1
|
Zuo X, Bai H, Qiu J, Li R, Kuang X, Zhao Y, Tuo J, Zhao Q, Zhao X, Feng X. 17β-Trenbolone modulates anxiety-related synaptic plasticity by affecting the interaction between hippocampal TACR3 and systemic testosterone in male mice. ENVIRONMENTAL RESEARCH 2025; 279:121796. [PMID: 40340005 DOI: 10.1016/j.envres.2025.121796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Anxiety Disorder is a common neurological disorder for which ubiquitous environmental endocrine disruptors may be risk factors. 17β-trenbolone (17-TB) has been recognized as a potential environmental endocrine disruptor and its neurotoxic effects have attracted attention. Tachykinin receptor 3 (TACR3), a G protein-coupled receptor involved in pubertal anxiety, and its underlying neural mechanisms remain enigmatic. Therefore, this study investigated the possible relationship between 17-TB and TACR3, testosterone (T), and synaptic plasticity. Our results showed that adolescent male Balb/c mice developed significant anxiety-like behavior after four weeks of exposure to environmentally relevant concentrations of 17-TB (100 μg/kg/day). Transcriptomic RNA-Seq results showed that 17-TB affected abnormal synaptic transmission signals in the hippocampus. Electrophysiological results showed that 17-TB reduced the activity of hippocampal dentate gyrus (DG) neurons and led to the downregulation of hippocampal TACR3 and T levels. In addition, Western blot, immunohistochemistry, ELISA, and qRT-PCR showed that 17-TB exposure led to the downregulation of key hippocampal synaptic proteins PSD95, Gephyrin, and Syn, and induced a metabolic imbalance in glutamate (Glu)/GABA signaling, affecting dopamine signaling. Interestingly, testosterone supplementation (10 mg/kg/day) was effective in ameliorating the above phenomena and alleviating anxiety-like behaviors. These results suggest that 17-TB modulates anxiety-related synaptic plasticity by regulating hippocampal TACR3 and T interactions in vivo. In conclusion, our study contributes to understanding the neurobehavioral and potential mechanistic effects of environmental 17-TB exposure in mammals. It alerts the public to the health risks of chemicals to mammals and suggests new research directions and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiang Zuo
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Huijuan Bai
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jinyu Qiu
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Ruimin Li
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xiaochen Kuang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yudi Zhao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jingyi Tuo
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qili Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Zsarnovszky A, Alymbaeva D, Jocsak G, Szabo C, Mária Schilling-Tóth B, Sandor Kiss D. Endocrine disrupting effects on morphological synaptic plasticity. Front Neuroendocrinol 2024; 75:101157. [PMID: 39393417 DOI: 10.1016/j.yfrne.2024.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Neural regulation of the homeostasis depends on healthy synaptic function. Adaptation of synaptic functions to physiological needs manifests in various forms of synaptic plasticity (SP), regulated by the normal hormonal regulatory circuits. During the past several decades, the hormonal regulation of animal and human organisms have become targets of thousands of chemicals that have the potential to act as agonists or antagonists of the endogenous hormones. As the action mechanism of these endocrine disrupting chemicals (EDCs) came into the focus of research, a growing number of studies suggest that one of the regulatory avenues of hormones, the morphological form of SP, may well be a neural mechanism affected by EDCs. The present review discusses known and potential effects of some of the best known EDCs on morphological synaptic plasticity (MSP). We highlight molecular mechanisms altered by EDCs and indicate the growing need for more research in this area of neuroendocrinology.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary; Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary.
| | - Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Csaba Szabo
- Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | | | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| |
Collapse
|
3
|
Alymbaeva D, Szabo C, Jocsak G, Bartha T, Zsarnovszky A, Kovago C, Ondrasovicova S, Kiss DS. Analysis of arsenic-modulated expression of hypothalamic estrogen receptor, thyroid receptor, and peroxisome proliferator-activated receptor gamma mRNA and simultaneous mitochondrial morphology and respiration rates in the mouse. PLoS One 2024; 19:e0303528. [PMID: 38753618 PMCID: PMC11098319 DOI: 10.1371/journal.pone.0303528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Arsenic has been identified as an environmental toxicant acting through various mechanisms, including the disruption of endocrine pathways. The present study assessed the ability of a single intraperitoneal injection of arsenic, to modify the mRNA expression levels of estrogen- and thyroid hormone receptors (ERα,β; TRα,β) and peroxisome proliferator-activated receptor gamma (PPARγ) in hypothalamic tissue homogenates of prepubertal mice in vivo. Mitochondrial respiration (MRR) was also measured, and the corresponding mitochondrial ultrastructure was analyzed. Results show that ERα,β, and TRα expression was significantly increased by arsenic, in all concentrations examined. In contrast, TRβ and PPARγ remained unaffected after arsenic injection. Arsenic-induced dose-dependent changes in state 4 mitochondrial respiration (St4). Mitochondrial morphology was affected by arsenic in that the 5 mg dose increased the size but decreased the number of mitochondria in agouti-related protein- (AgRP), while increasing the size without affecting the number of mitochondria in pro-opiomelanocortin (POMC) neurons. Arsenic also increased the size of the mitochondrial matrix per host mitochondrion. Complex analysis of dose-dependent response patterns between receptor mRNA, mitochondrial morphology, and mitochondrial respiration in the neuroendocrine hypothalamus suggests that instant arsenic effects on receptor mRNAs may not be directly reflected in St3-4 values, however, mitochondrial dynamics is affected, which predicts more pronounced effects in hypothalamus-regulated homeostatic processes after long-term arsenic exposure.
Collapse
Affiliation(s)
- Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Csaba Szabo
- Department of Animal Physiology and Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- Department of Animal Physiology and Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Physiology and Health, Institute of Physiology and Nutrition, Hungarian University of Agricultural and Life Sciences, Kaposvar, Hungary
| | - Csaba Kovago
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Silvia Ondrasovicova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
4
|
Hernández-Rojas R, Jiménez-Arellano C, de la Fuente-Granada M, Ordaz-Rosado D, García-Becerra R, Valencia-Mayoral P, Álvarez-Arellano L, Eguía-Aguilar P, Velasco-Velázquez MA, González-Arenas A. The interplay between estrogen receptor beta and protein kinase C, a crucial collaboration for medulloblastoma cell proliferation and invasion. Cell Signal 2022; 92:110246. [PMID: 35033667 DOI: 10.1016/j.cellsig.2022.110246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 11/03/2022]
Abstract
Medulloblastoma (MB) is the most common and aggressive pediatric intracranial tumor. Estrogen receptor β (ERβ) expression correlates with MB development and its phosphorylation modifies its transcriptional activity in a ligand-dependent or independent manner. Using in silico tools, we have identified several residues in ERβ protein as potential targets of protein kinases C (PKCs) α and δ. Using Daoy cells, we observed that PKCα and PKCδ associate with ERβ and induce its phosphorylation. The activation of ERβ promotes MB cells proliferation and invasion, and PKCs downregulation dysregulates these steroid receptor mediated processes. Our data suggest that these kinases may play a crucial role in the regulation of the ERβ transcriptional activity. Overexpression of both PKCα and PKCδ in MB biopsies samples supports their relevance in MB progression.
Collapse
Affiliation(s)
- Rubí Hernández-Rojas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Carolina Jiménez-Arellano
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Marisol de la Fuente-Granada
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - David Ordaz-Rosado
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Ciudad de México, México
| | - Rocío García-Becerra
- Programa de Investigación de Cáncer de Mama y Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Pedro Valencia-Mayoral
- Departamento de Patología, Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, México
| | | | - Pilar Eguía-Aguilar
- Laboratorio de Biología Molecular, Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, México
| | - Marco A Velasco-Velázquez
- Laboratorio de Farmacología Molecular, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México.
| |
Collapse
|
5
|
Zhang S, Feng X. Effect of 17β-trenbolone exposure during adolescence on the circadian rhythm in male mice. CHEMOSPHERE 2022; 288:132496. [PMID: 34627821 DOI: 10.1016/j.chemosphere.2021.132496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The suprachiasmatic nucleus (SCN) is the main control area of the clock rhythm in the mammalian brain. It drives daily behaviours and rhythms by synchronizing or suppressing the oscillations of clock genes in peripheral tissue. It is an important brain tissue structure that affects rhythm stability. SCN has high plasticity and is easily affected by the external environment. In this experiment, we found that exposure to the endocrine disruptor 17β-trenbolone (17β-TBOH) affects the rhythmic function of SCN in the brains of adolescent male balb/c mice. Behavioural results showed that exposure to 17β-TBOH disrupted daily activity-rest rhythms, reduced the robustness of endogenous rhythms, altered sleep-wake-related behaviours, and increased the stress to light stimulation. At the cellular level, exposure to 17β-TBOH decreased the c-fos immune response of SCN neurons to the large phase shift, indicating that it affected the coupling ability of SCN neurons. At the molecular level, exposure to 17β-TBOH interfered with the daily expression of hormones, changed the expression levels of the core clock genes and cell communication genes in the SCN, and affected the expression of wake-up genes in the hypothalamus. Finally, we observed the effect of exposure to 17β-TBOH on energy metabolism. The results showed that 17β-TBOH reduced the metabolic response and affected the metabolic function of the liver. This study revealed the influence of environmental endocrine disrupting chemicals (EDCs) on rhythms and metabolic disorders, and provides references for follow-up research.
Collapse
Affiliation(s)
- Shaozhi Zhang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Xizeng Feng
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Paslaru FG, Panaitescu AM, Nestian E, Iancu G, Veduta A, Paslaru AC, Pop LG, Gorgan RM. Medulloblastoma Presenting as Severe Headache during Pregnancy: A Case Report and Review of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:127. [PMID: 35056435 PMCID: PMC8778892 DOI: 10.3390/medicina58010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Headache is a common complaint during pregnancy and the puerperium. The differentiation between a benign headache and a headache that has an underlying more endangering cause, such as an intracranial tumor, can be difficult and often requires diagnostic procedures and brain imaging techniques. We report the case of an 18-year-old female patient who developed clinical symptoms-persistent headache followed by neurological deficit-in the last part of her pregnancy. A medulloblastoma (MB) was diagnosed and treated after delivery. We review 11 other cases of MB in pregnancy reported in the literature. The most common clinical manifestation at diagnosis was headache followed by neurological deficits. We discuss the association of brain tumor growth with physiological changes during pregnancy. We conclude that clinical features of intracranial tumors can be misinterpreted as pregnancy-related symptoms and should not be dismissed.
Collapse
Affiliation(s)
- Francesca Gabriela Paslaru
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (F.G.P.); (E.N.); (R.M.G.)
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Anca Maria Panaitescu
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 011132 Bucharest, Romania; (G.I.); (A.V.)
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Elena Nestian
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (F.G.P.); (E.N.); (R.M.G.)
| | - George Iancu
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 011132 Bucharest, Romania; (G.I.); (A.V.)
