1
|
Li T, Lin S, Zhu Y, Ye D, Rong X, Wang L. Basic biology and roles of CEBPD in cardiovascular disease. Cell Death Discov 2025; 11:102. [PMID: 40087290 PMCID: PMC11909146 DOI: 10.1038/s41420-025-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 03/17/2025] Open
Abstract
CCAAT/enhancer-binding protein delta (CEBPD), as an evolutionarily conserved protein in mammals, belongs to the CEBP transcription factor family, which modulates many biological processes. The diversity of CEBPD functions partly depends on the cell type and cellular context. Aberrant CEBPD expression and activity are associated with multiple organ diseases, including cardiovascular diseases. In this review, we describe the basic molecular biology of CEBPD to understand its expression regulation, modifications, and functions. Here, we summarize the recent advances in genetically modified animals with CEBPD. Finally, we discuss the contribution of CEBPD to cardiovascular diseases and highlight the strategies for developing novel therapies targeting CEBPD.
Collapse
Affiliation(s)
- Tongjun Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Shaoling Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yingyin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Crocetin Exerts Its Anti-inflammatory Property in LPS-Induced RAW264.7 Cells Potentially via Modulation on the Crosstalk between MEK1/JNK/NF- κB/iNOS Pathway and Nrf2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6631929. [PMID: 34545298 PMCID: PMC8449229 DOI: 10.1155/2021/6631929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/17/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022]
Abstract
Crocetin is a main bioactive component with a carotenoid skeleton in Gardenia jasminoides, a typical traditional Chinese medicine with a long history in Southeast Asia. Crocetin is being commonly consumed as spices, dyes, and food colorants. Recent pharmacological studies had implied that crocetin may possess potent anti-inflammatory properties; however, the underlying molecular mechanism is not fully elucidated. In the present study, the regulatory effect of crocetin on redox balance was systematically investigated in lipopolysaccharide- (LPS-) stimulated RAW264.7 cells. The results showed that crocetin dose-dependently inhibited LPS-induced nitric oxide production and inducible nitric oxide synthase (iNOS) expression in RAW264.7 cells. Molecular data revealed that crocetin exerted its anti-inflammatory property by inhibiting the MEK1/JNK/NF-κB/iNOS pathway and activating the Nrf2/HO-1 pathway. The shRNA-knockdown (KD) of MEK1 and ERK1 confirmed that the activation of MEK1 and inhibition of JNK mediated the anti-inflammatory effect of crocetin. Moreover, the pull-down assay and computational molecule docking showed that crocetin could directly bind to MEK1 and JNK1/2. It is noticed that both KD and knockout (KO) of HO-1 gene blocked this action. More detailed data have shown that HO-1-KO blocked the inhibition of p-IκB-α by crocetin. These data indicated that crocetin exerted its anti-inflammatory property via modulating the crosstalk between the MEK1/JNK/NF-κB/iNOS pathway and the Nrf2/HO-1 pathway, highlighting HO-1 as a major player. Therefore, the present study reveals that crocetin can act as a potential candidate for redox-balancing modulation in charge of its anti-inflammatory and chemopreventive effect, which strengthens its potency in the subsequent clinic application in the near future.
Collapse
|
3
|
Liu RT, Zhang M, Yang CL, Zhang P, Zhang N, Du T, Ge MR, Yue LT, Li XL, Li H, Duan RS. Enhanced glycolysis contributes to the pathogenesis of experimental autoimmune neuritis. J Neuroinflammation 2018; 15:51. [PMID: 29467007 PMCID: PMC5820782 DOI: 10.1186/s12974-018-1095-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/11/2018] [Indexed: 12/16/2022] Open
Abstract
Background With the recognition of the key roles of cellular metabolism in immunity, targeting metabolic pathway becomes a new strategy for autoimmune disease treatment. Guillain-Barré syndrome (GBS) is an acute immune-mediated inflammatory demyelinating disease of the peripheral nervous system, characterized by inflammatory cell infiltration. These inflammatory cells, including activated macrophages, Th1 cells, and Th17 cells, generally undergo metabolic reprogramming and rely mainly on glycolysis to exert functions. This study aimed to explore whether enhanced glycolysis contributed to the pathogenesis of experimental autoimmune neuritis (EAN), a classic model of GBS. Methods Preventive and therapeutic treatments with glycolysis inhibitor, 2-deoxy-d-glucose (2-DG), were applied to EAN rats. The effects of treatments were determined by clinical scoring, weighting, and tissue examination. Flow cytometry and ELISA were used to evaluate T cell differentiation, autoantibody level, and macrophage functions in vivo and in vitro. Results Glycolysis inhibition with 2-DG not only inhibited the initiation, but also prevented the progression of EAN, evidenced by the improved clinical scores, weight loss, inflammatory cell infiltration, and demyelination of sciatic nerves. 2-DG inhibited the differentiation of Th1, Th17, and Tfh cells but enhanced Treg cell development, accompanied with reduced autoantibody secretion. Further experiments in vitro proved glycolysis inhibition decreased the nitric oxide production and phagocytosis of macrophages and suppressed the maturation of dendritic cells (DC). Conclusion The effects of glycolysis inhibition on both innate and adaptive immune responses and the alleviation of animal clinical symptoms indicated that enhanced glycolysis contributed to the pathogenesis of EAN. Glycolysis inhibition may be a new therapy for GBS.
Collapse
Affiliation(s)
- Ru-Tao Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, People's Republic of China
| | - Min Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, People's Republic of China
| | - Chun-Lin Yang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, People's Republic of China
| | - Peng Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, People's Republic of China
| | - Na Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, People's Republic of China
| | - Tong Du
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, People's Republic of China
| | - Meng-Ru Ge
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, People's Republic of China
| | - Long-Tao Yue
- Central Laboratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, People's Republic of China
| | - Xiao-Li Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, People's Republic of China
| | - Heng Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, People's Republic of China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
4
|
MacFarlane PM, Vinit S, Mitchell GS. Enhancement of phrenic long-term facilitation following repetitive acute intermittent hypoxia is blocked by the glycolytic inhibitor 2-deoxyglucose. Am J Physiol Regul Integr Comp Physiol 2017; 314:R135-R144. [PMID: 29021191 DOI: 10.1152/ajpregu.00306.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Moderate acute intermittent hypoxia (mAIH) elicits a form of respiratory motor plasticity known as phrenic long-term facilitation (pLTF). Preconditioning with modest protocols of chronic intermittent hypoxia enhances pLTF, demonstrating pLTF metaplasticity. Since "low-dose" protocols of repetitive acute intermittent hypoxia (rAIH) show promise as a therapeutic modality to restore respiratory (and nonrespiratory) motor function in clinical disorders with compromised breathing, we tested 1) whether preconditioning with a mild rAIH protocol enhances pLTF and hypoglossal (XII) LTF and 2) whether the enhancement is regulated by glycolytic flux. In anesthetized, paralyzed, and ventilated adult male Lewis rats, mAIH (three 5-min episodes of 10% O2) elicited pLTF (pLTF at 60 min post-mAIH: 49 ± 5% baseline). rAIH preconditioning (ten 5-min episodes of 11% O2/day with 5-min normoxic intervals, 3 times per week, for 4 wk) significantly enhanced pLTF (100 ± 16% baseline). XII LTF was unaffected by rAIH. When glycolytic flux was inhibited by 2-deoxy-d-glucose (2-DG) administered via drinking water (~80 mg·kg-1·day-1), pLTF returned to normal levels (58 ± 8% baseline); 2-DG had no effect on pLTF in normoxia-pretreated rats (59 ± 7% baseline). In ventral cervical (C4/5) spinal homogenates, rAIH increased inducible nitric oxide synthase mRNA vs. normoxic controls, an effect blocked by 2-DG. However, there were no detectable effects of rAIH or 2-DG on several molecules associated with phrenic motor plasticity, including serotonin 2A, serotonin 7, brain-derived neurotrophic factor, tropomyosin receptor kinase B, or VEGF mRNA. We conclude that modest, but prolonged, rAIH elicits pLTF metaplasticity and that a drug known to inhibit glycolytic flux (2-DG) blocks pLTF enhancement.
