1
|
Hebda-Bauer EK, Hagenauer MH, Munro DB, Blandino P, Meng F, Arakawa K, Stead JDH, Chitre AS, Ozel AB, Mohammadi P, Watson SJ, Flagel SB, Li J, Palmer AA, Akil H. Bioenergetic-related gene expression in the hippocampus predicts internalizing vs. externalizing behavior in an animal model of temperament. Front Mol Neurosci 2025; 18:1469467. [PMID: 40103584 PMCID: PMC11913853 DOI: 10.3389/fnmol.2025.1469467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
Externalizing and internalizing behavioral tendencies underlie many psychiatric and substance use disorders. These tendencies are associated with differences in temperament that emerge early in development via the interplay of genetic and environmental factors. To better understand the neurobiology of temperament, we have selectively bred rats for generations to produce two lines with highly divergent behavior: bred Low Responders (bLRs) are highly inhibited and anxious in novel environments, whereas bred High Responders (bHRs) are highly exploratory, sensation-seeking, and prone to drug-seeking behavior. Recently, we delineated these heritable differences by intercrossing bHRs and bLRs (F0-F1-F2) to produce a heterogeneous F2 sample with well-characterized lineage and behavior (exploratory locomotion, anxiety-like behavior, Pavlovian conditioning). The identified genetic loci encompassed variants that could influence behavior via many mechanisms, including proximal effects on gene expression. Here we measured gene expression in male and female F0s (n = 12 bHRs, 12 bLRs) and in a large sample of heterogeneous F2s (n = 250) using hippocampal RNA-Seq. This enabled triangulation of behavior with both genetic and functional genomic data to implicate specific genes and biological pathways. Our results show that bHR/bLR differential gene expression is robust, surpassing sex differences in expression, and predicts expression associated with F2 behavior. In F0 and F2 samples, gene sets related to growth/proliferation are upregulated with bHR-like behavior, whereas gene sets related to mitochondrial function, oxidative stress, and microglial activation are upregulated with bLR-like behavior. Integrating our F2 RNA-Seq data with previously-collected whole genome sequencing data identified genes with hippocampal expression correlated with proximal genetic variation (cis-expression quantitative trait loci or cis-eQTLs). These cis-eQTLs successfully predict bHR/bLR differential gene expression based on F0 genotype. Sixteen of these genes are associated with cis-eQTLs colocalized within loci we previously linked to behavior and are strong candidates for mediating the influence of genetic variation on behavioral temperament. Eight of these genes are related to bioenergetics. Convergence between our study and others targeting similar behavioral traits revealed five more genes consistently related to temperament. Overall, our results implicate hippocampal bioenergetic regulation of oxidative stress, microglial activation, and growth-related processes in shaping behavioral temperament, thereby modulating vulnerability to psychiatric and addictive disorders.
Collapse
Affiliation(s)
- Elaine K Hebda-Bauer
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Megan H Hagenauer
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Daniel B Munro
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Peter Blandino
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Fan Meng
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Keiko Arakawa
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - John D H Stead
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - A Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Pejman Mohammadi
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Stanley J Watson
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Shelly B Flagel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Jun Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, United States
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Meng F, Wang J, Wang L, Zou W. Glucose metabolism impairment in major depressive disorder. Brain Res Bull 2025; 221:111191. [PMID: 39788458 DOI: 10.1016/j.brainresbull.2025.111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Major depressive disorder (MDD) is a common mental disorder with chronic tendencies that seriously affect regular work, life, and study. However, its exact pathogenesis remains unclear. Patients with MDD experience systemic and localized impairments in glucose metabolism throughout the disease course, disrupting various processes such as glucose uptake, glycoprotein transport, glycolysis, the tricarboxylic acid cycle (TCA), and oxidative phosphorylation (OXPHOS). These impairments may result from mechanisms including insulin resistance, hyperglycemia-induced damage, oxidative stress, astrocyte abnormalities, and mitochondrial dysfunction, leading to insufficient energy supply, altered synaptic plasticity, neuronal cell death, and functional and structural damage to reward networks. These mechanical changes contribute to the pathogenesis of MDD and severely interfere with the prognosis. Herein, we summarized the impairment of glucose metabolism and its pathophysiological mechanisms in patients with MDD. In addition, we briefly discussed potential pharmacological interventions for glucose metabolism to alleviate MDD, including glucagon-like peptide-1 receptor agonists, metformin, topical insulin, liraglutide, and pioglitazone, to encourage the development of new therapeutics.
Collapse
Affiliation(s)
- Fanhao Meng
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Jing Wang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Long Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China.
| | - Wei Zou
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
3
|
Teoh J, Bartolini F. Emerging roles for tubulin PTMs in neuronal function and neurodegenerative disease. Curr Opin Neurobiol 2025; 90:102971. [PMID: 39862522 PMCID: PMC11839326 DOI: 10.1016/j.conb.2025.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025]
Abstract
Neurons are equipped with microtubules of different stability with stable and dynamic domains often coexisting on the same microtubule. While dynamic microtubules undergo random transitions between disassembly and assembly, stable ones persist long enough to serve as platforms for tubulin-modifying enzymes (known as writers) that attach molecular components to the α- or β-tubulin subunits. The combination of these posttranslational modifications (PTMs) results in a "tubulin code," dictating the behavior of selected proteins (known as readers), some of which were shown to be crucial for neuronal function. Recent research has further highlighted that disturbances in tubulin PTMs can lead to neurodegeneration, sparking an emerging field of investigation with numerous questions such as whether and how tubulin PTMs can affect neurotransmission and synaptic plasticity and whether restoring balanced tubulin PTM levels could effectively prevent or mitigate neurodegenerative disease.
Collapse
Affiliation(s)
- JiaJie Teoh
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, 10032, New York, NY, USA
| | - Francesca Bartolini
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, 10032, New York, NY, USA.
| |
Collapse
|
4
|
Tiwari A, Myeong J, Hashemiaghdam A, Stunault MI, Zhang H, Niu X, Laramie MA, Sponagel J, Shriver LP, Patti GJ, Klyachko VA, Ashrafi G. Mitochondrial pyruvate transport regulates presynaptic metabolism and neurotransmission. SCIENCE ADVANCES 2024; 10:eadp7423. [PMID: 39546604 PMCID: PMC11567002 DOI: 10.1126/sciadv.adp7423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Glucose has long been considered the primary fuel source for the brain. However, glucose levels fluctuate in the brain during sleep or circuit activity, posing major metabolic stress. Here, we demonstrate that the mammalian brain uses pyruvate as a fuel source, and pyruvate can support neuronal viability in the absence of glucose. Nerve terminals are sites of metabolic vulnerability, and we show that mitochondrial pyruvate uptake is a critical step in oxidative ATP production in hippocampal terminals. We find that the mitochondrial pyruvate carrier is post-translationally modified by lysine acetylation, which, in turn, modulates mitochondrial pyruvate uptake. Our data reveal that the mitochondrial pyruvate carrier regulates distinct steps in neurotransmission, namely, the spatiotemporal pattern of synaptic vesicle release and the efficiency of vesicle retrieval-functions that have profound implications for synaptic plasticity. In summary, we identify pyruvate as a potent neuronal fuel and mitochondrial pyruvate uptake as a critical node for the metabolic control of neurotransmission in hippocampal terminals.
Collapse
Affiliation(s)
- Anupama Tiwari
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marion I. Stunault
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hao Zhang
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiangfeng Niu
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Marissa A. Laramie
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jasmin Sponagel
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leah P. Shriver
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary J. Patti
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Vitaly A. Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Ye Y, Fu C, Li Y, Sun J, Li X, Chai S, Li S, Hou M, Cai H, Wang Z, Wu M. Alternate-day fasting improves cognitive and brain energy deficits by promoting ketone metabolism in the 3xTg mouse model of Alzheimer's disease. Exp Neurol 2024; 381:114920. [PMID: 39142368 DOI: 10.1016/j.expneurol.2024.114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Alzheimer's disease (AD) is characterized by disorders in brain energy. The lack of sufficient energy for nerve function leads to cognitive dysfunction and massive neuronal loss in AD. Ketone bodies are an alternative to glucose as a source of energy in the brain, and alternate-day fasting (ADF) promotes the production of the ketone body β-hydroxybutyric acid (βOHB). In this study, 7-month-old male WT mice and 3xTg mice underwent dietary control for 20 weeks. We found that ADF increased circulating βOHB concentrations in 3xTg mice, improved cognitive function, reduced anxiety-like behaviors, improved hippocampal synaptic plasticity, and reduced neuronal loss, Aβ oligomers and tau hyperphosphorylation. In addition, ADF improved mitochondrial bioenergetic function by promoting brain ketone metabolism and rescued brain energy deficits in 3xTg mice. A safety evaluation showed that ADF improved exercise endurance and liver and kidney function in 3xTg mice without negatively affecting muscle motor and heart functions. This study provides a theoretical basis and strong support for the application of ADF as a non-drug strategy for preventing and treating brain energy defects in the early stage of AD.
