1
|
Ren SY, Xia Y, Yu B, Lei QJ, Hou PF, Guo S, Wu SL, Liu W, Yang SF, Jiang YB, Chen JF, Shen KF, Zhang CQ, Wang F, Yan M, Ren H, Yang N, Zhang J, Zhang K, Lin S, Li T, Yang QW, Xiao L, Hu ZX, Mei F. Growth hormone promotes myelin repair after chronic hypoxia via triggering pericyte-dependent angiogenesis. Neuron 2024; 112:2177-2196.e6. [PMID: 38653248 DOI: 10.1016/j.neuron.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/26/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
White matter injury (WMI) causes oligodendrocyte precursor cell (OPC) differentiation arrest and functional deficits, with no effective therapies to date. Here, we report increased expression of growth hormone (GH) in the hypoxic neonatal mouse brain, a model of WMI. GH treatment during or post hypoxic exposure rescues hypoxia-induced hypomyelination and promotes functional recovery in adolescent mice. Single-cell sequencing reveals that Ghr mRNA expression is highly enriched in vascular cells. Cell-lineage labeling and tracing identify the GHR-expressing vascular cells as a subpopulation of pericytes. These cells display tip-cell-like morphology with kinetic polarized filopodia revealed by two-photon live imaging and seemingly direct blood vessel branching and bridging. Gain-of-function and loss-of-function experiments indicate that GHR signaling in pericytes is sufficient to modulate angiogenesis in neonatal brains, which enhances OPC differentiation and myelination indirectly. These findings demonstrate that targeting GHR and/or downstream effectors may represent a promising therapeutic strategy for WMI.
Collapse
Affiliation(s)
- Shu-Yu Ren
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Xia
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Bin Yu
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qi-Jing Lei
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peng-Fei Hou
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Sheng Guo
- Department of Immunology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shuang-Ling Wu
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wei Liu
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shao-Fan Yang
- Brain Research Center, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yi-Bin Jiang
- Department of Neurobiology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jing-Fei Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kai-Feng Shen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Fei Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Mi Yan
- Department of Pediatrics, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400000, China
| | - Hong Ren
- Department of Emergence, 5(th) People's Hospital of Chongqing, Chongqing 400062, China
| | - Nian Yang
- Department of Physiology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Zhang
- Department of Neurobiology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kuan Zhang
- Brain Research Center, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Sen Lin
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tao Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhang-Xue Hu
- Department of Pediatrics, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400000, China.
| | - Feng Mei
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
2
|
Novorolsky RJ, Kasheke GDS, Hakim A, Foldvari M, Dorighello GG, Sekler I, Vuligonda V, Sanders ME, Renden RB, Wilson JJ, Robertson GS. Preserving and enhancing mitochondrial function after stroke to protect and repair the neurovascular unit: novel opportunities for nanoparticle-based drug delivery. Front Cell Neurosci 2023; 17:1226630. [PMID: 37484823 PMCID: PMC10360135 DOI: 10.3389/fncel.2023.1226630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
The neurovascular unit (NVU) is composed of vascular cells, glia, and neurons that form the basic component of the blood brain barrier. This intricate structure rapidly adjusts cerebral blood flow to match the metabolic needs of brain activity. However, the NVU is exquisitely sensitive to damage and displays limited repair after a stroke. To effectively treat stroke, it is therefore considered crucial to both protect and repair the NVU. Mitochondrial calcium (Ca2+) uptake supports NVU function by buffering Ca2+ and stimulating energy production. However, excessive mitochondrial Ca2+ uptake causes toxic mitochondrial Ca2+ overloading that triggers numerous cell death pathways which destroy the NVU. Mitochondrial damage is one of the earliest pathological events in stroke. Drugs that preserve mitochondrial integrity and function should therefore confer profound NVU protection by blocking the initiation of numerous injury events. We have shown that mitochondrial Ca2+ uptake and efflux in the brain are mediated by the mitochondrial Ca2+ uniporter complex (MCUcx) and sodium/Ca2+/lithium exchanger (NCLX), respectively. Moreover, our recent pharmacological studies have demonstrated that MCUcx inhibition and NCLX activation suppress ischemic and excitotoxic neuronal cell death by blocking mitochondrial Ca2+ overloading. These findings suggest that combining MCUcx inhibition with NCLX activation should