Collapse
Affiliation(s)
- P M MacFarlane
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin.,Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children's Hospital , Cleveland, Ohio
| | - S Vinit
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin.,Université de Versailles Saint-Quentin-en-Yvelines, INSERM U1179 END-ICAP, UFR des Sciences de la Santé-Simone Veil, Montigny-le-Bretonneux, France
| | - G S Mitchell
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin.,Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
5
|
Baicalin Attenuates Subarachnoid Hemorrhagic Brain Injury by Modulating Blood-Brain Barrier Disruption, Inflammation, and Oxidative Damage in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1401790. [PMID: 28912935 PMCID: PMC5587966 DOI: 10.1155/2017/1401790] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/23/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022]
Abstract
In subarachnoid hemorrhagic brain injury, the early crucial events are edema formation due to inflammatory responses and blood-brain barrier disruption. Baicalin, a flavone glycoside, has antineuroinflammatory and antioxidant properties. We examined the effect of baicalin in subarachnoid hemorrhagic brain injury. Subarachnoid hemorrhage was induced through filament perforation and either baicalin or vehicle was administered 30 min prior to surgery. Brain tissues were collected 24 hours after surgery after evaluation of neurological scores. Brain tissues were processed for water content, real-time PCR, and immunoblot analyses. Baicalin improved neurological score and brain water content. Decreased levels of tight junction proteins (occludin, claudin-5, ZO-1, and collagen IV) required for blood-brain barrier function were restored to normal level by baicalin. Real-time PCR data demonstrated that baicalin attenuated increased proinflammatory cytokine (IL-1β, IL-6, and CXCL-3) production in subarachnoid hemorrhage mice. In addition to that, baicalin attenuated microglial cell secretion of IL-1β and IL-6 induced by lipopolysaccharide (100 ng/ml) dose dependently. Finally, baicalin attenuated induction of NOS-2 and NOX-2 in SAH mice at the mRNA and protein level. Thus, we demonstrated that baicalin inhibited microglial cell activation and reduced inflammation, oxidative damage, and brain edema.
Collapse
|
6
|
Saeedi Saravi SS, Saeedi Saravi SS, Arefidoust A, Dehpour AR. The beneficial effects of HMG-CoA reductase inhibitors in the processes of neurodegeneration. Metab Brain Dis 2017; 32:949-965. [PMID: 28578514 DOI: 10.1007/s11011-017-0021-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 04/28/2017] [Indexed: 12/13/2022]
Abstract
Statins, cholesterol lowering drugs, have been demonstrated to exert beneficial effects in other conditions such as primary and progressing neurodegenerative diseases beyond their original role. Observation that statins ameliorate the neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS) and cerebral ischemic stroke, the neuroprotective effects of these drugs are thought to be linked to their anti-inflammatory, anti-oxidative, and anti-excitotoxic properties. Despite the voluminous literature on the clinical advantages of 3-hydroxy-3-methylglutaryl Co-enzyme A reductase (HMGCR) inhibitors (statins) in cardiovascular system, the neuroprotective effects and the underlying mechanisms are little understood. Hence, the present review tries to provide a critical overview on the statin-induced neuroprotection, which are presumed to be associated with the ability to reduce cholesterol, Amyloid-β and apolipoprotein E (ApoE) levels, decrease reactive oxygen and nitrogen species (ROS and RNS) formation, inhibit excitotoxicity, modulate matrix metalloproteinases (MMPs), stimulate endothelial nitric oxide synthase (eNOS), and increase cerebral blood perfusion. This review is also aimed to illustrate that statins protect neurons against the neuro-inflammatory processes through balancing pro-inflammatory/anti-inflammatory cytokines. Ultimately, the beneficial role of statins in ameliorating the development of PD, AD, MS and cerebral ischemic stroke has been separately reviewed.
Collapse
Affiliation(s)
- Seyed Soheil Saeedi Saravi
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Sobhan Saeedi Saravi
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Arefidoust
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Bonfill-Teixidor E, Otxoa-de-Amezaga A, Font-Nieves M, Sans-Fons MG, Planas AM. Differential expression of E-type prostanoid receptors 2 and 4 in microglia stimulated with lipopolysaccharide. J Neuroinflammation 2017; 14:3. [PMID: 28086956 PMCID: PMC5234110 DOI: 10.1186/s12974-016-0780-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyclooxygenase-2 (COX-2) is induced under inflammatory conditions, and prostaglandin E2 (PGE2) is one of the products of COX activity. PGE2 has pleiotropic actions depending on the activation of specific E-type prostanoid EP1-4 receptors. We investigated the involvement of PGE2 and EP receptors in glial activation in response to an inflammatory challenge induced by LPS. METHODS Cultures of mouse microglia or astroglia cells were treated with LPS in the presence or absence of COX-2 inhibitors, and the production of PGE2 was measured by ELISA. Cells were treated with PGE2, and the effect on LPS-induced expression of TNF-α messenger RNA (mRNA) and protein was studied in the presence or absence of drug antagonists of the four EP receptors. EP receptor expression and the effects of EP2 and EP4 agonists and antagonists were studied at different time points after LPS. RESULTS PGE2 production after LPS was COX-2-dependent. PGE2 reduced the glial production of TNF-α after LPS. Microglia expressed higher levels of EP4 and EP2 mRNA than astroglia. Activation of EP4 or EP2 receptors with selective drug agonists attenuated LPS-induced TNF-α in microglia. However, only antagonizing EP4 prevented the PGE2 effect demonstrating that EP4 was the main target of PGE2 in naïve microglia. Moreover, the relative expression of EP receptors changed during the course of classical microglial activation since EP4 expression was strongly depressed while EP2 increased 24 h after LPS and was detected in nuclear/peri-nuclear locations. EP2 regulated the expression of iNOS, NADPH oxidase-2, and vascular endothelial growth factor. NADPH oxidase-2 and iNOS activities require the oxidation of NADPH, and the pentose phosphate pathway is a main source of NADPH. LPS increased the mRNA expression of the rate-limiting enzyme of the pentose pathway glucose-6-phosphate dehydrogenase, and EP2 activity was involved in this effect. CONCLUSIONS These results show that while selective activation of EP4 or EP2 exerts anti-inflammatory actions, EP4 is the main target of PGE2 in naïve microglia. The level of EP receptor expression changes from naïve to primed microglia where the COX-2/PGE2/EP2 axis modulates important adaptive metabolic changes.
Collapse
Affiliation(s)
- Ester Bonfill-Teixidor
- Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Amaia Otxoa-de-Amezaga
- Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miriam Font-Nieves
- Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - M Glòria Sans-Fons
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna M Planas
- Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Rosselló 161 planta 6, 08036, Barcelona, Spain.
| |
Collapse
|
8
|
Hwang JS, Kwon MY, Kim KH, Lee Y, Lyoo IK, Kim JE, Oh ES, Han IO. Lipopolysaccharide (LPS)-stimulated iNOS Induction Is Increased by Glucosamine under Normal Glucose Conditions but Is Inhibited by Glucosamine under High Glucose Conditions in Macrophage Cells. J Biol Chem 2016; 292:1724-1736. [PMID: 27927986 DOI: 10.1074/jbc.m116.737940] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/29/2016] [Indexed: 12/26/2022] Open
Abstract
We investigated the regulatory effect of glucosamine (GlcN) for the production of nitric oxide (NO) and expression of inducible NO synthase (iNOS) under various glucose conditions in macrophage cells. At normal glucose concentrations, GlcN dose dependently increased LPS-stimulated production of NO/iNOS. However, GlcN suppressed NO/iNOS production under high glucose culture conditions. Moreover, GlcN suppressed LPS-induced up-regulation of COX-2, IL-6, and TNF-α mRNAs under 25 mm glucose conditions yet did not inhibit up-regulation under 5 mm glucose conditions. Glucose itself dose dependently increased LPS-induced iNOS expression. LPS-induced MAPK and IκB-α phosphorylation did not significantly differ at normal and high glucose conditions. The activity of LPS-induced nuclear factor-κB (NF-κB) and DNA binding of c-Rel to the iNOS promoter were inhibited under high glucose conditions in comparison with no significant changes under normal glucose conditions. In addition, we found that the LPS-induced increase in O-GlcNAcylation as well as DNA binding of c-Rel to the iNOS promoter were further increased by GlcN under normal glucose conditions. However, both O-GlcNAcylation and DNA binding of c-Rel decreased under high glucose conditions. The NF-κB inhibitor, pyrrolidine dithiocarbamate, inhibited LPS-induced iNOS expression under high glucose conditions but it did not influence iNOS induction under normal glucose conditions. In addition, pyrrolidine dithiocarbamate inhibited NF-κB DNA binding and c-Rel O-GlcNAcylation only under high glucose conditions. By blocking transcription with actinomycin D, we found that stability of LPS-induced iNOS mRNA was increased by GlcN under normal glucose conditions. These results suggest that GlcN regulates inflammation by sensing energy states of normal and fuel excess.
