]-gentamicin, and are aminoglycoside sensitive. Transducer currents can be recorded from hair cells of all three mutants but are reduced in amplitude in all mutants and have abnormal directional sensitivity in the av3J/av3J and v2J/v2J mutants. Scanning electron microscopy of early postnatal cochlear hair cells reveals tip-link like links in av6J/av6J mice, substantially reduced numbers of links in the av3J/av3J mice and virtually none in the v2J/v2J mice. Analysis of mature vestibular hair bundles reveals an absence of tip links in the av3J/av3J and v2J/v2J mice and a reduction in av6J/av6J mice. These results therefore provide genetic evidence consistent with PCDH15 and CDH23 being part of the tip-link complex and necessary for normal mechanotransduction.
Collapse
Affiliation(s)
- Kumar N. Alagramam
- Otolaryngology Head and Neck Surgery, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Richard J. Goodyear
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Ruishuang Geng
- Otolaryngology Head and Neck Surgery, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David N. Furness
- Institute for Science and Technology in Medicine, School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | | | - Walter Marcotti
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Corné J. Kros
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
- * E-mail: (CJK); (GPR)
| | - Guy P. Richardson
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
- * E-mail: (CJK); (GPR)
| |
Collapse
|
19
|
Nayak G, Goodyear RJ, Legan PK, Noda M, Richardson GP. Evidence for multiple, developmentally regulated isoforms of Ptprq on hair cells of the inner ear. Dev Neurobiol 2011; 71:129-41. [PMID: 20715155 DOI: 10.1002/dneu.20831] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ptprq is a receptor-like inositol lipid phosphatase associated with the shaft connectors of hair bundles. Three lines of evidence suggest Ptprq is a chondroitin sulfate proteoglycan: (1) chondroitinase ABC treatment causes a loss of the ruthenium-red reactive, electron-dense particles associated with shaft connectors, (2) chondroitinase ABC causes an increase in the electrophoretic mobility of Ptprq, and (3) hair bundles in the developing inner ear of wild-type mice, but not those of Ptprq(-/-) mice, react with monoclonal antibody (mAb) 473-HD, an IgM that recognizes the dermatan-sulfate-dependent epitope DSD1. Two lines of evidence indicate that there may be multiple isoforms of Ptprq expressed in hair bundles. First, although Ptprq is expressed throughout the lifetime of most hair cells, hair bundles in the mouse and chick inner ear only express the DSD1 epitope transiently during development. Second, mAb H10, a novel mAb that recognizes an epitope common to several avian inner-ear proteins including Ptprq, only stains mature hair bundles in the extrastriolar regions of the vestibular maculae. MAb H10 does not stain mature hair bundles in the striolar regions of the maculae or in the basilar papilla, nor does it stain immature hair bundles in any organ. Three distinct, developmentally regulated isoforms of Ptprq may therefore be expressed on hair bundles of the chick inner ear. Hair bundles in the mature chick ear that do not express the H10 epitope have longer shaft connectors than those that do, indicating the presence or absence of the H10 epitope on Ptprq may modulate the spacing of stereocilia.
Collapse
Affiliation(s)
- Gowri Nayak
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Richardson GP, de Monvel JB, Petit C. How the Genetics of Deafness Illuminates Auditory Physiology. Annu Rev Physiol 2011; 73:311-34. [DOI: 10.1146/annurev-physiol-012110-142228] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guy P. Richardson
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom;
| | - Jacques Boutet de Monvel
- Unité de Génétique et Physiologie de l'Audition, Département de Neuroscience, Institut Pasteur, F-75724 Paris cedex 15, France; ,
- Inserm UMRS 587, F-75015 Paris, France
- Université Pierre & Marie Curie, F-75005 Paris, France
| | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, Département de Neuroscience, Institut Pasteur, F-75724 Paris cedex 15, France; ,
- Inserm UMRS 587, F-75015 Paris, France
- Université Pierre & Marie Curie, F-75005 Paris, France
- Collège de France, F-75005 Paris, France
| |
Collapse
|
21
|
Goodyear RJ, Forge A, Legan PK, Richardson GP. Asymmetric distribution of cadherin 23 and protocadherin 15 in the kinocilial links of avian sensory hair cells. J Comp Neurol 2011; 518:4288-97. [PMID: 20853507 PMCID: PMC3337639 DOI: 10.1002/cne.22456] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cadherin 23 and protocadherin 15 are components of tip links, fine filaments that interlink the stereocilia of hair cells and are believed to gate the hair cell's mechanotransducer channels. Tip links are aligned along the hair bundle's axis of mechanosensitivity, stretching obliquely from the top of one stereocilium to the side of an adjacent, taller stereocilium. In guinea pig auditory hair cells, tip links are polarized with cadherin 23 at the upper end and protocadherin 15 at the lower end, where the transducer channel is located. Double immunogold labeling of avian hair cells was used to study the distribution of these two proteins in kinocilial links, a link type that attaches the tallest stereocilia of the hair bundle to the kinocilium. In the kinocilial links of vestibular hair bundles, cadherin 23 localizes to the stereocilium and protocadherin 15 to the kinocilium. The two cadherins are therefore asymmetrically distributed within the kinocilial links but of a polarity that is, within those links that are aligned along the hair bundle's axis of sensitivity, reversed relative to that of tip links. Conventional transmission electron microscopy of hair bundles fixed in the presence of tannic acid reveals a distinct density in the 120–130 nm long kinocilial links that is located 35–40 nm from the kinociliary membrane. The location of this density is consistent with it being the site at which interactions occur in an in trans configuration between the opposing N-termini of homodimeric forms of cadherin 23 and protocadherin 15. J. Comp. Neurol. 518:4288–4297, 2010. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Richard J Goodyear
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | | | |
Collapse
|
22
|
Goodyear RJ, Legan PK, Christiansen JR, Xia B, Korchagina J, Gale JE, Warchol ME, Corwin JT, Richardson GP. Identification of the hair cell soma-1 antigen, HCS-1, as otoferlin. J Assoc Res Otolaryngol 2010; 11:573-86. [PMID: 20809368 PMCID: PMC2975885 DOI: 10.1007/s10162-010-0231-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 08/05/2010] [Indexed: 02/06/2023] Open
Abstract
Hair cells, the mechanosensitive receptor cells of the inner ear, are critical for our senses of hearing and balance. The small number of these receptor cells in the inner ear has impeded the identification and characterization of proteins important for hair cell function. The binding specificity of monoclonal antibodies provides a means for identifying hair cell-specific proteins and isolating them for further study. We have generated a monoclonal antibody, termed hair cell soma-1 (HCS-1), which specifically immunolabels hair cells in at least five vertebrate classes, including sharks and rays, bony fish, amphibians, birds, and mammals. We used HCS-1 to immunoprecipitate the cognate antigen and identified it as otoferlin, a member of the ferlin protein family. Mutations in otoferlin underlie DFNB9, a recessive, nonsyndromic form of prelingual deafness characterized as an auditory neuropathy. Using immunocytochemistry, we find that otoferlin is associated with the entire basolateral membrane of the hair cells and with vesicular structures distributed throughout most of the hair cell cytoplasm. Biochemical assays indicate that otoferlin is tightly associated with membranes, as it is not solubilized by alterations in calcium or salt concentrations. HCS-1 immunolabeling does not co-localize with ribeye, a constituent of synaptic ribbons, suggesting that otoferlin may, in addition to its proposed function in synaptic vesicle release, play additional roles in hair cells.
