1
|
Bhoi R, Mitra T, Tejaswi K, Manoj V, Ghatak S. Role of Ion Channels in Alzheimer's Disease Pathophysiology. J Membr Biol 2025; 258:187-212. [PMID: 40310500 PMCID: PMC12081594 DOI: 10.1007/s00232-025-00341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 05/02/2025]
Abstract
Ion channels play an integral role in the normal functioning of the brain. They regulate neuronal electrical properties like synaptic activity, generation of action potentials, maintenance of resting membrane potential and neuronal plasticity, and modulate the physiology of non-neuronal cells like astrocytes and microglia. Dysregulation of ionic homeostasis and channelopathies are associated with various neurological disorders, including Alzheimer's disease (AD). Several families of ion channels are associated with AD pathophysiology and progression. In this review, we outline the current research centered around ion channel dysregulation during AD and discuss briefly the possibility of using ion channels as therapeutic targets.
Collapse
Affiliation(s)
- Ranjit Bhoi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Tuhina Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Kallam Tejaswi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Vaishnav Manoj
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Swagata Ghatak
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
2
|
Soleimani Z, Davoudi S, Saffarzadeh F, Behzadi G, Mehdizadeh M, Rahdar M, Hosseinmardi N, Janahmadi M, Eslamizade MJ. Restoring neuronal excitability and spatial memory through inhibiting amyloid-β-induced hyperactive NF-κB in a rat model of Alzheimer's disease. Brain Res 2025; 1861:149703. [PMID: 40389144 DOI: 10.1016/j.brainres.2025.149703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 05/06/2025] [Accepted: 05/10/2025] [Indexed: 05/21/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder associated with aberrant neuronal activity. In AD, NF-κB, a key transcription factor and inflammatory mediator, becomes hyperactive, influencing gene expression, and likely neuronal excitability. This study investigates whether inhibiting intracortical injection of amyloid-β peptides (Aβ)-induced hyperactive NF-κB can restore spatial memory impairment and abnormal neuronal activity in rats. We observed that intracortical injection of Aβ increases immunoreactivity of phosphorylated-p65 in CA1 pyramidal neurons. We demonstrated that in vivo treatment of rats with JSH-23 restores anxiety-like behaviors as well as spatial learning and memory, as assessed by elevated plus maze and Morris water maze, respectively. In addition, using patch-clamp recording we showed that the intrinsic excitability of CA1 pyramidal neurons, particularly in terms of the evoked spikes, is reduced in Aβ-injected rats along with altered resting membrane properties. Incubating acute brain slices from control rats in aCSF containing JSH-23 did not influence the neuronal activity. In contrast, this incubation restored almost all of the passive- and activity-dependent properties of CA1 pyramidal neurons in brain slices from Aβ-injected rats. Furthermore, we found that Aβ-induced enhancement of Ih currents and after-hyperpolarization amplitude (AHP) are reduced by JSH-23 incubation, possibly underlying rescuing effects of NF-κB inhibition at behavioral and cognitive level. Collectively, our results suggest that hyperactive NF-κB signaling in AD is associated with abnormal neuronal activity and deficits in cognitive functions. Moreover, pharmacologic inhibition of this signaling molecule restores neuronal excitability, as well as rescues spatial memory, likely through influencing Ih currents and AHP.
Collapse
Affiliation(s)
- Zahra Soleimani
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Davoudi
- Neurophysiology Research Center, Institute of Neuroscience & Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saffarzadeh
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, Institute of Neuroscience & Cognition and School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad J Eslamizade
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Downs AM, Kmiec G, Catavero CM, Wykoff LA, McElligott ZA. Loss of excitatory inputs and decreased tonic and evoked activity of locus coeruleus neurons in aged P301S mice. Neurobiol Dis 2025; 208:106883. [PMID: 40122182 PMCID: PMC12056759 DOI: 10.1016/j.nbd.2025.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025] Open
Abstract
Tau pathology in the locus coeruleus (LC) is associated with several neurodegenerative conditions including Alzheimer's disease and frontotemporal dementia. Phosphorylated tau accumulates in the LC and results in inflammation, synaptic loss, and eventually cell death as the disease progresses. Loss of LC neurons and noradrenergic innervation is thought to contribute to the symptoms of cognitive decline later in disease. While loss and degeneration of LC neurons has been well studied, less is known about changes in LC physiology at advanced stages of tau pathology that precedes neurodegeneration. In this study, we investigated the ex vivo electrophysiological properties of LC neurons in male and female mice from the P301S mouse model of tauopathy at 9 months of age, a time-point when significant tau accumulation, cell death, and cognitive impairments are observed. We found a reduction in excitatory inputs and changes in excitatory post-synaptic current kinetics in male and female P301S. There was also a decrease in spontaneous discharge of LC neurons and an increase in AP threshold in P301S mice of both sexes. Finally, we observed a decrease in excitability and increase in rheobase current in P301S mice. Despite the decrease in LC activity in ex vivo slices, we did not identify differences in total tissue norepinephrine (NE) or NE metabolites in prefrontal cortex or hippocampus. Together these findings demonstrate reductions in the activity and excitability of LC neurons at late stages of tau accumulation. However, compensatory mechanisms may maintain normal NE levels in LC projection regions in vivo.
Collapse
Affiliation(s)
- Anthony M Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America.
| | - Gracianne Kmiec
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Christina M Catavero
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Luke A Wykoff
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Zoé A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
4
|
Burns AP, Fortel I, Zhan L, Lazarov O, Mackin RS, Demos AP, Bendlin B, Leow A. Longitudinal excitation-inhibition balance altered by sex and APOE-ε4. Commun Biol 2025; 8:488. [PMID: 40133608 PMCID: PMC11937384 DOI: 10.1038/s42003-025-07876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Neuronal hyperexcitation affects memory and neural processing across the Alzheimer's disease (AD) cognitive continuum. Levetiracetam, an antiepileptic, shows promise in improving cognitive impairment by restoring the neural excitation/inhibition balance in AD patients. We previously identified a hyper-excitable phenotype in cognitively unimpaired female APOE-ε4 carriers relative to male counterparts cross-sectionally. This sex difference lacks longitudinal validation; however, clarifying the vulnerability of female ε4-carriers could better inform antiepileptic treatment efficacy. Here, we investigated this sex-by-ε4 interaction using a longitudinal design. We used resting-state fMRI and diffusion tensor imaging collected longitudinally from 106 participants who were cognitively unimpaired for at least one scan event but may have been assessed to have clinical dementia ratings corresponding to early mild cognitive impairment over time. By including scan events where participants transitioned to mild cognitive impairment, we modeled the trajectory of the whole-brain excitation-inhibition ratio throughout the preclinical cognitively healthy continuum and extended to early impairment. A linear mixed model revealed a significant three-way interaction among sex, ε4-status, and time, with female ε4-carriers showing a significant hyper-excitable trajectory. These findings suggest a possible pathway for preventative therapy targeting preclinical hyperexcitation in female ε4-carriers.
Collapse
Affiliation(s)
- Andrew P Burns
- Department of Biomedical Engineering University of Illinois Chicago (UIC), 851 S Morgan St, Chicago, IL, 60607, USA.
| | - Igor Fortel
- Department of Biomedical Engineering University of Illinois Chicago (UIC), 851 S Morgan St, Chicago, IL, 60607, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood St, Chicago, IL, 60612, USA
| | - R Scott Mackin
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, 675 18th St, San Francisco, CA, 94107, USA
- Department of Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA
| | - Alexander P Demos
- Department of Psychology, University of Illinois Chicago (UIC), 1007 W Harrison St, Chicago, IL, 60607, USA
| | - Barbara Bendlin
- Department of Medicine, University of Wisconsin-Madison, 5158 Medical Foundation Centennial Building, 1685 Highland Ave, Madison, WI, 53792, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, 600 Highland Ave J5/1 Mezzanine, Madison, WI, 53792, USA
| | - Alex Leow
- Department of Biomedical Engineering University of Illinois Chicago (UIC), 851 S Morgan St, Chicago, IL, 60607, USA.
| |
Collapse
|
5
|
Zhang X, Zhang Y, Zhang T, Wang J, Liu C, Shang Q, Wei X, Zhu H, Shen H, Sun B. HCN2 deficiency correlates with memory deficits and hyperexcitability of dCA1 pyramidal neurons in Alzheimer's disease. Alzheimers Res Ther 2025; 17:55. [PMID: 40016780 PMCID: PMC11866685 DOI: 10.1186/s13195-025-01704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Abnormal excitability of hippocampal neurons may lead to dysfunction of neural circuits and then causes cognitive impairments in Alzheimer's disease (AD). However, the underlying mechanisms remain to be fully elucidated. METHODS Electrophysiology was performed to examine the intrinsic excitability of CA1 neurons and the activity of the hyperpolarization-activated cyclic nucleotide-gated ion channels (HCNs) of CA1 neurons in wild type (WT) and hAPP-J20 mice. The activity of CA1 pyramidal neurons (PNs) was modulated with chemogenetics. The activity of HCNs was regulated with nonselective facilitator (cAMP) or inhibitor (ZD7288) of HCNs. Immunohistochemical staining or western blotting were performed to examine the expression of HCN1 and HCN2 in the hippocampus of WT and hAPP-J20 mice, or AD patients and non-AD controls. AAVs were injected to specifically modulate the expression of HCN2 in dorsal CA1 (dCA1) PNs. Cognitive performance of mice was assessed with behavioral tests. RESULTS dCA1 PNs were more excitable in hAPP-J20 mice, but the excitability of PNs in the ventral CA1 (vCA1) or PV neurons was comparable between WT and hAPP-J20 mice. The activity of the HCNs was reduced in dCA1 PNs of hAPP-J20 mice, and pharmacologically increasing the activity of HCNs attenuated the hyperexcitability of dCA1 PNs in hAPP-J20 mice, suggesting that the reduced activity of HCNs is associated with the hyperexcitability of dCA1 PNs in hAPP-J20 mice. The expression of HCN2 but not HCN1 was reduced in the hippocampus of hAPP-J20 mice, and the expression of HCN2 was also reduced in the hippocampus of AD patients, suggesting that dysregulation of HCN2 is associated with the reduced activity of HCNs in AD. Overexpressing HCN2 rescued the activity of HCNs, attenuated the hyperexcitability of dCA1 PNs and improved memory of hAPP-J20 mice, and knocking down HCN2 impaired the function of HCNs, increased the excitability of dCA1 PNs and led to memory deficits in WT mice. CONCLUSIONS Our data suggest that dysregulation of HCNs, particularly HCN2, contributes to the abnormal excitability of CA1 PNs in AD mice and probably in AD patients as well, and thus provide new insights into the mechanisms underlying the aberrant activity or excitability of hippocampal neurons in AD.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Pharmacology, Health Science Center of Ningbo University, Ningbo, Zhejiang Province, 315211, China.
| | - Yiping Zhang
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Ting Zhang
- Department of Pharmacology, Health Science Center of Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Jing Wang
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Chang Liu
- Department of Pharmacology, Health Science Center of Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Qing Shang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, Zhejiang Province, 315211, China
| | - Xiaojie Wei
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Huaqiang Zhu
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang Province, 315100, China
| | - Haowei Shen
- Department of Pharmacology, Health Science Center of Ningbo University, Ningbo, Zhejiang Province, 315211, China.
| | - Binggui Sun
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
6
|
Uytterhoeven V, Verstreken P, Nachman E. Synaptic sabotage: How Tau and α-Synuclein undermine synaptic health. J Cell Biol 2025; 224:e202409104. [PMID: 39718548 DOI: 10.1083/jcb.202409104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
Synaptic dysfunction is one of the earliest cellular defects observed in Alzheimer's disease (AD) and Parkinson's disease (PD), occurring before widespread protein aggregation, neuronal loss, and cognitive decline. While the field has focused on the aggregation of Tau and α-Synuclein (α-Syn), emerging evidence suggests that these proteins may drive presynaptic pathology even before their aggregation. Therefore, understanding the mechanisms by which Tau and α-Syn affect presynaptic terminals offers an opportunity for developing innovative therapeutics aimed at preserving synapses and potentially halting neurodegeneration. This review focuses on the molecular defects that converge on presynaptic dysfunction caused by Tau and α-Syn. Both proteins have physiological roles in synapses. However, during disease, they acquire abnormal functions due to aberrant interactions and mislocalization. We provide an overview of current research on different essential presynaptic pathways influenced by Tau and α-Syn. Finally, we highlight promising therapeutic targets aimed at maintaining synaptic function in both tauopathies and synucleinopathies.