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alina Veduta
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 011132 Bucharest, Romania; (G.I.); (A.V.)
| | - Alexandru Catalin Paslaru
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Dr. Victor Gomoiu Children’s Clinical Hospital, 020021 Bucharest, Romania
| | - Lucian Gheorghe Pop
- Department of Obstetrics and Gynecology, National Institute of Mother and Child Care Alessandrescu-Rusescu, 020395 Bucharest, Romania;
| | - Radu Mircea Gorgan
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (F.G.P.); (E.N.); (R.M.G.)
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
7
|
Zhang S, Jiao Z, Zhao X, Sun M, Feng X. Environmental exposure to 17β-trenbolone during adolescence inhibits social interaction in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117710. [PMID: 34243057 DOI: 10.1016/j.envpol.2021.117710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/10/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Puberty is a critical period for growth and development. This period is sensitive to external stimuli, which ultimately affects the development of nerves and the formation of social behaviour. 17β-Trenbolone (17β-TBOH) is an endocrine disrupting chemicals (EDCs), which had been widely reported in aquatic vertebrates. But there is little known about the effects of 17β-TBOH on mammals, especially on adolescent neurodevelopment. In this study, we found that 17β-TBOH acute 1 h exposure can cause the activation of the dopamine circuit in pubertal male balb/c mice. At present, there is little known about the effects of puberty exposure of endocrine disruptors on these neurons/nerve pathways. Through a series of behavioural tests, exposure to 80 μgkg-1 d-1 of 17β-TBOH during adolescence increased the anxiety-like behaviour of mice and reduced the control of wheel-running behaviour and the response of social interaction behaviour. The results of TH immunofluorescence staining showed that exposure to 17β-TBOH reduced dopamine axon growth in the medial prefrontal cortex (mPFC). In addition, the results of real-time PCR showed that exposure to 17β-TBOH not only down-regulated the expression of dopamine axon development genes, but also affected the balance of excitatory/inhibitory signals in mPFC. In this research, we reveal the effects of 17β-TBOH exposure during adolescence on mammalian behaviour and neurodevelopment, and provide a reference for studying the origin of adolescent diseases.
Collapse
Affiliation(s)
- Shaozhi Zhang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Zihao Jiao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Mingzhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Xizeng Feng
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
8
|
Faheem M, Bhandari RK. Detrimental Effects of Bisphenol Compounds on Physiology and Reproduction in Fish: A Literature Review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103497. [PMID: 32950715 PMCID: PMC11491272 DOI: 10.1016/j.etap.2020.103497] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol-A is one of the most studied endocrine-chemicals, which is widely used all over the world in plastic manufacture. Because of its extensive use, it has become one of the most abundant chemical environmental pollutants, especially in aquatic environments. BPA is known to affect fish reproduction via estrogen receptors but many studies advocate that BPA affects almost all aspects of fish physiology. The possible modes of action include genomic, as well as and non-genomic mechanisms, estrogen, androgen, and thyroid receptor-mediated effects. Due to the high detrimental effects of BPA, various analogs of BPA are being used as alternatives. Recent evidence suggests that the analogs of BPA have similar modes of action, with accompanying effects on fish physiology and reproduction. In this review, a detailed comparison of effects produced by BPA and analogs and their mode of action is discussed.
Collapse
|
9
|
Valarezo Chuchuca A, Wong-Achi X, Ullauri Torres L. Medulloblastoma during pregnancy: Hormone-mediated association? Report of 2 cases. Neurochirurgie 2020; 67:140-144. [PMID: 32623061 DOI: 10.1016/j.neuchi.2020.04.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/10/2020] [Accepted: 04/05/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To report two rare cases of medulloblastoma in pregnant patients and a review of the literature. MATERIAL AND METHODS Report of patients diagnosed with medulloblastoma during their pregnancies, who were treated with surgery and adjuvant therapy. We also reviewed other cases reported in the literature and the association made with hormonal receptors. RESULTS Brain tumors in coincidence with pregnancy are unusual, and the incidence of medulloblastoma in pregnancy is still rarer. We found 8 cases of medulloblastomas diagnosed during pregnancy. Reports suggest that hormonal changes and increases in the levels of growth factors and angiogenic factors during pregnancy influence the rate of growth of brain tumors (not only medulloblastomas but also meningiomas or glial tumors). CONCLUSIONS The uniqueness of these cases is their rarity. The symptoms are usually masked by the symptoms of pregnancy. At present, there is still little evidence regarding the pathogenesis and treatment of medulloblastoma in pregnancy.
Collapse
Affiliation(s)
- A Valarezo Chuchuca
- Deparment of Neurosurgery, National Oncologic Institute "Dr. Juan Tanca Marengo" ION-SOLCA, 090505 Guayaquil, Ecuador
| | - X Wong-Achi
- Universidad Espíritu Santo, 092301 Samborondón, Ecuador.
| | - L Ullauri Torres
- Deparment of Neurosurgery, National Oncologic Institute "Dr. Juan Tanca Marengo" ION-SOLCA, 090505 Guayaquil, Ecuador
| |
Collapse
|
10
|
Endocrine Disruptors Induced Distinct Expression of Thyroid and Estrogen Receptors in Rat versus Mouse Primary Cerebellar Cell Cultures. Brain Sci 2019; 9:brainsci9120359. [PMID: 31817561 PMCID: PMC6955918 DOI: 10.3390/brainsci9120359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022] Open
Abstract
The endocrine system of animals consists of fine-tuned self-regulating mechanisms that maintain the hormonal and neuronal milieu during tissue development. This complex system can be influenced by endocrine disruptors (ED)—substances that can alter the hormonal regulation even in small concentrations. By now, thousands of substances—either synthesized by the plastic, cosmetic, agricultural, or medical industry or occurring naturally in plants or in polluted groundwater—can act as EDs. Their identification and testing has been a hard-to-solve problem; Recent indications that the ED effects may be species-specific just further complicated the determination of biological ED effects. Here we compare the effects of bisphenol-A, zearalenone, and arsenic (well-known EDs) exerted on mouse and rat neural cell cultures by measuring the differences of the ED-affected neural estrogen- and thyroid receptors. EDs alters the receptor expression in a species-like manner detectable in the magnitude as well as in the nature of biological responses. It is concluded that the interspecies differences (or species specificity) in ED effects should be considered in the future testing of ED effects.
Collapse
|
11
|
Rabaglino MB, Keller‐Wood M, Wood CE. A transcriptomics model of estrogen action in the ovine fetal hypothalamus: evidence for estrogenic effects of ICI 182,780. Physiol Rep 2018; 6:e13871. [PMID: 30221477 PMCID: PMC6139289 DOI: 10.14814/phy2.13871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 01/13/2023] Open
Abstract
Estradiol plays a critical role in stimulating the fetal hypothalamus-pituitary-adrenal axis at the end of gestation. Estradiol action is mediated through nuclear and membrane receptors that can be modulated by ICI 182,780, a pure antiestrogen compound. The objective of this study was to evaluate the transcriptomic profile of estradiol and ICI 182,780, testing the hypothesis that ICI 182,780 antagonizes the action of estradiol in the fetal hypothalamus. Chronically catheterized ovine fetuses were infused for 48 h with: vehicle (Control, n = 6), 17β-estradiol 500 μg/kg/day (Estradiol, n = 4), ICI 182,780 5 μg/kg/day (ICI 5 μg, n = 4) and ICI 182,780 5 mg/kg/day (ICI 5 mg, n = 5). Fetal hypothalami were collected afterward, and gene expression was measured through microarray. Statistical analysis of transcriptomic data was performed with Bioconductor-R and Cytoscape software. Unexpectedly, 35% and 15.5% of the upregulated differentially expressed genes (DEG) by Estradiol significantly overlapped (P < 0.05) with upregulated DEG by ICI 5 mg and ICI 5 μg, respectively. For the downregulated DEG, these percentages were 29.9% and 15.5%, respectively. There was almost no overlap for DEG following opposite directions between Estradiol and ICI ICI 5 mg or ICI 5 μg. Furthermore, most of the genes in the estrogen signaling pathway - after activation of the epidermal growth factor receptor - followed the same direction in Estradiol, ICI 5 μg or ICI 5 mg compared to Control. In conclusion, estradiol and ICI 182,780 have estrogenic genomic effects in the developing brain, suggesting the possibility that the major action of estradiol on the fetal hypothalamus involves another receptor system rather than estrogen receptors.
Collapse
Affiliation(s)
- Maria Belen Rabaglino
- Department of Physiology and Functional GenomicsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Maureen Keller‐Wood
- PharmacodynamicsCollege of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Charles E. Wood
- Department of Physiology and Functional GenomicsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
12
|
Guerriero G, Di Giaimo R, Hentati O, Abdel-Gawad FK, Trocchia S, Rabbito D, Ciarcia G. Reproductive expression dynamics and comparative toxicological perspective of beta estrogen receptor gene in the male wall lizard, Podarcis sicula Rafinesque, 1810 (Chordata: Reptilia). EUROPEAN ZOOLOGICAL JOURNAL 2018. [DOI: 10.1080/24750263.2018.1498927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- G. Guerriero
- Department of Biology, University of Naples Federico II, Naples, Italy
- Interdepartmental Research Center for Environment (I.R.C.Env.), University of Naples Federico II, Naples, Italy
| | - R. Di Giaimo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - O. Hentati
- Department of Biotechnology and Health, Institut Supérieur de Biotechnologie de Sfax, Sfax, Tunisia
| | - F. Kh. Abdel-Gawad
- Department of Biology, University of Naples Federico II, Naples, Italy
- Centre of Excellence for Advanced Sciences (CEAS), National Research Centre, Giza, Egypt
| | - S. Trocchia
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - D. Rabbito
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - G. Ciarcia
- Department of Biology, University of Naples Federico II, Naples, Italy
- Interdepartmental Research Center for Environment (I.R.C.Env.), University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Zsarnovszky A, Kiss D, Jocsak G, Nemeth G, Toth I, Horvath TL. Thyroid hormone- and estrogen receptor interactions with natural ligands and endocrine disruptors in the cerebellum. Front Neuroendocrinol 2018; 48:23-36. [PMID: 28987779 DOI: 10.1016/j.yfrne.2017.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/06/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Although the effects of phytoestrogens on brain function is widely unknown, they are often regarded as "natural" and thus as harmless. However, the effects of phytoestrogens or environmental pollutants on brain function is underestimated. Estrogen (17beta-estradiol, E2) and thyroid hormones (THs) play pivotal roles in brain development. In the mature brain, these hormones regulate metabolism on cellular and organismal levels. Thus, E2 and THs do not only regulate the energy metabolism of the entire organism, but simultaneously also regulate important homeostatic parameters of neurons and glia in the CNS. It is, therefore, obvious that the mechanisms through which these hormones exert their effects are pleiotropic and include both intra- and intercellular actions. These hormonal mechanisms are versatile, and the experimental investigation of simultaneous hormone-induced mechanisms is technically challenging. In addition, the normal physiological settings of metabolic parameters depend on a plethora of interactions of the steroid hormones. In this review, we discuss conceptual and experimental aspects of the gonadal and thyroid hormones as they relate to in vitro models of the cerebellum.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Animal Physiology and Animal Health, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100 Gödöllő, Hungary; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - David Kiss
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Gergely Jocsak
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Gabor Nemeth
- Department of Obstetrics and Gynecology, University of Szeged, School of Medicine, Szeged, Hungary
| | - Istvan Toth
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Tamas L Horvath
- Department of Animal Physiology and Animal Health, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100 Gödöllő, Hungary; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Departments of Anatomy and Histology, University of Veterinary Medicine, Budapest 1078, Hungary.