Collapse
Affiliation(s)
- Ji-Sun Hwang
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea
| | - Mi-Youn Kwon
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea
| | - Kyung-Hong Kim
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea
| | - Yunkyoung Lee
- the Department of Brain and Cognitive Sciences, Ewha Brain Institute, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - In Kyoon Lyoo
- the Department of Brain and Cognitive Sciences, Ewha Brain Institute, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Jieun E Kim
- the Department of Brain and Cognitive Sciences, Ewha Brain Institute, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Eok-Soo Oh
- the Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Inn-Oc Han
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea.
| |
Collapse
|
9
|
Yang HC, Wu YH, Liu HY, Stern A, Chiu DTY. What has passed is prolog: new cellular and physiological roles of G6PD. Free Radic Res 2016; 50:1047-1064. [PMID: 27684214 DOI: 10.1080/10715762.2016.1223296] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
G6PD deficiency has been the most pervasive inherited disorder in the world since having been discovered. G6PD has an antioxidant role by functioning as a major nicotinamide adenine dinucleotide phosphate (NADPH) provider to reduce excessive oxidative stress. NADPH can produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) mediated by NADPH oxidase (NOX) and nitric oxide synthase (NOS), respectively. Hence, G6PD also has a pro-oxidant role. Research in the past has focused on the enhanced susceptibility of G6PD-deficient cells or individuals to oxidative challenge. The cytoregulatory role of G6PD has largely been overlooked. By using a metabolomic approach, it is noted that upon oxidant challenge, G6PD-deficient cells will reprogram the GSH metabolism from regeneration to synthesis with exhaustive energy consumption. Recently, new cellular/physiologic roles of G6PD have been discovered. By using a proteomic approach, it has been found that G6PD plays a regulatory role in xenobiotic metabolism possibly via NOX and the redox-sensitive Nrf2-signaling pathway to modulate the expression of xenobiotic-metabolizing enzymes. Since G6PD is a key regulator responsible for intracellular redox homeostasis, G6PD deficiency can alter redox balance leading to many abnormal cellular effects such as the cellular inflammatory and immune response against viral infection. G6PD may play an important role in embryogenesis as G6PD-knockdown mouse cannot produce offspring and G6PD-deficient C. elegans with defective egg production and hatching. This array of findings indicates that the cellular and physiologic roles of G6PD, other than the classical role as an antioxidant enzyme, deserve further attention.
Collapse
Affiliation(s)
- Hung-Chi Yang
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Yi-Hsuan Wu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Hui-Ya Liu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Arnold Stern
- c Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| | - Daniel Tsun-Yee Chiu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,d Department of Pediatric Hematology/Oncology , Chang Gung Memorial Hospital , Linkou , Taiwan
| |
Collapse
|
10
|
Ko CY, Chang WC, Wang JM. Biological roles of CCAAT/Enhancer-binding protein delta during inflammation. J Biomed Sci 2015; 22:6. [PMID: 25591788 PMCID: PMC4318212 DOI: 10.1186/s12929-014-0110-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/25/2014] [Indexed: 01/13/2023] Open
Abstract
CCAAT/enhancer-binding protein delta (CEBPD) belongs to the CCAAT/enhancer-binding protein family, and these proteins function as transcription factors in many biological processes, including cell differentiation, motility, growth arrest, proliferation, cell death, metabolism and immune responses. The functional diversity of CEBPD depends, in part, on the cell type and cellular context, which indicates that CEBPD could interpret a variety of cues to adjust cellular responses in specific situations. Here, we review the regulation of the CEBPD gene and its function in response to inflammatory stimuli. We also address its effects in inflammation-related diseases through a discussion of its recently discovered downstream targets. Regarding to the previous discoveries and new insights in inflammation-associated diseases, suggesting CEBPD could also be a central gene in inflammation. Importantly, the results of this study indicate that the investigation of CEBPD could open a new avenue to help better understand the inflammatory response.
Collapse
Affiliation(s)
- Chiung-Yuan Ko
- Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Ju-Ming Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan. .,Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan. .,Center of Molecular Inflammation, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
11
|
Pathologic role of glial nitric oxide in adult and pediatric neuroinflammatory diseases. Neurosci Biobehav Rev 2014; 45:168-82. [DOI: 10.1016/j.neubiorev.2014.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 05/28/2014] [Accepted: 06/05/2014] [Indexed: 01/22/2023]
|
12
|
Kim J, Won JS, Singh AK, Sharma AK, Singh I. STAT3 regulation by S-nitrosylation: implication for inflammatory disease. Antioxid Redox Signal 2014; 20:2514-27. [PMID: 24063605 PMCID: PMC4026100 DOI: 10.1089/ars.2013.5223] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS S-nitrosylation and S-glutathionylation, redox-based modifications of protein thiols, are recently emerging as important signaling mechanisms. In this study, we assessed S-nitrosylation-based regulation of Janus-activated kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway that plays critical roles in immune/inflammatory responses and tumorigenesis. RESULTS Our studies show that STAT3 in stimulated microglia underwent two distinct redox-dependent modifications, S-nitrosylation and S-glutathionylation. STAT3 S-nitrosylation was associated with inducible nitric oxide synthase (iNOS)-produced nitric oxide (NO) and S-nitrosoglutathione (GSNO), whereas S-glutathionylation of STAT3 was associated with cellular oxidative stress. NO produced by iNOS or treatment of microglia with exogenous GSNO inhibited STAT3 activation via inhibiting STAT3 phosphorylation (Tyr(705)). Consequently, the interleukin-6 (IL-6)-induced microglial proliferation and associated gene expressions were also reduced. In cell-free kinase assay using purified JAK2 and STAT3, STAT3 phosphorylation was inhibited by its selective preincubation with GSNO, but not by preincubation of JAK2 with GSNO, indicating that GSNO-mediated mechanisms inhibit STAT3 phosphorylation through S-nitrosylation of STAT3 rather than JAK2. In this study, we identified that Cys(259) was the target Cys residue of GSNO-mediated S-nitrosylation of STAT3. The replacement of Cys(259) residue with Ala abolished the inhibitory role of GSNO in IL-6-induced STAT3 phosphorylation and transactivation, suggesting the role of Cys(259) S-nitrosylation in STAT3 phosphorylation. INNOVATION Microglial proliferation is regulated by NO via S-nitrosylation of STAT3 (Cys(259)) and inhibition of STAT3 (Tyr(705)) phosphorylation. CONCLUSION Our results indicate the regulation of STAT3 by NO-based post-translational modification (S-nitrosylation). These findings have important implications for the development of new therapeutics targeting STAT3 for treating diseases associated with inflammatory/immune responses and abnormal cell proliferation, including cancer.
Collapse
Affiliation(s)
- Jinsu Kim
- 1 Department of Pediatrics, Medical University of South Carolina , Charleston, South Carolina
| | | | | | | | | |
Collapse
|
13
|
Gibbs PEM, Lerner-Marmarosh N, Poulin A, Farah E, Maines MD. Human biliverdin reductase-based peptides activate and inhibit glucose uptake through direct interaction with the kinase domain of insulin receptor. FASEB J 2014; 28:2478-91. [PMID: 24568842 DOI: 10.1096/fj.13-247015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Insulin binding changes conformation of the insulin receptor kinase (IRK) domain and initiates glucose uptake through the insulin, IGF-1, phosphatidyl inositol 3-kinase (PI3K), and MAPK pathways; human biliverdin reductase (hBVR) is an IRK substrate and pathway effector. This is the first report on hBVR peptide-mediated IRK activation and conformational change. (290)KYCCSRK, which increased IRK V(max) without changing K(m), stimulated glucose uptake and potentiated insulin and IGF-1 stimulation in 4 cell lines. KYCCSRK in native hBVR was necessary for the hBVR and IRK cross-activation. Peptide treatment also activated PI3K downstream effectors, Akt and ERK, phosphorylation, and Elk transcriptional activity. In cells transfected with CMV-regulated EGFP-VP-peptide plasmid, C(292)→A mutant did not stimulate glucose uptake; K(296)→A decreased uptake and kinase activity. KEDQYMKMTV, corresponding to hBVR's SH2-binding domain, was a potent inhibitor of glucose uptake and IRK. The mechanism of action of peptides was examined using cells expressing IRK (aa 988-1263) activated by coexpressed KYCCSRK. Three active cys-mutants of IRK, with fluorophore coupled to cysteines, C(1056), C(1138), or C(1234), were examined for changes in fluorescence emission spectra in the presence of peptides. KYCCSRK and KEDQYMKMTV bound to different sites in IRK. The findings identify novel agents for activating or inhibiting insulin signaling and offer a new approach for treatment of type 2 diabetes and hypoglycemia.