Collapse
Affiliation(s)
- Valerie Uytterhoeven
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Eliana Nachman
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Calvin-Dunn KN, Mcneela A, Leisgang Osse A, Bhasin G, Ridenour M, Kinney JW, Hyman JM. Electrophysiological insights into Alzheimer's disease: A review of human and animal studies. Neurosci Biobehav Rev 2025; 169:105987. [PMID: 39732222 DOI: 10.1016/j.neubiorev.2024.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/16/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
This review highlights the crucial role of neuroelectrophysiology in illuminating the mechanisms underlying Alzheimer's disease (AD) pathogenesis and progression, emphasizing its potential to inform the development of effective treatments. Electrophysiological techniques provide unparalleled precision in exploring the intricate networks affected by AD, offering insights into the synaptic dysfunction, network alterations, and oscillatory abnormalities that characterize the disease. We discuss a range of electrophysiological methods, from non-invasive clinical techniques like electroencephalography and magnetoencephalography to invasive recordings in animal models. By drawing on findings from these studies, we demonstrate how electrophysiological research has deepened our understanding of AD-related network disruptions, paving the way for targeted therapeutic interventions. Moreover, we underscore the potential of electrophysiological modalities to play a pivotal role in evaluating treatment efficacy. Integrating electrophysiological data with clinical neuroimaging and longitudinal studies holds promise for a more comprehensive understanding of AD, enabling early detection and the development of personalized treatment strategies. This expanded research landscape offers new avenues for unraveling the complexities of AD and advancing therapeutic approaches.
Collapse
Affiliation(s)
- Kirsten N Calvin-Dunn
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Cleveland Clinic Lou Ruvo Center for Brain Health, United States.
| | - Adam Mcneela
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States
| | - A Leisgang Osse
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Brain Health, University of Nevada, Las Vegas, United States
| | - G Bhasin
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Psychology, University of Nevada, Las Vegas, United States
| | - M Ridenour
- Department of Psychology, University of Nevada, Las Vegas, United States
| | - J W Kinney
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Brain Health, University of Nevada, Las Vegas, United States
| | - J M Hyman
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Psychology, University of Nevada, Las Vegas, United States
| |
Collapse
|
8
|
Downs AM, Kmiec G, Catavero CM, McElligott ZA. Loss of excitatory inputs and decreased tonic and evoked activity of locus coeruleus neurons in aged P301S mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633373. [PMID: 39868303 PMCID: PMC11761406 DOI: 10.1101/2025.01.17.633373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Tau pathology in the locus coeruleus (LC) is associated with several neurodegenerative conditions including Alzheimer's disease and frontotemporal dementia. Phosphorylated tau accumulates in the LC and results in inflammation, synaptic loss, and eventually cell death as the disease progresses. Loss of LC neurons and noradrenergic innervation is thought to contribute to the symptoms of cognitive decline later in disease. While loss and degeneration of LC neurons has been well studied, less is known about changes in LC physiology at advanced stages of tau pathology that precedes neurodegeneration. In this study, we investigated the ex vivo electrophysiological properties of LC neurons in male and female mice from the P301S mouse model of tauopathy at 9 months of age, a time-point when significant tau accumulation, cell death, and cognitive impairments are observed. We found a reduction in excitatory inputs and changes in excitatory post-synaptic current kinetics in male and female P301S. There was also a decrease in spontaneous discharge of LC neurons and an increase in AP threshold in P301S mice of both sexes. Finally, we observed a decrease in excitability and increase in rheobase current in P301S mice. Despite the decrease in LC activity in slice, we did not identify differences in total tissue norepinephrine (NE) or NE metabolites in prefrontal cortex or hippocampus. Together these findings demonstrate reductions in the activity and excitability of LC neurons at late stages of tau accumulation. However, compensatory mechanisms may maintain normal NE levels in LC projection regions in vivo.
Collapse
Affiliation(s)
- Anthony M. Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gracianne Kmiec
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christina M. Catavero
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zoé A. McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
9
|
Sollazzo R, Li Puma DD, Aceto G, Paciello F, Colussi C, Vita MG, Giuffrè GM, Pastore F, Casamassa A, Rosati J, Novelli A, Maietta S, Tiziano FD, Marra C, Ripoli C, Grassi C. Structural and functional alterations of neurons derived from sporadic Alzheimer's disease hiPSCs are associated with downregulation of the LIMK1-cofilin axis. Alzheimers Res Ther 2024; 16:267. [PMID: 39702316 DOI: 10.1186/s13195-024-01632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the accumulation of pathological proteins and synaptic dysfunction. This study aims to investigate the molecular and functional differences between human induced pluripotent stem cells (hiPSCs) derived from patients with sporadic AD (sAD) and age-matched controls (healthy subjects, HS), focusing on their neuronal differentiation and synaptic properties in order to better understand the cellular and molecular mechanisms underlying AD pathology. METHODS Skin fibroblasts from sAD patients (n = 5) and HS subjects (n = 5) were reprogrammed into hiPSCs using non-integrating Sendai virus vectors. Through karyotyping, we assessed pluripotency markers (OCT4, SOX2, TRA-1-60) and genomic integrity. Neuronal differentiation was evaluated by immunostaining for MAP2 and NEUN. Electrophysiological properties were measured using whole-cell patch-clamp, while protein expression of Aβ, phosphorylated tau, Synapsin-1, Synaptophysin, PSD95, and GluA1 was quantified by western blot. We then focused on PAK1-LIMK1-Cofilin signaling, which plays a key role in regulating synaptic structure and function, both of which are disrupted in neurodegenerative diseases such as AD. RESULTS sAD and HS hiPSCs displayed similar stemness features and genomic stability. However, they differed in neuronal differentiation and function. sAD-derived neurons (sAD-hNs) displayed increased levels of AD-related proteins, including Aβ and phosphorylated tau. Electrophysiological analyses revealed that while both sAD- and HS-hNs generated action potentials, sAD-hNs exhibited decreased spontaneous synaptic activity. Significant reductions in the expression of synaptic proteins such as Synapsin-1, Synaptophysin, PSD95, and GluA1 were found in sAD-hNs, which are also characterized by reduced neurite length, indicating impaired differentiation. Notably, sAD-hNs demonstrated a marked reduction in LIMK1 phosphorylation, which could be the underlying cause for the changes in cytoskeletal dynamics that we found, leading to the morphological and functional modifications observed in sAD-hNs. To further investigate the involvement of the LIMK1 pathway in the morphological and functional changes observed in sAD neurons, we conducted perturbation experiments using the specific LIMK1 inhibitor, BMS-5. Neurons obtained from healthy subjects treated with the inhibitor showed similar morphological changes to those observed in sAD neurons, confirming that LIMK1 activity is crucial for maintaining normal neuronal structure. Furthermore, administration of the inhibitor to sAD neurons did not exacerbate the morphological alterations, suggesting that LIMK1 activity is already compromised in these cells. CONCLUSION Our findings demonstrate that although sAD- and HS-hiPSCs are similar in their stemness and genomic stability, sAD-hNs exhibit distinct functional and structural anomalies mirroring AD pathology. These anomalies include synaptic dysfunction, altered cytoskeletal organization, and accumulation of AD-related proteins. Our study underscores the usefulness of hiPSCs in modeling AD and provides insights into the disease's molecular underpinnings, thus highlighting potential therapeutic targets.
Collapse
Affiliation(s)
- Raimondo Sollazzo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Giuseppe Aceto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Claudia Colussi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Engineering, Istituto Di Analisi Dei Sistemi Ed Informatica "Antonio Ruberti", National Research Council, 00185, Rome, Italy
| | | | | | - Francesco Pastore
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa, Sollievo Della Sofferenza, 71013 - San Giovanni, Rotondo, Italy
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa, Sollievo Della Sofferenza, 71013 - San Giovanni, Rotondo, Italy
- Saint Camillus International, University of Health Sciences, 00131, Rome, Italy
| | - Agnese Novelli
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Sabrina Maietta
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Francesco Danilo Tiziano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Camillo Marra
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
10
|
Zhang Y, Wu J, Zheng Y, Xu Y, Yu Z, Ping Y. Voltage Gated Ion Channels and Sleep. J Membr Biol 2024; 257:269-280. [PMID: 39354150 DOI: 10.1007/s00232-024-00325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Ion channels are integral components of the nervous system, playing a pivotal role in shaping membrane potential, neuronal excitability, synaptic transmission and plasticity. Dysfunction in these channels, such as improper expression or localization, can lead to irregular neuronal excitability and synaptic communication, which may manifest as various behavioral abnormalities, including disrupted rest-activity cycles. Research has highlighted the significant impact of voltage gated ion channels on sleep parameters, influencing sleep latency, duration and waveforms. Furthermore, these ion channels have been implicated in the vulnerability to, and the pathogenesis of, several neurological and psychiatric disorders, including epilepsy, autism, schizophrenia, and Alzheimer's disease (AD). In this comprehensive review, we aim to provide a summary of the regulatory role of three predominant types of voltage-gated ion channels-calcium (Ca2+), sodium (Na+), and potassium (K+)-in sleep across species, from flies to mammals. We will also discuss the association of sleep disorders with various human diseases that may arise from the dysfunction of these ion channels, thereby underscoring the potential therapeutic benefits of targeting specific ion channel subtypes for sleep disturbance treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wu
- Faculty of Brain Sciences, University College London, London, UK
| | - Yuxian Zheng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangkun Xu
- Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Ziqi Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
11
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Hetta HF, Saad HM, Batiha GES. A Mutual Nexus Between Epilepsy and α-Synuclein: A Puzzle Pathway. Mol Neurobiol 2024; 61:10198-10215. [PMID: 38703341 DOI: 10.1007/s12035-024-04204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Alpha-synuclein (α-Syn) is a specific neuronal protein that regulates neurotransmitter release and trafficking of synaptic vesicles. Exosome-associated α-Syn which is specific to the central nervous system (CNS) is involved in the pathogenesis of epilepsy. Therefore, this review aimed to elucidate the possible link between α-Syn and epilepsy, and how it affects the pathophysiology of epilepsy. A neurodegenerative protein such as α-Syn is implicated in the pathogenesis of epilepsy. Evidence from preclinical and clinical studies revealed that upregulation of α-Syn induces progressive neuronal dysfunctions through induction of oxidative stress, neuroinflammation, and inhibition of autophagy in a vicious cycle with subsequent development of severe epilepsy. In addition, accumulation of α-Syn in epilepsy could be secondary to the different cellular alterations including oxidative stress, neuroinflammation, reduction of brain-derived neurotrophic factor (BDNF) and progranulin (PGN), and failure of the autophagy pathway. However, the mechanism of α-Syn-induced-epileptogenesis is not well elucidated. Therefore, α-Syn could be a secondary consequence of epilepsy. Preclinical and clinical studies are warranted to confirm this causal relationship.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, M.B.Ch.B, FRCP, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu, P.O. Box 13, Kufa, Najaf, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
12
|
Li J, Liu Y, Yin C, Zeng Y, Mei Y. Structural and functional remodeling of neural networks in β-amyloid driven hippocampal hyperactivity. Ageing Res Rev 2024; 101:102468. [PMID: 39218080 DOI: 10.1016/j.arr.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Early detection of Alzheimer's disease (AD) is essential for improving the patients outcomes and advancing our understanding of disease, allowing for timely intervention and treatment. However, accurate biomarkers are still lacking. Recent evidence indicates that hippocampal hyperexcitability precedes the diagnosis of AD decades ago, can predict cognitive decline. Thus, could hippocampal hyperactivity be a robust biomarker for early-AD, and what drives hippocampal hyperactivity in early-AD? these critical questions remain to be answered. Increasing clinical and experimental studies suggest that early hippocampal activation is closely associated with longitudinal β-amyloid (Aβ) accumulation, Aβ aggregates, in turn, enhances hippocampal activity. Therefore, in this narrative review, we discuss the role of Aβ-induced altered intrinsic neuronal properties as well as structural and functional remodeling of glutamatergic, GABAergic, cholinergic, noradrenergic, serotonergic circuits in hippocampal hyperactivity. In addition, we analyze the available therapies and trials that can potentially be used clinically to attenuate hippocampal hyperexcitability in AD. Overall, the present review sheds lights on the mechanism behind Aβ-induced hippocampal hyperactivity, and highlights that hippocampal hyperactivity could be a robust biomarker and therapeutic target in prodromal AD.