markedly protect the NVU. In terms of promoting NVU repair, nuclear hormone receptor activation is a promising approach. Retinoid X receptor (RXR) and thyroid hormone receptor (TR) agonists activate complementary transcriptional programs that stimulate mitochondrial biogenesis, suppress inflammation, and enhance the production of new vascular cells, glia, and neurons. RXR and TR agonism should thus further improve the clinical benefits of MCUcx inhibition and NCLX activation by increasing NVU repair. However, drugs that either inhibit the MCUcx, or stimulate the NCLX, or activate the RXR or TR, suffer from adverse effects caused by undesired actions on healthy tissues. To overcome this problem, we describe the use of nanoparticle drug formulations that preferentially target metabolically compromised and damaged NVUs after an ischemic or hemorrhagic stroke. These nanoparticle-based approaches have the potential to improve clinical safety and efficacy by maximizing drug delivery to diseased NVUs and minimizing drug exposure in healthy brain and peripheral tissues.
Collapse
Affiliation(s)
- Robyn J. Novorolsky
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Gracious D. S. Kasheke
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Antoine Hakim
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Marianna Foldvari
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel G. Dorighello
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben Gurion University, Beersheva, Israel
| | | | | | - Robert B. Renden
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, College of Arts and Sciences, Cornell University, Ithaca, NY, United States
| | - George S. Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Cheng B, Sharma DR, Kumar A, Sheth H, Agyemang A, Aschner M, Zhang X, Ballabh P. Shh activation restores interneurons and cognitive function in newborns with intraventricular haemorrhage. Brain 2023; 146:629-644. [PMID: 35867870 PMCID: PMC10169407 DOI: 10.1093/brain/awac271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
Premature infants with germinal matrix haemorrhage-intraventricular haemorrhage (GMH-IVH) suffer from neurobehavioural deficits as they enter childhood and adolescence. Yet the underlying mechanisms remain unclear. Impaired development and function of interneurons contribute to neuropsychiatric disorders. Therefore, we hypothesized that the occurrence of IVH would reduce interneuron neurogenesis in the medial ganglionic eminence and diminish the population of parvalbumin+ and somatostatin+ cortical interneurons. Because Sonic Hedgehog promotes the production of cortical interneurons, we also postulated that the activation of Sonic Hedgehog signalling might restore neurogenesis, cortical interneuron population, and neurobehavioural function in premature newborns with IVH. These hypotheses were tested in a preterm rabbit model of IVH and autopsy samples from human preterm infants. We compared premature newborns with and without IVH for intraneuronal progenitors, cortical interneurons, transcription factors regulating neurogenesis, single-cell transcriptome of medial ganglionic eminence and neurobehavioural functions. We treated premature rabbit kits with adenovirus expressing Sonic Hedgehog (Ad-Shh) or green fluorescence protein gene to determine the effect of Sonic Hedgehog activation on the interneuron production, cortical interneuron population and neurobehaviour. We discovered that IVH reduced the number of Nkx2.1+ and Dlx2+ progenitors in the medial ganglionic eminence of both humans and rabbits by attenuating their proliferation and inducing apoptosis. Moreover, IVH decreased the population of parvalbumin+ and somatostatin+ neurons in the frontal cortex of both preterm infants and kits relative to controls. Sonic Hedgehog expression and the downstream transcription factors, including Nkx2.1, Mash1, Lhx6 and Sox6, were also reduced in kits with IVH. Consistent with these findings, single-cell transcriptomic analyses of medial ganglionic eminence identified a distinct subpopulation of cells exhibiting perturbation in genes regulating neurogenesis, ciliogenesis, mitochondrial function and MAPK signalling in rabbits with IVH. More importantly, restoration of Sonic Hedgehog level by Ad-Shh treatment ameliorated neurogenesis, cortical interneuron population and neurobehavioural function in kits with IVH. Additionally, Sonic Hedgehog activation alleviated IVH-induced inflammation and several transcriptomic changes in the medial ganglionic eminence. Taken together, IVH reduced intraneuronal production and cortical interneuron population by downregulating Sonic Hedgehog signalling in both preterm rabbits and humans. Notably, activation of Sonic Hedgehog signalling restored interneuron neurogenesis, cortical interneurons and cognitive function in rabbit kits with IVH. These findings highlight disruption in cortical interneurons in IVH and identify a novel therapeutic strategy to restore cortical interneurons and cognitive function in infants with IVH. These studies can accelerate the development of new therapies to enhance the neurodevelopmental outcome of survivors with IVH.