| |
Collapse
|
14
|
Belcher SM, Burton CC, Cookman CJ, Kirby M, Miranda GL, Saeed FO, Wray KE. Estrogen and soy isoflavonoids decrease sensitivity of medulloblastoma and central nervous system primitive neuroectodermal tumor cells to chemotherapeutic cytotoxicity. BMC Pharmacol Toxicol 2017; 18:63. [PMID: 28877739 PMCID: PMC5585986 DOI: 10.1186/s40360-017-0160-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 06/22/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Our previous studies demonstrated that growth and migration of medulloblastoma (MB), the most common malignant brain tumor in children, are stimulated by 17β-estradiol. The growth stimulating effects of estrogens are mediated through ERβ and insulin-like growth factor 1 signaling to inhibit caspase 3 activity and reduce tumor cell apoptosis. The objective of this study was to determine whether estrogens decreased sensitivity of MB cells to cytotoxic actions of chemotherapeutic drugs. METHODS Using in vitro cell viability and clonogenic survival assays, concentration response analysis was used to determine whether the cytoprotective effects of estradiol protected human D283 Med MB cells from the cytotoxic actions of the MB chemotherapeutic drugs cisplatin, vincristine, or lomustine. Additional experiments were done to determine whether the ER antagonist fulvestrant or the selective ER modulator tamoxifen blocked the cytoprotective actions of estradiol. ER-selective agonists and antagonists were used to define receptor specificity, and the impacts of the soy-derived phytoestrogens genistein, daidzein, and s-equol on chemosensitivity were evaluated. RESULTS In D283 Med cells the presence of 10 nM estradiol increased the IC50 for cisplatin-induced inhibition of viability 2-fold from ~5 μM to >10 μM. In clonogenic survival assays estradiol decreased the chemosensitivity of D283 Med cells exposed to cisplatin, lomustine and vincristine. The ERβ selective agonist DPN and low physiological concentrations of the soy-derived phytoestrogens genistein, daidzein, and s-equol also decreased sensitivity of D283 Med cells to cisplatin. The protective effects of estradiol were blocked by the antiestrogens 4-hydroxytamoxifen, fulvestrant (ICI 182,780) and the ERβ selective antagonist PPHTP. Whereas estradiol also decreased chemosensitivity of PFSK-1 cells, estradiol increased sensitivity of Daoy cell to cisplatin, suggesting that ERβ mediated effects may vary in different MB celltypes. CONCLUSIONS These findings demonstrate that E2 and environmental estrogens decrease sensitivity of MB to cytotoxic chemotherapeutics, and that ERβ selective and non-selective inhibition of estrogen receptor activity blocks these cytoprotective actions. These findings support the therapeutic potential of antiestrogen adjuvant therapies for MB, and findings that soy phytoestrogens also decrease sensitivity of MB cells to cytotoxic chemotherapeutics suggest that decreased exposure to environmental estrogens may benefit MB patient responses to chemotherapy.
Collapse
Affiliation(s)
- Scott M. Belcher
- Department of Biological Science and Center for Human Health and the Environment, North Carolina State University, Raleigh, NC USA
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, OH USA
- Department of Pharmacology and Cell Biophysics, Summer Undergraduate Research Program University of Cincinnati, Cincinnati, OH USA
- Department of Pharmacology and Cell Biophysics, Molecular, Cellular and Biochemical Pharmacology PhD Graduate Program, University of Cincinnati, Cincinnati, OH USA
| | - Caleb C. Burton
- Department of Pharmacology and Cell Biophysics, Summer Undergraduate Research Program University of Cincinnati, Cincinnati, OH USA
| | - Clifford J. Cookman
- Department of Pharmacology and Cell Biophysics, Molecular, Cellular and Biochemical Pharmacology PhD Graduate Program, University of Cincinnati, Cincinnati, OH USA
| | - Michelle Kirby
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, OH USA
| | - Gabriel L. Miranda
- Department of Pharmacology and Cell Biophysics, Summer Undergraduate Research Program University of Cincinnati, Cincinnati, OH USA
| | - Fatima O. Saeed
- Department of Pharmacology and Cell Biophysics, Molecular, Cellular and Biochemical Pharmacology Masters in Safety Pharmacology Training Program, University of Cincinnati, Cincinnati, OH USA
| | - Kathleen E. Wray
- Department of Pharmacology and Cell Biophysics, Summer Undergraduate Research Program University of Cincinnati, Cincinnati, OH USA
| |
Collapse
|
15
|
Jean A, Trouillet AC, Andrianarivelo NA, Mhaouty-Kodja S, Hardin-Pouzet H. Phospho-ERK and sex steroids in the mPOA: involvement in male mouse sexual behaviour. J Endocrinol 2017; 233:257-267. [PMID: 28356400 DOI: 10.1530/joe-17-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/20/2022]
Abstract
This paper aimed to investigate the mechanisms triggering ERK phosphorylation and its functional role in male sexual behaviour. ERK1/2-phosphorylated form was detected in the medial preoptic area of the hypothalamus (mPOA) during the sexual stimulation of naive and sexually experienced males who were killed 5 min after the first intromission. This mating-induced ERK phosphorylation was increased in sexually experienced males compared to that in naive mice. The functional role of the ERK1/2 pathway activation during sexual behaviour was explored with the administration of a MEK inhibitor, SL-327 (30 mg/kg, i.p.), 45 min before the contact with a receptive female. Inhibition of ERK phosphorylation was found to decrease sexual motivation in both naive and experienced males without altering their copulatory ability. The mechanisms potentially involved in this rapid ERK1/2 pathway activation were specified ex vivo on hypothalamic slices. A thirty-minute incubation with 100 nM of testosterone (T), dihydrotestosterone (DHT) or oestradiol (E2) led to ERK phosphorylation. No changes were observed after incubation with testosterone 3-(O-carboxymethyl)oxime-BSA (T-BSA), an impermeable to the plasma membrane form of testosterone. All these results indicate that ERK phosphorylation within the mPOA could be a key player in the motivational signalling pathway and considered as an index of sexual motivation. They also demonstrate the involvement of oestrogen receptor (ER) and androgen receptor (AR) transduction pathways in steroid-dependent ERK activation.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne UniversitésUPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, Paris, France
| | - Anne-Charlotte Trouillet
- Sorbonne UniversitésUPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, Paris, France
| | - Njiva Andry Andrianarivelo
- Sorbonne UniversitésUPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne UniversitésUPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne UniversitésUPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
16
|
Comparison of Individual and Combined Effects of Four Endocrine Disruptors on Estrogen Receptor Beta Transcription in Cerebellar Cell Culture: The Modulatory Role of Estradiol and Triiodo-Thyronine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060619. [PMID: 27338438 PMCID: PMC4924076 DOI: 10.3390/ijerph13060619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 01/31/2023]
Abstract
Background: Humans and animals are continuously exposed to a number of environmental substances that act as endocrine disruptors (EDs). While a growing body of evidence is available to prove their adverse health effects, very little is known about the consequences of simultaneous exposure to a combination of such chemicals; Methods: Here, we used an in vitro model to demonstrate how exposure to bisphenol A, zearalenone, arsenic, and 4-methylbenzylidene camphor, alone or in combination, affect estrogen receptor β (ERβ) mRNA expression in primary cerebellar cell cultures. Additionally, we also show the modulatory role of intrinsic biological factors, such as estradiol (E2), triiodo-thyronine (T3), and glial cells, as potential effect modulators; Results: Results show a wide diversity in ED effects on ERβ mRNA expression, and that the magnitude of these ED effects highly depends on the presence or absence of E2, T3, and glial cells; Conclusion: The observed potency of the EDs to influence ERβ mRNA expression, and the modulatory role of E2, T3, and the glia suggests that environmental ED effects may be masked as long as the hormonal milieu is physiological, but may tend to turn additive or superadditive in case of hormone deficiency.
Collapse
|
17
|
Razavi S, Razavi MR, Ahmadi N, Kazemi M. Estrogen treatment enhances neurogenic differentiation of human adipose derived stem cells in vitro. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:799-804. [PMID: 26557969 PMCID: PMC4633463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Estrogen is a sexual hormone that has prominent effects on reproductive and non-reproductive tissues. The aim of this study is to evaluate the effects of estrogen on the proliferation and neural differentiation of human adipose derived stem cells (ADSCs) during neurogenic differentiation. MATERIALS AND METHODS Isolated human ADSCs were trans-differentiated in neural induction medium containing neurobasal medium, N2 and B27 with or without 17β-estradiol (E2) treatment. Proliferation rate and neural differentiation of human ADSCs were assessed using MTT assay, immunostaining and real time RT- PCR analysis, respectively. RESULTS Analysis of data show that estradiol treatment can significantly increase proliferation rate of differentiated cells (P<0.05). Immunocytochemical and real time RT-PCR analysis revealed that the expression of precursor and mature neuronal markers (nestin and MAP2) was significantly higher in the E2 treated cell cultures when compared to the untreated cell cultures (P<0.05). CONCLUSION According to our findings, estrogen can promote proliferation and neuronal differentiation of human ADSCs.
Collapse
Affiliation(s)
- Shahnaz Razavi
- Department of Anatomical Sciences and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author: Shahnaz Razavi. Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. Tel: +98-311-7922455; Fax: +98-311-7922517;
| | | | - Nafiseh Ahmadi
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Kazemi
- Department of Genetic, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Zhang Y, Huang Y, Liu X, Wang G, Wang X, Wang Y. Estrogen suppresses epileptiform activity by enhancing Kv4.2-mediated transient outward potassium currents in primary hippocampal neurons. Int J Mol Med 2015; 36:865-72. [PMID: 26179130 DOI: 10.3892/ijmm.2015.2287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/08/2015] [Indexed: 11/05/2022] Open
Abstract
Catamenial epilepsy is a common phenomenon in female epileptic patients that is, in part, influenced by the 17-β-estradiol level during the menstrual cycle, which modulates the strength of the epileptic seizures. However, the underlying mechanism(s) for catamenial epilepsy remains unknown. In the present study, the effect of 17‑β‑estradiol on modulating epileptiform activities was investigated in cultured hippocampal neurons by focusing on the transient outward potassium current. Using the patch clamp technique, 17‑β‑estradiol was demonstrated to have a dose‑dependent U‑shape effect on epileptiform bursting activities in cultured hippocampal neurons; only the low dose (~0.1 ng/ml) of 17‑β‑estradiol had a suppressive effect on the epileptiform activities. The blockade effect of the low dose 17‑β‑estradiol could be suppressed by phrixotoxin2 (PaTx2), a selective channel blocker for voltage‑gated potassium channel type 4.2 (Kv4.2), which mediates the transient outward potassium current. Furthermore, the 17‑β‑estradiol bell‑shape‑like dose‑dependently enhanced the transient outward potassium current, which was inhibited by the estrogen receptor antagonist ICI 182,780. In conclusion, these results indicate that reduced activation of the transient outward potassium current by a high (or none) 17‑β‑estradiol level may enhance the epileptiform bursting activities in neurons, which may be one of the triggering causes for catamenial epilepsy, and therefore, maintaining a certain low 17‑β‑estradiol level may aid in the control of catamenial epilepsy.