Collapse
Affiliation(s)
- Jinquan Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yanjun Liu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chuhui Yin
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan Zeng
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
13
|
Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol 2024; 25:845-864. [PMID: 39014245 DOI: 10.1038/s41580-024-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sarah A Naguib
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
14
|
Goettemoeller AM, Banks E, Kumar P, Olah VJ, McCann KE, South K, Ramelow CC, Eaton A, Duong DM, Seyfried NT, Weinshenker D, Rangaraju S, Rowan MJM. Entorhinal cortex vulnerability to human APP expression promotes hyperexcitability and tau pathology. Nat Commun 2024; 15:7918. [PMID: 39256379 PMCID: PMC11387477 DOI: 10.1038/s41467-024-52297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Preventative treatment for Alzheimer's Disease (AD) is dire, yet mechanisms underlying early regional vulnerability remain unknown. In AD, one of the earliest pathophysiological correlates to cognitive decline is hyperexcitability, which is observed first in the entorhinal cortex. Why hyperexcitability preferentially emerges in specific regions in AD is unclear. Using regional, cell-type-specific proteomics and electrophysiology in wild-type mice, we uncovered a unique susceptibility of the entorhinal cortex to human amyloid precursor protein (hAPP). Entorhinal hyperexcitability resulted from selective vulnerability of parvalbumin (PV) interneurons, with respect to surrounding excitatory neurons. This effect was partially replicated with an APP chimera containing a humanized amyloid-beta sequence. EC hyperexcitability could be ameliorated by co-expression of human Tau with hAPP at the expense of increased pathological tau species, or by enhancing PV interneuron excitability in vivo. This study suggests early interventions targeting inhibitory neurons may protect vulnerable regions from the effects of APP/amyloid and tau pathology.
Collapse
Affiliation(s)
- Annie M Goettemoeller
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- GDBBS Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Emmie Banks
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- GDBBS Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Prateek Kumar
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Viktor J Olah
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Katharine E McCann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly South
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- GDBBS Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Christina C Ramelow
- GDBBS Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Eaton
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Duc M Duong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Matthew J M Rowan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
15
|
Goettemoeller AM, Banks E, Kumar P, Olah VJ, McCann KE, South K, Ramelow CC, Eaton A, Duong DM, Seyfried NT, Weinshenker D, Rangaraju S, Rowan MJ. Entorhinal cortex vulnerability to human APP expression promotes hyperexcitability and tau pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565629. [PMID: 39005389 PMCID: PMC11244896 DOI: 10.1101/2023.11.06.565629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Preventative treatment for Alzheimer's Disease is of dire importance, and yet, cellular mechanisms underlying early regional vulnerability in Alzheimer's Disease remain unknown. In human patients with Alzheimer's Disease, one of the earliest observed pathophysiological correlates to cognitive decline is hyperexcitability. In mouse models, early hyperexcitability has been shown in the entorhinal cortex, the first cortical region impacted by Alzheimer's Disease. The origin of hyperexcitability in early-stage disease and why it preferentially emerges in specific regions is unclear. Using cortical-region and cell-type-specific proteomics coupled with ex vivo and in vivo electrophysiology, we uncovered differential susceptibility to human-specific amyloid precursor protein (hAPP) in a model of sporadic Alzheimer's. Unexpectedly, our findings reveal that early entorhinal hyperexcitability may result from intrinsic vulnerability of parvalbumin (PV) interneurons, rather than the suspected layer II excitatory neurons. This vulnerability of entorhinal PV interneurons is specific to hAPP, as it could not be recapitulated with increased murine APP expression. However, partial replication of the findings could be seen after introduction of a murine APP chimera containing a humanized amyloid-beta sequence. Surprisingly, neurons in the Somatosensory Cortex showed no such vulnerability to adult-onset hAPP expression. hAPP-induced hyperexcitability in entorhinal cortex could be ameliorated by enhancing PV interneuron excitability in vivo. Co-expression of human Tau with hAPP decreased circuit hyperexcitability, but at the expense of increased pathological tau species. This study suggests early disease interventions targeting non-excitatory cell types may protect regions with early vulnerability to pathological symptoms of Alzheimer's Disease and downstream cognitive decline.
Collapse
|
16
|
Rodriguez-Rodriguez P, Arroyo-Garcia LE, Tsagkogianni C, Li L, Wang W, Végvári Á, Salas-Allende I, Plautz Z, Cedazo-Minguez A, Sinha SC, Troyanskaya O, Flajolet M, Yao V, Roussarie JP. A cell autonomous regulator of neuronal excitability modulates tau in Alzheimer's disease vulnerable neurons. Brain 2024; 147:2384-2399. [PMID: 38462574 PMCID: PMC11224620 DOI: 10.1093/brain/awae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 03/12/2024] Open
Abstract
Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer's disease. Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology. We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by the gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early Alzheimer's disease. The existence of a cell-autonomous mechanism linking Alzheimer's disease pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Christina Tsagkogianni
- Department of Neurobiology Care Sciences and Society, Karolinska Institutet, 17 164, Solna, Sweden
| | - Lechuan Li
- Department of Computer Science, Rice University, Houston, TX 77004, USA
| | - Wei Wang
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 164, Solna, Sweden
| | - Isabella Salas-Allende
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Zakary Plautz
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Angel Cedazo-Minguez
- Department of Neurobiology Care Sciences and Society, Karolinska Institutet, 17 164, Solna, Sweden
| | - Subhash C Sinha
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olga Troyanskaya
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Vicky Yao
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 164, Solna, Sweden
| | - Jean-Pierre Roussarie
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
17
|
Tabuena DR, Jang SS, Grone B, Yip O, Aery Jones EA, Blumenfeld J, Liang Z, Koutsodendris N, Rao A, Ding L, Zhang AR, Hao Y, Xu Q, Yoon SY, Leon SD, Huang Y, Zilberter M. Neuronal APOE4-induced Early Hippocampal Network Hyperexcitability in Alzheimer's Disease Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.28.555153. [PMID: 37693533 PMCID: PMC10491126 DOI: 10.1101/2023.08.28.555153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The full impact of apolipoprotein E4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on neuronal and network function remains unclear. We found hippocampal region-specific network hyperexcitability in young APOE4 knock-in (E4-KI) mice which predicted cognitive deficits at old age. Network hyperexcitability in young E4-KI mice was mediated by hippocampal region-specific subpopulations of smaller and hyperexcitable neurons that were eliminated by selective removal of neuronal APOE4. Aged E4-KI mice exhibited hyperexcitable granule cells, a progressive inhibitory deficit, and E/I imbalance in the dentate gyrus, exacerbating hippocampal hyperexcitability. Single-nucleus RNA-sequencing revealed neuronal cell type-specific and age-dependent transcriptomic changes, including Nell2 overexpression in E4-KI mice. Reducing Nell2 expression in specific neuronal types of E4-KI mice with CRISPRi rescued their abnormal excitability phenotypes, implicating Nell2 overexpression as a cause of APOE4-induced hyperexcitability. These findings highlight the early transcriptomic and electrophysiological alterations underlying APOE4-induced hippocampal network dysfunction and its contribution to AD pathogenesis with aging.
Collapse
|
18
|
Sindi G, Ismael S, Uddin R, Slepchenko KG, Colvin RA, Lee D. Endogenous tau released from human ReNCell VM cultures by neuronal activity is phosphorylated at multiple sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597022. [PMID: 38854111 PMCID: PMC11160771 DOI: 10.1101/2024.06.02.597022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Tau is an intracellular protein but also known to be released into the extracellular fluid. Tau release mechanisms have drawn intense attention as these are known to play a key role in Alzheimer's disease (AD) pathology. However, tau can also be released under physiological conditions although its physiological function and release mechanisms have been poorly characterized, especially in human neuronal cells. We investigated endogenous tau release in ReNCell VM, a human neuroprogenitor cell line, under physiological conditions and found that tau is spontaneously released from cells. To study activity-dependent release of endogenous tau, human ReNCell VM culture was stimulated by 100μM AMPA or 50mM KCl for one-hour, tau was actively released to the culture medium. The released tau was highly phosphorylated at nine phosphorylation sites (pSites) detected by phospho-specific tau antibodies including AT270 (T175/T181), AT8 (S202/T205), AT100 (T212/S214), AT180 (T231), and PHF-1 (S396/S404), showing that these pSites are important for activity-dependent tau release from human ReNCell VM. Intracellular tau showed various phosphorylation status across these sites, with AT270 and PHF-1 highly phosphorylated while AT8 and AT180 were minimally phosphorylated, suggesting that AT8 and AT180 pSites exhibit a propensity for secretion rather than being retained intracellularly. This activity-dependent tau release was significantly decreased by inhibition of GSK-3β, demonstrating that GSK3β-dependent phosphorylation of tau plays an important role in its release by neuronal activity. In this study, we showed that ReNCell VM serves as a valuable model for studying endogenous physiological tau release. Further, ReNCell model can be also used to study pathological release of human tau that will contribute to our understanding of the progression of AD and related dementias.
Collapse
Affiliation(s)
| | - Sazan Ismael
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Reaz Uddin
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Kira G. Slepchenko
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Robert A. Colvin
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
19
|
Martin SC, Joyce KK, Lord JS, Harper KM, Nikolova VD, Cohen TJ, Moy SS, Diering GH. Sleep Disruption Precedes Forebrain Synaptic Tau Burden and Contributes to Cognitive Decline in a Sex-Dependent Manner in the P301S Tau Transgenic Mouse Model. eNeuro 2024; 11:ENEURO.0004-24.2024. [PMID: 38858068 PMCID: PMC11209651 DOI: 10.1523/eneuro.0004-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
Sleep disruption and impaired synaptic processes are common features in neurodegenerative diseases, including Alzheimer's disease (AD). Hyperphosphorylated Tau is known to accumulate at neuronal synapses in AD, contributing to synapse dysfunction. However, it remains unclear how sleep disruption and synapse pathology interact to contribute to cognitive decline. Here, we examined sex-specific onset and consequences of sleep loss in AD/tauopathy model PS19 mice. Using a piezoelectric home-cage monitoring system, we showed PS19 mice exhibited early-onset and progressive hyperarousal, a selective dark-phase sleep disruption, apparent at 3 months in females and 6 months in males. Using the Morris water maze test, we report that chronic sleep disruption (CSD) accelerated the onset of decline of hippocampal spatial memory in PS19 males only. Hyperarousal occurs well in advance of robust forebrain synaptic Tau burden that becomes apparent at 6-9 months. To determine whether a causal link exists between sleep disruption and synaptic Tau hyperphosphorylation, we examined the correlation between sleep behavior and synaptic Tau, or exposed mice to acute or chronic sleep disruption at 6 months. While we confirm that sleep disruption is a driver of Tau hyperphosphorylation in neurons of the locus ceruleus, we were unable to show any causal link between sleep loss and Tau burden in forebrain synapses. Despite the finding that hyperarousal appears earlier in females, female cognition was resilient to the effects of sleep disruption. We conclude sleep disruption interacts with the synaptic Tau burden to accelerate the onset of cognitive decline with greater vulnerability in males.