Collapse
Affiliation(s)
- Bokun Cheng
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deep R Sharma
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ajeet Kumar
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hardik Sheth
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alex Agyemang
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Aschner
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xusheng Zhang
- Computational Genomics Core, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Praveen Ballabh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Emamnejad R, Dass M, Mahlis M, Bozkurt S, Ye S, Pagnin M, Theotokis P, Grigoriadis N, Petratos S. Thyroid hormone-dependent oligodendroglial cell lineage genomic and non-genomic signaling through integrin receptors. Front Pharmacol 2022; 13:934971. [PMID: 36133808 PMCID: PMC9483185 DOI: 10.3389/fphar.2022.934971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous autoimmune disease whereby the pathological sequelae evolve from oligodendrocytes (OLs) within the central nervous system and are targeted by the immune system, which causes widespread white matter pathology and results in neuronal dysfunction and neurological impairment. The progression of this disease is facilitated by a failure in remyelination following chronic demyelination. One mediator of remyelination is thyroid hormone (TH), whose reliance on monocarboxylate transporter 8 (MCT8) was recently defined. MCT8 facilitates the entry of THs into oligodendrocyte progenitor cell (OPC) and pre-myelinating oligodendrocytes (pre-OLs). Patients with MS may exhibit downregulated MCT8 near inflammatory lesions, which emphasizes an inhibition of TH signaling and subsequent downstream targeted pathways such as phosphoinositide 3-kinase (PI3K)-Akt. However, the role of the closely related mammalian target of rapamycin (mTOR) in pre-OLs during neuroinflammation may also be central to the remyelination process and is governed by various growth promoting signals. Recent research indicates that this may be reliant on TH-dependent signaling through β1-integrins. This review identifies genomic and non-genomic signaling that is regulated through mTOR in TH-responsive pre-OLs and mature OLs in mouse models of MS. This review critiques data that implicates non-genomic Akt and mTOR signaling in response to TH-dependent integrin receptor activation in pre-OLs. We have also examined whether this can drive remyelination in the context of neuroinflammation and associated sequelae. Importantly, we outline how novel therapeutic small molecules are being designed to target integrin receptors on oligodendroglial lineage cells and whether these are viable therapeutic options for future use in clinical trials for MS.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Michael Mahlis
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Paschalis Theotokis
- B’, Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- B’, Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
- *Correspondence: Steven Petratos,
| |
Collapse
|
5
|
Dai ZM, Guo W, Yu D, Zhu XJ, Sun S, Huang H, Jiang M, Xie B, Zhang Z, Qiu M. SECISBP2L-Mediated Selenoprotein Synthesis Is Essential for Autonomous Regulation of Oligodendrocyte Differentiation. J Neurosci 2022; 42:5860-5869. [PMID: 35760530 PMCID: PMC9337607 DOI: 10.1523/jneurosci.2141-21.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 01/29/2023] Open
Abstract
Thyroid hormone (TH) controls the timely differentiation of oligodendrocytes (OLs), and its deficiency can delay myelin development and cause mental retardation. Previous studies showed that the active TH T3 is converted from its prohormone T4 by the selenoprotein DIO2, whose mRNA is primarily expressed in astrocytes in the CNS. In the present study, we discovered that SECISBP2L is highly expressed in differentiating OLs and is required for DIO2 translation. Conditional knock-out (CKO) of Secisbp2l in OL lineage resulted in a decreased level of DIO2 and T3, accompanied by impaired OL differentiation, hypomyelination and motor deficits in both sexes of mice. Moreover, the defective differentiation of OLs in Secisbp2l mutants can be alleviated by T3 or its analog, but not the prohormone T4. The present study has provided strong evidence for the autonomous regulation of OL differentiation by its intrinsic T3 production mediated by the novel SECISBP2L-DIO2-T3 pathway during myelin development.SIGNIFICANCE STATEMENT Secisbp2l is specifically expressed in differentiating oligodendrocytes (OLs) and is essential for selenoprotein translation in OLs. Secisbp2l regulates Dio2 translation for active thyroid hormone (TH) T3 production in the CNS. Autonomous regulation of OLs differentiation via SECISBP2L-DIO2-T3 pathway.