Collapse
Affiliation(s)
- Yuwen Zhang
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| | - Yian Huang
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| | - Xu Liu
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| | - Guoxiang Wang
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| | - Yun Wang
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
19
|
Cookman CJ, Belcher SM. Estrogen Receptor-β Up-Regulates IGF1R Expression and Activity to Inhibit Apoptosis and Increase Growth of Medulloblastoma. Endocrinology 2015; 156:2395-408. [PMID: 25885794 PMCID: PMC4475721 DOI: 10.1210/en.2015-1141] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Medulloblastoma (Med) is the most common malignant brain tumor in children. The role of ESR2 [estrogen receptor (ER)-β] in promoting Med growth was comprehensively examined in three in vivo models and human cell lines. In a novel Med ERβ-null knockout model developed by crossing Esr2(-/-) mice with cerebellar granule cell precursor specific Ptch1 conditional knockout mice, the tumor growth rate was significantly decreased in males and females. The absence of Esr2 resulted in increased apoptosis, decreased B-cell lymphoma 2 (BCL2), and IGF-1 receptor (IGF1R) expression, and decreased levels of active MAPKs (ERK1/2) and protein kinase B (AKT). Treatment of Med in Ptch1(+/-) Trp53(-/-) mice with the antiestrogen chemotherapeutic drug Faslodex significantly increased symptom-free survival, which was associated with increased apoptosis and decreased BCL2 and IGF1R expression and signaling. Similar effects were also observed in nude mice bearing D283Med xenografts. In vitro studies in human D283Med cells metabolically stressed by glutamine withdrawal found that 17β-estradiol and the ERβ selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile dose dependently protected Med cells from caspase-3-dependent cell death. Those effects were associated with increased phosphorylation of IGF1R, long-term increases in ERK1/2 and AKT signaling, and increased expression of IGF-1, IGF1R, and BCL2. Results of pharmacological experiments revealed that the cytoprotective actions of estradiol were dependent on ERβ and IGF1R receptor tyrosine kinase activity and independent of ERα and G protein-coupled estrogen receptor 1 (G protein coupled receptor 30). The presented results demonstrate that estrogen promotes Med growth through ERβ-mediated increases in IGF1R expression and activity, which induce cytoprotective mechanisms that decrease apoptosis.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Caspase 3/metabolism
- Cell Line, Tumor
- Estradiol/pharmacology
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Insulin-Like Growth Factor I/drug effects
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Insulin-Like Growth Factor II/drug effects
- Insulin-Like Growth Factor II/genetics
- Insulin-Like Growth Factor II/metabolism
- Male
- Medulloblastoma/genetics
- Medulloblastoma/metabolism
- Mice
- Mice, Knockout
- Patched Receptors
- Patched-1 Receptor
- Proto-Oncogene Proteins c-bcl-2/drug effects
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptor, IGF Type 1/drug effects
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptors, Cell Surface/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Suppressor Protein p53/genetics
- Up-Regulation/drug effects
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Clifford J Cookman
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0575
| | - Scott M Belcher
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0575
| |
Collapse
|
20
|
Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol Rev 2015; 67:505-40. [PMID: 26023144 PMCID: PMC4485017 DOI: 10.1124/pr.114.009712] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| | - Jeffrey B Arterburn
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| |
Collapse
|
21
|
Kumar A, Bean LA, Rani A, Jackson T, Foster TC. Contribution of estrogen receptor subtypes, ERα, ERβ, and GPER1 in rapid estradiol-mediated enhancement of hippocampal synaptic transmission in mice. Hippocampus 2015; 25:1556-66. [PMID: 25980457 DOI: 10.1002/hipo.22475] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2015] [Indexed: 01/07/2023]
Abstract
Estradiol rapidly modulates hippocampal synaptic plasticity and synaptic transmission; however, the contribution of the various estrogen receptors to rapid changes in synaptic function is unclear. This study examined the effect of estrogen receptor selective agonists on hippocampal synaptic transmission in slices obtained from 3-5-month-old wild type (WT), estrogen receptor alpha (ERαKO), and beta (ERβKO) knockout female ovariectomized mice. Hippocampal slices were prepared 10-16 days following ovariectomy and extracellular excitatory postsynaptic field potentials were recorded from CA3-CA1 synaptic contacts before and following application of 17β-estradiol-3-benzoate (EB, 100 pM), the G-protein estrogen receptor 1 (GPER1) agonist G1 (100 nM), the ERα selective agonist propyl pyrazole triol (PPT, 100 nM), or the ERβ selective agonist diarylpropionitrile (DPN, 1 µM). Across all groups, EB and G1 increased the synaptic response to a similar extent. Furthermore, prior G1 application occluded the EB-mediated enhancement of the synaptic response and the GPER1 antagonist, G15 (100 nM), inhibited the enhancement of the synaptic response induced by EB application. We confirmed that the ERα and ERβ selective agonists (PPT and DPN) had effects on synaptic responses specific to animals that expressed the relevant receptor; however, PPT and DPN produced only a small increase in synaptic transmission relative to EB or the GPER1 agonist. We demonstrate that the increase in synaptic transmission is blocked by inhibition of extracellular signal-regulated kinase (ERK) activity. Furthermore, EB was able to increase ERK activity regardless of genotype. These results suggest that ERK activation and enhancement of synaptic transmission by EB involves multiple estrogen receptor subtypes.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Linda A Bean
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Travis Jackson
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
22
|
Wijayagunawardane MPB, Hambruch N, Haeger JD, Pfarrer C. Effect of epidermal growth factor (EGF) on the phosphorylation of mitogen-activated protein kinase (MAPK) in the bovine oviduct in vitro: Alteration by heat stress. J Reprod Dev 2015; 61:383-9. [PMID: 26050642 PMCID: PMC4623143 DOI: 10.1262/jrd.2014-061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidermal growth factor (EGF) has been shown to be involved in control of the oviductal microenvironment. To elucidate the potential mechanisms responsible for the detrimental effect of heat stress and to identify the relation with the endocrine status, the effects of EGF on the level of phosphorylated mitogen-activated-protein kinase (MAPK) and proliferation of bovine oviductal epithelial cells (OECs) exposed to different cyclic ovarian steroidal environments (luteal phase (LP), follicular phase (FP) and postovulatory phase (PO)) and temperatures (mild heat stress (40 C) and severe heat stress (43 C)) were investigated. Western blot was performed to evaluate phosphorylated MAPK, while proliferation was analyzed by MTT assay. Stimulation of OECs with EGF alone or with EGF in the PO and FP environments significantly increased the amount of phosphorylated MAPK, with MAPK 44 phosphorylation being highest during exposure to PO conditions. These effects were not observed in the
LP. Heat treatment completely blocked effects of EGF on phosphorylated MAPK. Additionally, severe heat stress led to a significantly lower basal level of phosphorylated MAPK. PD98059 (MAPK inhibitor) completely abolished EGF-stimulated MAPK phosphorylation and OECs proliferation. Overall the results indicate that EGF has the potential to increase the amount of phosphorylated MAPK in OECs and therefore could be involved in regulation of the bovine oviductal microenvironment. However, these regulatory mechanisms may be compromised in the presence of heat stress (high ambient temperature), leading to low fertility rates and impaired embryo survival.
Collapse
|
23
|
Lagarde F, Beausoleil C, Belcher SM, Belzunces LP, Emond C, Guerbet M, Rousselle C. Non-monotonic dose-response relationships and endocrine disruptors: a qualitative method of assessment. Environ Health 2015; 14:13. [PMID: 25971433 PMCID: PMC4429934 DOI: 10.1186/1476-069x-14-13] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/16/2015] [Indexed: 05/17/2023]
Abstract
Experimental studies investigating the effects of endocrine disruptors frequently identify potential unconventional dose-response relationships called non-monotonic dose-response (NMDR) relationships. Standardized approaches for investigating NMDR relationships in a risk assessment context are missing. The aim of this work was to develop criteria for assessing the strength of NMDR relationships. A literature search was conducted to identify published studies that report NMDR relationships with endocrine disruptors. Fifty-one experimental studies that investigated various effects associated with endocrine disruption elicited by many substances were selected. Scoring criteria were applied by adaptation of an approach previously used for identification of hormesis-type dose-response relationships. Out of the 148 NMDR relationships analyzed, 82 were categorized with this method as having a "moderate" to "high" level of plausibility for various effects. Numerous modes of action described in the literature can explain such phenomena. NMDR can arise from numerous molecular mechanisms such as opposing effects induced by multiple receptors differing by their affinity, receptor desensitization, negative feedback with increasing dose, or dose-dependent metabolism modulation. A stepwise decision tree was developed as a tool to standardize the analysis of NMDR relationships observed in the literature with the final aim to use these results in a Risk Assessment purpose. This decision tree was finally applied to studies focused on the effects of bisphenol A.
Collapse
Affiliation(s)
- Fabien Lagarde
- />Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Claire Beausoleil
- />Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Scott M Belcher
- />Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH USA
| | - Luc P Belzunces
- />INRA, Laboratoire de Toxicologie Environnementale, UR 406 A&E, CS 40509, 84914 Avignon Cedex 9, France
| | | | - Michel Guerbet
- />Université de Rouen, UFR Médecine Pharmacie, Laboratoire de Toxicologie, UR 4651 ABTE, 76183 Rouen Cedex 1, France
| | - Christophe Rousselle
- />Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| |
Collapse
|
24
|
Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:138-44. [PMID: 25810887 PMCID: PMC4366724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 08/03/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Estrogen (E2) has neuroprotective effects on blood-brain-barrier (BBB) after traumatic brain injury (TBI). In order to investigate the roles of estrogen receptors (ERs) in these effects, ER-α antagonist (MPP) and, ER-β antagonist (PHTPP), or non-selective estrogen receptors antagonist (ICI 182780) were administered. MATERIALS AND METHODS Ovariectomized rats were divided into 10 groups, as follows: Sham, TBI, E2, oil, MPP+E2, PHTPP+E2, MPP+PHTPP+E2, ICI+E2, MPP, and DMSO. E2 (33.3 µg/Kg) or oil were administered 30 min after TBI. 1 dose (150 µg/Kg) of each of MPP, PHTPP, and (4 mg/kg) ICI182780 was injected two times, 24 hr apart, before TBI and estrogen treatment. BBB disruption (Evans blue content) and brain edema (brain water content) evaluated 5 hr and 24 hr after the TBI were evaluated, respectively. RESULTS The results showed that E2 reduced brain edema after TBI compared to vehicle (P<0.01). The brain edema in the MPP+E2 and PHTPP+E2 groups decreased compared to the vehicle (P<0.001). There was no significant difference in MPP+PHTPP+E2 and ICI+E2 compared to TBI. This parameter in MPP was similar to vehicle. Evans blue content in E2 group was lower than vehicle (P<0.05). The inhibitory effect of E2 on Evans blue was not reduced by MPP+E2 and PHTPP+E2 groups, but decreased by treatment with MPP+PHTPP or ICI. MPP had no effect on Evans blue content. CONCLUSION A combined administration of MPP and PHTPP or ICI inhibited the E2-induced decrease in brain edema and BBB disruption; this may suggest that these effects were mediated via both receptors.