Collapse
Affiliation(s)
- Peter E M Gibbs
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Nicole Lerner-Marmarosh
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Amelia Poulin
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Elie Farah
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Mahin D Maines
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
14
|
Won JS, Kim J, Paintlia MK, Singh I, Singh AK. Role of endogenous psychosine accumulation in oligodendrocyte differentiation and survival: implication for Krabbe disease. Brain Res 2013; 1508:44-52. [PMID: 23438514 DOI: 10.1016/j.brainres.2013.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/28/2013] [Accepted: 02/14/2013] [Indexed: 11/16/2022]
Abstract
Krabbe disease is a lethal, demyelinating condition caused by genetic deficiency of galactocerebrosidase (GALC) and resultant accumulation of its cytotoxic substrate, psychosine (galactosylsphingosine), primarily in oligodendrocytes (OLs). Psychosine is generated by galactosylation of sphingosine by UDP-galactose:ceramide galactosyltransferase (CGT), a galactosylceramide synthesizing enzyme which is primarily expressed in OLs. The expression of CGT and the synthesis of galactosyl-sphingolipids are associated with the terminal differentiation of OL, but little is known about the participation of endogenous psychosine accumulation in OL differentiation under GALC deficient conditions. In this study, we report that accumulation of endogenous psychosine under GALC deficient Krabbe conditions impedes OL differentiation process both by decreasing the expression of myelin lipids and protein and by inducing the cell death of maturating OLs. The psychosine pathology under GALC deficient conditions involves participation of secretory phospholipase A2 (sPLA2) activation and increase in its metabolites, as evidenced by attenuation of psychosine-induced pathology by treatment with pharmacological inhibitor of sPLA2 7,7-dimethyleicosadienoic acid (DEDA). These observations suggest for potential therapeutic efficacy of sPLA2 inhibitor in Krabbe disease.
Collapse
Affiliation(s)
- Je-Seong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | | | | | | | | |
Collapse
|
15
|
Balamurugan K, Sharan S, Klarmann KD, Zhang Y, Coppola V, Summers GH, Roger T, Morrison DK, Keller JR, Sterneck E. FBXW7α attenuates inflammatory signalling by downregulating C/EBPδ and its target gene Tlr4. Nat Commun 2013; 4:1662. [PMID: 23575666 PMCID: PMC3625980 DOI: 10.1038/ncomms2677] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/28/2013] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptor 4 (Tlr4) has a pivotal role in innate immune responses, and the transcription factor CCAAT/enhancer binding protein delta (C/EBPδ, Cebpd) is a Tlr4-induced gene. Here we identify a positive feedback loop in which C/EBPδ activates Tlr4 gene expression in macrophages and tumour cells. In addition, we discovered a negative feedback loop whereby the tumour suppressor FBXW7α (FBW7, Cdc4), whose gene expression is inhibited by C/EBPδ, targets C/EBPδ for degradation when C/EBPδ is phosphorylated by GSK-3β. Consequently, FBXW7α suppresses Tlr4 expression and responses to the ligand lipopolysaccharide. FBXW7α depletion alone is sufficient to augment pro-inflammatory signalling in vivo. Moreover, as inflammatory pathways are known to modulate tumour biology, Cebpd null mammary tumours, which have reduced metastatic potential, show altered expression of inflammation-associated genes. Together, these findings reveal a role for C/EBPδ upstream of Tlr4 signalling and uncover a function for FBXW7α as an attenuator of inflammatory signalling.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, P.O. Box B., Frederick, MD 21702-1201
| | - Shikha Sharan
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, P.O. Box B., Frederick, MD 21702-1201
| | - Kimberly D. Klarmann
- Basic Science Program, SAIC-Frederick, Inc., Laboratory of Cancer Prevention, National Laboratory for Cancer Research, P.O. Box B., Frederick, MD 21702-1201
| | - Youhong Zhang
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, P.O. Box B., Frederick, MD 21702-1201
| | - Vincenzo Coppola
- Department of MVIMG, Wexner Medical Center, Ohio State University-Comprehensive Cancer Center, Ohio State University-CCC, 988 Biological Research Tower 460 West 12th Avenue, Columbus, OHIO 43210
| | - Glenn H. Summers
- Laboratory Animal Sciences Program, SAIC-Frederick, NCI, FNLCR, Frederick, MD
| | - Thierry Roger
- Infectious Diseases Service, Centre Hospitalier Universitaire Vaudois and University of Lausanne, BH 19–111, rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, P.O. Box B., Frederick, MD 21702-1201
| | - Jonathan R. Keller
- Basic Science Program, SAIC-Frederick, Inc., Laboratory of Cancer Prevention, National Laboratory for Cancer Research, P.O. Box B., Frederick, MD 21702-1201
| | - Esta Sterneck
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, P.O. Box B., Frederick, MD 21702-1201
| |
Collapse
|
16
|
Kim D, Yamasaki Y, Jiang Z, Nakayama Y, Yamanishi T, Yamaguchi K, Oda T. Comparative study on modeccin- and phytohemagglutinin (PHA)-induced secretion of cytokines and nitric oxide (NO) in RAW264.7 cells. Acta Biochim Biophys Sin (Shanghai) 2011; 43:52-60. [PMID: 21148191 DOI: 10.1093/abbs/gmq105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The effects of cytotoxic lectins, modeccin and phytohemagglutinin (PHA) on mouse macrophage cell line RAW264.7 was studied by detecting the induction of inflammatory mediators. Results showed that modeccin induced the release of tumor necrosis factor-α (TNF-α) from RAW264.7 cells with a bell-shape concentration-dependent profile. PHA that showed no significant cytotoxicity on RAW264.7 cells up to 100,000 ng/ml induced much higher level of TNF-α than modeccin. PHA simultaneously induced the secretion of granulocyte colony stimulation factor (G-CSF) from RAW264.7 cells with even much higher level than that of TNF-α, whereas modeccin did not. Furthermore, PHA induced the secretion of nitric oxide (NO) in RAW264.7 cells, while no significant level of NO was detected in the modeccin-treated cells. NH₄Cl (a lysomotoropic agent) and cycloheximide (a ribosome inhibitor) strongly inhibited modeccin-induced TNF-α secretion, but no significant inhibitory effects of these reagents on the PHA-induced TNF-α secretion were observed. Contrary to modeccin-induced TNF-α secretion, even slightly increased TNF-α secretion was observed in PHA-treated cells in the presence of 10 mM NH₄Cl. In addition, the inhibition profiles of modeccin-induced TNF-α secretion by various kinase inhibitors were different from those of PHA. These results suggested that the action mode of modeccin to stimulate RAW264.7 cells leading to the secretion of inflammatory molecules, including TNF-α, is distinct from that of PHA. On the other hand, significantly increased translocation of activator protein-1 (AP-1), a crucial transcription factor involved in expression of inflammatory molecules, into nucleus was observed in RAW264.7 cells treated with PHA and modeccin.
Collapse
Affiliation(s)
- Daekyung Kim
- Jeju Center, Korea Basic Science Institute, Jeju-Si, Jeju Special Self-Governing Province, South Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Ejarque-Ortiz A, Gresa-Arribas N, Straccia M, Mancera P, Solà C, Tusell JM, Serratosa J, Saura J. CCAAT/enhancer binding protein delta in microglial activation. J Neurosci Res 2010; 88:1113-23. [PMID: 19908286 DOI: 10.1002/jnr.22272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The transcription factor CCAAT/enhancer binding protein delta (C/EBP delta) regulates transcription of genes that play important roles in glial activation. Previous studies have shown the astroglial expression of C/EBP delta but the microglial expression of C/EBP delta remains virtually unexplored, with the exception of two microarray studies. In this report, using murine primary cultures and BV2 cells we clearly demonstrate that C/EBP delta is expressed by microglia and it is upregulated in microglial activation. Lipopolysaccharide upregulates C/EBP delta both in microglia and in astrocytes. This effect is time-dependent, with a maximum effect at 3 hr at mRNA level and at 4-8 hr at protein level, and concentration-dependent, with a maximum effect at 100 ng/mL. The lipopolysaccharide-induced C/EBP delta upregulation in BV2 microglia is mimicked by agonists of the toll-like receptors 2, 3 and 9 and can be prevented by an inhibitor of extracellular signal-regulated kinase activation. C/EBP delta from activated BV2 microglia binds to the cyclooxygenase-2 promoter and forms complexes with C/EBP beta isoforms. These results point to C/EBP delta as a putative key regulator of proinflammatory gene expression in microglial activation.