Collapse
Affiliation(s)
- Zhong-Min Dai
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Wei Guo
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Dan Yu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Xiao-Jing Zhu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Shuhui Sun
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Hao Huang
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Min Jiang
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Binghua Xie
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Zunyi Zhang
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Mengsheng Qiu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| |
Collapse
|
6
|
Abstract
Intraventricular hemorrhage (IVH) remains a major complication of prematurity, worldwide. The severity of IVH is variable, ranging from a tiny germinal matrix bleed to a moderate-to-large ventricular hemorrhage or periventricular hemorrhagic infarction. Survivors with IVH often suffer from hydrocephalus and white matter injury. There is no tangible treatment to prevent post-hemorrhagic cerebral palsy, cognitive deficits, or hydrocephalus in these infants. White matter injury is attributed to blood-induced damage to axons and maturing oligodendrocyte precursors, resulting in reduced myelination and axonal loss. Hydrocephalus results from obstructed CSF circulation by blood clots, increased CSF production, and reduced CSF absorption by lymphatics and arachnoid villi. Several strategies to promote neurological recovery have shown promise in animal models, including the elimination of blood and blood products, alleviating cerebral inflammation and oxidative stress, as well as promoting survival and maturation of oligodendrocyte precursors. The present review integrates novel mechanisms of brain injury in IVH and the imminent therapies to alleviate post-hemorrhagic white matter injury and hydrocephalus in the survivors with IVH.
Collapse
Affiliation(s)
| | - Praveen Ballabh
- Children's Hospital at Montefiore, Department of Pediatrics and Dominick P, Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Romantsik O, Ross-Munro E, Grönlund S, Holmqvist B, Brinte A, Gerdtsson E, Vallius S, Bruschettini M, Wang X, Fleiss B, Ley D. Severe intraventricular hemorrhage causes long-lasting structural damage in a preterm rabbit pup model. Pediatr Res 2022; 92:403-414. [PMID: 35505079 PMCID: PMC9522590 DOI: 10.1038/s41390-022-02075-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Intraventricular hemorrhage causes significant lifelong mortality and morbidity, especially in preterm born infants. Progress in finding an effective therapy is stymied by a lack of preterm animal models with long-term follow-up. This study addresses this unmet need, using an established model of preterm rabbit IVH and analyzing outcomes out to 1 month of age. METHODS Rabbit pups were delivered preterm and administered intraperitoneal injection of glycerol at 3 h of life and approximately 58% developed IVH. Neurobehavioral assessment was performed at 1 month of age followed by immunohistochemical labeling of epitopes for neurons, synapses, myelination, and interneurons, analyzed by means of digital quantitation and assessed via two-way ANOVA or Student's t test. RESULTS IVH pups had globally reduced myelin content, an aberrant cortical myelination microstructure, and thinner upper cortical layers (I-III). We also observed a lower number of parvalbumin (PV)-positive interneurons in deeper cortical layers (IV-VI) in IVH animals and reduced numbers of neurons, synapses, and microglia. However, there were no discernable changes in behaviors. CONCLUSIONS We have established in this preterm pup model that long-term changes after IVH include significant wide-ranging alterations to cortical organization and microstructure. Further work to improve the sensitivity of neurocognitive testing in this species at this age may be required. IMPACT This study uses an established animal model of preterm birth, in which the rabbit pups are truly born preterm, with reduced organ maturation and deprivation of maternally supplied trophic factors. This is the first study in preterm rabbits that explores the impacts of severe intraventricular hemorrhage beyond 14 days, out to 1 month of age. Our finding of persisting but subtle global changes including brain white and gray matter will have impact on our understanding of the best path for therapy design and interventions.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185, Lund, Sweden.