Collapse
|
25
|
Classical nuclear hormone receptor activity as a mediator of complex concentration response relationships for endocrine active compounds. Curr Opin Pharmacol 2014; 19:112-9. [PMID: 25299165 DOI: 10.1016/j.coph.2014.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/08/2014] [Accepted: 09/16/2014] [Indexed: 02/07/2023]
Abstract
Nonmonotonic concentration response relationships are frequently observed for endocrine active ligands that act via nuclear receptors. The curve of best fit for nonmonotonic concentration response relationships are often inverted U-shaped with effects at intermediate concentrations that are different from effects at higher or lower concentrations. Cytotoxicity is a major mode of action responsible for inverted U-shaped concentration response relationships. However, evidence suggests that ligand selectivity, activation of multiple molecular targets, concerted regulation of multiple opposing endpoints, and multiple ligand binding sites within nuclear receptors also contribute to nonmonotonic concentration response relationships of endocrine active ligands. This review reports the current understanding of mechanisms involved in classical nuclear receptor mediated nonmonotonic concentration response relationships with a focus on studies published between 2012 and 2014.
Collapse
|
26
|
Belcher SM, Cookman CJ, Patisaul HB, Stapleton HM. In vitro assessment of human nuclear hormone receptor activity and cytotoxicity of the flame retardant mixture FM 550 and its triarylphosphate and brominated components. Toxicol Lett 2014; 228:93-102. [PMID: 24786373 DOI: 10.1016/j.toxlet.2014.04.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/17/2014] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
Abstract
Firemaster(®) 550 (FM 550) is a mixture of brominated and triarylphosphate flame retardants used in polyurethane foam-based products. The primary components are also used in numerous other applications and are thus common household and industrial contaminants. Our previous animal studies suggested that FM 550 exposure may alter metabolism and cause weight gain. Employing human nuclear receptor (NR) luciferase reporter assays, the goal of this study was to evaluate the agonist actions of FM 550 and its constituent compounds at NRs with known roles in establishing or regulating energy balance. FM 550 was found to have significant agonist activity only at the master regulator of adipocyte differentiation PPARγ. As a result, the concentration response relationships and relative activities of FM 550 at PPARγ were investigated in more detail with the contribution of each chemical component defined and compared to the activities of the prototypical PPARγ environmental ligands triphenyltin and tributyltin. The resulting data indicated that the primary metabolic disruptive effects of FM 550 were likely mediated by the activity of the triarylphosphates at PPARγ, and have identified TPP as a candidate metabolic disruptor that also acts as a cytotoxicant.
Collapse
Affiliation(s)
- Scott M Belcher
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0575, USA.
| | - Clifford J Cookman
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0575, USA
| | - Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
27
|
Baranda-Avila N, Mendoza-Rodríguez CA, Morimoto S, Camacho-Arroyo I, Guerra-Araiza C, Langley E, Cerbón M. Agonistic activity of ICI 182 780 on activation of GSK 3β/AKT pathway in the rat uterus during the estrous cycle. Steroids 2013; 78:717-25. [PMID: 23583603 DOI: 10.1016/j.steroids.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 03/11/2013] [Accepted: 03/21/2013] [Indexed: 02/02/2023]
Abstract
We examined the ability of ICI 182,780 (ICI) to block uterine cell proliferation via protein kinase b/AKT pathway in the uterus of the rat during the estrous cycle. Intact rats, with regular estrous cycles, received a subcutaneous (s.c.) injection of either vehicle or ICI at 08:00 h on the day of proestrus or at 00:00 h on the day of estrus and sacrificed at 13:00 h of metaestrus. Estradiol (E₂) and progesterone (P₄) plasma levels were measured by radioimmunoassay. Both ICI treatments, induced a significant decrease (p<0.01) in uterine estrogen receptor alpha (ERα) content, had no effect on uterine progesterone receptor (PR) protein expression and caused marked nuclear localization of cyclin D1, in both luminal and glandular uterine epithelium, as compared to vehicle-treated animals. Furthermore, we detected that ICI treatment induced glycogen synthase kinase (Gsk3-β) Ser 9 phosphorylation, which correlates with cyclin D1 nuclear localization. However, some differences were observed between the two different time schedules of administration. We observed that the administration of ICI at 08:00 h on proestrus day produced a 15% inhibition of luminal epithelial cell proliferation, reduced uterine wet weight by 21% and caused reduction of Akt phosphorylation at Ser 473 as compared to vehicle-treated animals, whereas ICI treatment at 00:00 h on estrus day had no effect on these parameters. The overall results indicate that ICI may exert agonistic and antagonistic effects on uterine cell proliferation through differential activation of the Akt pathway depending on the administration period during the estrous cycle, and indicates that the mechanism of cell proliferation during the physiological conditions of the estrous cycle, is under a different and more complex regulation than in the ovariectomized + E₂ animal model.
Collapse
Affiliation(s)
- Noemi Baranda-Avila
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | | | | | | | | | | | | |
Collapse
|
28
|
U-shape suppressive effect of phenol red on the epileptiform burst activity via activation of estrogen receptors in primary hippocampal culture. PLoS One 2013; 8:e60189. [PMID: 23560076 PMCID: PMC3613357 DOI: 10.1371/journal.pone.0060189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 02/22/2013] [Indexed: 02/06/2023] Open
Abstract
Phenol red is widely used in cell culture as a pH indicator. Recently, it also has been reported to have estrogen-like bioactivity and be capable of promoting cell proliferation in different cell lines. However, the effect of phenol red on primary neuronal culture has never been investigated. By using patch clamp technique, we demonstrated that hippocampal pyramidal neurons cultured in neurobasal medium containing no phenol red had large depolarization-associated epileptiform bursting activities, which were rarely seen in neurons cultured in phenol red-containing medium. Further experiment data indicate that the suppressive effect of the phenol red on the abnormal epileptiform burst neuronal activities was U-shape dose related, with the most effective concentration at 28 µM. In addition, this concentration related inhibitory effect of phenol red on the epileptiform neuronal discharges was mimicked by 17-β-estradiol, an estrogen receptor agonist, and inhibited by ICI-182,780, an estrogen receptor antagonist. Our results suggest that estrogen receptor activation by phenol red in the culture medium prevents formation of abnormal, epileptiform burst activity. These studies highlight the importance of phenol red as estrogen receptor stimulator and cautions of careful use of phenol red in cell culture media.
Collapse
|
29
|
Choi HJ, Chung TW, Kim CH, Jeong HS, Joo M, Youn B, Ha KT. Estrogen induced β-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells. Biochem Biophys Res Commun 2012; 426:620-5. [PMID: 22982306 DOI: 10.1016/j.bbrc.2012.08.140] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022]
Abstract
Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose β-1,4-N-acetylglucosamine (Galβ1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Galβ1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-α-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering these results, we propose that estrogen regulates the expression of B4GALT1 through the direct binding of ER-α to ERE and that the expressed B4GALT1 plays a crucial role in the proliferation of MCF-7 cells through its activity as a membrane receptor.
Collapse
Affiliation(s)
- Hee-Jung Choi
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33:378-455. [PMID: 22419778 PMCID: PMC3365860 DOI: 10.1210/er.2011-1050] [Citation(s) in RCA: 2097] [Impact Index Per Article: 161.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/07/2012] [Indexed: 02/08/2023]
Abstract
For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Tufts University, Center for Regenerative and Developmental Biology, Department of Biology, 200 Boston Avenue, Suite 4600, Medford, Massachusetts 02155, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Scalise T, Győrffy A, Tóth I, Kiss D, Somogyi V, Goszleth G, Bartha T, Frenyó L, Zsarnovszky A. Ligand-induced changes in Oestrogen and thyroid hormone receptor expression in the developing rat cerebellum: A comparative quantitative PCR and Western blot study. Acta Vet Hung 2012; 60:263-84. [PMID: 22609997 DOI: 10.1556/avet.2012.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oestrogen (E2) and thyroid hormones (THs) are key regulators of cerebellar development. Recent reports implicate a complex mechanism through which E2 and THs influence the expression levels of each other's receptors (ERs and TRs) to precisely mediate developmental signals and modulate signal strength. We examined the modulating effects of E2 and THs on the expression levels of their receptor mRNAs and proteins in cultured cerebellar cells obtained from 7-day-old rat pups. Cerebellar granule cell cultures were treated with either E2, THs or a combination of these hormones, and resulting receptor expression levels were determined by quantitative PCR and Western blot techniques. The results were compared to non-treated controls and to samples obtained from 14-day-old in situ cerebella. Additionally, we determined the glial effects on the regulation of ER-TR expression levels. The results show that (i) ER and TR expression depends on the combined presence of E2 and THs; (ii) glial cells mediate the hormonal regulation of neuronal ER-TR expression and (iii) loss of tissue integrity results in characteristic changes in ER-TR expression levels. These observations suggest that both E2 and THs, in adequate amounts, are required for the precise orchestration of cerebellar development and that alterations in the ratio of E2/THs may influence signalling mechanisms involved in neurodevelopment. Comparison of data from in vitro and in situ samples revealed a shift in receptor expression levels after loss of tissue integrity, suggesting that such adjusting/regenerative mechanisms may function after cerebellar tissue injury as well.