Collapse
Affiliation(s)
- Richard J Goodyear
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ebert J, Fink S, Koitschev A, Walther P, Langer MG, Lehmann-Horn F. Recovery of mechano-electrical transduction in rat cochlear hair bundles after postnatal destruction of the stereociliar cross-links. Proc Biol Sci 2010; 277:2291-9. [PMID: 20356889 PMCID: PMC2894906 DOI: 10.1098/rspb.2010.0219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mechano-electrical transduction (MET) in the stereocilia of outer hair cells (OHCs) was studied in newborn Wistar rats using scanning electron microscopy to investigate the stereociliar cross-links, Nomarski laser differential interferometry to investigate stereociliar stiffness and by testing the functionality of the MET channels by recording the entry of fluorescent dye, FM1-43, into stereocilia. Preparations were taken from rats on their day of birth (P0) or 1–4 days later (P1–P4). Hair bundles developed from the base to the apex and from the inner to outer OHC rows. MET channel responses were detected in apical coil OHCs on P1. To study the possible recovery of MET after disrupting the cross-links, the same investigations were performed after the application of Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) and allowing the treated samples to recover in culture medium for 0–20 h. We found that the structure and function were abolished by BAPTA. In P0–P1 samples, structural recovery was complete and the open probability of MET channels reached control values. In P3–P4 samples, complete recovery only occurred in OHCs of the outermost row. Although our results demonstrate an enormous recovery potential of OHCs in the postnatal period, the structural component restricts the potential for therapy in patients.
Collapse
Affiliation(s)
- J Ebert
- Institute of Applied Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Evidence for a protein tether involved in somatic touch. EMBO J 2010; 29:855-67. [PMID: 20075867 PMCID: PMC2810375 DOI: 10.1038/emboj.2009.398] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 12/02/2009] [Indexed: 11/09/2022] Open
Abstract
The gating of ion channels by mechanical force underlies the sense of touch and pain. The mode of gating of mechanosensitive ion channels in vertebrate touch receptors is unknown. Here we show that the presence of a protein link is necessary for the gating of mechanosensitive currents in all low-threshold mechanoreceptors and some nociceptors of the dorsal root ganglia (DRG). Using TEM, we demonstrate that a protein filament with of length approximately 100 nm is synthesized by sensory neurons and may link mechanosensitive ion channels in sensory neurons to the extracellular matrix. Brief treatment of sensory neurons with non-specific and site-specific endopeptidases destroys the protein tether and abolishes mechanosensitive currents in sensory neurons without affecting electrical excitability. Protease-sensitive tethers are also required for touch-receptor function in vivo. Thus, unlike the majority of nociceptors, cutaneous mechanoreceptors require a distinct protein tether to transduce mechanical stimuli.
Collapse
|
25
|
Sakaguchi H, Tokita J, Müller U, Kachar B. Tip links in hair cells: molecular composition and role in hearing loss. Curr Opin Otolaryngol Head Neck Surg 2009; 17:388-93. [PMID: 19633555 DOI: 10.1097/moo.0b013e3283303472] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Tip links are thought to be an essential element of the mechanoelectrical transduction (MET) apparatus in sensory hair cells of the inner ear. The molecules that form tip links have recently been identified, and the analysis of their properties has not only changed our view of MET but also suggests that tip-link defects can cause hearing loss. RECENT FINDINGS Structural, histological and biochemical studies show that the extracellular domains of two deafness-associated cadherins, cadherin 23 (CDH23) and protocadherin 15 (PCDH15), interact in trans to form the upper and lower part of each tip link, respectively. High-speed Ca imaging suggests that MET channels are localized exclusively at the lower end of each tip link. Biochemical and genetic studies provide evidence that defects in tip links cause hearing impairment in humans. SUMMARY The identification of the proteins that form tip links have shed new light on the molecular basis of MET and the mechanisms causing hereditary deafness, noise-induced hearing loss and presbycusis.
Collapse
Affiliation(s)
- Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
26
|
Lagziel A, Overlack N, Bernstein SL, Morell RJ, Wolfrum U, Friedman TB. Expression of cadherin 23 isoforms is not conserved: implications for a mouse model of Usher syndrome type 1D. Mol Vis 2009; 15:1843-57. [PMID: 19756182 PMCID: PMC2743805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 09/03/2009] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We compared cadherin 23 (Cdh23) mRNA and protein variants in the inner ear and retina of wild-type and mutant mice and primates to better understand the pleiotropic effects of Cdh23 mutations, and specifically to understand the absence of retinal degeneration in Cdh23 mutant mice. METHODS Semiquantitative real-time PCR was used to compare the level of expression of Cdh23 alternative transcripts in the inner ear and retina of wild-type and homozygous Cdh23(v-6J) (waltzer) mice. Antibodies generated against CDH23 isoforms were used in immunohistochemistry, immunohistology, electron microscopy, and western blot analyses of mouse and primate inner ear and retina to study the distribution of these isoforms in various cellular compartments. RESULTS Cdh23 mRNA alternative splice variants were temporally and spatially regulated in the inner ear and retina. In the mature mouse retina, CDH23 isoforms were broadly expressed in various cellular compartments of the photoreceptor layer. The wild-type CDH23_V3 protein isoform, which has PDZ binding motifs but neither extracellular domains nor a transmembrane domain, localized exclusively to the outer plexiform layer of the retina containing photoreceptor cell synapses and to the synaptic region of auditory and vestibular hair cells. The longest CDH23 protein isoform, CDH23_V1, appeared by western blotting to be the only one affected by the Cdh23(v-6J) mutation; it was expressed in the wild-type mouse inner ear, but not in the mouse retina. However, CDH23_V1 was detected in western blot analyses of monkey and human retinas. CONCLUSIONS The time- and tissue-dependent expression patterns that we have shown for Cdh23 alternative transcripts suggest developmental roles and tissue-specific functions for the various transcripts. Many of these isoforms continue to be expressed in waltzer mice. The longest CDH23 isoform (CDH23_V1), however, is not expressed in mutant mice and is necessary for normal inner ear function. The longest isoform is expressed in the retinas of primates, but not detected in the mouse retina. This species difference suggests that the mouse may not be a suitable model for studying the retinitis pigmentosa phenotype of human Usher syndrome type 1D.