Collapse
Affiliation(s)
- Aroa Ejarque-Ortiz
- Department of Cerebral Ischaemia and Neurodegeneration, IIBB, CSIC, IDIBAPS, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Age-dependent response of CCAAT/enhancer binding proteins following traumatic brain injury in mice. Neurochem Int 2009; 56:188-93. [PMID: 19833158 DOI: 10.1016/j.neuint.2009.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/01/2009] [Accepted: 10/06/2009] [Indexed: 01/14/2023]
Abstract
Exacerbated inflammatory responses have been reported following traumatic injury to the aged brain. The present study was designed to investigate the involvement of the transcription factors belonging to the CCAAT/enhancer binding protein (C/EBP) family that regulate expression of many of the pro-inflammatory genes which show increased expression following injury to the aged brain. Controlled cortical impact injury was induced in adult (5-6 months) and aged (22-24 months) C57/BL6 mice. C/EBP mRNA and protein expression were analyzed in injured cortex at 1, 3, and 7 days post-injury. Expression of C/EBPalpha was reduced relative to baseline at day 1 in both adult and aged mice, whereas, it increased at days 3 and 7 post-injury. No significant differences were observed between adult and aged brain. Upregulation of C/EBPbeta was observed 1 day following injury in both the adult and aged brain, but there were no major age-related differences in mRNA levels. However, there was higher C/EBPbeta protein in the aged brain. C/EBPdelta expression increased beginning 1 day post-injury in both adult and aged brain. In this case, the increase in C/EBPdelta expression was higher in the aged brain than in the adult at all time points studied. Expression of CCAAT/enhancer binding protein homologous protein (CHOP), a transcription factor involved in ER stress and protein unfolding responses, was also up-regulated in response to injury, but CHOP levels were significantly lower in the aged than the adult brain. Based on these results, we conclude that differential expression of C/EBP beta, delta and CHOP might contribute to the hyper-inflammatory response and poor prognosis following traumatic brain injury in the elderly patients. In addition elevated C/EBPdelta levels following TBI in the aged brain may play a role in the link between TBI and Alzheimer's disease.
Collapse
|
19
|
Pérez-Neri I, Montes S, Ríos C. Inhibitory effect of dehydroepiandrosterone on brain monoamine oxidase activity: in vivo and in vitro studies. Life Sci 2009; 85:652-6. [PMID: 19772862 DOI: 10.1016/j.lfs.2009.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/28/2009] [Accepted: 09/10/2009] [Indexed: 12/30/2022]
Abstract
AIMS To evaluate the acute effect of dehydroepiandrosterone (DHEA) on monoamine oxidase (MAO) activity in the corpus striatum (CS) and the nucleus accumbens (NAc) in vivo and in vitro. MAIN METHODS Male Wistar rats received an i.p. injection of DHEA (30, 60 and 120mg/kg) and MAO activity was assayed by formation of 4-hydroxyquinoline 2h later. For in vitro studies, DHEA (100nM-1mM) was added to brain tissue homogenates to assay MAO activity. KEY FINDINGS DHEA significantly reduced (-24%) total MAO activity in the NAc (F=8.5, p<0.001), but not in the CS, at 120mg/kg dose. No significant difference was observed when MAO A and MAO B activities were independently analyzed. When assayed in vitro, total MAO, MAO A and MAO B activities were reduced by DHEA to 55.7, 28.2 and 54.4% in the NAc and to 71.9, 44.2 and 61.2% in the CS, respectively (IC(50) 4.7-56.1microM). SIGNIFICANCE An inhibitory effect of DHEA on MAO activity may be involved in the antidepressant and neuroprotective effects of the steroid. Since MAO inhibition reduces neurodegeneration in clinical trials for Parkinson's disease, our results suggest that DHEA may be useful to treat depression and to prevent neuronal death in this disorder.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, Mexico City, Mexico
| | | | | |
Collapse
|
20
|
Munoz-Pinto DJ, Bulick AS, Hahn MS. Uncoupled investigation of scaffold modulus and mesh size on smooth muscle cell behavior. J Biomed Mater Res A 2009; 90:303-16. [PMID: 19402139 DOI: 10.1002/jbm.a.32492] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although scaffold material properties are known to critically impact cell behavior, it has proven difficult to correlate specific cell responses to isolated scaffold parameters, inhibiting rational design of scaffold material properties. The aim of this study was to validate a systematic approach for evaluating the influence of initial scaffold modulus and mesh size on cell extracellular matrix (ECM) deposition and phenotype. Poly(ethylene glycol) diacrylate (PEGDA) hydrogels were selected for this study because of their tunable material properties. Following screening of six distinct PEGDA hydrogels, three formulations were identified which permitted uncoupled investigation of scaffold mesh size and modulus within the target incremental modulus range of approximately 100-300 kPa. Smooth muscle cells (SMCs) were encapsulated within these three formulations, and cell ECM deposition and phenotype were evaluated following 21 days of culture. Although elastin content appeared to be correlated with scaffold mesh size and modulus to a similar degree, levels of collagen and serum response factor (SRF), a key regulator of SMC phenotype, were more strongly correlated with mesh size. To gain insight into the cell signaling underlying these observed correlations, variations in cell metabolic state and in RhoA signaling were semi-quantitatively evaluated. Both RhoA activity, which is largely modulated by scaffold mechanics in 2D, and cell metabolic activity were highly correlated with hydrogel mesh size. These results indicate that the effects of scaffold mechanics on RhoA activity in 3D may be distinct from those in 2D and underscore the need for uncoupled investigation of scaffold parameters on cell behavior. Furthermore, the present data suggest that RhoA signaling and cell metabolic regulation may be closely linked.
Collapse
Affiliation(s)
- Dany J Munoz-Pinto
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | | | | |
Collapse
|
21
|
Yamanishi T, Hatakeyama T, Yamaguchi K, Oda T. CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin, induces nitric oxide production in RAW264.7 mouse macrophage cell line. J Biochem 2009; 146:209-17. [PMID: 19351706 DOI: 10.1093/jb/mvp057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We found that CEL-I, a GalNAc-specific C-type lectin isolated from the marine invertebrate Holothuroidea (Cucumaria echinata), induces inducible nitric oxide synthase (iNOS) expression and NO production in RAW264.7 cells. The NO production was inhibited by an iNOS inhibitor, L-NAME, but was not by a lipopolysaccharide (LPS) inhibitor, polymyxin B. In the presence of 0.1-M GalNAc, increased NO production by CEL-I-treated RAW264.7 cells was observed rather than the inhibition. Bovine serum albumin (BSA) significantly inhibited the CEL-I-induced NO production as well as the binding of FITC-labelled CEL-I on RAW264.7 cells. Three MAP kinase inhibitors (specific to extra-cellular regulated kinase, c-jun NH(2)-terminal kinase and p38 MAP kinase) inhibited CEL-I-induced NO production with different extents. Heat-treatment of CEL-I resulted in a decreased activity of CEL-I depending on the temperature. These results suggest that CEL-I induces NO production in RAW264.7 cells through the protein-cell interaction rather than the binding to the specific carbohydrate chains on the cell surface.
Collapse
|
22
|
Lee JK, Won JS, Singh AK, Singh I. Statin inhibits kainic acid-induced seizure and associated inflammation and hippocampal cell death. Neurosci Lett 2008; 440:260-4. [PMID: 18583044 DOI: 10.1016/j.neulet.2008.05.112] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/30/2008] [Accepted: 05/22/2008] [Indexed: 10/22/2022]
Abstract
Statins are inhibitors of HMG-CoA reductase that have been recently recognized as anti-inflammatory and neuroprotective drugs. Herein, we investigated anti-excitotoxic and anti-seizure effects of statins by using kainic acid (KA)-rat seizure model, an animal model for temporal lobe epilepsy and excitotoxic neurodegeneration. We observed that pre-treatment with Lipitor (atorvastatin) efficiently reduced KA-induced seizure activities, hippocampal neuron death, monocyte infiltration and proinflammatory gene expression. In addition, we also observed that lovastatin treatment attenuated KA- or glutamate-induced excitotoxicity of cultured hippocampal neurons. These observations suggest a potential for use of statin treatment in modulation of seizures and other neurological diseases associated with excitotoxicity.