Collapse
Affiliation(s)
- Yucai Ye
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Chaojing Fu
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Yan Li
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Junli Sun
- School of Anesthesiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xinru Li
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Shifan Chai
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China
| | - Shuo Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Meng Hou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Hongyan Cai
- Department of Microbiology and Immunology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Zhaojun Wang
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China.
| | - Meina Wu
- Department of Physiology, School of Basic Medicine, Shanxi Medical University, Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan 030001, China.
| |
Collapse
|
6
|
Zheng Y, Zhou Z, Liu M, Chen Z. Targeting selective autophagy in CNS disorders by small-molecule compounds. Pharmacol Ther 2024; 263:108729. [PMID: 39401531 DOI: 10.1016/j.pharmthera.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024]
Abstract
Autophagy functions as the primary cellular mechanism for clearing unwanted intracellular contents. Emerging evidence suggests that the selective elimination of intracellular organelles through autophagy, compared to the increased bulk autophagic flux, is crucial for the pathological progression of central nervous system (CNS) disorders. Notably, autophagic removal of mitochondria, known as mitophagy, is well-understood in an unhealthy brain. Accumulated data indicate that selective autophagy of other substrates, including protein aggregates, liposomes, and endoplasmic reticulum, plays distinctive roles in various pathological stages. Despite variations in substrates, the molecular mechanisms governing selective autophagy can be broadly categorized into two types: ubiquitin-dependent and -independent pathways, both of which can be subjected to regulation by small-molecule compounds. Notably, natural products provide the remarkable possibility for future structural optimization to regulate the highly selective autophagic clearance of diverse substrates. In this context, we emphasize the selectivity of autophagy in regulating CNS disorders and provide an overview of chemical compounds capable of modulating selective autophagy in these disorders, along with the underlying mechanisms. Further exploration of the functions of these compounds will in turn advance our understanding of autophagic contributions to brain disorders and illuminate precise therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mengting Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
7
|
Zhao BJ, Song SY, Zhao WM, Xu HB, Peng K, Shan XS, Chen QC, Liu H, Liu HY, Ji FH. The effect of sevoflurane exposure on cell-type-specific changes in the prefrontal cortex in young mice. J Neurochem 2024; 168:1080-1096. [PMID: 38317263 DOI: 10.1111/jnc.16068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Sevoflurane, the predominant pediatric anesthetic, has been linked to neurotoxicity in young mice, although the underlying mechanisms remain unclear. This study focuses on investigating the impact of neonatal sevoflurane exposure on cell-type-specific alterations in the prefrontal cortex (PFC) of young mice. Neonatal mice were subjected to either control treatment (60% oxygen balanced with nitrogen) or sevoflurane anesthesia (3% sevoflurane in 60% oxygen balanced with nitrogen) for 2 hours on postnatal days (PNDs) 6, 8, and 10. Behavioral tests and single-nucleus RNA sequencing (snRNA-seq) of the PFC were conducted from PNDs 31 to 37. Mechanistic exploration included clustering analysis, identification of differentially expressed genes (DEGs), enrichment analyses, single-cell trajectory analysis, and genome-wide association studies (GWAS). Sevoflurane anesthesia resulted in sociability and cognition impairments in mice. Novel specific marker genes identified 8 distinct cell types in the PFC. Most DEGs between the control and sevoflurane groups were unique to specific cell types. Re-defining 15 glutamatergic neuron subclusters based on layer identity revealed their altered expression profiles. Notably, sevoflurane disrupted the trajectory from oligodendrocyte precursor cells (OPCs) to oligodendrocytes (OLs). Validation of disease-relevant candidate genes across the main cell types demonstrated their association with social dysfunction and working memory impairment. Behavioral results and snRNA-seq collectively elucidated the cellular atlas in the PFC of young male mice, providing a foundation for further mechanistic studies on developmental neurotoxicity induced by anesthesia.
Collapse
Affiliation(s)
- Bao-Jian Zhao
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
- Department of Anesthesiology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Shao-Yong Song
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
- Department of Pain Medicine, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China
| | - Wei-Ming Zhao
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Han-Bing Xu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Xi-Sheng Shan
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Qing-Cai Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, California, USA
| | - Hua-Yue Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
- Ambulatory Surgery Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Rodriguez P, Blakely RD. Sink or swim: Does a worm paralysis phenotype hold clues to neurodegenerative disease? J Cell Physiol 2024; 239:e31125. [PMID: 37795580 DOI: 10.1002/jcp.31125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Receiving a neurodegenerative disease (NDD) diagnosis, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis, is devastating, particularly given the limited options for treatment. Advances in genetic technologies have allowed for efficient modeling of NDDs in animals and brought hope for new disease-modifying medications. The complexity of the mammalian brain and the costs and time needed to identify and develop therapeutic leads limits progress. Modeling NDDs in invertebrates, such as the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, offers orders of magnitude increases in speed of genetic analysis and manipulation, and can be pursued at substantially reduced cost, providing an important, platform complement and inform research with mammalian NDD models. In this review, we describe how our efforts to exploit C. elegans for the study of neural signaling and health led to the discovery of a paralytic phenotype (swimming-induced paralysis) associated with altered dopamine signaling and, surprisingly, to the discovery of a novel gene and pathway whose dysfunction in glial cells triggers neurodegeneration. Research to date on swip-10 and its putative mammalian ortholog MBLAC1, suggests that a tandem analysis will offer insights into NDD mechanisms and insights into novel, disease-modifying therapeutics.
Collapse
Affiliation(s)
- Peter Rodriguez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
9
|
Yang Y, Zhou D, Min S, Liu D, Zou M, Yu C, Chen L, Huang J, Hong R. Ciprofol ameliorates ECS-induced learning and memory impairment by modulating aerobic glycolysis in the hippocampus of depressive-like rats. Pharmacol Biochem Behav 2024; 239:173775. [PMID: 38657873 DOI: 10.1016/j.pbb.2024.173775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Electroconvulsive shock (ECS) is utilized to treat depression but may cause learning/memory impairments, which may be ameliorated by anesthetics through the modulation of hippocampal synaptic plasticity. Given that synaptic plasticity is governed by aerobic glycolysis, it remains unclear whether anesthetics modulate aerobic glycolysis to enhance learning and memory function. Depression-like behavior in rats was induced by chronic mild unpredictable stress (CUMS), with anhedonia assessed via sucrose preference test (SPT). Depressive-like behaviors and spatial learning/memory were assessed with forced swim test (FST), open field test (OFT), and Morris water maze (MWM) test. Changes in aerobic glycolysis and synaptic plasticity in the hippocampal region of depressive-like rats post-ECS were documented using immunofluorescence analysis, Western blot, Lactate Assay Kit and transmission electron microscopy. Both the OFT and FST indicated that ECS was effective in alleviating depressive-like behaviors. The MWM test demonstrated that anesthetics were capable of attenuating ECS-induced learning and memory deficits. Immunofluorescence analysis, Western blot, Lactate Assay Kit and transmission electron microscopy revealed that the decline in learning and memory abilities in ECS-induced depressive-like rats was correlated with decreased aerobic glycolysis, and that the additional use of ciprofol or propofol ameliorated these alterations. Adding the glycolysis inhibitor 2-DG diminished the ameliorative effects of the anesthetic. No significant difference was observed between ciprofol and propofol in enhancing aerobic glycolysis in astrocytes and synaptic plasticity after ECS. These findings may contribute to understanding the mechanisms by which anesthetic drugs modulate learning and memory impairment after ECS in depressive-like behavior rats.
Collapse
Affiliation(s)
- You Yang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dongyu Zhou
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Di Liu
- Department of Anesthesiology, The First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Mou Zou
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chang Yu
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lihao Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jia Huang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ruiyang Hong
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Myeong J, Stunault MI, Klyachko VA, Ashrafi G. Metabolic regulation of single synaptic vesicle exo- and endocytosis in hippocampal synapses. Cell Rep 2024; 43:114218. [PMID: 38758651 PMCID: PMC11221188 DOI: 10.1016/j.celrep.2024.114218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Glucose has long been considered a primary energy source for synaptic function. However, it remains unclear to what extent alternative fuels, such as lactate/pyruvate, contribute to powering synaptic transmission. By detecting individual release events in hippocampal synapses, we find that mitochondrial ATP production regulates basal vesicle release probability and release location within the active zone (AZ), evoked by single action potentials. Mitochondrial inhibition shifts vesicle release closer to the AZ center and alters the efficiency of vesicle retrieval by increasing the occurrence of ultrafast endocytosis. Furthermore, we uncover that terminals can use oxidative fuels to maintain the vesicle cycle during trains of activity. Mitochondria are sparsely distributed along hippocampal axons, and we find that terminals containing mitochondria display enhanced vesicle release and reuptake during high-frequency trains. Our findings suggest that mitochondria not only regulate several fundamental features of synaptic transmission but may also contribute to modulation of short-term synaptic plasticity.
Collapse
Affiliation(s)
- Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marion I Stunault
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Calì C. Regulated exocytosis from astrocytes: a matter of vesicles? Front Neurosci 2024; 18:1393165. [PMID: 38800570 PMCID: PMC11116621 DOI: 10.3389/fnins.2024.1393165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Corrado Calì
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| |
Collapse
|
12
|
Msackyi M, Chen Y, Tsering W, Wang N, Zhang H. Dopamine Release Neuroenergetics in Mouse Striatal Slices. Int J Mol Sci 2024; 25:4580. [PMID: 38731799 PMCID: PMC11083938 DOI: 10.3390/ijms25094580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/13/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Dopamine (DA) neurons in the substantia nigra pars compacta, which have axonal projections to the dorsal striatum (dSTR), degenerate in PD. In contrast, DA neurons in the ventral tegmental area, with axonal projections to the ventral striatum, including the nucleus accumbens (NAcc) shell, are largely spared. This study aims to uncover the relative contributions of glycolysis and oxidative phosphorylation (OxPhos) to DA release in the striatum. We measured evoked DA release in mouse striatal brain slices using fast-scan cyclic voltammetry applied every two minutes. Blocking OxPhos resulted in a greater reduction in evoked DA release in the dSTR when compared to the NAcc shell, while blocking glycolysis caused a more significant decrease in evoked DA release in the NAcc shell than in the dSTR. Furthermore, when glycolysis was bypassed in favor of direct OxPhos, evoked DA release in the NAcc shell decreased by approximately 50% over 40 min, whereas evoked DA release in the dSTR was largely unaffected. These results demonstrate that the dSTR relies primarily on OxPhos for energy production to maintain evoked DA release, whereas the NAcc shell depends more on glycolysis. Consistently, two-photon imaging revealed higher oxidation levels of DA terminals in the dSTR than in the NAcc shell. Together, these findings partly explain the selective vulnerability of DA terminals in the dSTR to degeneration in PD.
Collapse
Affiliation(s)
- Msema Msackyi
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.M.); (Y.C.); (W.T.); (N.W.)
| | - Yuanxin Chen
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.M.); (Y.C.); (W.T.); (N.W.)
- Department of Physiology & Pharmacology, Center for Neurological Disease Research, The University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Wangchen Tsering
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.M.); (Y.C.); (W.T.); (N.W.)
| | - Ninghan Wang
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.M.); (Y.C.); (W.T.); (N.W.)
| | - Hui Zhang
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.M.); (Y.C.); (W.T.); (N.W.)