Collapse
Affiliation(s)
- Shenée C Martin
- Departments of Cell Biology and Physiology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kathryn K Joyce
- Departments of Cell Biology and Physiology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Julia S Lord
- Departments of Cell Biology and Physiology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kathryn M Harper
- Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Viktoriya D Nikolova
- Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Todd J Cohen
- Neurology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sheryl S Moy
- Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Carolina Institute for Developmental Disabilities, Carrboro, North Carolina 27510
| | - Graham H Diering
- Departments of Cell Biology and Physiology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Carolina Institute for Developmental Disabilities, Carrboro, North Carolina 27510
| |
Collapse
|
20
|
Stephens GS, Park J, Eagle A, You J, Silva-Pérez M, Fu CH, Choi S, Romain CPS, Sugimoto C, Buffington SA, Zheng Y, Costa-Mattioli M, Liu Y, Robison AJ, Chin J. Persistent ∆FosB expression limits recurrent seizure activity and provides neuroprotection in the dentate gyrus of APP mice. Prog Neurobiol 2024; 237:102612. [PMID: 38642602 PMCID: PMC11406539 DOI: 10.1016/j.pneurobio.2024.102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
Recurrent seizures lead to accumulation of the activity-dependent transcription factor ∆FosB in hippocampal dentate granule cells in both mouse models of epilepsy and mouse models of Alzheimer's disease (AD), which is also associated with increased incidence of seizures. In patients with AD and related mouse models, the degree of ∆FosB accumulation corresponds with increasing severity of cognitive deficits. We previously found that ∆FosB impairs spatial memory in mice by epigenetically regulating expression of target genes such as calbindin that are involved in synaptic plasticity. However, the suppression of calbindin in conditions of neuronal hyperexcitability has been demonstrated to provide neuroprotection to dentate granule cells, indicating that ∆FosB may act over long timescales to coordinate neuroprotective pathways. To test this hypothesis, we used viral-mediated expression of ∆JunD to interfere with ∆FosB signaling over the course of several months in transgenic mice expressing mutant human amyloid precursor protein (APP), which exhibit spontaneous seizures and develop AD-related neuropathology and cognitive deficits. Our results demonstrate that persistent ∆FosB activity acts through discrete modes of hippocampal target gene regulation to modulate neuronal excitability, limit recurrent seizure activity, and provide neuroprotection to hippocampal dentate granule cells in APP mice.
Collapse
Affiliation(s)
| | - Jin Park
- Department of Neuroscience, Baylor College of Medicine, USA
| | - Andrew Eagle
- Department of Physiology, Michigan State University, USA
| | - Jason You
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Chia-Hsuan Fu
- Department of Neuroscience, Baylor College of Medicine, USA
| | - Sumin Choi
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Chiho Sugimoto
- Department of Physiology, Michigan State University, USA
| | - Shelly A Buffington
- Center for Precision Environmental Health, Department of Neuroscience, Baylor College of Medicine, USA
| | - Yi Zheng
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Yin Liu
- Department of Neurobiology and Anatomy, McGovern Medical School at UT Health, USA
| | - A J Robison
- Department of Physiology, Michigan State University, USA
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, USA.
| |
Collapse
|
21
|
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has become an increasingly popular tool to modulate neural excitability and induce neural plasticity in clinical and preclinical models; however, the physiological mechanisms in which it exerts these effects remain largely unknown. To date, studies have primarily focused on characterizing rTMS-induced changes occurring at the synapse, with little attention given to changes in intrinsic membrane properties. However, accumulating evidence suggests that rTMS may induce its effects, in part, via intrinsic plasticity mechanisms, suggesting a new and potentially complementary understanding of how rTMS alters neural excitability and neural plasticity. In this review, we provide an overview of several intrinsic plasticity mechanisms before reviewing the evidence for rTMS-induced intrinsic plasticity. In addition, we discuss a select number of neurological conditions where rTMS-induced intrinsic plasticity has therapeutic potential before speculating on the temporal relationship between rTMS-induced intrinsic and synaptic plasticity.
Collapse
Affiliation(s)
- Emily S King
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
22
|
Yao J, Chen SRW. RyR2-dependent modulation of neuronal hyperactivity: A potential therapeutic target for treating Alzheimer's disease. J Physiol 2024; 602:1509-1518. [PMID: 36866974 DOI: 10.1113/jp283824] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Increasing evidence suggests that simply reducing β-amyloid (Aβ) plaques may not significantly affect the progression of Alzheimer's disease (AD). There is also increasing evidence indicating that AD progression is driven by a vicious cycle of soluble Aβ-induced neuronal hyperactivity. In support of this, it has recently been shown that genetically and pharmacologically limiting ryanodine receptor 2 (RyR2) open time prevents neuronal hyperactivity, memory impairment, dendritic spine loss and neuronal cell death in AD mouse models. By contrast, increased RyR2 open probability (Po) exacerbates the onset of familial AD-associated neuronal dysfunction and induces AD-like defects in the absence of AD-causing gene mutations. Thus, RyR2-dependent modulation of neuronal hyperactivity represents a promising new target for combating AD.
Collapse
Affiliation(s)
- Jinjing Yao
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
Kamondi A, Grigg-Damberger M, Löscher W, Tanila H, Horvath AA. Epilepsy and epileptiform activity in late-onset Alzheimer disease: clinical and pathophysiological advances, gaps and conundrums. Nat Rev Neurol 2024; 20:162-182. [PMID: 38356056 DOI: 10.1038/s41582-024-00932-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
A growing body of evidence has demonstrated a link between Alzheimer disease (AD) and epilepsy. Late-onset epilepsy and epileptiform activity can precede cognitive deterioration in AD by years, and its presence has been shown to predict a faster disease course. In animal models of AD, amyloid and tau pathology are linked to cortical network hyperexcitability that precedes the first signs of memory decline. Thus, detection of epileptiform activity in AD has substantial clinical importance as a potential novel modifiable risk factor for dementia. In this Review, we summarize the epidemiological evidence for the complex bidirectional relationship between AD and epilepsy, examine the effect of epileptiform activity and seizures on cognition in people with AD, and discuss the precision medicine treatment strategies based on the latest research in human and animal models. Finally, we outline some of the unresolved questions of the field that should be addressed by rigorous research, including whether particular clinicopathological subtypes of AD have a stronger association with epilepsy, and the sequence of events between epileptiform activity and amyloid and tau pathology.
Collapse
Affiliation(s)
- Anita Kamondi
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary.
- Department of Neurology, Semmelweis University, Budapest, Hungary.
| | | | - Wolfgang Löscher
- Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Andras Attila Horvath
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Tzavellas NP, Tsamis KI, Katsenos AP, Davri AS, Simos YV, Nikas IP, Bellos S, Lekkas P, Kanellos FS, Konitsiotis S, Labrakakis C, Vezyraki P, Peschos D. Firing Alterations of Neurons in Alzheimer's Disease: Are They Merely a Consequence of Pathogenesis or a Pivotal Component of Disease Progression? Cells 2024; 13:434. [PMID: 38474398 PMCID: PMC10930991 DOI: 10.3390/cells13050434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, yet its underlying causes remain elusive. The conventional perspective on disease pathogenesis attributes alterations in neuronal excitability to molecular changes resulting in synaptic dysfunction. Early hyperexcitability is succeeded by a progressive cessation of electrical activity in neurons, with amyloid beta (Aβ) oligomers and tau protein hyperphosphorylation identified as the initial events leading to hyperactivity. In addition to these key proteins, voltage-gated sodium and potassium channels play a decisive role in the altered electrical properties of neurons in AD. Impaired synaptic function and reduced neuronal plasticity contribute to a vicious cycle, resulting in a reduction in the number of synapses and synaptic proteins, impacting their transportation inside the neuron. An understanding of these neurophysiological alterations, combined with abnormalities in the morphology of brain cells, emerges as a crucial avenue for new treatment investigations. This review aims to delve into the detailed exploration of electrical neuronal alterations observed in different AD models affecting single neurons and neuronal networks.
Collapse
Affiliation(s)
- Nikolaos P. Tzavellas
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Konstantinos I. Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, 455 00 Ioannina, Greece
| | - Andreas P. Katsenos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Athena S. Davri
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Yannis V. Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Ilias P. Nikas
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Stefanos Bellos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Panagiotis Lekkas
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Foivos S. Kanellos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Spyridon Konitsiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, 455 00 Ioannina, Greece
| | - Charalampos Labrakakis
- Department of Biological Applications and Technology, University of Ioannina, 451 10 Ioannina, Greece
| | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| |
Collapse
|
25
|
Goettemoeller AM, Banks E, McCann KE, Kumar P, South K, Olah VJ, Ramelow CC, Duong DM, Seyfried NT, Rangaraju S, Weinshenker D, Rowan MJM. Entorhinal cortex vulnerability to human APP expression promotes hyperexcitability and tau pathology. RESEARCH SQUARE 2023:rs.3.rs-3370607. [PMID: 37987015 PMCID: PMC10659529 DOI: 10.21203/rs.3.rs-3370607/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Preventative treatment for Alzheimer's Disease is of dire importance, and yet, cellular mechanisms underlying early regional vulnerability in Alzheimer's Disease remain unknown. In human patients with Alzheimer's Disease, one of the earliest observed pathophysiological correlates to cognitive decline is hyperexcitability1. In mouse models, early hyperexcitability has been shown in the entorhinal cortex, the first cortical region impacted by Alzheimer's Disease2-4. The origin of hyperexcitability in early-stage disease and why it preferentially emerges in specific regions is unclear. Using cortical-region and cell-type- specific proteomics and patch-clamp electrophysiology, we uncovered differential susceptibility to human-specific amyloid precursor protein (hAPP) in a model of sporadic Alzheimer's. Unexpectedly, our findings reveal that early entorhinal hyperexcitability may result from intrinsic vulnerability of parvalbumin interneurons, rather than the suspected layer II excitatory neurons. This vulnerability of entorhinal PV interneurons is specific to hAPP, as it could not be recapitulated with increased murine APP expression. Furthermore, the Somatosensory Cortex showed no such vulnerability to adult-onset hAPP expression, likely resulting from PV-interneuron variability between the two regions based on physiological and proteomic evaluations. Interestingly, entorhinal hAPP-induced hyperexcitability was quelled by co-expression of human Tau at the expense of increased pathological tau species. This study suggests early disease interventions targeting non-excitatory cell types may protect regions with early vulnerability to pathological symptoms of Alzheimer's Disease and downstream cognitive decline.