Collapse
Affiliation(s)
- Ayala Lagziel
- Section on Human Genetics, Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD
| | - Nora Overlack
- Johannes Gutenberg-University, Institute of Zoology, Department of Cell and Matrix Biology, Mainz, Germany
| | - Steven L. Bernstein
- Department of Ophthalmology, University of Maryland School of Medicine, Baltimore, MD
| | - Robert J. Morell
- Section on Human Genetics, Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD
| | - Uwe Wolfrum
- Johannes Gutenberg-University, Institute of Zoology, Department of Cell and Matrix Biology, Mainz, Germany
| | - Thomas B. Friedman
- Section on Human Genetics, Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD
| |
Collapse
|
27
|
Linking genes underlying deafness to hair-bundle development and function. Nat Neurosci 2009; 12:703-10. [PMID: 19471269 PMCID: PMC3332156 DOI: 10.1038/nn.2330] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 04/07/2009] [Indexed: 11/25/2022]
Abstract
The identification of genes underlying monogenic, early-onset forms of deafness in humans has provided unprecedented insight into the molecular mechanisms of hearing in the peripheral auditory system. The molecules involved in the development and function of the cochlea eluded characterization until recently due to the paucity of the principle cell types present in cochlear hair cells, yet a genetic approach has circumvented this problem and succeeded in identifying proteins and deciphering some of the molecular complexes that operate in these cells . In combination with mouse models, the genetic approach is now revealing some of the principles underlying the development and physiology of the cochlea. The review centers on this facet of the genetics of hearing. Focusing on the hair bundle, the mechanosensory device of the sensory hair cell, we highlight recent advances in understanding the way in which the hair bundle is formed, how it operates as a mechanotransducer and how it processes sound. In particular, we discuss how this work highlights the roles played by various hair-bundle link types.
Collapse
|
28
|
Ahmed ZM, Kjellstrom S, Haywood-Watson RJL, Bush RA, Hampton LL, Battey JF, Riazuddin S, Frolenkov G, Sieving PA, Friedman TB. Double homozygous waltzer and Ames waltzer mice provide no evidence of retinal degeneration. Mol Vis 2008; 14:2227-36. [PMID: 19057657 PMCID: PMC2593751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 11/25/2008] [Indexed: 11/03/2022] Open
Abstract
PURPOSE To determine whether cadherin 23 and protocadherin 15 can substitute for one another in the maintenance of the retina and other tissues in the mouse. Does homozygosity for both v and av mutant alleles (i.e., a double homozygous mouse) cause retinal degeneration or an obvious retinal histopathology? METHODS We generated mice homozygous for both Cdh23(v-6J) and Pcdh15(av-Jfb) alleles. The retinal phenotypes of double heterozygous and double homozygous mutant mice were determined by light microscopy and electroretinography (ERG). Histology on 32 different tissues, scanning electron microscopy of organ of Corti hair cells as well as serum biochemical and hematological examinations were evaluated. RESULTS ERG waves of double heterozygous and double homozygous mice showed similar shape, growth of the amplitude with intensity, and implicit time for both rod and cone pathway mediated responses. Mice homozygous for both Cdh23(v-6J) and Pcdh15(av-Jfb) mutations showed no sign of retinitis pigmentosa or photoreceptor degeneration but, as expected, were deaf and had disorganized hair cell sensory bundles. CONCLUSIONS The simultaneous presence of homozygous mutant alleles of cadherin 23 and protocadherin 15 results only in deafness, not retinal degeneration or any other additional obvious phenotype of the major organ systems. We conclude that in the mouse cadherin 23 or protocadherin 15 appear not to compensate for one another to maintain the retina.
Collapse
Affiliation(s)
- Zubair M. Ahmed
- National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | - Sten Kjellstrom
- National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | - Ricky J. L. Haywood-Watson
- National Institute on Deafness and Other Communication Disorders, Bethesda, MD,Molecular and Cellular Biology Program, Tulane University, New Orleans, LA
| | - Ronald A. Bush
- National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | - Lori L. Hampton
- National Institute on Deafness and Other Communication Disorders, Bethesda, MD,National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - James F. Battey
- National Institute on Deafness and Other Communication Disorders, Bethesda, MD,National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Saima Riazuddin
- National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | | | - Paul A. Sieving
- National Institute on Deafness and Other Communication Disorders, Bethesda, MD,National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Thomas B. Friedman
- National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| |
Collapse
|
29
|
Three-dimensional architecture of hair-bundle linkages revealed by electron-microscopic tomography. J Assoc Res Otolaryngol 2008; 9:215-24. [PMID: 18421501 DOI: 10.1007/s10162-008-0114-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 01/23/2008] [Indexed: 10/22/2022] Open
Abstract
The senses of hearing and balance rest upon mechanoelectrical transduction by the hair bundles of hair cells in the inner ear. Located at the apical cellular surface, each hair bundle comprises several tens of stereocilia and a single kinocilium that are interconnected by extracellular proteinaceous links. Using electron-microscopic tomography of bullfrog saccular sensory epithelia, we examined the three-dimensional structures of basal links, kinociliary links, and tip links. We observed significant differences in the appearances and dimensions of these three structures and found two distinct populations of tip links suggestive of the involvement of different proteins, splice variants, or protein-protein interactions. We noted auxiliary links connecting the upper portions of tip links to the taller stereocilia. Tip links and auxiliary links show a tendency to adopt a globular conformation when disconnected from the membrane surface.