Collapse
Affiliation(s)
- Jin-Koo Lee
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
23
|
Won JS, Im YB, Khan M, Contreras M, Singh AK, Singh I. Lovastatin inhibits amyloid precursor protein (APP) beta-cleavage through reduction of APP distribution in Lubrol WX extractable low density lipid rafts. J Neurochem 2008; 105:1536-49. [PMID: 18266936 DOI: 10.1111/j.1471-4159.2008.05283.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies have described that statins (inhibitors of cholesterol and isoprenoid biosynthesis) inhibit the output of amyloid-beta (Abeta) in the animal model and thus decrease risk of Alzheimer's disease. However, their action mechanism(s) in Abeta precursor protein (APP) processing and Abeta generation is not fully understood. In this study, we report that lovastatin treatment reduced Abeta output in cultured hippocampal neurons as a result of reduced APP levels and beta-secretase activities in low density Lubrol WX (non-ionic detergent) extractable lipid rafts (LDLR). Rather than altering cholesterol levels in lipid raft fractions and thus disrupting lipid raft structure, lovastatin decreased Abeta generation through down-regulating geranylgeranyl-pyrophosphate dependent endocytosis pathway. The inhibition of APP endocytosis by treatment with lovastatin and reduction of APP levels in LDLR fractions by treatment with phenylarsine oxide (a general endocytosis inhibitor) support the involvement of APP endocytosis in APP distribution in LDLR fractions and subsequent APP beta-cleavage. Moreover, lovastatin-mediated down-regulation of endocytosis regulators, such as early endosomal antigen 1, dynamin-1, and phosphatidylinositol 3-kinase activity, indicates that lovastatin modulates APP endocytosis possibly through its pleiotropic effects on endocytic regulators. Collectively, these data report that lovastatin mediates inhibition of LDLR distribution and beta-cleavage of APP in a geranylgeranyl-pyrophosphate and endocytosis-dependent manner.
Collapse
Affiliation(s)
- Je-Seong Won
- Department of Pathology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
24
|
Russell JC, Proctor SD. Increased insulin sensitivity and reduced micro and macro vascular disease induced by 2-deoxy-D-glucose during metabolic syndrome in obese JCR: LA-cp rats. Br J Pharmacol 2007; 151:216-25. [PMID: 17375078 PMCID: PMC2013948 DOI: 10.1038/sj.bjp.0707226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE The metabolic syndrome, characterized by obesity, insulin resistance and dyslipidemia, is a major cause of cardiovascular disease. The origins of the syndrome have been hypothesized to lie in continuous availability of energy dense foods in modern societies. In contrast, human physiology has evolved in an environment of sporadic food supply and frequent food deprivation. Intermittent food restriction in rats has previously been shown to lead to reduction of cardiovascular risk and a greater life span. The non-metabolizable glucose analogue, 2-deoxy-D-glucose (2-DG) is taken up by cells and induces pharmacological inhibition of metabolism of glucose. We hypothesized that intermittent inhibition of glucose metabolism, a metabolic deprivation, may mimic intermittent food deprivation and ameliorate metabolic and pathophysiological aspects of the metabolic syndrome. EXPERIMENTAL APPROACH Insulin resistant, atherosclerosis-prone JCR:LA-cp rats were treated with 2-DG (0.3% w/w in chow) on an intermittent schedule (2 days treated, one day non-treated, two days treated and two days non-treated) or continuously at a dose to give an equivalent averaged intake. KEY RESULTS Intermittent 2-DG-treatment improved insulin sensitivity, which correlated with increased adiponectin concentrations. Further, intermittent treatment (but not continuous treatment) reduced plasma levels of leptin and the inflammatory cytokine IL-1 beta. Both 2-DG treatments reduced micro-vascular glomerular sclerosis, but only the intermittent schedule improved macro-vascular dysfunction. CONCLUSIONS AND IMPLICATIONS Our findings are consistent with reduction in severity of the metabolic syndrome and protection against end stage micro- and macro-vascular disease through intermittent metabolic deprivation at a cellular level by inhibition of glucose oxidation with 2-DG.
Collapse
Affiliation(s)
- J C Russell
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
25
|
Zhao X, Zhang Y, Strong R, Zhang J, Grotta JC, Aronowski J. Distinct patterns of intracerebral hemorrhage-induced alterations in NF-κB subunit, iNOS, and COX-2 expression. J Neurochem 2006; 101:652-63. [PMID: 17250675 DOI: 10.1111/j.1471-4159.2006.04414.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription factor nuclear factor-kappaB (NF-kappaB), plays a key role in regulating inflammation in brain pathologies. The goal of this study was to characterize temporal changes in NF-kappaB activation, NF-kappaB subunit expression, and expression of selected NF-kappaB-regulated gene products [inducible form of nitric oxide synthase (iNOS) and cyclooxygenase-2], at the transcriptional and translational level in the brain after intracerebral hemorrhage (ICH). Employing the intrastriatal injection of autologous blood in rats to model ICH, we demonstrated, using NF-kappaB-DNA binding assay, a robust and prolonged NF-kappaB activation, starting as early as 15 min after the onset of ICH. Consequently, we demonstrated that the mRNA and protein for p50, p52, p65, c-Rel, and RelB NF-kappaB subunits, as well as IkappaBalpha were all up-regulated, with a time course ranging from minutes to days following ICH, depending on the subunit. Using reverse transcription-polymerase chain reaction to analyze mRNA and immunoblotting to analyze protein in ICH-affected tissue, we found robust induction of iNOS at both mRNA and protein levels that followed a time-course similar to changes in p65, p52, and RelB mRNA. Oddly, in contrast to iNOS, cyclooxygenase-2 mRNA and protein following an early transient increase demonstrated significant reduction in response to ICH. In summary, NF-kappaB activation occurs within minutes and persists for at least a week in response to ICH. This reaction utilizes different NF-kappaB regulatory subunits and is associated with the expression of selected target genes.
Collapse
Affiliation(s)
- Xiurong Zhao
- Department of Neurology, Stroke Program, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Elevated levels of NO produced within the central nervous system (CNS) are associated with the pathogenesis of neuroinflammatory and neurodegenerative human diseases such as multiple sclerosis, HIV dementia, brain ischemia, trauma, Parkinson's disease, and Alzheimer's disease. Resident glial cells in the CNS (astroglia and microglia) express inducible nitric oxide synthase (iNOS) and produce high levels of NO in response to a wide variety of proinflammatory and degenerative stimuli. Although pathways resulting in the expression of iNOS may vary in two different glial cells of different species, the intracellular signaling events required for the expression of iNOS in these cells are slowly becoming clear. Various signaling cascades converge to activate several transcription factors that control the transcription of iNOS in glial cells. The present review summarizes different results and discusses current understandings about signaling mechanisms for the induction of iNOS expression in activated glial cells. A complete understanding of the regulation of iNOS expression in glial cells is expected to identify novel targets for therapeutic intervention in NO-mediated neurological disorders.
Collapse
Affiliation(s)
- Ramendra N Saha
- Department of Oral Biology, Section of Neuroscience, University of Nebraska Medical Center, Lincoln, 68583, USA
| | | |
Collapse
|
27
|
Kostrzewa-Nowak D, Paine MJI, Korytowska A, Serwatka K, Piotrowska S, Wolf CR, Tarasiuk J. Bioreductive activation of mitoxantrone by NADPH cytochrome P450 reductase. Implications for increasing its ability to inhibit the growth of sensitive and multidrug resistant leukaemia HL60 cells. Cancer Lett 2006; 245:252-62. [PMID: 16574318 DOI: 10.1016/j.canlet.2006.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 11/30/2005] [Accepted: 01/16/2006] [Indexed: 11/26/2022]
Abstract
The aim of this study was to examine the role of reductive activation of mitoxantrone (MX) by human liver NADPH cytochrome P450 reductase (CPR) in increasing its ability to inhibit the growth of human promyelocytic sensitive leukaemia HL60 cell line as well as its MDR sublines exhibiting two different phenotypes of MDR related to the overexpression of P-glycoprotein (HL60/VINC) or MRP1 (HL60/DOX). Our assays showed that the reduction of MX by exogenously added CPR in the presence of low NADPH concentration had no effect in increasing its ability to inhibit the growth of sensitive and MDR tumour cells. In contrast, an important increase in antiproliferative activity of MX after its reductive activation by CPR at high NADPH concentration was observed against HL60/VINC as well as HL60/DOX cells.