Collapse
Affiliation(s)
- Annie M Goettemoeller
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322
- GDBBS Graduate Program, Laney Graduate School, Emory University
| | - Emmie Banks
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322
- GDBBS Graduate Program, Laney Graduate School, Emory University
| | | | - Prateek Kumar
- Department of Neurology, Emory University School of Medicine
| | - Kelly South
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322
- GDBBS Graduate Program, Laney Graduate School, Emory University
| | - Viktor J Olah
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322
| | - Christina C Ramelow
- Department of Neurology, Emory University School of Medicine
- GDBBS Graduate Program, Laney Graduate School, Emory University
| | - Duc M Duong
- Department of Neurology, Emory University School of Medicine
- Department of Biochemistry, Emory University
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine
- Department of Biochemistry, Emory University
- Center for Neurodegenerative Disease, Emory University School of Medicine
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine
- GDBBS Graduate Program, Laney Graduate School, Emory University
| | | | - Matthew JM Rowan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322
- Center for Neurodegenerative Disease, Emory University School of Medicine
| |
Collapse
|
26
|
Dan L, Zhang Z. Alzheimer's disease: an axonal injury disease? Front Aging Neurosci 2023; 15:1264448. [PMID: 37927337 PMCID: PMC10620718 DOI: 10.3389/fnagi.2023.1264448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023] Open
Abstract
Alzheimer's disease (AD) is the primary cause of dementia and is anticipated to impose a substantial economic burden in the future. Over a significant period, the widely accepted amyloid cascade hypothesis has guided research efforts, and the recent FDA approval of an anti- amyloid-beta (Aβ) protofibrils antibody, believed to decelerate AD progression, has further solidified its significance. However, the excessive emphasis placed on the amyloid cascade hypothesis has overshadowed the physiological nature of Aβ and tau proteins within axons. Axons, specialized neuronal structures, sustain damage during the early stages of AD, exerting a pivotal influence on disease progression. In this review, we present a comprehensive summary of the relationship between axonal damage and AD pathology, amalgamating the physiological roles of Aβ and tau proteins, along with the impact of AD risk genes such as APOE and TREM2. Furthermore, we underscore the exceptional significance of axonal damage in the context of AD.
Collapse
Affiliation(s)
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
27
|
Martin SC, Joyce KK, Harper KM, Nikolova VD, Cohen TJ, Moy SS, Diering GH. Sleep disruption precedes forebrain synaptic Tau burden and contributes to cognitive decline in a sex-dependent manner in the P301S Tau transgenic mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544101. [PMID: 37333395 PMCID: PMC10274785 DOI: 10.1101/2023.06.07.544101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Sleep is an essential process that supports brain health and cognitive function in part through the modification of neuronal synapses. Sleep disruption, and impaired synaptic processes, are common features in neurodegenerative diseases, including Alzheimer's disease (AD). However, the casual role of sleep disruption in disease progression is not clear. Neurofibrillary tangles, made from hyperphosphorylated and aggregated Tau protein, form one of the major hallmark pathologies seen in AD and contribute to cognitive decline, synapse loss and neuronal death.Tau has been shown to aggregate in synapses which may impair restorative synapse processes occurring during sleep. However, it remains unclear how sleep disruption and synaptic Tau pathology interact to drive cognitive decline. It is also unclear whether the sexes show differential vulnerability to the effects of sleep loss in the context of neurodegeneration. Methods We used a piezoelectric home-cage monitoring system to measure sleep behavior in 3-11month-old transgenic hTau P301S Tauopathy model mice (PS19) and littermate controls of both sexes. Subcellular fractionation and Western blot was used to examine Tau pathology in mouse forebrain synapse fractions. To examine the role of sleep disruption in disease progression, mice were exposed to acute or chronic sleep disruption. The Morris water maze test was used to measure spatial learning and memory performance. Results PS19 mice exhibited a selective loss of sleep during the dark phase, referred to as hyperarousal, as an early symptom with an onset of 3months in females and 6months in males. At 6months, forebrain synaptic Tau burden did not correlate with sleep measures and was not affected by acute or chronic sleep disruption. Chronic sleep disruption accelerated the onset of decline of hippocampal spatial memory in PS19 males, but not females. Conclusions Dark phase hyperarousal is an early symptom in PS19 mice that precedes robust Tau aggregation. We find no evidence that sleep disruption is a direct driver of Tau pathology in the forebrain synapse. However, sleep disruption synergized with Tau pathology to accelerate the onset of cognitive decline in males. Despite the finding that hyperarousal appears earlier in females, female cognition was resilient to the effects of sleep disruption.
Collapse
|
28
|
Zawar I, Kapur J. Does Alzheimer's disease with mesial temporal lobe epilepsy represent a distinct disease subtype? Alzheimers Dement 2023; 19:2697-2706. [PMID: 36648207 PMCID: PMC10272023 DOI: 10.1002/alz.12943] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) patients have a high risk of developing mesial temporal lobe epilepsy (MTLE) and subclinical epileptiform activity. MTLE in AD worsens outcomes. Therefore, we need to understand the overlap between these disease processes. We hypothesize that AD with MTLE represents a distinct subtype of AD, with the interplay between tau and epileptiform activity at its core. We discuss shared pathological features including histopathology, an initial mesial temporal lobe (MTL) hyperexcitability followed by MTL dysfunction and involvement of same networks in memory (AD) and seizures (MTLE). We provide evidence that tau accumulation linearly increases neuronal hyperexcitability, neuronal hyper-excitability increases tau secretion, tau can provoke seizures, and tau reduction protects against seizures. We speculate that AD genetic mutations increase tau, which causes proportionate neuronal loss and/or hyperexcitability, leading to seizures. We discuss that tau burden in MTLE predicts cognitive deficits among (1) AD and (2) MTLE without AD. Finally, we explore the possibility that anti-seizure medications improve cognition by reducing neuronal hyper-excitability, which reduces seizures and tau accumulation and spread. HIGHLIGHTS: We hypothesize that patients with Alzheimer's disease (AD) and mesial temporal lobe epilepsy (MTLE) represents a distinct subtype of AD. AD and MTLE share histopathological features and involve overlapping neuronal and cortical networks. Hyper-phosphorylated tau (pTau) increases neuronal excitability and provoke seizures, neuronal excitability increases pTau, and pTau reduction reduces neuronal excitability and protects against seizures. The pTau burden in MTL predicts cognitive deficits among (1) AD and (2) MTLE without AD. We speculate that anti-seizure medications improve cognition by reducing neuronal excitability, which reduces seizures and pTau.
Collapse
Affiliation(s)
- Ifrah Zawar
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jaideep Kapur
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
- Department of UVA brain institute, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
29
|
Boal AM, McGrady NR, Holden JM, Risner ML, Calkins DJ. Retinal ganglion cells adapt to ionic stress in experimental glaucoma. Front Neurosci 2023; 17:1142668. [PMID: 37051140 PMCID: PMC10083336 DOI: 10.3389/fnins.2023.1142668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
IntroductionIdentification of early adaptive and maladaptive neuronal stress responses is an important step in developing targeted neuroprotective therapies for degenerative disease. In glaucoma, retinal ganglion cells (RGCs) and their axons undergo progressive degeneration resulting from stress driven by sensitivity to intraocular pressure (IOP). Despite therapies that can effectively manage IOP many patients progress to vision loss, necessitating development of neuronal-based therapies. Evidence from experimental models of glaucoma indicates that early in the disease RGCs experience altered excitability and are challenged with dysregulated potassium (K+) homeostasis. Previously we demonstrated that certain RGC types have distinct excitability profiles and thresholds for depolarization block, which are associated with sensitivity to extracellular K+.MethodsHere, we used our inducible mouse model of glaucoma to investigate how RGC sensitivity to K+ changes with exposure to elevated IOP.ResultsIn controls, conditions of increased K+ enhanced membrane depolarization, reduced action potential generation, and widened action potentials. Consistent with our previous work, 4 weeks of IOP elevation diminished RGC light-and current-evoked responses. Compared to controls, we found that IOP elevation reduced the effects of increased K+ on depolarization block threshold, with IOP-exposed cells maintaining greater excitability. Finally, IOP elevation did not alter axon initial segment dimensions, suggesting that structural plasticity alone cannot explain decreased K+ sensitivity.DiscussionThus, in response to prolonged IOP elevation RGCs undergo an adaptive process that reduces sensitivity to changes in K+ while diminishing excitability. These experiments give insight into the RGC response to IOP stress and lay the groundwork for mechanistic investigation into targets for neuroprotective therapy.
Collapse
|
30
|
Downs AM, Catavero CM, Kasten MR, McElligott ZA. Tauopathy and alcohol consumption interact to alter locus coeruleus excitatory transmission and excitability in male and female mice. Alcohol 2023; 107:97-107. [PMID: 36150608 DOI: 10.1016/j.alcohol.2022.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/23/2022]
Abstract
Alcohol use disorder is a major public health concern in the United States. Recent work has suggested a link between chronic alcohol consumption and the development of tauopathy disorders, such as Alzheimer's disease and frontotemporal dementia. However, relatively little work has investigated changes in neural circuitry involved in both tauopathy disorders and alcohol use disorder. The locus coeruleus (LC) is the major noradrenergic nucleus in the brain and is one of the earliest sites to be affected by tau lesions. The LC is also implicated in the rewarding effects of ethanol and alcohol withdrawal. In this study we assessed effects of long-term ethanol consumption and tauopathy on the physiology of LC neurons. Male and female P301S mice, a humanized transgenic mouse model of tauopathy, underwent 16 weeks of intermittent access to 20% ethanol from 3 to 7 months of age. We observed higher total alcohol consumption in female mice regardless of genotype. Male P301S mice consumed more ethanol and had a greater preference for ethanol than wild-type (WT) males. At the end of the drinking study, LC function was assessed using ex vivo whole cell electrophysiology. We found significant changes in excitatory inputs to the LC due to both ethanol and genotype. We found significantly increased excitability of the LC due to ethanol with greater effects in female P301S mice than in female WT mice. Our study identifies significant changes in the LC due to interactions between tauopathy and long-term ethanol use. These findings could have important implications regarding LC activity and changes in behavior due to both ethanol- and tauopathy-related dementia.
Collapse
Affiliation(s)
- Anthony M Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Christina M Catavero
- Graduate Program in Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Michael R Kasten
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Zoé A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
31
|
Niraula S, Doderer JJ, Indulkar S, Berry KP, Hauser WL, L'Esperance OJ, Deng JZ, Keeter G, Rouse AG, Subramanian J. Excitation-inhibition imbalance disrupts visual familiarity in amyloid and non-pathology conditions. Cell Rep 2023; 42:111946. [PMID: 36640331 PMCID: PMC9939293 DOI: 10.1016/j.celrep.2022.111946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Neuronal hyperactivity induces memory deficits in Alzheimer's disease. However, how hyperactivity disrupts memory is unclear. Using in vivo synaptic imaging in the mouse visual cortex, we show that structural excitatory-inhibitory synapse imbalance in the apical dendrites favors hyperactivity in early amyloidosis. Consistent with this, natural images elicit neuronal hyperactivity in these mice. Compensatory changes that maintain activity homeostasis disrupt functional connectivity and increase population sparseness such that a small fraction of neurons dominates population activity. These properties reduce the selectivity of neural response to natural images and render visual recognition memory vulnerable to interference. Deprivation of non-specific visual experiences improves the neural representation and behavioral expression of visual familiarity. In contrast, in non-pathological conditions, deprivation of non-specific visual experiences induces disinhibition, increases excitability, and disrupts visual familiarity. We show that disrupted familiarity occurs when the fraction of high-responsive neurons and the persistence of neural representation of a memory-associated stimulus are not constrained.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Julia J Doderer
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Shreya Indulkar
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Kalen P Berry
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - William L Hauser
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Oliver J L'Esperance
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Jasmine Z Deng
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Griffin Keeter
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Adam G Rouse
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
32
|
Xu LZ, Li BQ, Li FY, Li Y, Qin W, Zhao Y, Jia JP. NMDA Receptor GluN2B Subunit Is Involved in Excitotoxicity Mediated by Death-Associated Protein Kinase 1 in Alzheimer's Disease. J Alzheimers Dis 2023; 91:877-893. [PMID: 36502323 DOI: 10.3233/jad-220747] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of neurodegenerative dementia among the elderly. Excitotoxicity has been implicated as playing a dominant role in AD, especially related to the hyperactivation of excitatory neurons. Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin-dependent kinase and involved in the pathogenesis of AD, but the roles and mechanisms of DAPK1 in excitotoxicity in AD are still uncertain. OBJECTIVE We mainly explored the underlying mechanisms of DAPK1 involved in the excitotoxicity of AD and its clinical relevance. METHODS Differentiated SH-SY5Y human neuroblastoma cells, PS1 V97 L transgenic mice, and human plasma samples were used. Protein expression was assayed by immunoblotting, and intracellular calcium and neuronal damage were analyzed by flow cytometry. Plasma DAPK1 was measured by ELISA. RESULTS We found that DAPK1 was activated after amyloid-β oligomers (AβOs) exposure in differentiated SH-SY5Y cells. Besides, we found the phosphorylation of GluN2B subunit at Ser1303 was increased, which contributing to excitotoxicity and Ca2+ overload in SH-SY5Y cells. Inhibiting DAPK1 activity, knockdown of DAPK1 expression, and antagonizing GluN2B subunits could effectively prevent AβOs-induced activation of GluN2B subunit, Ca2+ overload, and neuronal apoptosis. Additionally, we found that DAPK1 was elevated in the brain of AD transgenic mouse and in the plasma of AD patients. CONCLUSION Our finding will help to understand the mechanism of DAPK1 in the excitotoxicity in AD and provide a reference for the diagnosis and therapy of AD.