- Department of Physiology & Pharmacology, Center for Neurological Disease Research, The University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|
13
|
Tiwari A, Myeong J, Hashemiaghdam A, Zhang H, Niu X, Laramie MA, Stunault MI, Sponagel J, Patti G, Shriver L, Klyachko V, Ashrafi G. Mitochondrial pyruvate transport regulates presynaptic metabolism and neurotransmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.586011. [PMID: 38562794 PMCID: PMC10983914 DOI: 10.1101/2024.03.20.586011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Glucose has long been considered the primary fuel source for the brain. However, glucose levels fluctuate in the brain during sleep, intense circuit activity, or dietary restrictions, posing significant metabolic stress. Here, we demonstrate that the mammalian brain utilizes pyruvate as a fuel source, and pyruvate can support neuronal viability in the absence of glucose. Nerve terminals are sites of metabolic vulnerability within a neuron and we show that mitochondrial pyruvate uptake is a critical step in oxidative ATP production in hippocampal terminals. We find that the mitochondrial pyruvate carrier is post-translationally modified by lysine acetylation which in turn modulates mitochondrial pyruvate uptake. Importantly, our data reveal that the mitochondrial pyruvate carrier regulates distinct steps in synaptic transmission, namely, the spatiotemporal pattern of synaptic vesicle release and the efficiency of vesicle retrieval, functions that have profound implications for synaptic plasticity. In summary, we identify pyruvate as a potent neuronal fuel and mitochondrial pyruvate uptake as a critical node for the metabolic control of synaptic transmission in hippocampal terminals.
Collapse
Affiliation(s)
- Anupama Tiwari
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Washington University in St. Louis
- Present address: Tufts Medical Center, Boston, MA
| | - Hao Zhang
- Department of Chemistry, Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis
| | - Xianfeng Niu
- Department of Chemistry, Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis
| | - Marissa A Laramie
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Marion I Stunault
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Jasmin Sponagel
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Gary Patti
- Department of Chemistry, Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis
| | - Leah Shriver
- Department of Chemistry, Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis
| | - Vitaly Klyachko
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University in St. Louis
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University in St. Louis
- Lead Contact
| |
Collapse
|
14
|
Dong WT, Long LH, Deng Q, Liu D, Wang JL, Wang F, Chen JG. Mitochondrial fission drives neuronal metabolic burden to promote stress susceptibility in male mice. Nat Metab 2023; 5:2220-2236. [PMID: 37985735 DOI: 10.1038/s42255-023-00924-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Neurons are particularly susceptible to energy fluctuations in response to stress. Mitochondrial fission is highly regulated to generate ATP via oxidative phosphorylation; however, the role of a regulator of mitochondrial fission in neuronal energy metabolism and synaptic efficacy under chronic stress remains elusive. Here, we show that chronic stress promotes mitochondrial fission in the medial prefrontal cortex via activating dynamin-related protein 1 (Drp1), resulting in mitochondrial dysfunction in male mice. Both pharmacological inhibition and genetic reduction of Drp1 ameliorates the deficit of excitatory synaptic transmission and stress-related depressive-like behavior. In addition, enhancing Drp1 fission promotes stress susceptibility, which is alleviated by coenzyme Q10, which potentiates mitochondrial ATP production. Together, our findings unmask the role of Drp1-dependent mitochondrial fission in the deficits of neuronal metabolic burden and depressive-like behavior and provides medication basis for metabolism-related emotional disorders.
Collapse
Affiliation(s)
- Wan-Ting Dong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Hong Long
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| | - Qiao Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Duo Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Lin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.
| | - Jian-Guo Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.
| |
Collapse
|
15
|
Courtney CD, Sobieski C, Ramakrishnan C, Ingram RJ, Wojnowski NM, DeFazio RA, Deisseroth K, Christian-Hinman CA. Optoα1AR activation in astrocytes modulates basal hippocampal synaptic excitation and inhibition in a stimulation-specific manner. Hippocampus 2023; 33:1277-1291. [PMID: 37767862 PMCID: PMC10842237 DOI: 10.1002/hipo.23580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Astrocytes play active roles at synapses and can monitor, respond, and adapt to local synaptic activity. While there is abundant evidence that astrocytes modulate excitatory transmission in the hippocampus, evidence for astrocytic modulation of hippocampal synaptic inhibition remains more limited. Furthermore, to better investigate roles for astrocytes in modulating synaptic transmission, more tools that can selectively activate native G protein signaling pathways in astrocytes with both spatial and temporal precision are needed. Here, we utilized AAV8-GFAP-Optoα1AR-eYFP (Optoα1AR), a viral vector that enables activation of Gq signaling in astrocytes via light-sensitive α1-adrenergic receptors. To determine if stimulating astrocytic Optoα1AR modulates hippocampal synaptic transmission, recordings were made in CA1 pyramidal cells with surrounding astrocytes expressing Optoα1AR, channelrhodopsin (ChR2), or GFP. Both high-frequency (20 Hz, 45-ms light pulses, 5 mW, 5 min) and low-frequency (0.5 Hz, 1-s pulses at increasing 1, 5, and 10 mW intensities, 90 s per intensity) blue light stimulation were tested. 20 Hz Optoα1AR stimulation increased both inhibitory and excitatory postsynaptic current (IPSC and EPSC) frequency, and the effect on miniature IPSCs (mIPSCs) was largely reversible within 20 min. However, low-frequency stimulation of Optoα1AR did not modulate either IPSCs or EPSCs, suggesting that astrocytic Gq -dependent modulation of basal synaptic transmission in the hippocampus is stimulation-dependent. By contrast, low-frequency stimulation of astrocytic ChR2 was effective in increasing both synaptic excitation and inhibition. Together, these data demonstrate that Optoα1AR activation in astrocytes changes basal GABAergic and glutamatergic transmission, but only following high-frequency stimulation, highlighting the importance of temporal dynamics when using optical tools to manipulate astrocyte function.
Collapse
Affiliation(s)
- Connor D. Courtney
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Courtney Sobieski
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | | | - Robbie J. Ingram
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Natalia M. Wojnowski
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - R. Anthony DeFazio
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Catherine A. Christian-Hinman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
16
|
Myeong J, Stunault MI, Klyachko VA, Ashrafi G. Metabolic Regulation of Single Synaptic Vesicle Exo- and Endocytosis in Hippocampal Synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566236. [PMID: 37986894 PMCID: PMC10659320 DOI: 10.1101/2023.11.08.566236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Glucose has long been considered a primary source of energy for synaptic function. However, it remains unclear under what conditions alternative fuels, such as lactate/pyruvate, contribute to powering synaptic transmission. By detecting individual release events in cultured hippocampal synapses, we found that mitochondrial ATP production from oxidation of lactate/pyruvate regulates basal vesicle release probability and release location within the active zone (AZ) evoked by single action potentials (APs). Mitochondrial inhibition shifted vesicle release closer to the AZ center, suggesting that the energetic barrier for vesicle release is lower in the AZ center that the periphery. Mitochondrial inhibition also altered the efficiency of single AP evoked vesicle retrieval by increasing occurrence of ultrafast endocytosis, while inhibition of glycolysis had no effect. Mitochondria are sparsely distributed along hippocampal axons and we found that nerve terminals containing mitochondria displayed enhanced vesicle release and reuptake during high-frequency trains, irrespective of whether neurons were supplied with glucose or lactate. Thus, synaptic terminals can entirely bypass glycolysis to robustly maintain the vesicle cycle using oxidative fuels in the absence of glucose. These observations further suggest that mitochondrial metabolic function not only regulates several fundamental features of synaptic transmission but may also contribute to modulation of short-term synaptic plasticity.
Collapse
Affiliation(s)
- Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63132, United States
| | - Marion I Stunault
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63132, United States
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63132, United States
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63132, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63132, United States
| |
Collapse
|
17
|
Yang S, Park JH, Lu HC. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener 2023; 18:49. [PMID: 37475056 PMCID: PMC10357692 DOI: 10.1186/s13024-023-00634-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Human studies consistently identify bioenergetic maladaptations in brains upon aging and neurodegenerative disorders of aging (NDAs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Glucose is the major brain fuel and glucose hypometabolism has been observed in brain regions vulnerable to aging and NDAs. Many neurodegenerative susceptible regions are in the topological central hub of the brain connectome, linked by densely interconnected long-range axons. Axons, key components of the connectome, have high metabolic needs to support neurotransmission and other essential activities. Long-range axons are particularly vulnerable to injury, neurotoxin exposure, protein stress, lysosomal dysfunction, etc. Axonopathy is often an early sign of neurodegeneration. Recent studies ascribe axonal maintenance failures to local bioenergetic dysregulation. With this review, we aim to stimulate research in exploring metabolically oriented neuroprotection strategies to enhance or normalize bioenergetics in NDA models. Here we start by summarizing evidence from human patients and animal models to reveal the correlation between glucose hypometabolism and connectomic disintegration upon aging/NDAs. To encourage mechanistic investigations on how axonal bioenergetic dysregulation occurs during aging/NDAs, we first review the current literature on axonal bioenergetics in distinct axonal subdomains: axon initial segments, myelinated axonal segments, and axonal arbors harboring pre-synaptic boutons. In each subdomain, we focus on the organization, activity-dependent regulation of the bioenergetic system, and external glial support. Second, we review the mechanisms regulating axonal nicotinamide adenine dinucleotide (NAD+) homeostasis, an essential molecule for energy metabolism processes, including NAD+ biosynthetic, recycling, and consuming pathways. Third, we highlight the innate metabolic vulnerability of the brain connectome and discuss its perturbation during aging and NDAs. As axonal bioenergetic deficits are developing into NDAs, especially in asymptomatic phase, they are likely exaggerated further by impaired NAD+ homeostasis, the high energetic cost of neural network hyperactivity, and glial pathology. Future research in interrogating the causal relationship between metabolic vulnerability, axonopathy, amyloid/tau pathology, and cognitive decline will provide fundamental knowledge for developing therapeutic interventions.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jung Hyun Park
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
18
|
Rumpf S, Sanal N, Marzano M. Energy metabolic pathways in neuronal development and function. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad004. [PMID: 38596236 PMCID: PMC10913822 DOI: 10.1093/oons/kvad004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2024]
Abstract
Neuronal development and function are known to be among the most energy-demanding functions of the body. Constant energetic support is therefore crucial at all stages of a neuron's life. The two main adenosine triphosphate (ATP)-producing pathways in cells are glycolysis and oxidative phosphorylation. Glycolysis has a relatively low yield but provides fast ATP and enables the metabolic versatility needed in dividing neuronal stem cells. Oxidative phosphorylation, on the other hand, is highly efficient and therefore thought to provide most or all ATP in differentiated neurons. However, it has recently become clear that due to their distinct properties, both pathways are required to fully satisfy neuronal energy demands during development and function. Here, we provide an overview of how glycolysis and oxidative phosphorylation are used in neurons during development and function.