Collapse
Affiliation(s)
- Trudy Scalise
- 1 Szent István University Department of Physiology and Biochemistry, Faculty of Veterinary Sciences István u. 2 H-1078 Budapest Hungary
| | - Andrea Győrffy
- 1 Szent István University Department of Physiology and Biochemistry, Faculty of Veterinary Sciences István u. 2 H-1078 Budapest Hungary
| | - István Tóth
- 1 Szent István University Department of Physiology and Biochemistry, Faculty of Veterinary Sciences István u. 2 H-1078 Budapest Hungary
| | - Dávid Kiss
- 1 Szent István University Department of Physiology and Biochemistry, Faculty of Veterinary Sciences István u. 2 H-1078 Budapest Hungary
| | - Virág Somogyi
- 1 Szent István University Department of Physiology and Biochemistry, Faculty of Veterinary Sciences István u. 2 H-1078 Budapest Hungary
| | - Gréta Goszleth
- 1 Szent István University Department of Physiology and Biochemistry, Faculty of Veterinary Sciences István u. 2 H-1078 Budapest Hungary
| | - Tibor Bartha
- 1 Szent István University Department of Physiology and Biochemistry, Faculty of Veterinary Sciences István u. 2 H-1078 Budapest Hungary
| | - László Frenyó
- 1 Szent István University Department of Physiology and Biochemistry, Faculty of Veterinary Sciences István u. 2 H-1078 Budapest Hungary
| | - Attila Zsarnovszky
- 1 Szent István University Department of Physiology and Biochemistry, Faculty of Veterinary Sciences István u. 2 H-1078 Budapest Hungary
| |
Collapse
|
32
|
Alonso-Magdalena P, Ropero AB, Soriano S, García-Arévalo M, Ripoll C, Fuentes E, Quesada I, Nadal Á. Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Mol Cell Endocrinol 2012; 355:201-7. [PMID: 22227557 DOI: 10.1016/j.mce.2011.12.012] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 12/02/2011] [Accepted: 12/14/2011] [Indexed: 01/03/2023]
Abstract
Bisphenol-A (BPA) is an estrogenic monomer commonly used in the manufacture of numerous consumer products such as food and beverage containers. Widespread human exposure to significant doses of this compound has been reported. Traditionally, BPA has been considered a weak estrogen, based on its lower binding affinity to the nuclear estrogen receptors (ERs) compared to 17-β estradiol (E2) as well as its low transcriptional activity after ERs activation. However, in vivo animal studies have demonstrated that it can interfere with endocrine signaling pathways at low doses during fetal, neonatal or perinatal periods as well as in adulthood. In addition, mounting evidence suggests a variety of pathways through which BPA can elicit cellular responses at very low concentrations with the same or even higher efficiency than E2. Thus, the purpose of the present review is to analyze with substantiated scientific evidence the strong estrogenic activity of BPA when it acts through alternative mechanisms of action at least in certain cell types.
Collapse
Affiliation(s)
- Paloma Alonso-Magdalena
- Instituto de Bioingeniería and CIBERDEM, Universidad Miguel Hernández de Elche, 03202 Elche, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Belcher SM, Chen Y, Yan S, Wang HS. Rapid estrogen receptor-mediated mechanisms determine the sexually dimorphic sensitivity of ventricular myocytes to 17β-estradiol and the environmental endocrine disruptor bisphenol A. Endocrinology 2012; 153:712-20. [PMID: 22166976 PMCID: PMC3275382 DOI: 10.1210/en.2011-1772] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previously we showed that 17β-estradiol (E(2)) and/or the xenoestrogen bisphenol A (BPA) alter ventricular myocyte Ca(2+) handing, resulting in increased cardiac arrhythmias in a female-specific manner. In the present study, the roles of estrogen receptors (ER) in mediating the rapid contractile and arrhythmogenic effects of estrogens were examined. Contractility was used as an index to assess the impact of E(2) or BPA on Ca(2+) handling in rodent ventricular myocytes. The concentration-response curve for the stimulatory effects of BPA and E(2) on female myocyte was inverted-U shaped. Detectable effects for each compound were observed at 10(-12) M, and the most efficacious concentrations for each were at 10(-9) M. Sensitivity to E(2) and BPA was not observed in male myocytes and was abolished in myocytes from ovariectomized females. Analysis using protein-conjugated E(2) suggests that these rapid actions are induced by membrane-associated receptors. Analysis using selective ER agonists and antagonists and a genetic ERβ knockout mouse model showed that ERα and ERβ have opposing actions in myocytes and that the balance between ERβ and ERα signaling is the prime regulator of the sex-specific sensitivity toward estrogens. The response of female myocytes to E(2) and BPA is dominated by the stimulatory ERβ-mediated signaling, and the absence of BPA and E(2) responsiveness in males is due to a counterbalancing-suppressive action of ERα. We conclude that the sex-specific sensitivity of myocytes to estrogens and the rapid arrhythmogenic effects of BPA and estradiol in the female heart are regulated by the balance between ERα and ERβ signaling.
Collapse
Affiliation(s)
- Scott M Belcher
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0575, USA
| | | | | | | |
Collapse
|
34
|
Estrogen receptor-alpha 36 mediates mitogenic antiestrogen signaling in ER-negative breast cancer cells. PLoS One 2012; 7:e30174. [PMID: 22276155 PMCID: PMC3261853 DOI: 10.1371/journal.pone.0030174] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/14/2011] [Indexed: 11/23/2022] Open
Abstract
It is prevailingly thought that the antiestrogens tamoxifen and ICI 182, 780 are competitive antagonists of the estrogen-binding site of the estrogen receptor-alpha (ER-α). However, a plethora of evidence demonstrated both antiestrogens exhibit agonist activities in different systems such as activation of the membrane-initiated signaling pathways. The mechanisms by which antiestrogens mediate estrogen-like activities have not been fully established. Previously, a variant of ER-α, EP–α36, has been cloned and showed to mediate membrane-initiated estrogen and antiestrogen signaling in cells only expressing ER-α36. Here, we investigated the molecular mechanisms underlying the antiestrogen signaling in ER-negative breast cancer MDA-MB-231 and MDA-MB-436 cells that express high levels of endogenous ER-α36. We found that the effects of both 4-hydoxytamoxifen (4-OHT) and ICI 182, 780 (ICI) exhibited a non-monotonic, or biphasic dose response curve; antiestrogens at low concentrations, elicited a mitogenic signaling pathway to stimulate cell proliferation while at high concentrations, antiestrogens inhibited cell growth. Antiestrogens at l nM induced the phosphorylation of the Src-Y416 residue, an event to activate Src, while at 5 µM induced Src-Y527 phosphorylation that inactivates Src. Antiestrogens at 1 nM also induced phosphorylation of the MAPK/ERK and activated the Cyclin D1 promoter activity through the Src/EGFR/STAT5 pathways but not at 5 µM. Knock-down of ER-α36 abrogated the biphasic antiestrogen signaling in these cells. Our results thus indicated that ER-α36 mediates biphasic antiestrogen signaling in the ER-negative breast cancer cells and Src functions as a switch of antiestrogen signaling dependent on concentrations of antiestrogens through the EGFR/STAT5 pathway.
Collapse
|
35
|
Leon RL, Huber JD, Rosen CL. Potential age-dependent effects of estrogen on neural injury. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2450-60. [PMID: 21641373 DOI: 10.1016/j.ajpath.2011.01.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 12/28/2010] [Accepted: 01/07/2011] [Indexed: 12/27/2022]
Abstract
In 2000, approximately 10 million women were receiving hormone replacement therapy (HRT) for alleviation of menopausal symptoms. A number of prior animal studies suggested that HRT may be neuroprotective and cardioprotective. Then, in 2003, reports from the Women's Health Initiative (WHI) indicated that long-term estrogen/progestin supplementation led to increased incidence of stroke. A second branch of the WHI in women with prior hysterectomy found an even stronger correlation between estrogen supplementation alone and stroke incidence. Follow-up analyses of the data, as well as data from other smaller clinical trials, have also demonstrated increased stroke severity in women receiving HRT or estrogen alone. This review examines the studies indicating that estrogen is neuroprotectant in animal models and explores potential reasons why this may not be true in postmenopausal women. Specifically, age-related differences in estrogen receptors and estrogenic actions in the brain are discussed, with the conclusion that animal models of disease must closely mimic human disease to produce clinically relevant results.
Collapse
Affiliation(s)
- Rachel L Leon
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia, USA
| | | | | |
Collapse
|
36
|
Endocrine factors in the hypothalamic regulation of food intake in females: a review of the physiological roles and interactions of ghrelin, leptin, thyroid hormones, oestrogen and insulin. Nutr Res Rev 2011; 24:132-54. [DOI: 10.1017/s0954422411000035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Controlling energy homeostasis involves modulating the desire to eat and regulating energy expenditure. The controlling machinery includes a complex interplay of hormones secreted at various peripheral endocrine endpoints, such as the gastrointestinal tract, the adipose tissue, thyroid gland and thyroid hormone-exporting organs, the ovary and the pancreas, and, last but not least, the brain itself. The peripheral hormones that are the focus of the present review (ghrelin, leptin, thyroid hormones, oestrogen and insulin) play integrated regulatory roles in and provide feedback information on the nutritional and energetic status of the body. As peripheral signals, these hormones modulate central pathways in the brain, including the hypothalamus, to influence food intake, energy expenditure and to maintain energy homeostasis. Since the growth of the literature on the role of various hormones in the regulation of energy homeostasis shows a remarkable and dynamic expansion, it is now becoming increasingly difficult to understand the individual and interactive roles of hormonal mechanisms in their true complexity. Therefore, our goal is to review, in the context of general physiology, the roles of the five best-known peripheral trophic hormones (ghrelin, leptin, thyroid hormones, oestrogen and insulin, respectively) and discuss their interactions in the hypothalamic regulation of food intake.
Collapse
|
37
|
Le HH, Belcher SM. Rapid signaling actions of environmental estrogens in developing granule cell neurons are mediated by estrogen receptor ß. Endocrinology 2010; 151:5689-99. [PMID: 20926581 PMCID: PMC2999500 DOI: 10.1210/en.2010-0710] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogenic endocrine disrupting chemicals (EDCs) constitute a diverse group of man-made chemicals and natural compounds derived from plants and microbial metabolism. Estrogen-like actions are mediated via the nuclear hormone receptor activity of estrogen receptor (ER)α and ERβ and rapid regulation of intracellular signaling cascades. Previous study defined cerebellar granule cell neurons as estrogen responsive and that granule cell precursor viability was developmentally sensitive to estrogens. In this study experiments using Western blot analysis and pharmacological approaches have characterized the receptor and signaling modes of action of selective and nonselective estrogen ligands in developing cerebellar granule cells. Estrogen treatments were found to briefly increase ERK1/2-phosphorylation and then cause prolonged depression of ERK1/2 activity. The sensitivity of granule cell precursors to estrogen-induced cell death was found to require the integrated activation of membrane and intracellular ER signaling pathways. The sensitivity of granule cells to selective and nonselective ER agonists and a variety of estrogenic and nonestrogenic EDCs was also examined. The ERβ selective agonist DPN, but not the ERα selective agonist 4,4',4'-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol or other ERα-specific ligands, stimulated cell death. Only EDCs with selective or nonselective ERβ activities like daidzein, equol, diethylstilbestrol, and bisphenol A were observed to induce E2-like neurotoxicity supporting the conclusion that estrogen sensitivity in granule cells is mediated via ERβ. The presented results also demonstrate the utility of estrogen sensitive developing granule cells as an in vitro assay for elucidating rapid estrogen-signaling mechanisms and to detect EDCs that act at ERβ to rapidly regulate intracellular signaling.