Collapse
|
30
|
|
31
|
Maerker T, van Wijk E, Overlack N, Kersten FFJ, McGee J, Goldmann T, Sehn E, Roepman R, Walsh EJ, Kremer H, Wolfrum U. A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells. Hum Mol Genet 2007; 17:71-86. [PMID: 17906286 DOI: 10.1093/hmg/ddm285] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human Usher syndrome (USH) is the most frequent cause of combined deaf-blindness. USH is genetically heterogeneous with at least 12 chromosomal loci assigned to three clinical types, USH1-3. Although these USH types exhibit similar phenotypes in human, the corresponding gene products belong to very different protein classes and families. The scaffold protein harmonin (USH1C) was shown to integrate all identified USH1 and USH2 molecules into protein networks. Here, we analyzed a protein network organized in the absence of harmonin by the scaffold proteins SANS (USH1G) and whirlin (USH2D). Immunoelectron microscopic analyses disclosed the colocalization of all network components in the apical inner segment collar and the ciliary apparatus of mammalian photoreceptor cells. In this complex, whirlin and SANS directly interact. Furthermore, SANS provides a linkage to the microtubule transport machinery, whereas whirlin may anchor USH2A isoform b and VLGR1b (very large G-protein coupled receptor 1b) via binding to their cytodomains at specific membrane domains. The long ectodomains of both transmembrane proteins extend into the gap between the adjacent membranes of the connecting cilium and the apical inner segment. Analyses of Vlgr1/del7TM mice revealed the ectodomain of VLGR1b as a component of fibrous links present in this gap. Comparative analyses of mouse and Xenopus photoreceptors demonstrated that this USH protein network is also part of the periciliary ridge complex in Xenopus. Since this structural specialization in amphibian photoreceptor cells defines a specialized membrane domain for docking and fusion of transport vesicles, we suggest a prominent role of the USH proteins in cargo shipment.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- COS Cells
- Cell Cycle Proteins
- Chlorocebus aethiops
- Cytoskeletal Proteins
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Humans
- In Vitro Techniques
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Immunoelectron
- Models, Biological
- NIH 3T3 Cells
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Photoreceptor Cells, Vertebrate/metabolism
- Photoreceptor Cells, Vertebrate/ultrastructure
- Protein Interaction Mapping
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Subcellular Fractions/metabolism
- Transfection
- Usher Syndromes/classification
- Usher Syndromes/genetics
- Usher Syndromes/metabolism
- Xenopus/genetics
- Xenopus/metabolism
Collapse
Affiliation(s)
- Tina Maerker
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, 55099 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Mechanical stimuli generated by head movements and changes in sound pressure are detected by hair cells with amazing speed and sensitivity. The mechanosensitive organelle, the hair bundle, is a highly elaborated structure of actin-based stereocilia arranged in precise rows of increasing height. Extracellular linkages contribute to its cohesion and convey forces to mechanically gated channels. Channel opening is nearly instantaneous and is followed by a process of sensory adaptation that keeps the channels poised in their most sensitive range. This process is served by motors, scaffolds, and homeostatic mechanisms. The molecular constituents of this process are rapidly being elucidated, especially by the discovery of deafness genes and antibody targets.
Collapse
Affiliation(s)
- Melissa A Vollrath
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
33
|
Sellick PM. Long term effects of BAPTA in scala media on cochlear function. Hear Res 2007; 231:13-22. [PMID: 17509783 DOI: 10.1016/j.heares.2007.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/15/2007] [Accepted: 04/11/2007] [Indexed: 11/26/2022]
Abstract
BAPTA was iontophoresed or allowed to diffuse into the scala media of the first turn of the guinea pig cochlea via pipettes inserted through the round window and basilar membrane. Cochlear action potential (CAP) thresholds for basal turn frequencies were elevated, scala media cochlear microphonic in response to a 207Hz tone were drastically reduced and the distortion products 2f1-f2 and f2-f2 in response to primaries set at 18 and 21.6kHz were eliminated or severely reduced. The animals were recovered and the above measurements repeated between 24 and 240h after the application of BAPTA. In all animals thresholds for basal turn frequencies remained elevated, and the distortion components were severely reduced. The endolymphatic potential (EP), measured through the basilar membrane on recovery, was not significantly different from the values measured before BAPTA was applied. If the effect of BAPTA, in lowering endolymphatic Ca(2+) concentration, is restricted to the destruction of tip links, as has been shown in many other preparations, then these results suggest that this effect has permanent consequences, either because the tip links failed to regenerate or because their destruction precipitated the degeneration of OHCs. These results may have a bearing on the mechanisms behind permanent threshold shift.
Collapse
Affiliation(s)
- Peter M Sellick
- The Auditory Laboratory, Discipline of Physiology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
34
|
Sellick PM, Kirk DL, Patuzzi R, Robertson D. Does BAPTA leave outer hair cell transduction channels closed? Hear Res 2007; 224:84-92. [PMID: 17222995 DOI: 10.1016/j.heares.2006.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/08/2006] [Accepted: 11/24/2006] [Indexed: 11/30/2022]
Abstract
The calcium chelator BAPTA was iontophoresed into the scala media of the second turn of the guinea pig cochlea. This produced a reduction in low frequency cochlear microphonic (CM) measured in scala media and an elevation of the cochlear action potential (CAP) threshold that lasted for the duration of the experiment. Using two pipettes, one filled with KCl and the other KCl and BAPTA (50, 20 and 5 mM) it was possible to observe the effect of passing current through one electrode while measuring the endolymphatic potential (EP) with the other. The results demonstrated that current passed via the BAPTA pipette caused a sustained increase in EP of 8.2, 12.9 and 7.8 mV in the three animals used. This increase coincided with the decrease in low frequency CM that indicated a causal connection between the two. In a second series of experiments, pipettes with larger tips were inserted into scala media in the first cochlear turn and BAPTA was allowed to diffuse from the pipette. The results confirmed the relationship between EP increase and the fall of scala media CM. One interpretation of these results is that lowering the Ca2+ concentration of endolymph with BAPTA inhibits mechano-electrical transduction in outer hair cells (OHCs) and leaves the hair cell transduction channels in a closed state, thus increasing the resistance across OHCs and increasing the EP. These findings are consistent with a model of hair cell transduction in which tension on stereo cilia opens the transduction channels.