Collapse
Affiliation(s)
- Dorota Kostrzewa-Nowak
- Department of Biochemistry, University of Szczecin, 3c Felczaka St, 71-412 Szczecin, Poland
| | | | | | | | | | | | | |
Collapse
|
28
|
Matsui R, Xu S, Maitland KA, Mastroianni R, Leopold JA, Handy DE, Loscalzo J, Cohen RA. Glucose-6-phosphate dehydrogenase deficiency decreases vascular superoxide and atherosclerotic lesions in apolipoprotein E(-/-) mice. Arterioscler Thromb Vasc Biol 2006; 26:910-6. [PMID: 16439706 DOI: 10.1161/01.atv.0000205850.49390.3b] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway that is a major source of cellular NADPH. The purpose of this study was to examine whether G6PD deficiency affects vascular oxidants and atherosclerosis in high-fat fed apolipoprotein (apo) E(-/-) mice. METHODS AND RESULTS G6PD-mutant mice whose G6PD activity was 20% of normal were crossbred with apoE(-/-) mice. Among male apoE(-/-) mice that were fed a western-type diet for 11 weeks, G6PD wild-type (E-WT), and G6PD hemizygous (E-Hemi) mice were compared. Basal blood pressure was significantly higher in E-Hemi. However, superoxide anion release, nitrotyrosine, vascular cell adhesion molecule (VCAM)-1, and inducible nitric oxide synthase immunohistochemical staining were less in E-Hemi compared with E-WT aorta. Serum cholesterol level was lower in E-Hemi, but aortic lesion area was decreased in E-Hemi even after adjusting for serum cholesterol. CONCLUSIONS Lower NADPH production in G6PD deficiency may result in lower NADPH oxidase-derived superoxide anion, and thus lower aortic lesion growth. The association of higher blood pressure with lower serum cholesterol levels in this mouse model is indicative of the complex effects that G6PD deficiency may have on vascular disease.
Collapse
Affiliation(s)
- Reiko Matsui
- Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ejarque-Ortiz A, Medina MG, Tusell JM, Pérez-González AP, Serratosa J, Saura J. Upregulation of CCAAT/enhancer binding protein β in activated astrocytes and microglia. Glia 2006; 55:178-88. [PMID: 17078024 DOI: 10.1002/glia.20446] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) regulates the expression of key genes in inflammation but little is known about the involvement of C/EBPbeta in glial activation. In this report, we have studied the patterns of astroglial and microglial C/EBPbeta expression in primary mouse cortical cultures. We show that both astrocytes and microglia express C/EBPbeta in untreated mixed glial cultures. C/EBPbeta is upregulated when glial activation is induced by lipopolysaccharide (LPS). The LPS-induced upregulation of glial C/EBPbeta is rapid (2 h at mRNA level, 4 h at protein level). It is elicited by low concentrations of LPS (almost maximal effect at 1 ng/mL) and it is reversed by the protein synthesis inhibitor cycloheximide. C/EBPbeta nuclear levels increase both in astrocytes and microglia after LPS treatment, and the response is more marked in microglia. The LPS-induced increase in microglial C/EBPbeta is prevented by coadministration of the MAP kinase inhibitors SB203580 (p38 inhibitor) + SP600125 (JNK inhibitor) or SB203580 + U0126 (ERK inhibitor). Systemic injection of LPS also increases brain nuclear levels of C/EBPbeta as shown by Western blot, and this increase is localized in microglial cells as shown by double immunofluorescence, in the first report to our knowledge of C/EBPbeta expression in activated glial cells in vivo. These findings support a role for C/EBPbeta in the activation of astrocytes and, particularly, microglia. Given the nature of the C/EBPbeta-regulated genes, we hypothesize that this factor participates in neurotoxic effects associated with glial activation. (c) 2006 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Aroa Ejarque-Ortiz
- Department of Pharmacology and Toxicology, IIBB-CSIC, IDIBAPS, E-08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
30
|
von Gertten C, Morales AF, Holmin S, Mathiesen T, Nordqvist ACS. Genomic responses in rat cerebral cortex after traumatic brain injury. BMC Neurosci 2005; 6:69. [PMID: 16318630 PMCID: PMC1310614 DOI: 10.1186/1471-2202-6-69] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 11/30/2005] [Indexed: 11/27/2022] Open
Abstract
Background Traumatic brain injury (TBI) initiates a complex sequence of destructive and neuroprotective cellular responses. The initial mechanical injury is followed by an extended time period of secondary brain damage. Due to the complicated pathological picture a better understanding of the molecular events occurring during this secondary phase of injury is needed. This study was aimed at analysing gene expression patterns following cerebral cortical contusion in rat using high throughput microarray technology with the goal of identifying genes involved in an early and in a more delayed phase of trauma, as genomic responses behind secondary mechanisms likely are time-dependent. Results Among the upregulated genes 1 day post injury, were transcription factors and genes involved in metabolism, e.g. STAT-3, C/EBP-δ and cytochrome p450. At 4 days post injury we observed increased gene expression of inflammatory factors, proteases and their inhibitors, like cathepsins, α-2-macroglobulin and C1q. Notably, genes with biological function clustered to immune response were significantly upregulated 4 days after injury, which was not found following 1 day. Osteopontin and one of its receptors, CD-44, were both upregulated showing a local mRNA- and immunoreactivity pattern in and around the injury site. Fewer genes had decreased expression both 1 and 4 days post injury and included genes implicated in transport, metabolism, signalling, and extra cellular matrix formation, e.g. vitronectin, neuroserpin and angiotensinogen. Conclusion The different patterns of gene expression, with little overlap in genes, 1 and 4 days post injury showed time dependence in genomic responses to trauma. An early induction of factors involved in transcription could lead to the later inflammatory response with strongly upregulated CD-44 and osteopontin expression. An increased knowledge of genes regulating the pathological mechanisms in trauma will help to find future treatment targets. Since trauma is a risk factor for development of neurodegenerative disease, this knowledge may also reduce late negative effects.
Collapse
Affiliation(s)
- Christina von Gertten
- Department of Clinical Neuroscience, Karolinska Institutet, Section of Clinical CNS research, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, Section of Clinical CNS research, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Tiit Mathiesen
- Department of Clinical Neuroscience, Karolinska Institutet, Section of Clinical CNS research, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ann-Christin Sandberg Nordqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Section of Clinical CNS research, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
31
|
Biagiotti E, Ferri P, Dringen R, Del Grande P, Ninfali P. Glucose-6-phosphate dehydrogenase and NADPH-consuming enzymes in the rat olfactory bulb. J Neurosci Res 2005; 80:434-41. [PMID: 15795931 DOI: 10.1002/jnr.20448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The resistance to oxidative stress is a multifactorial reaction involving the clustering of transcriptionally regulated genes. Because glucose-6-phosphate dehydrogenase (G6PD), the principal enzyme responsible for reducing power, is highly expressed in the olfactory bulb (OB), it is of interest to verify whether other enzymes utilizing NADPH are also highly expressed. The level and localization of G6PD- and NADPH-consuming enzymes, such as NADPH-cytochrome P450 oxidoreductase (P450R), glutathione reductase (GR), and NADPH-diaphorase (NADPH-d), were analyzed in the rat olfactory bulb (OB) by quantitative histochemistry and immunohistochemistry. The highest concentration of G6PD, P450R, and GR was observed in the olfactory nerve layer (ONL), suggesting a correlation in the expression of these enzymes at the gene level. Correlation in staining intensity between G6PD and NADPH-d activities occurred only in part of the ONL, some glomeruli, and scattered periglomerular cells. This peculiar distribution of NADPH-d could reflect a spatial patterning of the nose to bulb projections. Taken together, these results indicate that G6PD expression in the ONL could be related to the importance of generating a substantial supply of NADPH to sustain the detoxifying systems represented by GR and P450R reactions and, only in discrete zones, by NADPH-d activity.
Collapse
Affiliation(s)
- Enrica Biagiotti
- Institute of Biological Chemistry G. Fornaini, University of Urbino "Carlo Bo," Urbino, Italy
| | | | | | | | | |
Collapse
|
32
|
Stanislaus R, Gilg AG, Singh AK, Singh I. N-acetyl-L-cysteine ameliorates the inflammatory disease process in experimental autoimmune encephalomyelitis in Lewis rats. JOURNAL OF AUTOIMMUNE DISEASES 2005; 2:4. [PMID: 15869713 PMCID: PMC1097751 DOI: 10.1186/1740-2557-2-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 05/03/2005] [Indexed: 11/10/2022]
Abstract
We report that N-acetyl-L-cysteine (NAC) treatment blocked induction of TNF-alpha, IL-1beta, IFN-gamma and iNOS in the CNS and attenuated clinical disease in the myelin basic protein induced model of experimental allergic encephalomyelitis (EAE) in Lewis rats. Infiltration of mononuclear cells into the CNS and induction of inflammatory cytokines and iNOS in multiple sclerosis (MS) and EAE have been implicated in subsequent disease progression and pathogenesis. To understand the mechanism of efficacy of NAC against EAE, we examined its effect on the production of cytokines and the infiltration of inflammatory cells into the CNS. NAC treatment attenuated the transmigration of mononuclear cells thereby lessening the neuroinflammatory disease. Splenocytes from NAC-treated EAE animals showed reduced IFN-gamma production, a Th1 cytokine and increased IL-10 production, an anti-inflammatory cytokine. Further, splenocytes from NAC-treated EAE animals also showed decreased nitrite production when stimulated in vitro by LPS. These observations indicate that NAC treatment may be of therapeutic value in MS against the inflammatory disease process associated with the infiltration of activated mononuclear cells into the CNS.