Collapse
Affiliation(s)
- Hoa H Le
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0575, USA
| | | |
Collapse
|
38
|
Arreguin-Arevalo JA, Ashley RL, Wagenmaker ER, Oakley AE, Karsch FJ, Nett TM. Membrane-initiated actions of estradiol (E2) in the regulation of LH secretion in ovariectomized (OVX) ewes. Reprod Biol Endocrinol 2010; 8:40. [PMID: 20459750 PMCID: PMC2885400 DOI: 10.1186/1477-7827-8-40] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 05/10/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND We demonstrated that E2 conjugated to BSA (E2BSA) induces a rapid membrane-initiated inhibition of LH secretion followed hours later by a slight increase in LH secretion. Whether these actions of E2BSA are restricted to the pituitary gland and whether the membrane-initiated pathway of E2BSA contributes to the up-regulation of the number of GnRH receptors during the positive feedback effect of E2 were evaluated here. We have shown that the suppression of LH secretion induced by E2 and E2BSA is the result of a decreased responsiveness of the pituitary gland to GnRH. In this study we further tested the ability of E2BSA to decrease the responsiveness of the pituitary gland to GnRH under the paradigm of the preovulatory surge of LH induced by E2. METHODS For the first experiment GnRH and LH secretions were determined in samples of pituitary portal and jugular blood, respectively, in ewes treated with 12 mg E2BSA. In the second experiment, the number of GnRH receptors was quantified in ewes 12 h after administration of 25 micrograms E2 (the expected time for the increase in the number of GnRH receptors and the positive feedback effect of E2 in LH secretion) or 12 mg E2BSA. In the third experiment, the preovulatory-like surge of LH was characterized in ewes injected with 25 micrograms E2 alone or followed 8 h later (before the beginning of the LH surge) with 60 mg E2BSA. RESULTS a) the decrease in LH secretion induced by E2BSA was not accompanied by changes in the pulsatile pattern of GnRH, b) E2BSA increased the number of GnRH receptors, and c) the presence of E2BSA in E2-treated ewes delayed the onset, reduced the length, and decreased the amount of LH released during the preovulatory surge of LH. CONCLUSIONS a) the rapid suppression of LH secretion induced by E2BSA is mediated only via a direct action on the pituitary gland, b) E2 acting via a membrane-initiated pathway contributes to increase the number of GnRH receptors and, c) administration of E2BSA near the beginning of the pre-ovulatory surge of LH delays and reduces the magnitude of the surge.
Collapse
Affiliation(s)
- J Alejandro Arreguin-Arevalo
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523, USA
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Centro de Investigación Regional Golfo Centro, Veracruz, México
| | - Ryan L Ashley
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Elizabeth R Wagenmaker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Amy E Oakley
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Fred J Karsch
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Terry M Nett
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
39
|
Kendig EL, Le HH, Belcher SM. Defining hormesis: evaluation of a complex concentration response phenomenon. Int J Toxicol 2010; 29:235-46. [PMID: 20448256 DOI: 10.1177/1091581810363012] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hormesis describes dose-response relationships characterized by a reversal of response between low and high doses of chemicals, biological molecules, physical stressors, or other initiators of a response. Acceptance of hormesis as a viable dose-response theory has been limited until recently, in part, because of poor conceptual understanding, ad hoc and inappropriate use, and lack of a defined mechanism. By examining the history of this dose-response theory, it is clear that both pharmacological and toxicological studies provide evidence for hormetic dose responses, but retrospective examination of studies can be problematic at best. Limited scientific evidence and lack of a common lexicon with which to describe these responses have left hormesis open to inappropriate application to unrelated dose-response relationships. Future studies should examine low-dose effects using unbiased, descriptive criteria to further the scientific understanding of this dose response. A clear, concise definition is required to further the limited scientific evidence for hormetic dose responses.
Collapse
Affiliation(s)
- Eric L Kendig
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | | | | |
Collapse
|
40
|
Kansra S, Chen S, Bangaru MLY, Sneade L, Dunckley JA, Ben-Jonathan N. Selective estrogen receptor down-regulator and selective estrogen receptor modulators differentially regulate lactotroph proliferation. PLoS One 2010; 5:e10060. [PMID: 20419096 PMCID: PMC2856675 DOI: 10.1371/journal.pone.0010060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 03/20/2010] [Indexed: 11/29/2022] Open
Abstract
Background We recently reported that estrogen receptor α (ERα), even in absence of estrogen (E2), plays a critical role in lactotroph homeostasis. The anti-estrogen ICI 182780 (ICI), but not tamoxifen or raloxifene, rapidly promoted the degradation of ERα, and inhibited cell proliferation. However, all three ER antagonists suppressed PRL release, suggesting that receptor occupation is sufficient to inhibit prl gene expression whereas receptor degradation is required to suppress lactotroph proliferation. In this study our objective was to determine whether ERα degradation versus occupation, differentially modulates the biological outcome of anti-estrogens. Principal Findings Using the rat lactotroph cell line, GH3 cells, we report that ICI induced proteosome mediated degradation of ERα. In contrast, an ERα specific antagonist, MPP, that does not promote degradation of ERα, did not inhibit cell proliferation. Further, ICI, but not MPP, abolished anchorage independent growth of GH3 cells. Yet, both ICI and MPP were equally effective in suppressing prl expression and release, as well as ERE-mediated transcriptional activity. Conclusion Taken together, our results demonstrate that in lactotrophs, ERα degradation results in decreased cell proliferation, whereas ERα occupation by an antagonist that does not promote degradation of ERα is sufficient to inhibit prl expression.
Collapse
Affiliation(s)
- Sanjay Kansra
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| | - Shenglin Chen
- Department of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Madhavi Latha Yadav Bangaru
- Department of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Leighton Sneade
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Joseph A. Dunckley
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Nira Ben-Jonathan
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
41
|
Cinar O, Seval Y, Uz YH, Cakmak H, Ulukus M, Kayisli UA, Arici A. Differential regulation of Akt phosphorylation in endometriosis. Reprod Biomed Online 2010; 19:864-71. [PMID: 20031030 DOI: 10.1016/j.rbmo.2009.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein kinase B (PKB/Akt), a serine/threonine kinase, regulates the function of many cellular proteins involved in apoptosis and proliferation. It was postulated that there is a higher Akt activity in endometriosis compared with normal endometrium, and that oestrogen may be one of the factors responsible for the high Akt activation in endometriotic cells. Phospho-Akt (pAkt) concentrations in normal, eutopic and ectopic endometrial tissues were compared by immunohistochemistry, and a higher pAkt immunoreactivity was revealed in eutopic and ectopic endometrium compared with normal endometrium, in vivo. Higher Akt phosphorylation in stromal cells from eutopic endometrium was observed, when compared with normal, in vitro (P < 0.05). Akt phosphorylation was rapidly (2-10 min) stimulated when endometrial stromal cells from normal and endometriosis patients were treated with 17 beta-oestradiol. In endometrial stromal cells from the endometriosis group, ICI 182,780 (ICI, a specific oestrogen receptor antagonist) failed to antagonize the effect of oestradiol when combined with oestradiol, and revealed a stimulatory effect on Akt phosphorylation when given alone (P < 0.05). In conclusion, since Akt affects cell survival, it is suggested that increased Akt phosphorylation may be related to the altered apoptosis/proliferation harmony in endometriosis, and therefore Akt may play a critical role in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Ozgur Cinar
- Centre for Assisted Reproductive Medicine and IVF, Etlik Zubeyde Hanim Women's Health Teaching and Research Hospital, Ankara 06010, Turkey
| | | | | | | | | | | | | |
Collapse
|
42
|
Belcher SM. Blockade of estrogen receptor signaling to improve outlook for medulloblastoma sufferers. Future Oncol 2010; 5:751-4. [PMID: 19663723 DOI: 10.2217/fon.09.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Riedemann T, Patchev AV, Cho K, Almeida OFX. Corticosteroids: way upstream. Mol Brain 2010; 3:2. [PMID: 20180948 PMCID: PMC2841592 DOI: 10.1186/1756-6606-3-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 01/11/2010] [Indexed: 01/20/2023] Open
Abstract
Studies into the mechanisms of corticosteroid action continue to be a rich bed of research, spanning the fields of neuroscience and endocrinology through to immunology and metabolism. However, the vast literature generated, in particular with respect to corticosteroid actions in the brain, tends to be contentious, with some aspects suffering from loose definitions, poorly-defined models, and appropriate dissection kits. Here, rather than presenting a comprehensive review of the subject, we aim to present a critique of key concepts that have emerged over the years so as to stimulate new thoughts in the field by identifying apparent shortcomings. This article will draw on experience and knowledge derived from studies of the neural actions of other steroid hormones, in particular estrogens, not only because there are many parallels but also because 'learning from differences' can be a fruitful approach. The core purpose of this review is to consider the mechanisms through which corticosteroids might act rapidly to alter neural signaling.
Collapse
Affiliation(s)
- Therese Riedemann
- Max-Planck-Institute of Psychiatry, Kraepelin Str. 2-10, 80804 Munich, Germany
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Alexandre V Patchev
- Max-Planck-Institute of Psychiatry, Kraepelin Str. 2-10, 80804 Munich, Germany
| | - Kwangwook Cho
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Osborne FX Almeida
- Max-Planck-Institute of Psychiatry, Kraepelin Str. 2-10, 80804 Munich, Germany
| |
Collapse
|
44
|
Soriano S, Ropero AB, Alonso-Magdalena P, Ripoll C, Quesada I, Gassner B, Kuhn M, Gustafsson JA, Nadal A. Rapid regulation of K(ATP) channel activity by 17{beta}-estradiol in pancreatic {beta}-cells involves the estrogen receptor {beta} and the atrial natriuretic peptide receptor. Mol Endocrinol 2009; 23:1973-82. [PMID: 19855088 DOI: 10.1210/me.2009-0287] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ATP-sensitive potassium (K(ATP)) channel is a key molecule involved in glucose-stimulated insulin secretion. The activity of this channel regulates beta-cell membrane potential, glucose- induced [Ca(2+)](i) signals, and insulin release. In this study, the rapid effect of physiological concentrations of 17beta-estradiol (E2) on K(ATP) channel activity was studied in intact beta-cells by use of the patch-clamp technique. When cells from wild-type (WT) mice were used, 1 nm E2 rapidly reduced K(ATP) channel activity by 60%. The action of E2 on K(ATP) channel was not modified in beta-cells from ERalpha-/- mice, yet it was significantly reduced in cells from ERbeta-/- mice. The effect of E2 was mimicked by the ERbeta agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN). Activation of ERbeta by DPN enhanced glucose-induced Ca(2+) signals and insulin release. Previous evidence indicated that the acute inhibitory effects of E2 on K(ATP) channel activity involve cyclic GMP and cyclic GMP-dependent protein kinase. In this study, we used beta-cells from mice with genetic ablation of the membrane guanylate cyclase A receptor for atrial natriuretic peptide (also called the atrial natriuretic peptide receptor) (GC-A KO mice) to demonstrate the involvement of this membrane receptor in the rapid E2 actions triggered in beta-cells. E2 rapidly inhibited K(ATP) channel activity and enhanced insulin release in islets from WT mice but not in islets from GC-A KO mice. In addition, DPN reduced K(ATP) channel activity in beta-cells from WT mice, but not in beta-cells from GC-A KO mice. This work unveils a new role for ERbeta as an insulinotropic molecule that may have important physiological and pharmacological implications.