Collapse
Affiliation(s)
- Sebastian Rumpf
- Correspondence address. Multiscale Imaging Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany. E-mail:
| | - Neeraja Sanal
- Multiscale Imaging Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany
| | - Marco Marzano
- Multiscale Imaging Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany
| |
Collapse
|
19
|
Amaral-Silva L, Santin JM. Synaptic modifications transform neural networks to function without oxygen. BMC Biol 2023; 21:54. [PMID: 36927477 PMCID: PMC10022038 DOI: 10.1186/s12915-023-01518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Neural circuit function is highly sensitive to energetic limitations. Much like mammals, brain activity in American bullfrogs quickly fails in hypoxia. However, after emergence from overwintering, circuits transform to function for approximately 30-fold longer without oxygen using only anaerobic glycolysis for fuel, a unique trait among vertebrates considering the high cost of network activity. Here, we assessed neuronal functions that normally limit network output and identified components that undergo energetic plasticity to increase robustness in hypoxia. RESULTS In control animals, oxygen deprivation depressed excitatory synaptic drive within native circuits, which decreased postsynaptic firing to cause network failure within minutes. Assessments of evoked and spontaneous synaptic transmission showed that hypoxia impairs synaptic communication at pre- and postsynaptic loci. However, control neurons maintained membrane potentials and a capacity for firing during hypoxia, indicating that those processes do not limit network activity. After overwintering, synaptic transmission persisted in hypoxia to sustain motor function for at least 2 h. CONCLUSIONS Alterations that allow anaerobic metabolism to fuel synapses are critical for transforming a circuit to function without oxygen. Data from many vertebrate species indicate that anaerobic glycolysis cannot fuel active synapses due to the low ATP yield of this pathway. Thus, our results point to a unique strategy whereby synapses switch from oxidative to exclusively anaerobic glycolytic metabolism to preserve circuit function during prolonged energy limitations.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Division of Biological Sciences, The University of Missouri, Columbia, USA.
| | - Joseph M Santin
- Division of Biological Sciences, The University of Missouri, Columbia, USA.
| |
Collapse
|
20
|
Van Hook MJ. Influences of Glaucoma on the Structure and Function of Synapses in the Visual System. Antioxid Redox Signal 2022; 37:842-861. [PMID: 35044228 PMCID: PMC9587776 DOI: 10.1089/ars.2021.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/31/2021] [Indexed: 11/12/2022]
Abstract
Significance: Glaucoma is an age-related neurodegenerative disorder of the visual system associated with sensitivity to intraocular pressure (IOP). It is the leading irreversible cause of vision loss worldwide, and vision loss results from damage and dysfunction of the retinal output neurons known as retinal ganglion cells (RGCs). Recent Advances: Elevated IOP and optic nerve injury triggers pruning of RGC dendrites, altered morphology of excitatory inputs from presynaptic bipolar cells, and disrupted RGC synaptic function. Less is known about RGC outputs, although evidence to date indicates that glaucoma is associated with altered mitochondrial and synaptic structure and function in RGC-projection targets in the brain. These early functional changes likely contribute to vision loss and might be a window into early diagnosis and treatment. Critical Issues: Glaucoma affects different RGC populations to varying extents and along distinct time courses. The influence of glaucoma on RGC synaptic function as well as the mechanisms underlying these effects remain to be determined. Since RGCs are an especially energetically demanding population of neurons, altered intracellular axon transport of mitochondria and mitochondrial function might contribute to RGC synaptic dysfunction in the retina and brain as well as RGC vulnerability in glaucoma. Future Directions: The mechanisms underlying differential RGC vulnerability remain to be determined. Moreover, the timing and mechanisms of RGCs synaptic dysfunction and degeneration will provide valuable insight into the disease process in glaucoma. Future work will be able to capitalize on these findings to better design diagnostic and therapeutic approaches to detect disease and prevent vision loss. Antioxid. Redox Signal. 37, 842-861.
Collapse
Affiliation(s)
- Matthew J. Van Hook
- Department of Ophthalmology & Visual Science and Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Cellular & Integrative Physiology, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
21
|
Abstract
The human brain consumes five orders of magnitude more energy than the sun by unit of mass and time. This staggering bioenergetic cost serves mostly synaptic transmission and actin cytoskeleton dynamics. The peak of both brain bioenergetic demands and the age of onset for neurodevelopmental disorders is approximately 5 years of age. This correlation suggests that defects in the machinery that provides cellular energy would be causative and/or consequence of neurodevelopmental disorders. We explore this hypothesis from the perspective of the machinery required for the synthesis of the electron transport chain, an ATP-producing and NADH-consuming enzymatic cascade. The electron transport chain is constituted by nuclear- and mitochondrial-genome-encoded subunits. These subunits are synthesized by the 80S and the 55S ribosomes, which are segregated to the cytoplasm and the mitochondrial matrix, correspondingly. Mitochondrial protein synthesis by the 55S ribosome is the rate-limiting step in the synthesis of electron transport chain components, suggesting that mitochondrial protein synthesis is a bottleneck for tissues with high bionergetic demands. We discuss genetic defects in the human nuclear and mitochondrial genomes that affect these protein synthesis machineries and cause a phenotypic spectrum spanning autism spectrum disorders to neurodegeneration during neurodevelopment. We propose that dysregulated mitochondrial protein synthesis is a chief, yet understudied, causative mechanism of neurodevelopmental and behavioral disorders.
Collapse
|
22
|
Faria-Pereira A, Morais VA. Synapses: The Brain's Energy-Demanding Sites. Int J Mol Sci 2022; 23:3627. [PMID: 35408993 PMCID: PMC8998888 DOI: 10.3390/ijms23073627] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
The brain is one of the most energy-consuming organs in the mammalian body, and synaptic transmission is one of the major contributors. To meet these energetic requirements, the brain primarily uses glucose, which can be metabolized through glycolysis and/or mitochondrial oxidative phosphorylation. The relevance of these two energy production pathways in fulfilling energy at presynaptic terminals has been the subject of recent studies. In this review, we dissect the balance of glycolysis and oxidative phosphorylation to meet synaptic energy demands in both resting and stimulation conditions. Besides ATP output needs, mitochondria at synapse are also important for calcium buffering and regulation of reactive oxygen species. These two mitochondrial-associated pathways, once hampered, impact negatively on neuronal homeostasis and synaptic activity. Therefore, as mitochondria assume a critical role in synaptic homeostasis, it is becoming evident that the synaptic mitochondria population possesses a distinct functional fingerprint compared to other brain mitochondria. Ultimately, dysregulation of synaptic bioenergetics through glycolytic and mitochondrial dysfunctions is increasingly implicated in neurodegenerative disorders, as one of the first hallmarks in several of these diseases are synaptic energy deficits, followed by synapse degeneration.
Collapse
Affiliation(s)
| | - Vanessa A. Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| |
Collapse
|
23
|
Energy matters: presynaptic metabolism and the maintenance of synaptic transmission. Nat Rev Neurosci 2021; 23:4-22. [PMID: 34782781 DOI: 10.1038/s41583-021-00535-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
Synaptic activity imposes large energy demands that are met by local adenosine triphosphate (ATP) synthesis through glycolysis and mitochondrial oxidative phosphorylation. ATP drives action potentials, supports synapse assembly and remodelling, and fuels synaptic vesicle filling and recycling, thus sustaining synaptic transmission. Given their polarized morphological features - including long axons and extensive branching in their terminal regions - neurons face exceptional challenges in maintaining presynaptic energy homeostasis, particularly during intensive synaptic activity. Recent studies have started to uncover the mechanisms and signalling pathways involved in activity-dependent and energy-sensitive regulation of presynaptic energetics, or 'synaptoenergetics'. These conceptual advances have established the energetic regulation of synaptic efficacy and plasticity as an exciting research field that is relevant to a range of neurological disorders associated with bioenergetic failure and synaptic dysfunction.
Collapse
|
24
|
Li Y, Dong Y, Yang L, Tucker L, Zong X, Brann D, Hamblin MR, Vazdarjanova A, Zhang Q. Photobiomodulation prevents PTSD-like memory impairments in rats. Mol Psychiatry 2021; 26:6666-6679. [PMID: 33859360 PMCID: PMC8760076 DOI: 10.1038/s41380-021-01088-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
A precise fear memory encoding a traumatic event enables an individual to avoid danger and identify safety. An impaired fear memory (contextual amnesia), however, puts the individual at risk of developing posttraumatic stress disorder (PTSD) due to the inability to identify a safe context when encountering trauma-associated cues later in life. Although it is gaining attention that contextual amnesia is a critical etiologic factor for PTSD, there is no treatment currently available that can reverse contextual amnesia, and whether such treatment can prevent the development of PTSD is unknown. Here, we report that (I) a single dose of transcranial photobiomodulation (PBM) applied immediately after tone fear conditioning can reverse contextual amnesia. PBM treatment preserved an appropriately high level of contextual fear memory in rats revisiting the "dangerous" context, while control rats displayed memory impairment. (II) A single dose of PBM applied after memory recall can reduce contextual fear during both contextual and cued memory testing. (III) In a model of complex PTSD with repeated trauma, rats given early PBM interventions efficiently discriminated safety from danger during cued memory testing and, importantly, these rats did not develop PTSD-like symptoms and comorbidities. (IV) Finally, we report that fear extinction was facilitated when PBM was applied in the early intervention window of memory consolidation. Our results demonstrate that PBM treatment applied immediately after a traumatic event or its memory recall can protect contextual fear memory and prevent the development of PTSD-like psychopathological fear in rats.