Collapse
Affiliation(s)
- Romesh Stanislaus
- Department of Biostatistics, Bioinformatics & Epidemiology, Medical University of South Carolina, Charleston, SC, USA
| | - Anne G Gilg
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
33
|
Ferri P, Biagiotti E, Ambrogini P, Santi S, Del Grande P, Ninfali P. NADPH-consuming enzymes correlate with glucose-6-phosphate dehydrogenase in Purkinje cells: an immunohistochemical and enzyme histochemical study of the rat cerebellar cortex. Neurosci Res 2005; 51:185-97. [PMID: 15681036 DOI: 10.1016/j.neures.2004.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 11/02/2004] [Indexed: 12/12/2022]
Abstract
In cerebellum of the adult rat, glucose-6-phosphate dehydrogenase (G6PD) activity is particularly localized in Purkinje cells, showing lower activity in the molecular and granule cell layers. G6PD is the first and rate-limiting step of the hexose monophosphate shunt (HMS), which has the physiological role of providing NADPH for reductive biosynthesis and detoxifying reactions. In this study, we searched for a possible correlation between G6PD and other NADPH-consuming enzymes, such as NADPH-cytochrome P450 reductase (P450R), glutathione reductase (GR) and NADPH-diaphorase (NADPH-d). This study was performed by means of immunohistochemistry and enzyme histochemistry followed by quantitative densitometric and confocal laser scanning microscopic analyses. Our results demonstrated that G6PD, P450R and GR have a similar distribution pattern characterized by the highest concentration of these enzymes in the somata of Purkinje cells, and by lower concentrations in the molecular and the granule cell layers. Moreover, in Purkinje cells, G6PD colocalized with both P450R and GR. NADPH-d activity showed a different distribution pattern when compared to the other enzymes, revealing the highest activity in the molecular layer and the lowest in Purkinje cells. Our results suggest a coordinated regulative mechanism of G6PD, P450R and GR based on the request of NADPH or on specific transcription factors.
Collapse
Affiliation(s)
- Paola Ferri
- Institute of Morphological Sciences, University of Urbino Carlo Bo, I-61029 Urbino, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Won JS, Im YB, Khan M, Singh AK, Singh I. Involvement of phospholipase A2 and lipoxygenase in lipopolysaccharide-induced inducible nitric oxide synthase expression in glial cells. Glia 2005; 51:13-21. [PMID: 15779087 DOI: 10.1002/glia.20178] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study underlines the importance of phospholipase A2 (PLA2)- and lipoxygenase (LO)-mediated signaling processes in the regulation of inducible nitric oxide synthase (iNOS) gene expression. In glial cells, lipopolysaccharide (LPS) induced the activities of PLA2 (calcium-independent PLA2; iPLA2 and cytosolic PLA2; cPLA2) as well as gene expression of iNOS. The inhibition of cPLA2 by methyl arachidonyl fluorophosphates (MAFP) or antisense oligomer against cPLA2 and inhibition of iPLA2 by bromoenol lactone reduced the LPS-induced iNOS gene expression and NFkappaB activation. In addition, the inhibition of LO by nordihydroguaiaretic acid (NDGA; general LO inhibitor) or MK886 (5-LO inhibitor), but not baicalein (12-LO inhibitor), completely abrogated the LPS-induced iNOS expression. Because NDGA could abrogate the LPS-induced activation of NFkappaB, while MK886 had no effect on it, LO-mediated inhibition of iNOS gene induction by LPS may involve an NFkappaB-dependent or -independent (by 5-LO) pathway. In contrast to LO, however, the cyclooxygenase (COX) may not be involved in the regulation of LPS-mediated induction of iNOS gene because COX inhibition by indomethacin (general COX inhibitor), SC560 (COX-1 inhibitor), and NS398 (COX-2 inhibitor) affected neither the LPS-induced iNOS expression nor activation of NFkappaB. These results indicate a role for cPLA2 and iPLA2 in LPS-mediated iNOS gene induction in glial cells and the involvement of LO in these reactions.
Collapse
Affiliation(s)
- Je-Seong Won
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
35
|
Lee JK, Won JS, Singh AK, Singh I. Adenosine kinase inhibitor attenuates the expression of inducible nitric oxide synthase in glial cells. Neuropharmacology 2005; 48:151-60. [PMID: 15617735 DOI: 10.1016/j.neuropharm.2004.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 08/11/2004] [Accepted: 09/16/2004] [Indexed: 11/21/2022]
Abstract
The present study demonstrates the anti-inflammatory effect of adenosine kinase inhibitor (ADKI) in glial cells. Treatment of glial cells with IC51, an ADKI, stimulated the extracellular adenosine release and reduced the LPS/IFNgamma-mediated production of NO, and induction of iNOS and TNF-alpha gene expression. The recovery of IC51-mediated inhibition of iNOS expression by adenosine transport inhibitor, S-(4-nitrobenzyl)-6-thioinosine (NBTI), and the inhibition of LPS/IFNgamma-induced iNOS gene expression by exogenous adenosine indicate a role for adenosine release in IC51-mediated iNOS expression. The rescue of IC51-mediated inhibition of iNOS expression by adenosine receptor antagonist for A2A, 8-(3-chlorostyryl)caffeine (CSC) and alloxazine for A2B, further supports a role for interaction of adenosine and its receptors in anti-inflammatory activity. The IC51-mediated induction of cAMP levels, downstream target of A2A and A2B, and inhibition of LPS/IFNgamma-induced expression of iNOS by forskolin, a cAMP activator, document a role for cAMP mediated pathway in anti-inflammatory activity of IC51. Taken together, these studies document that IC51-mediated inhibition of iNOS expression is through activation of adenosine receptors, which activates A2A and A2B resulting in increased cAMP levels following LPS/IFNgamma stimulation. Moreover, the lack of effect of IC51 or adenosine on NFkappaB DNA binding activity and its transactivity indicates that the inhibition of iNOS expression mediated by IC51 may be through an NFkappaB independent pathway.
Collapse
Affiliation(s)
- Jin-Koo Lee
- Department of Pediatrics, Medical University of South Carolina, 96 Jonathan Lucas Street, 316 Clinical Science Building, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
36
|
Won JS, Im YB, Singh AK, Singh I. Dual role of cAMP in iNOS expression in glial cells and macrophages is mediated by differential regulation of p38-MAPK/ATF-2 activation and iNOS stability. Free Radic Biol Med 2004; 37:1834-44. [PMID: 15528042 DOI: 10.1016/j.freeradbiomed.2004.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 08/24/2004] [Accepted: 08/26/2004] [Indexed: 11/23/2022]
Abstract
We reported previously that cAMP analogues or cAMP synthesis activator (forskolin; FSK) inhibit lipopolysaccharide (LPS)-induced inducible nitric-oxide systase (iNOS) gene expression in astrocytes, while they enhance that in macrophages. Here, we report that the FSK-mediated inhibition of iNOS expression in C6 glial cells is due to its reduced transcriptional activity, while the FSK-mediated enhancement of iNOS expression in RAW264.7 macrophages is a result of increased stability of iNOS protein without transcriptional enhancement. The LPS/interferon-gamma (IFN)-induced iNOS transcription was inhibited by FSK via inhibition of p38-MAPK/ATF-2 activity in glial cells while it was not affected in macrophages. In both cell types, proteasome activities were required for the spontaneous degradation of iNOS protein, and the inhibition of proteasome activity by MG132 after maximum increase of iNOS protein levels further enhanced iNOS protein induction by LPS/IFN, suggesting the involvement of proteasome in iNOS degradation. More importantly, the iNOS protein levels were equalized by the MG132 posttreatment in macrophages treated with LPS/IFN alone and along with FSK, and ubiquitinated iNOS protein levels were reduced by FSK posttreatment, suggesting that the FSK-mediated inhibition of ubiquitination of iNOS protein and the following increased stability of iNOS protein are one of the mechanisms of cAMP-pathway-mediated enhancement of iNOS gene expression in macrophages. To our knowledge, this is the first evidence that cAMP regulates iNOS expression at the posttranslational level in macrophages.
Collapse
Affiliation(s)
- Je-Seong Won
- Developmental Neurogenetics, Department of Pediatrics; Department of Pathology, Medical University of South Carolina, 316 CSB, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|