Collapse
Affiliation(s)
- Sergi Soriano
- Institute of Bioengineering and CIBERDEM, Universidad Miguel Hernández de Elche, Alicante, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Extracellular signal-regulated kinase (ERK) is a versatile protein kinase that regulates many cellular functions. Growing evidence suggests that ERK1/2 plays a crucial role in promoting cell death in a variety of neuronal systems, including neurodegenerative diseases. It is believed that the magnitude and the duration of ERK1/2 activity determine its cellular function. In this review, we summarize recent evidence for a role of ERK1/2 in neuronal death. Furthermore, we discuss the mechanisms involved in ERK1/2 mediating neuronal death.
Collapse
Affiliation(s)
- Srinivasa Subramaniam
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
46
|
Kiss DS, Zsarnovszky A, Horvath K, Gyorffy A, Bartha T, Hazai D, Sotonyi P, Somogyi V, Frenyo LV, Diano S. Ecto-nucleoside triphosphate diphosphohydrolase 3 in the ventral and lateral hypothalamic area of female rats: morphological characterization and functional implications. Reprod Biol Endocrinol 2009; 7:31. [PMID: 19383175 PMCID: PMC2676295 DOI: 10.1186/1477-7827-7-31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 04/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Based on its distribution in the brain, ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3) may play a role in the hypothalamic regulation of homeostatic systems, including feeding, sleep-wake behavior and reproduction. To further characterize the morphological attributes of NTPDase3-immunoreactive (IR) hypothalamic structures in the rat brain, here we investigated: 1.) The cellular and subcellular localization of NTPDase3; 2.) The effects of 17beta-estradiol on the expression level of hypothalamic NTPDase3; and 3.) The effects of NTPDase inhibition in hypothalamic synaptosomal preparations. METHODS Combined light- and electron microscopic analyses were carried out to characterize the cellular and subcellular localization of NTPDase3-immunoreactivity. The effects of estrogen on hypothalamic NTPDase3 expression was studied by western blot technique. Finally, the effects of NTPDase inhibition on mitochondrial respiration were investigated using a Clark-type oxygen electrode. RESULTS Combined light- and electron microscopic analysis of immunostained hypothalamic slices revealed that NTPDase3-IR is linked to ribosomes and mitochondria, is predominantly present in excitatory axon terminals and in distinct segments of the perikaryal plasma membrane. Immunohistochemical labeling of NTPDase3 and glutamic acid decarboxylase (GAD) indicated that gamma-amino-butyric-acid- (GABA) ergic hypothalamic neurons do not express NTPDase3, further suggesting that in the hypothalamus, NTPDase3 is predominantly present in excitatory neurons. We also investigated whether estrogen influences the expression level of NTPDase3 in the ventrobasal and lateral hypothalamus. A single subcutaneous injection of estrogen differentially increased NTPDase3 expression in the medial and lateral parts of the hypothalamus, indicating that this enzyme likely plays region-specific roles in estrogen-dependent hypothalamic regulatory mechanisms. Determination of mitochondrial respiration rates with and without the inhibition of NTPDases confirmed the presence of NTPDases, including NTPDase3 in neuronal mitochondria and showed that blockade of mitochondrial NTPDase functions decreases state 3 mitochondrial respiration rate and total mitochondrial respiratory capacity. CONCLUSION Altogether, these results suggest the possibility that NTPDases, among them NTPDase3, may play an estrogen-dependent modulatory role in the regulation of intracellular availability of ATP needed for excitatory neuronal functions including neurotransmission.
Collapse
Affiliation(s)
- David S Kiss
- Department of Physiology & Biochemistry, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
| | - Attila Zsarnovszky
- Department of Physiology & Biochemistry, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Krisztina Horvath
- Department of Physiology & Biochemistry, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
| | - Andrea Gyorffy
- Department of Physiology & Biochemistry, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
| | - Tibor Bartha
- Department of Physiology & Biochemistry, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
| | - Diana Hazai
- Department of Anatomy & Histology, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
| | - Peter Sotonyi
- Department of Anatomy & Histology, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
| | - Virag Somogyi
- Department of Physiology & Biochemistry, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
| | - Laszlo V Frenyo
- Department of Physiology & Biochemistry, Szent Istvan University Faculty of Veterinary Science, Budapest, Hungary
| | - Sabrina Diano
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
47
|
Urbanska K, Pannizzo P, Lassak A, Gualco E, Surmacz E, Croul S, Del Valle L, Khalili K, Reiss K. Estrogen receptor beta-mediated nuclear interaction between IRS-1 and Rad51 inhibits homologous recombination directed DNA repair in medulloblastoma. J Cell Physiol 2009; 219:392-401. [PMID: 19117011 DOI: 10.1002/jcp.21683] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In medulloblastomas, which are highly malignant cerebellar tumors of the childhood genotoxic treatments such as cisplatin or gamma-irradiation are frequently associated with DNA damage, which often associates with unfaithful DNA repair, selection of new adaptations and possibly tumor recurrences. Therefore, better understanding of molecular mechanisms which control DNA repair fidelity upon DNA damage is a critical task. Here we demonstrate for the first time that estrogen receptor beta (ERbeta) can contribute to the development of genomic instability in medulloblastomas. Specifically, ERbeta was found highly expressed and active in mouse and human medulloblastoma cell lines. Nuclear ERbeta was also present in human medulloblastoma clinical samples. Expression of ERbeta coincided with nuclear translocation of insulin receptor substrate 1 (IRS-1), which was previously reported to interfere with the faithful component of DNA repair when translocated to the nucleus. We demonstrated that ERbeta and IRS-1 bind each other, and the interaction involves C-terminal domain of IRS-1 (aa 931-1233). Following cisplatin-induced DNA damage, nuclear IRS-1 localized at the sites of damaged DNA, and interacted with Rad51--an enzymatic component of homologous recombination directed DNA repair (HRR). In medulloblastoma cells, engineered to express HRR-DNA reporter plasmid, ER antagonist, ICI 182,780, or IRS mutant (931-1233) significantly increased DNA repair fidelity. These data strongly suggest that both molecular and pharmacological interventions are capable of preventing ERbeta-mediated IRS-1 nuclear translocation, which in turn improves DNA repair fidelity and possibly counteracts accumulation of malignant mutations in actively growing medulloblastomas.
Collapse
Affiliation(s)
- Katarzyna Urbanska
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Belcher SM, Ma X, Le HH. Blockade of estrogen receptor signaling inhibits growth and migration of medulloblastoma. Endocrinology 2009; 150:1112-21. [PMID: 19008315 PMCID: PMC2654749 DOI: 10.1210/en.2008-1363] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Medulloblastoma (MD) is the most common malignant brain tumor in children. These invasive neuroectodermal tumors arise from cerebellar granule cell-like precursors. In the developing cerebellum, estrogen influences growth and viability of granule cell precursors that transiently express elevated levels estrogen receptor-beta (ERbeta) during differentiation. Immunoanalysis revealed that ERbeta was expressed in the maturing human cerebellum, in all 22 primary MD tumors analyzed, and in two MD-derived cell lines (D283Med and Daoy). Very low levels of ERalpha-like proteins were detected in each cell line and 41% of tumor samples. Physiological concentrations of the 17beta-estradiol- or the ERbeta-selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile diarylpropionitrile dose-dependently increased MD growth and cellular migration. In contrast, the ERalpha-selective agonist (4-propyl-[1H]pyrazole-1,3,5-triyl) trisphenol did not influence MD growth. Similar to previous studies in normal cerebellar granule cell precursors, these studies demonstrate that the physiological actions of estrogens in MD are mediated by ERbeta. Preclinical studies assessing the therapeutic efficacy of antiestrogen chemotherapeutics for treating human MD were performed. It was found that pharmacological inhibition of ER-mediated signaling with the ER antagonist drug Faslodex (ICI182,780) blocked all estrogen-mediated effects in both cell culture and xenograft models of human MD. These studies have revealed that functional ERbeta expression is a fundamental aspect of MD biology and has defined antiestrogen therapy as a potentially efficacious clinical approach to improve the long-term outcomes for MD patients.
Collapse
Affiliation(s)
- Scott M Belcher
- Department of Pharmacology and Cell Biophysics University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0575, USA.
| | | | | |
Collapse
|
49
|
Miñano A, Xifró X, Pérez V, Barneda-Zahonero B, Saura CA, Rodríguez-Alvarez J. Estradiol facilitates neurite maintenance by a Src/Ras/ERK signalling pathway. Mol Cell Neurosci 2008; 39:143-51. [DOI: 10.1016/j.mcn.2008.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 04/03/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022] Open
|
50
|
Wolf C, Rothermel A, Robitzki AA. Exogenous application of persephin influences phosphatidylinositol-3 kinase and MAPK/ERK signalling and enhances proliferation during early development in retinospheres. Neurosci Lett 2008; 442:10-4. [PMID: 18590797 DOI: 10.1016/j.neulet.2008.06.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/05/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
Abstract
Persephin (PSPN), a member of the glial cell line-derived neurotrophic factor family, and its implication in the retina is not well understood but might be an interesting therapeutic target for degenerative diseases. Although, PSPN is lost in the chicken during evolution, its target, the GDNF family receptor alpha 4 (GFRalpha4), is still expressed in a temporal and spatial pattern in the developing retina. We used this "knockout-precondition" to study the bioactivity and the effect of exogenous PSPN application and subsequent GFRalpha activation during retinal development in vitro without impairments of endogenous PSPN. Retinospheres, derived from dissociated chicken retina of embryonic day 6, were treated with PSPN and intracellular signalling was monitored. Additionally, PSPN was added during cultivation of the retinospheres and immunhistochemical stainings and Western blotting were performed to evaluate changes in proliferation, apoptosis and differentiation. Exogenous applied PSPN enhanced phosphatidylinositol-3-kinase (PI-3K) signalling and decreased signalling of mitogen-activated protein kinases (MAPK). Most importantly early retinal proliferation was enhanced and glutamine synthetase expression was decreased whereas differentiation of major retinal cell types was not changed. In contrast to GDNF, PSPN is exclusively influencing early progenitors whereas differentiation is not effected and seems to be regulated through PSPN-independent mechanisms. Since the binding site of PSPN and therefore the target of potential therapeuticals, is well conserved among species and is with high probability not able to bind other members of the GDNF-family, these results might be assigned to other species including mammals and humans.
Collapse
Affiliation(s)
- Christina Wolf
- Division of Molecular Biological-Biochemical Processing Technology, Centre for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | | | | |
Collapse
|