Collapse
Affiliation(s)
- Ling-Zhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China
| | - Bing-Qiu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China
| | - Fang-Yu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China
| | - Ying Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China
| | - Wei Qin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China
| | - Yu Zhao
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.,Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Jian-Ping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China
| |
Collapse
|
33
|
Hu JH, Liu Y, Hoffman DA. Identification of Kv4.2 protein complex and modifications by tandem affinity purification-mass spectrometry in primary neurons. Front Cell Neurosci 2022; 16:1070305. [PMID: 36568885 PMCID: PMC9788671 DOI: 10.3389/fncel.2022.1070305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Proteins usually form complexes to fulfill variable physiological functions. In neurons, communication relies on synapses where receptors, channels, and anchoring proteins form complexes to precisely control signal transduction, synaptic integration, and action potential firing. Although there are many published protocols to isolate protein complexes in cell lines, isolation in neurons has not been well established. Here we introduce a method that combines lentiviral protein expression with tandem affinity purification followed by mass-spectrometry (TAP-MS) to identify protein complexes in neurons. This protocol can also be used to identify post-translational modifications (PTMs) of synaptic proteins. We used the A-type voltage-gated K+ channel subunit Kv4.2 as the target protein. Kv4.2 is highly expressed in the hippocampus where it contributes to learning and memory through its regulation of neuronal excitability and synaptic plasticity. We tagged Kv4.2 with the calmodulin-binding-peptide (CBP) and streptavidin-binding-peptide (SBP) at its C-terminus and expressed it in neurons via lentivirus. Kv4.2 was purified by two-step TAP and samples were analyzed by MS. MS identified two prominently known Kv4.2 interacting proteins [dipeptidyl peptidase like (DPPs) and Kv channel-interacting proteins (KChIPs)] in addition to novel synaptic proteins including glutamate receptors, a calcium channel, and anchoring proteins. Co-immunoprecipitation and colocalization experiments validated the association of Kv4.2 with glutamate receptors. In addition to protein complex identification, we used TAP-MS to identify Kv4.2 phosphorylation sites. Several known and unknown phosphorylation sites were identified. These findings provide a novel path to identify protein-protein interactions and PTMs in neurons and shed light on mechanisms of neuronal signaling potentially involved in the pathology of neurological diseases.
Collapse
|
34
|
Spatial Memory Training Counteracts Hippocampal GIRK Channel Decrease in the Transgenic APPSw,Ind J9 Alzheimer’s Disease Mouse Model. Int J Mol Sci 2022; 23:ijms232113444. [PMID: 36362230 PMCID: PMC9659077 DOI: 10.3390/ijms232113444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
G-protein-gated inwardly rectifying potassium (GIRK) channels are critical determinants of neuronal excitability. They have been proposed as potential targets to restore excitatory/inhibitory balance in acute amyloidosis models, where hyperexcitability is a hallmark. However, the role of GIRK signaling in transgenic mice models of Alzheimer’s disease (AD) is largely unknown. Here, we study whether progressive amyloid-β (Aβ) accumulation in the hippocampus during aging alters GIRK channel expression in mutant β-amyloid precursor protein (APPSw,Ind J9) transgenic AD mice. Additionally, we examine the impact of spatial memory training in a hippocampal-dependent task, on protein expression of GIRK subunits and Regulator of G-protein signaling 7 (RGS7) in the hippocampus of APPSw,Ind J9 mice. Firstly, we found a reduction in GIRK2 expression (the main neuronal GIRK channels subunit) in the hippocampus of 6-month-old APPSw,Ind J9 mice. Moreover, we found an aging effect on GIRK2 and GIRK3 subunits in both wild type (WT) and APPSw,Ind J9 mice. Finally, when 6-month-old animals were challenged to a spatial memory training, GIRK2 expression in the APPSw,Ind J9 mice were normalized to WT levels. Together, our results support the evidence that GIRK2 could account for the excitatory/inhibitory neurotransmission imbalance found in AD models, and training in a cognitive hippocampal dependent task may have therapeutic benefits of reversing this effect and lessen early AD deficits.
Collapse
|
35
|
Chockanathan U, Padmanabhan K. From synapses to circuits and back: Bridging levels of understanding in animal models of Alzheimer's disease. Eur J Neurosci 2022; 56:5564-5586. [PMID: 35244297 PMCID: PMC10926359 DOI: 10.1111/ejn.15636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by behavioural changes that include memory loss and cognitive decline and is associated with the appearance of amyloid-β plaques and neurofibrillary tangles throughout the brain. Although aspects of the disease percolate across multiple levels of neuronal organization, from the cellular to the behavioural, it is increasingly clear that circuits are a critical junction between the cellular pathology and the behavioural phenotypes that bookend these levels of analyses. In this review, we discuss critical aspects of neural circuit research, beginning with synapses and progressing to network activity and how they influence our understanding of disease processed in AD.
Collapse
Affiliation(s)
- Udaysankar Chockanathan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Krishnan Padmanabhan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Center for Visual Science, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Intellectual and Developmental Disabilities Research Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
36
|
Duan M, Meng Z, Yuan D, Zhang Y, Tang T, Chen Z, Fu Y. Anodal and cathodal transcranial direct current stimulations of prefrontal cortex in a rodent model of Alzheimer’s disease. Front Aging Neurosci 2022; 14:968451. [PMID: 36081893 PMCID: PMC9446483 DOI: 10.3389/fnagi.2022.968451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a leading cause of dementia in the elderly, with no effective treatment currently available. Transcranial direct current stimulation (tDCS), a non-drug and non-invasive therapy, has been testified efficient in cognitive enhancement. This study aims to examine the effects of tDCS on brain function in a mouse model of AD. The amyloid precursor protein (APP) and presenilin 1 (PS1) transgenic mice (7–8 months old) were subjected to 20-min anodal and cathodal tDCS (atDCS and ctDCS; 300 μA, 3.12 mA/cm2) for continuous five days. tDCS was applied on the left frontal skull of the animals, targeting on their prefrontal cortex (PFC). Behavioral performances were assessed by open-field, Y-maze, Barnes maze and T-maze paradigms; and their PFC electroencephalogram (EEG) activities were recorded under spontaneous state and during Y-maze performance. Behaviorally, atDCS and ctDCS improved spatial learning and/or memory in AD mice without affecting their general locomotion and anxiety-like behaviors, but the effects depended on the testing paradigms. Interestingly, the memory improvements were accompanied by decreased PFC EEG delta (2–4 Hz) and increased EEG gamma (20–100 Hz) activities when the animals needed memory retrieval during task performance. The decreased EEG delta activities could also be observed in animals under spontaneous state. Specifically, atDCS increased PFC EEG activity in the alpha band (8–12 Hz) for spontaneous state, whereas ctDCS increased that in alpha-beta band (8–20 Hz) for task-related state. In addition, some EEG changes after ctDCS could be found in other cortical regions except PFC. These data indicate that tDCS can reverse the situation of slower brain activity in AD mice, which may further lead to cognitive improvement. Our work highlights the potential clinical use of tDCS to restore neural network activity and improve cognition in AD.
Collapse
Affiliation(s)
- Mengsi Duan
- Medical School, Kunming University of Science & Technology, Kunming, China
| | - Zhiqiang Meng
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Dong Yuan
- Medical School, Kunming University of Science & Technology, Kunming, China
| | - Yunfan Zhang
- Medical School, Kunming University of Science & Technology, Kunming, China
| | - Tao Tang
- Medical School, Kunming University of Science & Technology, Kunming, China
| | - Zhuangfei Chen
- Medical School, Kunming University of Science & Technology, Kunming, China
| | - Yu Fu
- Medical School, Kunming University of Science & Technology, Kunming, China
- *Correspondence: Yu Fu,
| |
Collapse
|
37
|
Devina T, Wong YH, Hsiao CW, Li YJ, Lien CC, Cheng IHJ. Endoplasmic reticulum stress induces Alzheimer's disease-like phenotypes in the neuron derived from the induced pluripotent stem cell with D678H mutation on amyloid precursor protein. J Neurochem 2022; 163:26-39. [PMID: 35943292 DOI: 10.1111/jnc.15687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/12/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is mainly caused by the interaction of genetic and environmental factors. The impact of environmental factors on the genetic mutation in the amyloid precursor protein (APP) is not well characterized. We hypothesized that Endoplasmic Reticulum (ER) stress would promote disease for the patient carrying the APP D678H mutation. Therefore, we analyzed the impact of a familial AD mutation on amyloid precursor protein (APP D678H) under ER stress. Induced pluripotent stem cell (iPSC) from APP D678H mutant carrier was differentiated into neurons, which were then analyzed for AD-like changes. Immunocytochemistry and whole-cell patch-clamp recording revealed that the derived neurons on day 28 after differentiation showed neuronal markers and electrophysiological properties similar to those of mature neurons. However, the APP D678H mutant neurons did not have significant alterations in the levels of amyloid-β (Aβ) and phosphorylated tau (pTau) compared to its isogenic wild-type neuron. Only under ER stress, the neurons with the APP D678H mutation had more Aβ and pTau via immune detection assays. The higher level of Aβ in the APP D678H mutant neurons was probably due to the increased level of β-site APP cleaving enzyme (BACE1) and decreased level of Aβ degrading enzymes under ER stress. Increased Aβ and pTau under ER stress reduced the N-methyl-D-aspartate receptor (NMDAR) in Western blot analysis and altered electrophysiological properties in the mutant neurons. Our study provides evidence that the interaction between genetic mutation and ER stress would induce AD-like changes.
Collapse
Affiliation(s)
- Tania Devina
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hui Wong
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Life Science and Institute of Genome Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chiao-Wan Hsiao
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Jui Li
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chang Lien
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Irene Han-Juo Cheng
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
38
|
Targa Dias Anastacio H, Matosin N, Ooi L. Neuronal hyperexcitability in Alzheimer's disease: what are the drivers behind this aberrant phenotype? Transl Psychiatry 2022; 12:257. [PMID: 35732622 PMCID: PMC9217953 DOI: 10.1038/s41398-022-02024-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to loss of cognitive abilities and ultimately, death. With no cure available, limited treatments mostly focus on symptom management. Identifying early changes in the disease course may provide new therapeutic targets to halt or reverse disease progression. Clinical studies have shown that cortical and hippocampal hyperactivity are a feature shared by patients in the early stages of disease, progressing to hypoactivity during later stages of neurodegeneration. The exact mechanisms causing neuronal excitability changes are not fully characterized; however, animal and cell models have provided insights into some of the factors involved in this phenotype. In this review, we summarize the evidence for neuronal excitability changes over the course of AD onset and progression and the molecular mechanisms underpinning these differences. Specifically, we discuss contributors to aberrant neuronal excitability, including abnormal levels of intracellular Ca2+ and glutamate, pathological amyloid β (Aβ) and tau, genetic risk factors, including APOE, and impaired inhibitory interneuron and glial function. In light of recent research indicating hyperexcitability could be a predictive marker of cognitive dysfunction, we further argue that the hyperexcitability phenotype could be leveraged to improve the diagnosis and treatment of AD, and present potential targets for future AD treatment development.