Collapse
Affiliation(s)
- Yong Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lorelei Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xuemei Zong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Darrell Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Almira Vazdarjanova
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
25
|
Dual imaging of dendritic spines and mitochondria in vivo reveals hotspots of plasticity and metabolic adaptation to stress. Neurobiol Stress 2021; 15:100402. [PMID: 34611532 PMCID: PMC8477201 DOI: 10.1016/j.ynstr.2021.100402] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 01/09/2023] Open
Abstract
Metabolic adaptation is a critical feature of synaptic plasticity. Indeed, synaptic plasticity requires the utilization and resupply of metabolites, in particular when the turnover is high and fast such as in stress conditions. What accounts for the localized energy burden of the post-synaptic compartment to the build up of chronic stress is currently not understood. We used in vivo microscopy of genetically encoded fluorescent probes to track changes of mitochondria, dendritic spines, ATP and H2O2 levels in pyramidal neurons of cortex before and after chronic unpredictable mild stress. Data revealed hotspots of postsynaptic mitochondria and dendritic spine turnover. Pharmacogenetic approach to force expression of the metabolic stress gene NR4A1 caused the fragmentation of postsynaptic mitochondria and loss of proximal dendritic spine clusters, whereas a dominant-negative mutant counteracted the effect of chronic stress. When fragmented, dendritic mitochondria produced lesser ATP at resting state and more on acute demand. This corresponded with significant production of mitochondrial H2O2 oxidative species in the dendritic compartment. Together, data indicate that pyramidal neurons adjust proximal dendritic spine turnover and mitochondria functions in keeping with synaptic demands. Addition of dendritic spine clusters match with more proximal mitochondria coverage. Loss of dendritic spine clusters match with less proximal mitochondria coverage. Dendrites alter spine dynamics, ATP and H202 production in keeping with excitation. In excess, the transcription factor NR4A1 promotes cross-clustering losses. Blocking NR4A1 prevents net cross-clustering losses mediated by chronic stress.
Collapse
|
26
|
Lujan BJ, Singh M, Singh A, Renden RB. Developmental shift to mitochondrial respiration for energetic support of sustained transmission during maturation at the calyx of Held. J Neurophysiol 2021; 126:976-996. [PMID: 34432991 PMCID: PMC8560424 DOI: 10.1152/jn.00333.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
A considerable amount of energy is expended following presynaptic activity to regenerate electrical polarization and maintain efficient release and recycling of neurotransmitter. Mitochondria are the major suppliers of neuronal energy, generating ATP via oxidative phosphorylation. However, the specific utilization of energy from cytosolic glycolysis rather than mitochondrial respiration at the presynaptic terminal during synaptic activity remains unclear and controversial. We use a synapse specialized for high-frequency transmission in mice, the calyx of Held, to test the sources of energy used to maintain energy during short activity bursts (<1 s) and sustained neurotransmission (30-150 s). We dissect the role of presynaptic glycolysis versus mitochondrial respiration by acutely and selectively blocking these ATP-generating pathways in a synaptic preparation where mitochondria and synaptic vesicles are prolific, under near-physiological conditions. Surprisingly, if either glycolysis or mitochondrial ATP production is intact, transmission during repetitive short bursts of activity is not affected. In slices from young animals before the onset of hearing, where the synapse is not yet fully specialized, both glycolytic and mitochondrial ATP production are required to support sustained, high-frequency neurotransmission. In mature synapses, sustained transmission relies exclusively on mitochondrial ATP production supported by bath lactate, but not glycolysis. At both ages, we observe that action potential propagation begins to fail before defects in synaptic vesicle recycling. Our data describe a specific metabolic profile to support high-frequency information transmission at the mature calyx of Held, shifting during postnatal synaptic maturation from glycolysis to rely on monocarboxylates as a fuel source.NEW & NOTEWORTHY We dissect the role of presynaptic glycolysis versus mitochondrial respiration in supporting high-frequency neurotransmission, by acutely blocking these ATP-generating pathways at a synapse tuned for high-frequency transmission. We find that massive energy expenditure is required to generate failure when only one pathway is inhibited. Action potential propagation is lost before impaired synaptic vesicle recycling. Synaptic transmission is exclusively dependent on oxidative phosphorylation in mature synapses, indicating presynaptic glycolysis may be dispensable for ATP maintenance.
Collapse
Affiliation(s)
- Brendan J Lujan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, Delaware
| | - Robert B Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| |
Collapse
|
27
|
Murali Mahadevan H, Hashemiaghdam A, Ashrafi G, Harbauer AB. Mitochondria in Neuronal Health: From Energy Metabolism to Parkinson's Disease. Adv Biol (Weinh) 2021; 5:e2100663. [PMID: 34382382 DOI: 10.1002/adbi.202100663] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/30/2021] [Indexed: 01/01/2023]
Abstract
Mitochondria are the main suppliers of neuronal adenosine triphosphate and play a critical role in brain energy metabolism. Mitochondria also serve as Ca2+ sinks and anabolic factories and are therefore essential for neuronal function and survival. Dysregulation of neuronal bioenergetics is increasingly implicated in neurodegenerative disorders, particularly Parkinson's disease. This review describes the role of mitochondria in energy metabolism under resting conditions and during synaptic transmission, and presents evidence for the contribution of neuronal mitochondrial dysfunction to Parkinson's disease.
Collapse
Affiliation(s)
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Angelika Bettina Harbauer
- Max-Planck-Institute for Neurobiology, 82152, Martinsried, Germany.,Technical University of Munich, Institute of Neuronal Cell Biology, 80333, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
28
|
Chen Y, Zhang J. How Energy Supports Our Brain to Yield Consciousness: Insights From Neuroimaging Based on the Neuroenergetics Hypothesis. Front Syst Neurosci 2021; 15:648860. [PMID: 34295226 PMCID: PMC8291083 DOI: 10.3389/fnsys.2021.648860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Consciousness is considered a result of specific neuronal processes and mechanisms in the brain. Various suggested neuronal mechanisms, including the information integration theory (IIT), global neuronal workspace theory (GNWS), and neuronal construction of time and space as in the context of the temporospatial theory of consciousness (TTC), have been laid forth. However, despite their focus on different neuronal mechanisms, these theories neglect the energetic-metabolic basis of the neuronal mechanisms that are supposed to yield consciousness. Based on the findings of physiology-induced (sleep), pharmacology-induced (general anesthesia), and pathology-induced [vegetative state/unresponsive wakeful syndrome (VS/UWS)] loss of consciousness in both human subjects and animals, we, in this study, suggest that the energetic-metabolic processes focusing on ATP, glucose, and γ-aminobutyrate/glutamate are indispensable for functional connectivity (FC) of normal brain networks that renders consciousness possible. Therefore, we describe the energetic-metabolic predispositions of consciousness (EPC) that complement the current theories focused on the neural correlates of consciousness (NCC).
Collapse
Affiliation(s)
- Yali Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical college, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Saunders AM, Burns DK, Gottschalk WK. Reassessment of Pioglitazone for Alzheimer's Disease. Front Neurosci 2021; 15:666958. [PMID: 34220427 PMCID: PMC8243371 DOI: 10.3389/fnins.2021.666958] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a quintessential 'unmet medical need', accounting for ∼65% of progressive cognitive impairment among the elderly, and 700,000 deaths in the United States in 2020. In 2019, the cost of caring for Alzheimer's sufferers was $244B, not including the emotional and physical toll on caregivers. In spite of this dismal reality, no treatments are available that reduce the risk of developing AD or that offer prolonged mitiagation of its most devestating symptoms. This review summarizes key aspects of the biology and genetics of Alzheimer's disease, and we describe how pioglitazone improves many of the patholophysiological determinants of AD. We also summarize the results of pre-clinical experiments, longitudinal observational studies, and clinical trials. The results of animal testing suggest that pioglitazone can be corrective as well as protective, and that its efficacy is enhanced in a time- and dose-dependent manner, but the dose-effect relations are not monotonic or sigmoid. Longitudinal cohort studies suggests that it delays the onset of dementia in individuals with pre-existing type 2 diabetes mellitus, which small scale, unblinded pilot studies seem to confirm. However, the results of placebo-controlled, blinded clinical trials have not borne this out, and we discuss possible explanations for these discrepancies.
Collapse
Affiliation(s)
- Ann M. Saunders
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | - Daniel K. Burns
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | | |
Collapse
|
30
|
van Putten MJ, Fahlke C, Kafitz KW, Hofmeijer J, Rose CR. Dysregulation of Astrocyte Ion Homeostasis and Its Relevance for Stroke-Induced Brain Damage. Int J Mol Sci 2021; 22:5679. [PMID: 34073593 PMCID: PMC8198632 DOI: 10.3390/ijms22115679] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and chronic disability. Either recovery or progression towards irreversible failure of neurons and astrocytes occurs within minutes to days, depending on remaining perfusion levels. Initial damage arises from energy depletion resulting in a failure to maintain homeostasis and ion gradients between extra- and intracellular spaces. Astrocytes play a key role in these processes and are thus central players in the dynamics towards recovery or progression of stroke-induced brain damage. Here, we present a synopsis of the pivotal functions of astrocytes at the tripartite synapse, which form the basis of physiological brain functioning. We summarize the evidence of astrocytic failure and its consequences under ischemic conditions. Special emphasis is put on the homeostasis and stroke-induced dysregulation of the major monovalent ions, namely Na+, K+, H+, and Cl-, and their involvement in maintenance of cellular volume and generation of cerebral edema.
Collapse
Affiliation(s)
- Michel J.A.M. van Putten
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christoph Fahlke
- Institut für Biologische Informationsprozesse, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Karl W. Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
31
|
Datta S, Jaiswal M. Mitochondrial calcium at the synapse. Mitochondrion 2021; 59:135-153. [PMID: 33895346 DOI: 10.1016/j.mito.2021.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/28/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
Mitochondria are dynamic organelles, which serve various purposes, including but not limited to the production of ATP and various metabolites, buffering ions, acting as a signaling hub, etc. In recent years, mitochondria are being seen as the central regulators of cellular growth, development, and death. Since neurons are highly specialized cells with a heavy metabolic demand, it is not surprising that neurons are one of the most mitochondria-rich cells in an animal. At synapses, mitochondrial function and dynamics is tightly regulated by synaptic calcium. Calcium influx during synaptic activity causes increased mitochondrial calcium influx leading to an increased ATP production as well as buffering of synaptic calcium. While increased ATP production is required during synaptic transmission, calcium buffering by mitochondria is crucial to prevent faulty neurotransmission and excitotoxicity. Interestingly, mitochondrial calcium also regulates the mobility of mitochondria within synapses causing mitochondria to halt at the synapse during synaptic transmission. In this review, we summarize the various roles of mitochondrial calcium at the synapse.