Collapse
Affiliation(s)
- P M Sellick
- The Auditory Laboratory, Discipline of Physiology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia.
| | | | | | | |
Collapse
|
35
|
Kremer H, van Wijk E, Märker T, Wolfrum U, Roepman R. Usher syndrome: molecular links of pathogenesis, proteins and pathways. Hum Mol Genet 2006; 15 Spec No 2:R262-70. [PMID: 16987892 DOI: 10.1093/hmg/ddl205] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Usher syndrome is the most common form of deaf-blindness. The syndrome is both clinically and genetically heterogeneous, and to date, eight causative genes have been identified. The proteins encoded by these genes are part of a dynamic protein complex that is present in hair cells of the inner ear and in photoreceptor cells of the retina. The localization of the Usher proteins and the phenotype in animal models indicate that the Usher protein complex is essential in the morphogenesis of the stereocilia bundle in hair cells and in the calycal processes of photoreceptor cells. In addition, the Usher proteins are important in the synaptic processes of both cell types. The association of other proteins with the complex indicates functional links to a number of basic cell-biological processes. Prominently present is the connection to the dynamics of the actin cytoskeleton, involved in cellular morphology, cell polarity and cell-cell interactions. The Usher protein complex can also be linked to the cadherins/catenins in the adherens junction-associated protein complexes, suggesting a role in cell polarity and tissue organization. A third link can be established to the integrin transmembrane signaling network. The Usher interactome, as outlined in this review, participates in pathways common in inner ear and retina that are disrupted in the Usher syndrome.
Collapse
Affiliation(s)
- Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
Mburu P, Kikkawa Y, Townsend S, Romero R, Yonekawa H, Brown SDM. Whirlin complexes with p55 at the stereocilia tip during hair cell development. Proc Natl Acad Sci U S A 2006; 103:10973-8. [PMID: 16829577 PMCID: PMC1544159 DOI: 10.1073/pnas.0600923103] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hearing in mammals depends upon the proper development of actin-filled stereocilia at the hair cell surface in the inner ear. Whirlin, a PDZ domain-containing protein, is expressed at stereocilia tips and, by virtue of mutations in the whirlin gene, is known to play a key role in stereocilia development. We show that whirlin interacts with the membrane-associated guanylate kinase (MAGUK) protein, erythrocyte protein p55 (p55). p55 is expressed in outer hair cells in long stereocilia that make up the stereocilia bundle as well as surrounding shorter stereocilia structures. p55 interacts with protein 4.1R in erythrocytes, and we find that 4.1R is also expressed in stereocilia structures with an identical pattern to p55. Mutations in the whirlin gene (whirler) and in the myosin XVa gene (shaker2) affect stereocilia development and lead to early ablation of p55 and 4.1R labeling of stereocilia. The related MAGUK protein Ca2+-calmodulin serine kinase (CASK) is also expressed in stereocilia in both outer and inner hair cells, where it is confined to the stereocilia bundle. CASK interacts with protein 4.1N in neuronal tissue, and we find that 4.1N is expressed in stereocilia with an identical pattern to CASK. Unlike p55, CASK labeling shows little diminution of labeling in the whirler mutant and is unaffected in the shaker2 mutant. Similarly, expression of 4.1N in stereocilia is unaltered in whirler and shaker2 mutants. p55 and protein 4.1R form complexes critical for actin cytoskeletal assembly in erythrocytes, and the interaction of whirlin with p55 indicates it plays a similar role in hair cell stereocilia.
Collapse
Affiliation(s)
- Philomena Mburu
- *Medical Research Council Mammalian Genetics Unit, Harwell OX11 ORD, United Kingdom; and
| | - Yoshiaki Kikkawa
- Department of Animal Science, Tokyo Metropolitan Institute of Medical Science, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Stuart Townsend
- *Medical Research Council Mammalian Genetics Unit, Harwell OX11 ORD, United Kingdom; and
| | - Rosario Romero
- *Medical Research Council Mammalian Genetics Unit, Harwell OX11 ORD, United Kingdom; and
| | - Hiromichi Yonekawa
- Department of Animal Science, Tokyo Metropolitan Institute of Medical Science, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Steve D. M. Brown
- *Medical Research Council Mammalian Genetics Unit, Harwell OX11 ORD, United Kingdom; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Nam JH, Cotton JR, Peterson EH, Grant W. Mechanical properties and consequences of stereocilia and extracellular links in vestibular hair bundles. Biophys J 2006; 90:2786-95. [PMID: 16428277 PMCID: PMC1414556 DOI: 10.1529/biophysj.105.066027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although knowledge of the fine structure of vestibular hair bundles is increasing, the mechanical properties and functional significance of those structures remain unclear. In 2004, Bashtanov and colleagues reported the contribution of different extracellular links to bundle stiffness. We simulated Bashtanov's experimental protocol using a three-dimensional finite element bundle model with geometry measured from a typical striolar hair cell. Unlike any previous models, we separately consider two types of horizontal links: shaft links and upper lateral links. Our most important results are as follows. First, we identified the material properties required to match Bashtanov's experiment: stereocilia Young's modulus of 0.74 GPa, tip link assembly (gating spring) stiffness of 5,300 pN/microm, and the combined stiffness of shaft links binding two adjacent stereocilia of 750 approximately 2,250 pN/microm. Second, we conclude that upper lateral links are likely to have nonlinear mechanical properties: they have minimal stiffness during small bundle deformations but stiffen as the bundle deflects further. Third, we estimated the stiffness of the gating spring based on our realistic three-dimensional bundle model rather than a conventional model relying on the parallel arrangement assumption. Our predicted stiffness of the gating spring was greater than the previous estimation.