Collapse
Affiliation(s)
- Helena Targa Dias Anastacio
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Natalie Matosin
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia. .,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
39
|
Sathler MF, Doolittle MJ, Cockrell JA, Nadalin IR, Hofmann F, VandeWoude S, Kim S. HIV and FIV glycoproteins increase cellular tau pathology via cGMP-dependent kinase II activation. J Cell Sci 2022; 135:jcs259764. [PMID: 35638570 PMCID: PMC9270957 DOI: 10.1242/jcs.259764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
As the development of combination antiretroviral therapy (cART) against human immunodeficiency virus (HIV) drastically improves the lifespan of individuals with HIV, many are now entering the prime age when Alzheimer's disease (AD)-like symptoms begin to manifest. It has been shown that hyperphosphorylated tau, a known AD pathological characteristic, is prematurely increased in the brains of HIV-infected individuals as early as in their 30s and that its levels increase with age. This suggests that HIV infection might lead to accelerated AD phenotypes. However, whether HIV infection causes AD to develop more quickly in the brain is not yet fully determined. Interestingly, we have previously revealed that the viral glycoproteins HIV gp120 and feline immunodeficiency virus (FIV) gp95 induce neuronal hyperexcitation via cGMP-dependent kinase II (cGKII; also known as PRKG2) activation in cultured hippocampal neurons. Here, we use cultured mouse cortical neurons to demonstrate that the presence of HIV gp120 and FIV gp95 are sufficient to increase cellular tau pathology, including intracellular tau hyperphosphorylation and tau release to the extracellular space. We further reveal that viral glycoprotein-induced cellular tau pathology requires cGKII activation. Taken together, HIV infection likely accelerates AD-related tau pathology via cGKII activation.
Collapse
Affiliation(s)
- Matheus F. Sathler
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael J. Doolittle
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA
| | - James A. Cockrell
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO 80523, USA
| | - India R. Nadalin
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Franz Hofmann
- Technical University of Munich, Arcisstraße 21, D-80333 Munich, Germany
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Seonil Kim
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
40
|
B. Szabo A, Cretin B, Gérard F, Curot J, J. Barbeau E, Pariente J, Dahan L, Valton L. Sleep: The Tip of the Iceberg in the Bidirectional Link Between Alzheimer's Disease and Epilepsy. Front Neurol 2022; 13:836292. [PMID: 35481265 PMCID: PMC9035794 DOI: 10.3389/fneur.2022.836292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The observation that a pathophysiological link might exist between Alzheimer's disease (AD) and epilepsy dates back to the identification of the first cases of the pathology itself and is now strongly supported by an ever-increasing mountain of literature. An overwhelming majority of data suggests not only a higher prevalence of epilepsy in Alzheimer's disease compared to healthy aging, but also that AD patients with a comorbid epileptic syndrome, even subclinical, have a steeper cognitive decline. Moreover, clinical and preclinical investigations have revealed a marked sleep-related increase in the frequency of epileptic activities. This characteristic might provide clues to the pathophysiological pathways underlying this comorbidity. Furthermore, the preferential sleep-related occurrence of epileptic events opens up the possibility that they might hasten cognitive decline by interfering with the delicately orchestrated synchrony of oscillatory activities implicated in sleep-related memory consolidation. Therefore, we scrutinized the literature for mechanisms that might promote sleep-related epileptic activity in AD and, possibly dementia onset in epilepsy, and we also aimed to determine to what degree and through which processes such events might alter the progression of AD. Finally, we discuss the implications for patient care and try to identify a common basis for methodological considerations for future research and clinical practice.
Collapse
Affiliation(s)
- Anna B. Szabo
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- *Correspondence: Anna B. Szabo
| | - Benjamin Cretin
- Clinical Neuropsychology Unit, Neurology Department, CM2R (Memory Resource and Research Centre), University Hospital of Strasbourg, Strasbourg, France
- CNRS, ICube Laboratory, UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg, Strasbourg, France
- CMRR d'Alsace, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Pôle Tête et Cou, Strasbourg, France
| | - Fleur Gérard
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jonathan Curot
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Emmanuel J. Barbeau
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
| | - Jérémie Pariente
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Toulouse NeuroImaging Center (ToNIC), INSERM-University of Toulouse Paul Sabatier, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luc Valton
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Luc Valton
| |
Collapse
|
41
|
Peña-Ortega F, Robles-Gómez ÁA, Xolalpa-Cueva L. Microtubules as Regulators of Neural Network Shape and Function: Focus on Excitability, Plasticity and Memory. Cells 2022; 11:cells11060923. [PMID: 35326374 PMCID: PMC8946818 DOI: 10.3390/cells11060923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Neuronal microtubules (MTs) are complex cytoskeletal protein arrays that undergo activity-dependent changes in their structure and function as a response to physiological demands throughout the lifespan of neurons. Many factors shape the allostatic dynamics of MTs and tubulin dimers in the cytosolic microenvironment, such as protein–protein interactions and activity-dependent shifts in these interactions that are responsible for their plastic capabilities. Recently, several findings have reinforced the role of MTs in behavioral and cognitive processes in normal and pathological conditions. In this review, we summarize the bidirectional relationships between MTs dynamics, neuronal processes, and brain and behavioral states. The outcomes of manipulating the dynamicity of MTs by genetic or pharmacological approaches on neuronal morphology, intrinsic and synaptic excitability, the state of the network, and behaviors are heterogeneous. We discuss the critical position of MTs as responders and adaptative elements of basic neuronal function whose impact on brain function is not fully understood, and we highlight the dilemma of artificially modulating MT dynamics for therapeutic purposes.
Collapse
|
42
|
Hiess F, Yao J, Song Z, Sun B, Zhang Z, Huang J, Chen L, Institoris A, Estillore JP, Wang R, Ter Keurs HEDJ, Stys PK, Gordon GR, Zamponi GW, Ganguly A, Chen SRW. Subcellular localization of hippocampal ryanodine receptor 2 and its role in neuronal excitability and memory. Commun Biol 2022; 5:183. [PMID: 35233070 PMCID: PMC8888588 DOI: 10.1038/s42003-022-03124-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022] Open
Abstract
Ryanodine receptor 2 (RyR2) is abundantly expressed in the heart and brain. Mutations in RyR2 are associated with both cardiac arrhythmias and intellectual disability. While the mechanisms of RyR2-linked arrhythmias are well characterized, little is known about the mechanism underlying RyR2-associated intellectual disability. Here, we employed a mouse model expressing a green fluorescent protein (GFP)-tagged RyR2 and a specific GFP probe to determine the subcellular localization of RyR2 in hippocampus. GFP-RyR2 was predominantly detected in the soma and dendrites, but not the dendritic spines of CA1 pyramidal neurons or dentate gyrus granular neurons. GFP-RyR2 was also detected within the mossy fibers in the stratum lucidum of CA3, but not in the presynaptic terminals of CA1 neurons. An arrhythmogenic RyR2-R4496C+/− mutation downregulated the A-type K+ current and increased membrane excitability, but had little effect on the afterhyperpolarization current or presynaptic facilitation of CA1 neurons. The RyR2-R4496C+/− mutation also impaired hippocampal long-term potentiation, learning, and memory. These data reveal the precise subcellular distribution of hippocampal RyR2 and its important role in neuronal excitability, learning, and memory. A mouse model containing a GFP-tagged ryanodine receptor 2 (RyR2) has shed light on the precise subcellular localization of hippocampal RyR2 and mechanisms underlying neuronal excitability, learning, and memory.
Collapse
Affiliation(s)
- Florian Hiess
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jinjing Yao
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Zhenpeng Song
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Bo Sun
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Zizhen Zhang
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Junting Huang
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Lina Chen
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - John Paul Estillore
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Henk E D J Ter Keurs
- Libin Cardiovascular Institute, Department of Cardiovascular Science, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Peter K Stys
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Grant R Gordon
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Gerald W Zamponi
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Anutosh Ganguly
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
43
|
Murphy JG, Gutzmann JJ, Lin L, Hu J, Petralia RS, Wang YX, Hoffman DA. R-type voltage-gated Ca 2+ channels mediate A-type K + current regulation of synaptic input in hippocampal dendrites. Cell Rep 2022; 38:110264. [PMID: 35045307 PMCID: PMC10496648 DOI: 10.1016/j.celrep.2021.110264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 01/22/2023] Open
Abstract
The subthreshold voltage-gated transient K+ current (IA) carried by pore-forming Kv4.2 subunits regulates the propagation of synaptic input, dendritic excitability, and synaptic plasticity in CA1 pyramidal neuron dendrites of the hippocampus. We report that the Ca2+ channel subunit Cav2.3 regulates IA in this cell type. We initially identified Cav2.3 as a Kv4.2-interacting protein in a proteomic screen and we confirmed Cav2.3-Kv4.2 complex association using multiple techniques. Functionally, Cav2.3 Ca2+-entry increases Kv4.2-mediated whole-cell current due to an increase in Kv4.2 surface expression. Using pharmacology and Cav2.3 knockout mice, we show that Cav2.3 regulates the dendritic gradient of IA. Furthermore, the loss of Cav2.3 function leads to the enhancement of AMPA receptor-mediated synaptic currents and NMDA receptor-mediated spine Ca2+ influx. These results propose that Cav2.3 and Kv4.2 are integral constituents of an ion channel complex that affects synaptic function in the hippocampus.
Collapse
Affiliation(s)
- Jonathan G Murphy
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jakob J Gutzmann
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lin Lin
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiahua Hu
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dax A Hoffman
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Zarhin D, Atsmon R, Ruggiero A, Baeloha H, Shoob S, Scharf O, Heim LR, Buchbinder N, Shinikamin O, Shapira I, Styr B, Braun G, Harel M, Sheinin A, Geva N, Sela Y, Saito T, Saido T, Geiger T, Nir Y, Ziv Y, Slutsky I. Disrupted neural correlates of anesthesia and sleep reveal early circuit dysfunctions in Alzheimer models. Cell Rep 2022; 38:110268. [PMID: 35045289 PMCID: PMC8789564 DOI: 10.1016/j.celrep.2021.110268] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Dysregulated homeostasis of neural activity has been hypothesized to drive Alzheimer's disease (AD) pathogenesis. AD begins with a decades-long presymptomatic phase, but whether homeostatic mechanisms already begin failing during this silent phase is unknown. We show that before the onset of memory decline and sleep disturbances, familial AD (fAD) model mice display no deficits in CA1 mean firing rate (MFR) during active wakefulness. However, homeostatic down-regulation of CA1 MFR is disrupted during non-rapid eye movement (NREM) sleep and general anesthesia in fAD mouse models. The resultant hyperexcitability is attenuated by the mitochondrial dihydroorotate dehydrogenase (DHODH) enzyme inhibitor, which tunes MFR toward lower set-point values. Ex vivo fAD mutations impair downward MFR homeostasis, resulting in pathological MFR set points in response to anesthetic drug and inhibition blockade. Thus, firing rate dyshomeostasis of hippocampal circuits is masked during active wakefulness but surfaces during low-arousal brain states, representing an early failure of the silent disease stage.