Collapse
Affiliation(s)
- Sayantan Datta
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Manish Jaiswal
- Tata Institute of Fundamental Research, Hyderabad, India.
| |
Collapse
|
32
|
Adams S, Zubov T, Bueschke N, Santin JM. Neuromodulation or energy failure? Metabolic limitations silence network output in the hypoxic amphibian brainstem. Am J Physiol Regul Integr Comp Physiol 2021; 320:R105-R116. [PMID: 33175586 PMCID: PMC7948128 DOI: 10.1152/ajpregu.00209.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
Hypoxia tolerance in the vertebrate brain often involves chemical modulators that arrest neuronal activity to conserve energy. However, in intact networks, it can be difficult to determine whether hypoxia triggers modulators to stop activity in a protective manner or whether activity stops because rates of ATP synthesis are insufficient to support network function. Here, we assessed the extent to which neuromodulation or metabolic limitations arrest activity in the respiratory network of bullfrogs-a circuit that survives moderate periods of oxygen deprivation, presumably, by activating an inhibitory noradrenergic pathway. We confirmed that hypoxia and norepinephrine (NE) reduce network output, consistent with the view that hypoxia may cause the release of NE to inhibit activity. However, these responses differed qualitatively; hypoxia, but not NE, elicited a large motor burst and silenced the network. The stereotyped response to hypoxia persisted in the presence of both NE and an adrenergic receptor blocker that eliminates sensitivity to NE, indicating that noradrenergic signaling does not cause the arrest. Pharmacological inhibition of glycolysis and mitochondrial respiration recapitulated all features of hypoxia on network activity, implying that reduced ATP synthesis underlies the effects of hypoxia. Finally, activating modulatory mechanisms that dampen neuronal excitability when ATP levels fall, KATP channels and AMP-dependent protein kinase, did not resemble the hypoxic response. These results suggest that energy failure-rather than inhibitory modulation-silences the respiratory network during hypoxia and emphasize the need to account for metabolic limitations before concluding that modulators arrest activity as an adaptation for energy conservation in the nervous system.
Collapse
Affiliation(s)
- Sasha Adams
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Tanya Zubov
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Nikolaus Bueschke
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Joseph M Santin
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, North Carolina
| |
Collapse
|
33
|
An iPSC-based neural model of sialidosis uncovers glycolytic impairment-causing presynaptic dysfunction and deregulation of Ca 2+ dynamics. Neurobiol Dis 2021; 152:105279. [PMID: 33516873 DOI: 10.1016/j.nbd.2021.105279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Sialidosis is a neuropathic lysosomal storage disease caused by a deficiency in the NEU1 gene-encoding lysosomal neuraminidase and characterized by abnormal accumulation of undigested sialyl-oligoconjugates in systemic organs including brain. Although patients exhibit neurological symptoms, the underlying neuropathological mechanism remains unclear. Here, we generated induced pluripotent stem cells (iPSCs) from skin fibroblasts with sialidosis and induced the differentiation into neural progenitor cells (NPCs) and neurons. Sialidosis NPCs and neurons mimicked the disease-like phenotypes including reduced neuraminidase activity, accumulation of sialyl-oligoconjugates and lysosomal expansions. Functional analysis also revealed that sialidosis neurons displayed two distinct abnormalities, defective exocytotic glutamate release and augmented α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR)-mediated Ca2+ influx. These abnormalities were restored by overexpression of the wild-type NEU1 gene, demonstrating causative role of neuraminidase deficiency in functional impairments of disease neurons. Comprehensive proteomics analysis revealed the significant reduction of SNARE proteins and glycolytic enzymes in synaptosomal fraction, with downregulation of ATP production. Bypassing the glycolysis by treatment of pyruvate, which is final metabolite of glycolysis pathway, improved both the synaptsomal ATP production and the exocytotic function. We also found that upregulation of AMPAR and L-type voltage dependent Ca2+ channel (VDCC) subunits in disease neurons, with the restoration of AMPAR-mediated Ca2+ over-load by treatment of antagonists for the AMPAR and L-type VDCC. Our present study provides new insights into both the neuronal pathophysiology and potential therapeutic strategy for sialidosis.
Collapse
|
34
|
Andreasen M, Nedergaard S. Effect of acute mitochondrial dysfunction on hyperexcitable network activity in rat hippocampus in vitro. Brain Res 2020; 1751:147193. [PMID: 33157100 DOI: 10.1016/j.brainres.2020.147193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/15/2022]
Abstract
Metabolic stress imposed by epileptic seizures can result in mitochondrial dysfunction, believed to act as positive feedback on epileptogenesis and seizure susceptibility. As the mechanism behind this positive feedback is unclear, the aim of the present study was to investigate the causal link between acute mitochondrial dysfunction and increased seizure susceptibility in hyperexcitable hippocampal networks. Following the induction of spontaneous interictal-like discharges, acute selective pharmacological blockade of either of the mitochondrial respiratory complexes (MRC) I-IV induced seizure-like events (SLE) in 78-100% of experiments. A similar result was obtained by uncoupling the oxidative phosphorylation (OXPHOS) but not by selective blockade of MRCV (ATP synthase) which did not induce SLE. The reactive oxygen species (ROS) scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol, 2 mM) significantly reduced the proconvulsant effect of blocking MRCI but did not reduce the proconvulsant effect of OXPHOS uncoupling. These findings indicate that acute mitochondrial dysfunction can lead to a convulsive state within a short timeframe, and that increased ROS production makes substantial contribution to such induction in addition to other mitochondrial related factors, which appears to be independent of changes in ROS and ATP production.
Collapse
Affiliation(s)
- Mogens Andreasen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Steen Nedergaard
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
35
|
Caspase inhibition rescues F1Fo ATP synthase dysfunction-mediated dendritic spine elimination. Sci Rep 2020; 10:17589. [PMID: 33067541 PMCID: PMC7568535 DOI: 10.1038/s41598-020-74613-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022] Open
Abstract
Dendritic spine injury underlies synaptic failure in many neurological disorders. Mounting evidence suggests a mitochondrial pathway of local nonapoptotic caspase signaling in mediating spine pruning. However, it remains unclear whether this caspase signaling plays a key role in spine loss when severe mitochondrial functional defects are present. The answer to this question is critical especially for some pathological states, in which mitochondrial deficits are prominent and difficult to fix. F1Fo ATP synthase is a pivotal mitochondrial enzyme and the dysfunction of this enzyme involves in diseases with spinopathy. Here, we inhibited F1Fo ATP synthase function in primary cultured hippocampal neurons by using non-lethal oligomycin A treatment. Oligomycin A induced mitochondrial defects including collapsed mitochondrial membrane potential, dissipated ATP production, and elevated reactive oxygen species (ROS) production. In addition, dendritic mitochondria underwent increased fragmentation and reduced positioning to dendritic spines along with increased caspase 3 cleavage in dendritic shaft and spines in response to oligomycin A. Concurring with these dendritic mitochondrial changes, oligomycin A-insulted neurons displayed spine loss and altered spine architecture. Such oligomycin A-mediated changes in dendritic spines were substantially prevented by the inhibition of caspase activation by using a pan-caspase inhibitor, quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methyl ketone (Q-VD-OPh). Of note, the administration of Q-VD-OPh showed no protective effect on oligomycin A-induced mitochondrial dysfunction. Our findings suggest a pivotal role of caspase 3 signaling in mediating spine injury and the modulation of caspase 3 activation may benefit neurons from spine loss in diseases, at least, in those with F1Fo ATP synthase defects.
Collapse
|
36
|
Nakajima S, Kunugi H. Lauric acid promotes neuronal maturation mediated by astrocytes in primary cortical cultures. Heliyon 2020; 6:e03892. [PMID: 32420479 PMCID: PMC7218271 DOI: 10.1016/j.heliyon.2020.e03892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/17/2019] [Accepted: 04/28/2020] [Indexed: 01/15/2023] Open
Abstract
Previous studies have suggested the potential efficacy of middle chain fatty acids (MCFAs) in the treatment of mood disorders and cognitive dysfunction. MCFAs are metabolized to ketone bodies in astrocytes; however, their effects on neuronal development including neurotrophic factor level are not well-understood. In the present study, we examined the effect of MCFAs on the mRNA expression of growth factors and cytokines in primary cultures of cortical astrocytes. The effect of MCFAs on neuron-astrocyte interaction in neuronal maturation was also determined using co-culture and astrocyte-conditioned medium. Lauric acid (LA) typically increased the mRNA expression of glial-derived neurotrophic factor (Gdnf), interleukin-6 (Il6), and C–C motif chemokine 2 (Ccl2) in astrocytes. LA-induced phosphorylation of extracellular signal-regulated kinase contributed to these changes. In primary cultures of cortical neurons containing astrocytes, LA enhanced the presynaptic protein levels. Astrocyte-conditioned medium after LA treatment also enhanced the presynaptic protein levels in the cortical neuron cultures. These results suggest that LA increase the mRNA expression of GDNF and cytokines in astrocytes, and thereby, enhances the presynaptic maturation.