Collapse
Affiliation(s)
- Jong-Hoon Nam
- Department of Engineering Science and Mechanics, School of Biomedical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, 24061, USA
| | | | | | | |
Collapse
|
38
|
Leibovici M, Verpy E, Goodyear RJ, Zwaenepoel I, Blanchard S, Lainé S, Richardson GP, Petit C. Initial characterization of kinocilin, a protein of the hair cell kinocilium. Hear Res 2005; 203:144-53. [PMID: 15855039 DOI: 10.1016/j.heares.2004.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2004] [Accepted: 12/14/2004] [Indexed: 11/16/2022]
Abstract
A subtracted library prepared from vestibular sensory areas [Nat. Genet. 26 (2000) 51] was used to identify a 960bp murine transcript preferentially expressed in the inner ear and testis. The cDNA predicts a basic 124aa protein that does not share any significant sequence homology with known proteins. Immunofluorescence and immunoelectron microscopy revealed that the protein is located mainly in the kinocilium of sensory cells in the inner ear. The protein was thus named kinocilin. In the mouse, kinocilin is first detected in the kinocilia of vestibular and auditory hair cells at embryonic days 14.5, and 18.5, respectively. In the mature vestibular hair cells, kinocilin is still present in the kinocilium. As the auditory hair cells begin to lose the kinocilium during postnatal development, kinocilin becomes distributed in an annular pattern at the apex of these cells, where it co-localizes with the tubulin belt [Hear. Res. 42 (1989) 1]. In mature auditory hair cells, kinocilin is also present at the level of the cuticular plate, at the base of each stereocilium. In addition, as the kinocilium regresses from developing auditory hair cells, kinocilin begins to be expressed by the pillar cells and Deiters cells, that both contain prominent transcellular and apical bundles of microtubules. By contrast, kinocilin was not detected in the supporting cells in the vestibular end organs. The protein is also present in the manchette of the spermatids, a transient structure enriched in interconnected microtubules. We propose that kinocilin has a role in stabilizing dense microtubular networks or in vesicular trafficking.
Collapse
Affiliation(s)
- Michel Leibovici
- Unité de Génétique des Déficits Sensoriels, INSERM U587, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Shin JB, Adams D, Paukert M, Siba M, Sidi S, Levin M, Gillespie PG, Gründer S. Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells. Proc Natl Acad Sci U S A 2005; 102:12572-7. [PMID: 16116094 PMCID: PMC1194908 DOI: 10.1073/pnas.0502403102] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In vertebrates, the senses of hearing and balance depend on hair cells, which transduce sounds with their hair bundles, containing actin-based stereocilia and microtubule-based kinocilia. A longstanding question in auditory science is the identity of the mechanically sensitive transduction channel of hair cells, thought to be localized at the tips of their stereocilia. Experiments in zebrafish implicated the transient receptor potential (TRP) channel NOMPC (drTRPN1) in this role; TRPN1 is absent from the genomes of higher vertebrates, however, and has not been localized in hair cells. Another candidate for the transduction channel, TRPA1, apparently is required for transduction in mammalian and nonmammalian vertebrates. This discrepancy raises the question of the relative contribution of TRPN1 and TRPA1 to transduction in nonmammalian vertebrates. To address this question, we cloned the TRPN1 ortholog from the amphibian Xenopus laevis, generated an antibody against the protein, and determined the protein's cellular and subcellular localization. We found that TRPN1 is prominently located in lateral-line hair cells, auditory hair cells, and ciliated epidermal cells of developing Xenopus embryos. In ciliated epidermal cells TRPN1 staining was enriched at the tips and bases of the cilia. In saccular hair cells, TRPN1 was located prominently in the kinocilial bulb, a component of the mechanosensory hair bundles. Moreover, we observed redistribution of TRPN1 upon treatment of hair cells with calcium chelators, which disrupts the transduction apparatus. This result suggests that although TRPN1 is unlikely to be the transduction channel of stereocilia, it plays an essential role, functionally related to transduction, in the kinocilium.
Collapse
Affiliation(s)
- Jung-Bum Shin
- Oregon Hearing Research Center and Vollum Institute, Portland, OR 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Gillespie PG, Dumont RA, Kachar B. Have we found the tip link, transduction channel, and gating spring of the hair cell? Curr Opin Neurobiol 2005; 15:389-96. [PMID: 16009547 DOI: 10.1016/j.conb.2005.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 06/30/2005] [Indexed: 11/25/2022]
Abstract
Recent reports have offered candidates for key components of the apparatus used for mechanotransduction in hair cells. TRPA1 and cadherin 23 have been proposed to be the transduction channel and component of the tip link, respectively; moreover, ankyrin repeats in TRPA1 have been proposed to be the gating spring. Although these are excellent candidates for the three components, definitive experiments supporting each identification have yet to be performed.
Collapse
Affiliation(s)
- Peter G Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | |
Collapse
|
41
|
Meyer J, Preyer S, Hofmann SI, Gummer AW. Tonic mechanosensitivity of outer hair cells after loss of tip links. Hear Res 2005; 202:97-113. [PMID: 15811703 DOI: 10.1016/j.heares.2004.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 11/30/2004] [Indexed: 11/16/2022]
Abstract
Tip links - the extracellular connectors between the distal ends of adjacent stereocilia - are essential for the fast mechanical gating of hair-cell transducer channels. Transduction in the absence of tip links was investigated for outer hair cells of the adult guinea-pig cochlea by patch-clamp recordings of the whole-cell current during mechanical stimulation of the hair bundle. Loss of tip links induced by application of BAPTA led to permanently opened transducer channels, as evidenced by a constant inward current, loss of response to sinusoidal mechanical deflection of the hair bundle and block by the open-channel blocker dihydrostreptomycin (100 microM). Step deflection of the hair bundle (200-500 nm) in the inhibitory direction exponentially reduced this current to a constant value with time constant, tau(on), of the order of seconds. The current returned exponentially to the pre-stimulus level with time-constant, tau(off), also of the order of seconds. tau(on) was dependent on the inter-stimulus interval, Deltat, such that reducing this interval below about 40 s resulted in an exponentially faster response. tau(off) was independent of Deltat. Application of the calcium ionophore, ionomycin (10 microM), showed that tau(on) became independent of Deltat after saturating elevation of the intracellular Ca(2+) concentration. Flash-photolytic release of intracellular caged calcium (25-microM NP-EGTA/AM) showed that tau(on) is dependent on intracellular Ca(2+) concentration. These experiments imply an intracellular, calcium-dependent gating mechanism for hair-cell transducer channels.