| | - Emily Ross-Munro
- grid.1017.70000 0001 2163 3550School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, 3083 VIC Australia
| | - Susanne Grönlund
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185 Lund, Sweden
| | | | | | | | - Suvi Vallius
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185 Lund, Sweden
| | - Matteo Bruschettini
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185 Lund, Sweden
| | - Xiaoyang Wang
- grid.8761.80000 0000 9919 9582Centre of Perinatal Medicine & Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, 40530 Gothenburg, Sweden ,grid.412719.8Henan Key Laboratory of Child Brain Injury and Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bobbi Fleiss
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, 3083, VIC, Australia. .,Université de Paris, NeuroDiderot, Inserm, 75019, Paris, France.
| | - David Ley
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185 Lund, Sweden
| |
Collapse
|
8
|
PPAR-γ activation enhances myelination and neurological recovery in premature rabbits with intraventricular hemorrhage. Proc Natl Acad Sci U S A 2021; 118:2103084118. [PMID: 34462350 DOI: 10.1073/pnas.2103084118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Intraventricular hemorrhage (IVH) results in periventricular inflammation, hypomyelination of the white matter, and hydrocephalus in premature infants. No effective therapy exists to prevent these disorders. Peroxisome proliferator activated receptor-γ (PPAR-γ) agonists reduce inflammation, alleviate free radical generation, and enhance microglial phagocytosis, promoting clearance of debris and red blood cells. We hypothesized that activation of PPAR-γ would enhance myelination, reduce hydrocephalus, and promote neurological recovery in newborns with IVH. These hypotheses were tested in a preterm rabbit model of IVH; autopsy brain samples from premature infants with and without IVH were analyzed. We found that IVH augmented PPAR-γ expression in microglia of both preterm human infants and rabbit kits. The treatment with PPAR-γ agonist or PPAR-γ overexpression by adenovirus delivery further elevated PPAR-γ levels in microglia, reduced proinflammatory cytokines, increased microglial phagocytosis, and improved oligodendrocyte progenitor cell (OPC) maturation in kits with IVH. Transcriptomic analyses of OPCs identified previously unrecognized PPAR-γ-induced genes for purinergic signaling, cyclic adenosine monophosphate generation, and antioxidant production, which would reprogram these progenitors toward promoting myelination. RNA-sequencing analyses of microglia revealed PPAR-γ-triggered down-regulation of several proinflammatory genes and transcripts having roles in Parkinson's disease and amyotrophic lateral sclerosis, contributing to neurological recovery in kits with IVH. Accordingly, PPAR-γ activation enhanced myelination and neurological function in kits with IVH. This also enhanced microglial phagocytosis of red blood cells but did not reduce hydrocephalus. Treatment with PPAR-γ agonist might enhance myelination and neurological recovery in premature infants with IVH.