Collapse
Affiliation(s)
- Shingo Nakajima
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
- Corresponding author.
| |
Collapse
|
37
|
Lees RM, Johnson JD, Ashby MC. Presynaptic Boutons That Contain Mitochondria Are More Stable. Front Synaptic Neurosci 2020; 11:37. [PMID: 31998110 PMCID: PMC6966497 DOI: 10.3389/fnsyn.2019.00037] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/18/2019] [Indexed: 01/04/2023] Open
Abstract
The addition and removal of presynaptic terminals reconfigures neuronal circuits of the mammalian neocortex, but little is known about how this presynaptic structural plasticity is controlled. Since mitochondria can regulate presynaptic function, we investigated whether the presence of axonal mitochondria relates to the structural plasticity of presynaptic boutons in mouse neocortex. We found that the overall density of axonal mitochondria did not appear to influence the loss and gain of boutons. However, positioning of mitochondria at individual presynaptic sites did relate to increased stability of those boutons. In line with this, synaptic localization of mitochondria increased as boutons aged and showed differing patterns of localization at en passant and terminaux boutons. These results suggest that mitochondria accumulate locally at boutons over time to increase bouton stability.
Collapse
Affiliation(s)
| | | | - Michael C. Ashby
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
38
|
Gerkau NJ, Lerchundi R, Nelson JSE, Lantermann M, Meyer J, Hirrlinger J, Rose CR. Relation between activity-induced intracellular sodium transients and ATP dynamics in mouse hippocampal neurons. J Physiol 2019; 597:5687-5705. [PMID: 31549401 DOI: 10.1113/jp278658] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Employing quantitative Na+ -imaging and Förster resonance energy transfer-based imaging with ATeam1.03YEMK (ATeam), we studied the relation between activity-induced Na+ influx and intracellular ATP in CA1 pyramidal neurons of the mouse hippocampus. Calibration of ATeam in situ enabled a quantitative estimate of changes in intracellular ATP concentrations. Different paradigms of stimulation that induced global Na+ influx into the entire neuron resulted in decreases in [ATP] in the range of 0.1-0.6 mm in somata and dendrites, while Na+ influx that was locally restricted to parts of dendrites did not evoke a detectable change in dendritic [ATP]. Our data suggest that global Na+ transients require global cellular activation of the Na+ /K+ -ATPase resulting in a consumption of ATP that transiently overrides its production. For recovery from locally restricted Na+ influx, ATP production as well as fast intracellular diffusion of ATP and Na+ might prevent a local drop in [ATP]. ABSTRACT Excitatory neuronal activity results in the influx of Na+ through voltage- and ligand-gated channels. Recovery from accompanying increases in intracellular Na+ concentrations ([Na+ ]i ) is mainly mediated by the Na+ /K+ -ATPase (NKA) and is one of the major energy-consuming processes in the brain. Here, we analysed the relation between different patterns of activity-induced [Na+ ]i signalling and ATP in mouse hippocampal CA1 pyramidal neurons by Na+ imaging with sodium-binding benzofurane isophthalate (SBFI) and employing the genetically encoded nanosensor ATeam1.03YEMK (ATeam). In situ calibrations demonstrated a sigmoidal dependence of the ATeam Förster resonance energy transfer ratio on the intracellular ATP concentration ([ATP]i ) with an apparent KD of 2.6 mm, indicating its suitability for [ATP]i measurement. Induction of recurrent network activity resulted in global [Na+ ]i oscillations with amplitudes of ∼10 mm, encompassing somata and dendrites. These were accompanied by a steady decline in [ATP]i by 0.3-0.4 mm in both compartments. Global [Na+ ]i transients, induced by afferent fibre stimulation or bath application of glutamate, caused delayed, transient decreases in [ATP]i as well. Brief focal glutamate application that evoked transient local Na+ influx into a dendrite, however, did not result in a measurable reduction in [ATP]i . Our results suggest that ATP consumption by the NKA following global [Na+ ]i transients temporarily overrides its availability, causing a decrease in [ATP]i . Locally restricted Na+ transients, however, do not result in detectable changes in local [ATP]i , suggesting that ATP production, together with rapid intracellular diffusion of both ATP and Na+ from and to unstimulated neighbouring regions, counteracts a local energy shortage under these conditions.
Collapse
Affiliation(s)
- Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Rodrigo Lerchundi
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Joel S E Nelson
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Marina Lantermann
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Jan Meyer
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, University of Leipzig, 04103, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, 37075, Goettingen, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| |
Collapse
|
39
|
Wong Y, Luk K, Purtell K, Nanni SB, Stoessl AJ, Trudeau LE, Yue Z, Krainc D, Oertel W, Obeso JA, Volpicelli-Daley L. Neuronal vulnerability in Parkinson disease: Should the focus be on axons and synaptic terminals? Mov Disord 2019; 34:1406-1422. [PMID: 31483900 PMCID: PMC6879792 DOI: 10.1002/mds.27823] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
While current effective therapies are available for the symptomatic control of PD, treatments to halt the progressive neurodegeneration still do not exist. Loss of dopamine neurons in the SNc and dopamine terminals in the striatum drive the motor features of PD. Multiple lines of research point to several pathways which may contribute to dopaminergic neurodegeneration. These pathways include extensive axonal arborization, mitochondrial dysfunction, dopamine's biochemical properties, abnormal protein accumulation of α-synuclein, defective autophagy and lysosomal degradation, and synaptic impairment. Thus, understanding the essential features and mechanisms of dopaminergic neuronal vulnerability is a major scientific challenge and highlights an outstanding need for fostering effective therapies against neurodegeneration in PD. This article, which arose from the Movement Disorders 2018 Conference, discusses and reviews the possible mechanisms underlying neuronal vulnerability and potential therapeutic approaches in PD. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yvette Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Philadelphia, PA, 19104-4283, USA
| | - Kerry Purtell
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Hess Research Center 9th Floor, New York, NY 10029, USA
| | - Samuel Burke Nanni
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - A. Jon Stoessl
- University of British Columbia and Vancouver Coastal Health, Pacific Parkinson’s Research Centre & National Parkinson Foundation Centre of Excellence, 2221 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Louis-Eric Trudeau
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Hess Research Center 9th Floor, New York, NY 10029, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Wolfgang Oertel
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| | - Jose A. Obeso
- HM CINAC, HM Puerta del Sur, Hospitales de Madrid, Mostoles Medical School, CEU-San Pablo University, and CIBERNED, Instituto Carlos III, Madrid, Spain
| | - Laura Volpicelli-Daley
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
40
|
Tourigny DS, Karim MKA, Echeveste R, Kotter MRN, O’Neill JS. Energetic substrate availability regulates synchronous activity in an excitatory neural network. PLoS One 2019; 14:e0220937. [PMID: 31408504 PMCID: PMC6692003 DOI: 10.1371/journal.pone.0220937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Neural networks are required to meet significant metabolic demands associated with performing sophisticated computational tasks in the brain. The necessity for efficient transmission of information imposes stringent constraints on the metabolic pathways that can be used for energy generation at the synapse, and thus low availability of energetic substrates can reduce the efficacy of synaptic function. Here we study the effects of energetic substrate availability on global neural network behavior and find that glucose alone can sustain excitatory neurotransmission required to generate high-frequency synchronous bursting that emerges in culture. In contrast, obligatory oxidative energetic substrates such as lactate and pyruvate are unable to substitute for glucose, indicating that processes involving glucose metabolism form the primary energy-generating pathways supporting coordinated network activity. Our experimental results are discussed in the context of the role that metabolism plays in supporting the performance of individual synapses, including the relative contributions from postsynaptic responses, astrocytes, and presynaptic vesicle cycling. We propose a simple computational model for our excitatory cultures that accurately captures the inability of metabolically compromised synapses to sustain synchronous bursting when extracellular glucose is depleted.
Collapse
Affiliation(s)
- David S. Tourigny
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Columbia University Irving Medical Center, New York, New York, United States of America
- * E-mail: (DST); (MRNK); (JSO)
| | - Muhammad Kaiser Abdul Karim
- Department of Clinical Neurosciences and Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Rodrigo Echeveste
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. N. Kotter
- Department of Clinical Neurosciences and Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- * E-mail: (DST); (MRNK); (JSO)
| | - John S. O’Neill
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
- * E-mail: (DST); (MRNK); (JSO)
| |
Collapse
|
41
|
Chamberlain KA, Sheng ZH. Mechanisms for the maintenance and regulation of axonal energy supply. J Neurosci Res 2019; 97:897-913. [PMID: 30883896 PMCID: PMC6565461 DOI: 10.1002/jnr.24411] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 12/25/2022]
Abstract
The unique polarization and high-energy demand of neurons necessitates specialized mechanisms to maintain energy homeostasis throughout the cell, particularly in the distal axon. Mitochondria play a key role in meeting axonal energy demand by generating adenosine triphosphate through oxidative phosphorylation. Recent evidence demonstrates how axonal mitochondrial trafficking and anchoring are coordinated to sense and respond to altered energy requirements. If and when these mechanisms are impacted in pathological conditions, such as injury and neurodegenerative disease, is an emerging research frontier. Recent evidence also suggests that axonal energy demand may be supplemented by local glial cells, including astrocytes and oligodendrocytes. In this review, we provide an updated discussion of how oxidative phosphorylation, aerobic glycolysis, and oligodendrocyte-derived metabolic support contribute to the maintenance of axonal energy homeostasis.