Collapse
Affiliation(s)
- Jens Meyer
- Department of Otolaryngology, Section of Physiological Acoustics and Communication, University of Tübingen, Germany
| | | | | | | |
Collapse
|
42
|
Michel V, Goodyear RJ, Weil D, Marcotti W, Perfettini I, Wolfrum U, Kros CJ, Richardson GP, Petit C. Cadherin 23 is a component of the transient lateral links in the developing hair bundles of cochlear sensory cells. Dev Biol 2005; 280:281-94. [PMID: 15882573 DOI: 10.1016/j.ydbio.2005.01.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 01/10/2005] [Accepted: 01/11/2005] [Indexed: 11/21/2022]
Abstract
Cadherin 23 is required for normal development of the sensory hair bundle, and recent evidence suggests it is a component of the tip links, filamentous structures thought to gate the hair cells' mechano-electrical transducer channels. Antibodies against unique peptide epitopes were used to study the properties of cadherin 23 and its spatio-temporal expression patterns in developing cochlear hair cells. In the rat, intra- and extracellular domain epitopes are readily detected in the developing hair bundle between E18 and P5, and become progressively restricted to the distal tip of the hair bundle. From P13 onwards, these epitopes are no longer detected in hair bundles, but immunoreactivity is observed in the apical, vesicle-rich, pericuticular region of the hair cell. In the P2-P3 mouse cochlea, immunogold labeling reveals cadherin 23 is associated with kinocilial links and transient lateral links located between and within stereociliary rows. At this stage, the cadherin 23 ectodomain epitope remains on the hair bundle following BAPTA or La(3+) treatment, but is lost following exposure to the protease subtilisin. In contrast, mechano-electrical transduction is abolished by BAPTA but unaffected by subtilisin. These results suggest cadherin 23 is associated with transient lateral links that have properties distinct from those of the tip-link.
Collapse
Affiliation(s)
- Vincent Michel
- Unité de Génétique des Déficits Sensoriels, INSERM U587, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lagziel A, Ahmed ZM, Schultz JM, Morell RJ, Belyantseva IA, Friedman TB. Spatiotemporal pattern and isoforms of cadherin 23 in wild type and waltzer mice during inner ear hair cell development. Dev Biol 2005; 280:295-306. [PMID: 15882574 DOI: 10.1016/j.ydbio.2005.01.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 01/07/2005] [Accepted: 01/11/2005] [Indexed: 10/25/2022]
Abstract
Mutant alleles of the gene encoding cadherin 23 are associated with Usher syndrome type 1 (USH1D), isolated deafness (DFNB12) in humans, and deafness and circling behavior in waltzer (v) mice. Stereocilia of waltzer mice are disorganized and the kinocilia misplaced, indicating the importance of cadherin 23 for hair bundle development. Cadherin 23 was localized to developing stereocilia and proposed as a component of the tip link. We show that, during development of the inner ear, cadherin 23 is initially detected in centrosomes at E14.5, then along the length of emerging stereocilia, and later becomes concentrated at and subsequently disappears from the tops of stereocilia. In mature vestibular hair bundles, cadherin 23 is present along the kinocilium and in the region of stereocilia-kinocilium bonds, a pattern conserved in mammals, chicks, and frogs. Cadherin 23 is also present in Reissner's membrane (RM) throughout development. In homozygous v(6J) mice, a reported null allele, cadherin 23 was absent from stereocilia, but present in kinocilia, RM, and centrosomes. We reconciled these results by identifying two novel isoforms of Cdh23 unaffected in sequence and expression by the v(6J) allele. Our results suggest that Cdh23 participation in stereocilia links may be restricted to developing hair bundles.
Collapse
MESH Headings
- Alleles
- Animals
- Blotting, Northern
- Blotting, Western
- Cadherin Related Proteins
- Cadherins/biosynthesis
- Cadherins/chemistry
- Cadherins/metabolism
- Cell Adhesion
- Centrosome/metabolism
- Chick Embryo
- Cilia/metabolism
- DNA, Complementary/metabolism
- Ear, Inner/embryology
- Gene Expression Regulation, Developmental
- Hair Cells, Auditory/embryology
- HeLa Cells
- Homozygote
- Humans
- Intracellular Membranes/metabolism
- Mice
- Mice, Mutant Strains/metabolism
- Microscopy, Fluorescence
- Models, Genetic
- Mutation
- Polymerase Chain Reaction
- Protein Isoforms
- Protein Structure, Tertiary
- Time Factors
- Transfection
- Xenopus
Collapse
Affiliation(s)
- Ayala Lagziel
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | | | | | | | | | | |
Collapse
|
44
|
Goodyear RJ, Marcotti W, Kros CJ, Richardson GP. Development and properties of stereociliary link types in hair cells of the mouse cochlea. J Comp Neurol 2005; 485:75-85. [PMID: 15776440 DOI: 10.1002/cne.20513] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The hair bundles of outer hair cells in the mature mouse cochlea possess three distinct cell-surface specializations: tip links, horizontal top connectors, and tectorial membrane attachment crowns. Electron microscopy was used to study the appearance and maturation of these link types and examine additional structures transiently associated with the developing hair bundle. At embryonic day 17.5 (E17.5), the stereocilia are interconnected by fine lateral links and have punctate elements distributed over their surface. Oblique tip links are also seen at this stage. By postnatal day 2 (P2), outer hair cell bundles have a dense cell coat, but have lost many of the lateral links seen at E17.5. At P2, ankle links appear around the base of the bundle and tectorial membrane attachment crowns are seen at the stereociliary tips. Ankle links become less apparent by P9 and are completely lost by P12. The appearance of horizontal top connectors, which persist into adulthood, occurs concomitant with this loss of ankle links. Treatment with the calcium chelator BAPTA or the protease subtilisin enabled these links to be further distinguished. Ankle links are susceptible to both treatments, tip links are only sensitive to BAPTA, and tectorial membrane attachment crowns are removed by subtilisin but not BAPTA. The cell-coat material is partially sensitive to subtilisin alone, while horizontal top connectors resist both treatments. These results indicate there is a rich, rapidly changing array of different links covering the developing hair bundle that becomes progressively refined to generate the mature complement by P19.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Chelating Agents/pharmacology
- Cochlea/embryology
- Cochlea/growth & development
- Cochlea/ultrastructure
- Egtazic Acid/analogs & derivatives
- Egtazic Acid/pharmacology
- Embryo, Mammalian
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/embryology
- Hair Cells, Auditory, Inner/growth & development
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/embryology
- Hair Cells, Auditory, Outer/growth & development
- Hair Cells, Auditory, Outer/ultrastructure
- In Vitro Techniques
- Mice
- Microscopy, Electron, Scanning/methods
- Subtilisin/pharmacology
- Tectorial Membrane/drug effects
- Tectorial Membrane/growth & development
- Tectorial Membrane/ultrastructure
Collapse
Affiliation(s)
- Richard J Goodyear
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | | | | | | |
Collapse
|
45
|
|
46
|
Tsuprun V, Goodyear RJ, Richardson GP. The structure of tip links and kinocilial links in avian sensory hair bundles. Biophys J 2004; 87:4106-12. [PMID: 15377520 PMCID: PMC1304919 DOI: 10.1529/biophysj.104.049031] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 09/13/2004] [Indexed: 11/18/2022] Open
Abstract
Recent studies have indicated that the tip links and kinocilial links of sensory hair bundles in the inner ear have similar properties and share a common epitope, and that cadherin 23 may also be a component of each link type. Transmission electron microscopy was therefore used to study and compare the fine structure of the tip links and kinocilial links in avian sensory hair bundles. Tannic acid treatment revealed a thin strand, 150-200 nm long and 8-11 nm thick, present in both link types. Fourier analysis of link images showed that the strand of both link types is formed from two filaments coiled in a helix-like arrangement with an axial period of 20-25 nm, with each filament composed of globular structures that are approximately 4 nm in diameter. Differences in the radius and period of the helix-like structure may underlie the observed variation in the length of tip and kinocilial links. The similar helix-like structure of the tip links and kinocilial links is in accord with the presence of a common cell-surface antigen (TLA antigen) and similarities in the physical and chemical properties of the two link types. The spacing of the globular structures comprising each filament of the two link types is similar to the 4.3 nm center-to-center spacing reported for the globular cadherin repeat, and is consistent with the suggestion that cadherin 23 is the tip link.