Collapse
|
9
|
Farías-Serratos BM, Lazcano I, Villalobos P, Darras VM, Orozco A. Thyroid hormone deficiency during zebrafish development impairs central nervous system myelination. PLoS One 2021; 16:e0256207. [PMID: 34403440 PMCID: PMC8370640 DOI: 10.1371/journal.pone.0256207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 08/02/2021] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormones are messengers that bind to specific nuclear receptors and regulate a wide range of physiological processes in the early stages of vertebrate embryonic development, including neurodevelopment and myelogenesis. We here tested the effects of reduced T3 availability upon the myelination process by treating zebrafish embryos with low concentrations of iopanoic acid (IOP) to block T4 to T3 conversion. Black Gold II staining showed that T3 deficiency reduced the myelin density in the forebrain, midbrain, hindbrain and the spinal cord at 3 and 7 dpf. These observations were confirmed in 3 dpf mbp:egfp transgenic zebrafish, showing that the administration of IOP reduced the fluorescent signal in the brain. T3 rescue treatment restored brain myelination and reversed the changes in myelin-related gene expression induced by IOP exposure. NG2 immunostaining revealed that T3 deficiency reduced the amount of oligodendrocyte precursor cells in 3 dpf IOP-treated larvae. Altogether, the present results show that inhibition of T4 to T3 conversion results in hypomyelination, suggesting that THs are part of the key signaling molecules that control the timing of oligodendrocyte differentiation and myelin synthesis from very early stages of brain development.
Collapse
Affiliation(s)
| | - Iván Lazcano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Qro., México
| | - Patricia Villalobos
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Qro., México
| | - Veerle M. Darras
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Qro., México
- Biology Department, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| | - Aurea Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Qro., México
- * E-mail:
| |
Collapse
|
10
|
Jiang H, Li H, Cao Y, Zhang R, Zhou L, Zhou Y, Zeng X, Wu J, Wu D, Wu D, Guo X, Li X, Wu H, Li P. Effects of cannabinoid (CBD) on blood brain barrier permeability after brain injury in rats. Brain Res 2021; 1768:147586. [PMID: 34289379 DOI: 10.1016/j.brainres.2021.147586] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/23/2021] [Accepted: 07/14/2021] [Indexed: 01/30/2023]
Abstract
Cannabidiol is a natural herbal medicine known to protect the brain from traumatic brain injury (TBI). Here, a TBI rat model was established, with cannabidiol administered intraperitoneally at doses of 5, 10, or 20 mg/kg, 30 min before surgery and 6 h after surgery until sacrifice. Brain water content, body weight, and modified neurological severity scores were determined, and enzyme-linked immunosorbent assay, immunofluorescence staining, hematoxylin and eosin staining, Nissl staining, Evans-blue dye extravasation, and western blotting were performed. Results showed that cannabidiol decreased the number of aquaporin-4-positive and glial fibrillary acidic protein-positive cells. Cannabidiol also significantly reduced the protein levels of proinflammatory cytokines (TNF-α and IL-1β) and significantly increased the expression of tight junction proteins (claudin-5 and occludin). Moreover, cannabidiol administration significantly mitigated water content in the brain after TBI and blood-brain barrier disruption and ameliorated the neurological deficit score after TBI. Cannabidiol administration improved the integrity and permeability of the blood-brain barrier and reduced edema in the brain after TBI.
Collapse
Affiliation(s)
- Hongyan Jiang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China; Department of Pathology, Suining Central Hospital, Suining 629000, China
| | - Hengxi Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Yan Cao
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Ruilin Zhang
- Department of Forensic Medicine of Kunming Medical University, Kunming 650500, China
| | - Lei Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Ying Zhou
- Department of Kunming Medical University Electron Microscope Laboratory, Kunming Medical University, Kunming 650500, China
| | - Xiaofeng Zeng
- Department of Forensic Medicine of Kunming Medical University, Kunming 650500, China
| | - Jia Wu
- Department of Morphology Laboratory, Kunming Medical University, Kunming 650500, China
| | - Douwei Wu
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Deye Wu
- Department of Human Anatomy and Histology/Embryology, Qilu Medical University, Zibo 255213, Shandong, China
| | - Xiaobing Guo
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Xiaowen Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Haiying Wu
- Department of Emergency and Intensive Care Unit, First Affiliated Hospital, Kunming Medical University, Kunming 650032, China.