Collapse
Affiliation(s)
- Kelly Anne Chamberlain
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| |
Collapse
|
42
|
McGuire JL, DePasquale EAK, Watanabe M, Anwar F, Ngwenya LB, Atluri G, Romick-Rosendale LE, McCullumsmith RE, Evanson NK. Chronic Dysregulation of Cortical and Subcortical Metabolism After Experimental Traumatic Brain Injury. Mol Neurobiol 2019; 56:2908-2921. [PMID: 30069831 PMCID: PMC7584385 DOI: 10.1007/s12035-018-1276-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/23/2018] [Indexed: 02/03/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and long-term disability worldwide. Although chronic disability is common after TBI, effective treatments remain elusive and chronic TBI pathophysiology is not well understood. Early after TBI, brain metabolism is disrupted due to unregulated ion release, mitochondrial damage, and interruption of molecular trafficking. This metabolic disruption causes at least part of the TBI pathology. However, it is not clear how persistent or pervasive metabolic injury is at later stages of injury. Using untargeted 1H-NMR metabolomics, we examined ex vivo hippocampus, striatum, thalamus, frontal cortex, and brainstem tissue in a rat lateral fluid percussion model of chronic brain injury. We found altered tissue concentrations of metabolites in the hippocampus and thalamus consistent with dysregulation of energy metabolism and excitatory neurotransmission. Furthermore, differential correlation analysis provided additional evidence of metabolic dysregulation, most notably in brainstem and frontal cortex, suggesting that metabolic consequences of injury are persistent and widespread. Interestingly, the patterns of network changes were region-specific. The individual metabolic signatures after injury in different structures of the brain at rest may reflect different compensatory mechanisms engaged to meet variable metabolic demands across brain regions.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Erica A K DePasquale
- Graduate Program in Biomedical Informatics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Miki Watanabe
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Fatima Anwar
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Laura B Ngwenya
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, 45267, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Gowtham Atluri
- Graduate Program in Biomedical Informatics, University of Cincinnati, Cincinnati, OH, 45267, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45267, USA
| | | | - Robert E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Nathan K Evanson
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
- Division of Pediatric Rehabilitation Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
43
|
Rossi MJ, Pekkurnaz G. Powerhouse of the mind: mitochondrial plasticity at the synapse. Curr Opin Neurobiol 2019; 57:149-155. [PMID: 30875521 DOI: 10.1016/j.conb.2019.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 12/16/2022]
Abstract
Neurons are highly polarized cells with extraordinary energy demands, which are mainly fulfilled by mitochondria. In response to altered neuronal energy state, mitochondria adapt to enable energy homeostasis and nervous system function. This adaptation, also called mitochondrial plasticity, can be observed as alterations in the form, function and position. The primary site of energy consumption in neurons is localized at the synapse, where mitochondria are critical for both pre- and postsynaptic functions. In this review, we will discuss molecular mechanisms regulating mitochondrial plasticity at the synapse and how they contribute to information processing within neurons.
Collapse
Affiliation(s)
- Meghan J Rossi
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Gulcin Pekkurnaz
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
44
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
45
|
Nguyen M, Wong YC, Ysselstein D, Severino A, Krainc D. Synaptic, Mitochondrial, and Lysosomal Dysfunction in Parkinson's Disease. Trends Neurosci 2018; 42:140-149. [PMID: 30509690 DOI: 10.1016/j.tins.2018.11.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 12/31/2022]
Abstract
The discovery of genetic forms of Parkinson's disease (PD) has highlighted the importance of the autophagy/lysosomal and mitochondrial/oxidative stress pathways in disease pathogenesis. However, recently identified PD-linked genes, including DNAJC6 (auxilin), SYNJ1 (synaptojanin 1), and the PD risk gene SH3GL2 (endophilin A1), have also highlighted disruptions in synaptic vesicle endocytosis (SVE) as a significant contributor to disease pathogenesis. Additionally, the roles of other PD genes such as LRRK2, PRKN, and VPS35 in the regulation of SVE are beginning to emerge. Here we discuss the recent work on the contribution of dysfunctional SVE to midbrain dopaminergic neurons' selective vulnerability and highlight pathways that demonstrate the interplay of synaptic, mitochondrial, and lysosomal dysfunction in the pathogenesis of PD.
Collapse
Affiliation(s)
- Maria Nguyen
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yvette C Wong
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniel Ysselstein
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alex Severino
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
46
|
Scarnati MS, Kataria R, Biswas M, Paradiso KG. Active presynaptic ribosomes in the mammalian brain, and altered transmitter release after protein synthesis inhibition. eLife 2018; 7:e36697. [PMID: 30375975 PMCID: PMC6231766 DOI: 10.7554/elife.36697] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/24/2018] [Indexed: 11/29/2022] Open
Abstract
Presynaptic neuronal activity requires the localization of thousands of proteins that are typically synthesized in the soma and transported to nerve terminals. Local translation for some dendritic proteins occurs, but local translation in mammalian presynaptic nerve terminals is difficult to demonstrate. Here, we show an essential ribosomal component, 5.8S rRNA, at a glutamatergic nerve terminal in the mammalian brain. We also show active translation in nerve terminals, in situ, in brain slices demonstrating ongoing presynaptic protein synthesis in the mammalian brain. Shortly after inhibiting translation, the presynaptic terminal exhibits increased spontaneous release, an increased paired pulse ratio, an increased vesicle replenishment rate during stimulation trains, and a reduced initial probability of release. The rise and decay rates of postsynaptic responses were not affected. We conclude that ongoing protein synthesis can limit excessive vesicle release which reduces the vesicle replenishment rate, thus conserving the energy required for maintaining synaptic transmission.
Collapse
Affiliation(s)
- Matthew S Scarnati
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayUnited States
| | - Rahul Kataria
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayUnited States
| | - Mohana Biswas
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayUnited States
| | - Kenneth G Paradiso
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayUnited States
| |
Collapse
|
47
|
Koenig JB, Dulla CG. Dysregulated Glucose Metabolism as a Therapeutic Target to Reduce Post-traumatic Epilepsy. Front Cell Neurosci 2018; 12:350. [PMID: 30459556 PMCID: PMC6232824 DOI: 10.3389/fncel.2018.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of disability worldwide and can lead to post-traumatic epilepsy. Multiple molecular, cellular, and network pathologies occur following injury which may contribute to epileptogenesis. Efforts to identify mechanisms of disease progression and biomarkers which predict clinical outcomes have focused heavily on metabolic changes. Advances in imaging approaches, combined with well-established biochemical methodologies, have revealed a complex landscape of metabolic changes that occur acutely after TBI and then evolve in the days to weeks after. Based on this rich clinical and preclinical data, combined with the success of metabolic therapies like the ketogenic diet in treating epilepsy, interest has grown in determining whether manipulating metabolic activity following TBI may have therapeutic value to prevent post-traumatic epileptogenesis. Here, we focus on changes in glucose utilization and glycolytic activity in the brain following TBI and during seizures. We review relevant literature and outline potential paths forward to utilize glycolytic inhibitors as a disease-modifying therapy for post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jenny B Koenig
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
48
|
Fang G, Wang H, Bian Z, Sun J, Liu A, Fang H, Liu B, Yao Q, Wu Z. Recent development of boronic acid-based fluorescent sensors. RSC Adv 2018; 8:29400-29427. [PMID: 35548017 PMCID: PMC9084483 DOI: 10.1039/c8ra04503h] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/08/2018] [Indexed: 11/21/2022] Open
Abstract
As Lewis acids, boronic acids can bind with 1,2- or 1,3-diols in aqueous solution reversibly and covalently to form five or six cyclic esters, thus resulting in significant fluorescence changes. Based on this phenomenon, boronic acid compounds have been well developed as sensors to recognize carbohydrates or other substances. Several reviews in this area have been reported before, however, novel boronic acid-based fluorescent sensors have emerged in large numbers in recent years. This paper reviews new boron-based sensors from the last five years that can detect carbohydrates such as glucose, ribose and sialyl Lewis A/X, and other substances including catecholamines, reactive oxygen species, and ionic compounds. And emerging electrochemically related fluorescent sensors and functionalized boronic acid as new materials including nanoparticles, smart polymer gels, and quantum dots were also involved. By summarizing and discussing these newly developed sensors, we expect new inspiration in the design of boronic acid-based fluorescent sensors.
Collapse
Affiliation(s)
- Guiqian Fang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Hao Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Zhancun Bian
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Jie Sun
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Aiqin Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Hao Fang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University Jinan Shandong 250012 China
| | - Bo Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Qingqiang Yao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Zhongyu Wu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| |
Collapse
|
49
|
Yellen G. Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism. J Cell Biol 2018; 217:2235-2246. [PMID: 29752396 PMCID: PMC6028533 DOI: 10.1083/jcb.201803152] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 01/02/2023] Open
Abstract
Yellen reviews how cellular metabolism responds acutely to the intense energy requirements of neurons when they are stimulated. The brain’s energy demands are remarkable both in their intensity and in their moment-to-moment dynamic range. This perspective considers the evidence for Warburg-like aerobic glycolysis during the transient metabolic response of the brain to acute activation, and it particularly addresses the cellular mechanisms that underlie this metabolic response. The temporary uncoupling between glycolysis and oxidative phosphorylation led to the proposal of an astrocyte-to-neuron lactate shuttle whereby during stimulation, lactate produced by increased glycolysis in astrocytes is taken up by neurons as their primary energy source. However, direct evidence for this idea is lacking, and evidence rather supports that neurons have the capacity to increase their own glycolysis in response to stimulation; furthermore, neurons may export rather than import lactate in response to stimulation. The possible cellular mechanisms for invoking metabolic resupply of energy in neurons are also discussed, in particular the roles of feedback signaling via adenosine diphosphate and feedforward signaling by calcium ions.
Collapse
Affiliation(s)
- Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, MA
| |
Collapse
|
50
|
Ambient but not local lactate underlies neuronal tolerance to prolonged glucose deprivation. PLoS One 2018; 13:e0195520. [PMID: 29617444 PMCID: PMC5884621 DOI: 10.1371/journal.pone.0195520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/23/2018] [Indexed: 11/19/2022] Open
Abstract
Neurons require a nearly constant supply of ATP. Glucose is the predominant source of brain ATP, but the direct effects of prolonged glucose deprivation on neuronal viability and function remain unclear. In sparse rat hippocampal microcultures, neurons were surprisingly resilient to 16 h glucose removal in the absence of secondary excitotoxicity. Neuronal survival and synaptic transmission were unaffected by prolonged removal of exogenous glucose. Inhibition of lactate transport decreased microculture neuronal survival during concurrent glucose deprivation, suggesting that endogenously released lactate is important for tolerance to glucose deprivation. Tandem depolarization and glucose deprivation also reduced neuronal survival, and trace glucose concentrations afforded neuroprotection. Mass cultures, in contrast to microcultures, were insensitive to depolarizing glucose deprivation, a difference attributable to increased extracellular lactate levels. Removal of local astrocyte support did not reduce survival in response to glucose deprivation or alter evoked excitatory transmission, suggesting that on-demand, local lactate shuttling is not necessary for neuronal tolerance to prolonged glucose removal. Taken together, these data suggest that endogenously produced lactate available globally in the extracellular milieu sustains neurons in the absence of glucose. A better understanding of resilience mechanisms in reduced preparations could lead to therapeutic strategies aimed to bolster these mechanisms in vulnerable neuronal populations.
Collapse
|