Collapse
Affiliation(s)
- Vladimir Tsuprun
- Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
47
|
Bashtanov ME, Goodyear RJ, Richardson GP, Russell IJ. The mechanical properties of chick (Gallus domesticus) sensory hair bundles: relative contributions of structures sensitive to calcium chelation and subtilisin treatment. J Physiol 2004; 559:287-99. [PMID: 15218063 PMCID: PMC1665060 DOI: 10.1113/jphysiol.2004.065565] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Up to four link types are found between the stereocilia of chick vestibular hair bundles: tip links, horizontal top connectors, shaft connectors and ankle links. A fifth type, the kinocilial link, couples the hair bundle to the kinocilium. Brownian-motion microinterferometry was used to study the mechanical properties of the hair bundle and investigate changes caused by removing different links with the calcium chelator BAPTA or the protease subtilisin. Immunofluorescence with an antibody to the hair-cell antigen (HCA) and electron microscopy were used to verify destruction of the links. The root mean square displacement and the corresponding absolute stiffness of untreated hair bundles were 4.3 nm and 0.9 mN m(-1), respectively. The ratio of Brownian-motion spectra before and after treatment was calculated and processed using a single oscillator model to obtain relative stiffness. Treatment with BAPTA, which cleaves tip, kinocilial and ankle links, reduces hair-bundle stiffness by 43%, whilst subtilisin treatment, which breaks ankle links and shaft connectors, reduces stiffness by 48%. No changes were detected in viscous damping following either treatment. The time course of the subtilisin-induced stiffness change was close to that of HCA loss, but not to the disappearance of the ankle links, suggesting that shaft connectors make a more significant contribution to hair-bundle stiffness. Sequential treatments of the hair bundles with BAPTA and subtilisin show that the effects are additive. The implication of complete additivity is that structures resistant to both agents (e.g. top connectors and stereocilia pivots) are responsible for approximately 9% of the overall bundle stiffness.
Collapse
|
48
|
|
49
|
Söllner C, Rauch GJ, Siemens J, Geisler R, Schuster SC, Müller U, Nicolson T. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 2004; 428:955-9. [PMID: 15057246 DOI: 10.1038/nature02484] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 03/10/2004] [Indexed: 11/09/2022]
Abstract
Hair cells have highly organized bundles of apical projections, or stereocilia, that are deflected by sound and movement. Displacement of stereocilia stretches linkages at the tips of stereocilia that are thought to gate mechanosensory channels. To identify the molecular machinery that mediates mechanotransduction in hair cells, zebrafish mutants were identified with defects in balance and hearing. In sputnik mutants, stereociliary bundles are splayed to various degrees, with individuals displaying reduced or absent mechanotransduction. Here we show that the defects in sputnik mutants are caused by mutations in cadherin 23 (cdh23). Mutations in Cdh23 also cause deafness and vestibular defects in mice and humans, and the protein is present in hair bundles. We show that zebrafish Cdh23 protein is concentrated near the tips of hair bundles, and that tip links are absent in homozygous sputnik(tc317e) larvae. Moreover, tip links are absent in larvae carrying weak alleles of cdh23 that affect mechanotransduction but not hair bundle integrity. We conclude that Cdh23 is an essential tip link component required for hair-cell mechanotransduction.
Collapse
Affiliation(s)
- Christian Söllner
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, Müller U. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 2004; 428:950-5. [PMID: 15057245 DOI: 10.1038/nature02483] [Citation(s) in RCA: 344] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 03/09/2004] [Indexed: 11/09/2022]
Abstract
Mechanoelectrical transduction, the conversion of mechanical force into electrochemical signals, underlies a range of sensory phenomena, including touch, hearing and balance. Hair cells of the vertebrate inner ear are specialized mechanosensors that transduce mechanical forces arising from sound waves and head movement to provide our senses of hearing and balance; however, the mechanotransduction channel of hair cells and the molecules that regulate channel activity have remained elusive. One molecule that might participate in mechanoelectrical transduction is cadherin 23 (CDH23), as mutations in its gene cause deafness and age-related hearing loss. Furthermore, CDH23 is large enough to be the tip link, the extracellular filament proposed to gate the mechanotransduction channel. Here we show that antibodies against CDH23 label the tip link, and that CDH23 has biochemical properties similar to those of the tip link. Moreover, CDH23 forms a complex with myosin-1c, the only known component of the mechanotransduction apparatus, suggesting that CDH23 and myosin-1c cooperate to regulate the activity of mechanically gated ion channels in hair cells.
Collapse
Affiliation(s)
- Jan Siemens
- The Scripps Research Institute, Department of Cell Biology, Institute for Childhood and Neglected Disease, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|