Collapse
Affiliation(s)
- Daniel Zarhin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Refaela Atsmon
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Antonella Ruggiero
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Halit Baeloha
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shiri Shoob
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oded Scharf
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Leore R Heim
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nadav Buchbinder
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ortal Shinikamin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Boaz Styr
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gabriella Braun
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michal Harel
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anton Sheinin
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nitzan Geva
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaniv Sela
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Tamar Geiger
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaniv Ziv
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
45
|
Vallejos MJ, Eadaim A, Hahm ET, Tsunoda S. Age-related changes in Kv4/Shal and Kv1/Shaker expression in Drosophila and a role for reactive oxygen species. PLoS One 2021; 16:e0261087. [PMID: 34932577 PMCID: PMC8691634 DOI: 10.1371/journal.pone.0261087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Age-related changes in ion channel expression are likely to affect neuronal signaling. Here, we examine how age affects Kv4/Shal and Kv1/Shaker K+ channel protein levels in Drosophila. We show that Kv4/Shal protein levels decline sharply from 3 days to 10 days, then more gradually from 10 to 40 days after eclosion. In contrast, Kv1/Shaker protein exhibits a transient increase at 10 days that then stabilizes and eventually declines at 40 days. We present data that begin to show a relationship between reactive oxygen species (ROS), Kv4/Shal, and locomotor performance. We show that Kv4/Shal levels are negatively affected by ROS, and that over-expression of Catalase or RNAi knock-down of the ROS-generating enzyme, Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase (NOX), can attenuate the loss of Kv4/Shal protein. Finally, we compare levels of Kv4.2 and Kv4.3 in the hippocampus, olfactory bulb, cerebellum, and motor cortex of mice aged 6 weeks and 1 year. While there was no global decline in Kv4.2/4.3 that parallels what we report in Drosophila, we did find that Kv4.2/4.3 are differentially affected in various brain regions; this survey of changes may help inform mammalian studies that examine neuronal function with age.
Collapse
Affiliation(s)
- Maximiliano J. Vallejos
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Abdunaser Eadaim
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Eu-Teum Hahm
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
46
|
Welch MA, Jansen LAR, Baro DJ. SUMOylation of the Kv4.2 Ternary Complex Increases Surface Expression and Current Amplitude by Reducing Internalization in HEK 293 Cells. Front Mol Neurosci 2021; 14:757278. [PMID: 34795560 PMCID: PMC8593141 DOI: 10.3389/fnmol.2021.757278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
Kv4 α-subunits exist as ternary complexes (TC) with potassium channel interacting proteins (KChIP) and dipeptidyl peptidase-like proteins (DPLP); multiple ancillary proteins also interact with the α-subunits throughout the channel’s lifetime. Dynamic regulation of Kv4.2 protein interactions adapts the transient potassium current, IA, mediated by Kv4 α-subunits. Small ubiquitin-like modifier (SUMO) is an 11 kD peptide post-translationally added to lysine (K) residues to regulate protein–protein interactions. We previously demonstrated that when expressed in human embryonic kidney (HEK) cells, Kv4.2 can be SUMOylated at two K residues, K437 and K579. SUMOylation at K437 increased surface expression of electrically silent channels while SUMOylation at K579 reduced IA maximal conductance (Gmax) without altering surface expression. KChIP and DPLP subunits are known to modify the pattern of Kv4.2 post-translational decorations and/or their effects. In this study, co-expressing Kv4.2 with KChIP2a and DPP10c altered the effects of enhanced Kv4.2 SUMOylation. First, the effect of enhanced SUMOylation was the same for a TC containing either the wild-type Kv4.2 or the mutant K437R Kv4.2, suggesting that either the experimental manipulation no longer enhanced K437 SUMOylation or K437 SUMOylation no longer influenced Kv4.2 surface expression. Second, instead of decreasing IA Gmax, enhanced SUMOylation at K579 now produced a significant ∼37–70% increase in IA maximum conductance (Gmax) and a significant ∼30–50% increase in Kv4.2g surface expression that was accompanied by a 65% reduction in TC internalization. Blocking clathrin-mediated endocytosis (CME) in HEK cells expressing the Kv4.2 TC mimicked and occluded the effect of SUMO on IA Gmax; however, the amount of Kv4.2 associated with the major adaptor for constitutive CME, adaptor protein 2 (AP2), was not SUMO dependent. Thus, SUMOylation reduced Kv4.2 internalization by acting downstream of Kv4.2 recruitment into clathrin-coated pits. In sum, the two major findings of this study are: SUMOylation of Kv4.2 at K579 regulates TC internalization most likely by promoting channel recycling. Additionally, there is a reciprocity between Kv4.2 SUMOylation and the Kv4.2 interactome such that SUMOylation regulates the interactome and the interactome influences the pattern and effect of SUMOylation.
Collapse
Affiliation(s)
- Meghyn A Welch
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | | | - Deborah J Baro
- Department of Biology, Georgia State University, Atlanta, GA, United States.,Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
47
|
Ismael S, Sindi G, Colvin RA, Lee D. Activity-dependent release of phosphorylated human tau from Drosophila neurons in primary culture. J Biol Chem 2021; 297:101108. [PMID: 34473990 PMCID: PMC8455371 DOI: 10.1016/j.jbc.2021.101108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022] Open
Abstract
Neuronal activity can enhance tau release and thus accelerate tauopathies. This activity-dependent tau release can be used to study the progression of tau pathology in Alzheimer's disease (AD), as hyperphosphorylated tau is implicated in AD pathogenesis and related tauopathies. However, our understanding of the mechanisms that regulate activity-dependent tau release from neurons and the role that tau phosphorylation plays in modulating activity-dependent tau release is still rudimentary. In this study, Drosophila neurons in primary culture expressing human tau (hTau) were used to study activity-dependent tau release. We found that hTau release was markedly increased by 50 mM KCl treatment for 1 h. A similar level of release was observed using optogenetic techniques, where genetically targeted neurons were stimulated for 30 min using blue light (470 nm). Our results showed that activity-dependent release of phosphoresistant hTauS11A was reduced when compared with wildtype hTau. In contrast, release of phosphomimetic hTauE14 was increased upon activation. We found that released hTau was phosphorylated in its proline-rich and C-terminal domains using phosphorylation site-specific tau antibodies (e.g., AT8). Fold changes in detectable levels of total or phosphorylated hTau in cell lysates or following immunopurification from conditioned media were consistent with preferential release of phosphorylated hTau after light stimulation. This study establishes an excellent model to investigate the mechanism of activity-dependent hTau release and to better understand the role of phosphorylated tau release in the pathogenesis of AD since it relates to alterations in the early stage of neurodegeneration associated with increased neuronal activity.
Collapse
Affiliation(s)
- Sazan Ismael
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Ghadir Sindi
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Robert A Colvin
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA.
| |
Collapse
|
48
|
Ruiter M, Herstel LJ, Wierenga CJ. Reduction of Dendritic Inhibition in CA1 Pyramidal Neurons in Amyloidosis Models of Early Alzheimer's Disease. J Alzheimers Dis 2021; 78:951-964. [PMID: 33074225 PMCID: PMC7739974 DOI: 10.3233/jad-200527] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: In an early stage of Alzheimer’s disease (AD), before the formation of amyloid plaques, neuronal network hyperactivity has been reported in both patients and animal models. This suggests an underlying disturbance of the balance between excitation and inhibition. Several studies have highlighted the role of somatic inhibition in early AD, while less is known about dendritic inhibition. Objective: In this study we investigated how inhibitory synaptic currents are affected by elevated Aβ levels. Methods: We performed whole-cell patch clamp recordings of CA1 pyramidal neurons in organotypic hippocampal slice cultures after treatment with Aβ-oligomers and in hippocampal brain slices from AppNL-F-G mice (APP-KI). Results: We found a reduction of spontaneous inhibitory postsynaptic currents (sIPSCs) in CA1 pyramidal neurons in organotypic slices after 24 h Aβ treatment. sIPSCs with slow rise times were reduced, suggesting a specific loss of dendritic inhibitory inputs. As miniature IPSCs and synaptic density were unaffected, these results suggest a decrease in activity-dependent transmission after Aβ treatment. We observed a similar, although weaker, reduction in sIPSCs in CA1 pyramidal neurons from APP-KI mice compared to control. When separated by sex, the strongest reduction in sIPSC frequency was found in slices from male APP-KI mice. Consistent with hyperexcitability in pyramidal cells, dendritically targeting interneurons received slightly more excitatory input. GABAergic action potentials had faster kinetics in APP-KI slices. Conclusion: Our results show that Aβ affects dendritic inhibition via impaired action potential driven release, possibly due to altered kinetics of GABAergic action potentials. Reduced dendritic inhibition may contribute to neuronal hyperactivity in early AD.
Collapse
Affiliation(s)
- Marvin Ruiter
- Department of Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Lotte J Herstel
- Department of Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Corette J Wierenga
- Department of Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
49
|
Tok S, Ahnaou A, Drinkenburg W. Functional Neurophysiological Biomarkers of Early-Stage Alzheimer's Disease: A Perspective of Network Hyperexcitability in Disease Progression. J Alzheimers Dis 2021; 88:809-836. [PMID: 34420957 PMCID: PMC9484128 DOI: 10.3233/jad-210397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Network hyperexcitability (NH) has recently been suggested as a potential neurophysiological indicator of Alzheimer’s disease (AD), as new, more accurate biomarkers of AD are sought. NH has generated interest as a potential indicator of certain stages in the disease trajectory and even as a disease mechanism by which network dysfunction could be modulated. NH has been demonstrated in several animal models of AD pathology and multiple lines of evidence point to the existence of NH in patients with AD, strongly supporting the physiological and clinical relevance of this readout. Several hypotheses have been put forward to explain the prevalence of NH in animal models through neurophysiological, biochemical, and imaging techniques. However, some of these hypotheses have been built on animal models with limitations and caveats that may have derived NH through other mechanisms or mechanisms without translational validity to sporadic AD patients, potentially leading to an erroneous conclusion of the underlying cause of NH occurring in patients with AD. In this review, we discuss the substantiation for NH in animal models of AD pathology and in human patients, as well as some of the hypotheses considering recently developed animal models that challenge existing hypotheses and mechanisms of NH. In addition, we provide a preclinical perspective on how the development of animal models incorporating AD-specific NH could provide physiologically relevant translational experimental data that may potentially aid the discovery and development of novel therapies for AD.
Collapse
Affiliation(s)
- Sean Tok
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| | - Abdallah Ahnaou
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wilhelmus Drinkenburg
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| |
Collapse
|
50
|
Ahnaou A, Drinkenburg WHIM. Sleep, neuronal hyperexcitability, inflammation and neurodegeneration: Does early chronic short sleep trigger and is it the key to overcoming Alzheimer's disease? Neurosci Biobehav Rev 2021; 129:157-179. [PMID: 34214513 DOI: 10.1016/j.neubiorev.2021.06.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/13/2021] [Accepted: 06/25/2021] [Indexed: 01/13/2023]
Abstract
Evidence links neuroinflammation to Alzheimer's disease (AD); however, its exact contribution to the onset and progression of the disease is poorly understood. Symptoms of AD can be seen as the tip of an iceberg, consisting of a neuropathological build-up in the brain of extracellular amyloid-β (Aβ) plaques and intraneuronal hyperphosphorylated aggregates of Tau (pTau), which are thought to stem from an imbalance between its production and clearance resulting in loss of synaptic health and dysfunctional cortical connectivity. The glymphatic drainage system, which is particularly active during sleep, plays a key role in the clearance of proteinopathies. Poor sleep can cause hyperexcitability and promote Aβ and tau pathology leading to systemic inflammation. The early neuronal hyperexcitability of γ-aminobutyric acid (GABA)-ergic inhibitory interneurons and impaired inhibitory control of cortical pyramidal neurons lie at the crossroads of excitatory/inhibitory imbalance and inflammation. We outline, with a prospective framework, a possible vicious spiral linking early chronic short sleep, neuronal hyperexcitability, inflammation and neurodegeneration. Understanding the early predictors of AD, through an integrative approach, may hold promise for reducing attrition in the late stages of neuroprotective drug development.
Collapse
Affiliation(s)
- A Ahnaou
- Dept. of Neuroscience Discovery, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse, B-2340, Belgium.
| | - W H I M Drinkenburg
- Dept. of Neuroscience Discovery, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse, B-2340, Belgium
| |
Collapse
|