| | - Ping Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
11
|
White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies. Nat Rev Neurol 2021; 17:199-214. [PMID: 33504979 PMCID: PMC8880688 DOI: 10.1038/s41582-020-00447-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 01/31/2023]
Abstract
Intraventricular haemorrhage (IVH) continues to be a major complication of prematurity that can result in cerebral palsy and cognitive impairment in survivors. No optimal therapy exists to prevent IVH or to treat its consequences. IVH varies in severity and can present as a bleed confined to the germinal matrix, small-to-large IVH or periventricular haemorrhagic infarction. Moderate-to-severe haemorrhage dilates the ventricle and damages the periventricular white matter. This white matter injury results from a constellation of blood-induced pathological reactions, including oxidative stress, glutamate excitotoxicity, inflammation, perturbed signalling pathways and remodelling of the extracellular matrix. Potential therapies for IVH are currently undergoing investigation in preclinical models and evidence from clinical trials suggests that stem cell treatment and/or endoscopic removal of clots from the cerebral ventricles could transform the outcome of infants with IVH. This Review presents an integrated view of new insights into the mechanisms underlying white matter injury in premature infants with IVH and highlights the importance of early detection of disability and immediate intervention in optimizing the outcomes of IVH survivors.
Collapse
|
12
|
Gutiérrez-Vega S, Armella A, Mennickent D, Loyola M, Covarrubias A, Ortega-Contreras B, Escudero C, Gonzalez M, Alcalá M, Ramos MDP, Viana M, Castro E, Leiva A, Guzmán-Gutiérrez E. High levels of maternal total tri-iodothyronine, and low levels of fetal free L-thyroxine and total tri-iodothyronine, are associated with altered deiodinase expression and activity in placenta with gestational diabetes mellitus. PLoS One 2020; 15:e0242743. [PMID: 33232364 PMCID: PMC7685482 DOI: 10.1371/journal.pone.0242743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Gestational Diabetes Mellitus (GDM) is characterized by abnormal maternal D-glucose metabolism and altered insulin signaling. Dysregulation of thyroid hormones (TH) tri-iodethyronine (T3) and L-thyroxine (T4) Hormones had been associated with GDM, but the physiopathological meaning of these alterations is still unclear. Maternal TH cross the placenta through TH Transporters and their Deiodinases metabolize them to regulate fetal TH levels. Currently, the metabolism of TH in placentas with GDM is unknown, and there are no other studies that evaluate the fetal TH from pregnancies with GDM. Therefore, we evaluated the levels of maternal TH during pregnancy, and fetal TH at delivery, and the expression and activity of placental deiodinases from GDM pregnancies. Pregnant women were followed through pregnancy until delivery. We collected blood samples during 10-14, 24-28, and 36-40 weeks of gestation for measure Thyroid-stimulating hormone (TSH), Free T4 (FT4), Total T4 (TT4), and Total T3 (TT3) concentrations from Normal Glucose Tolerance (NGT) and GDM mothers. Moreover, we measure fetal TSH, FT4, TT4, and TT3 in total blood cord at the delivery. Also, we measured the placental expression of Deiodinases by RT-PCR, western-blotting, and immunohistochemistry. The activity of Deiodinases was estimated quantified rT3 and T3 using T4 as a substrate. Mothers with GDM showed higher levels of TT3 during all pregnancy, and an increased in TSH during second and third trimester, while lower concentrations of neonatal TT4, FT4, and TT3; and an increased TSH level in umbilical cord blood from GDM. Placentae from GDM mothers have a higher expression and activity of Deiodinase 3, but lower Deiodinase 2, than NGT mothers. In conclusion, GDM favors high levels of TT3 during all gestation in the mother, low levels in TT4, FT4 and TT3 at the delivery in neonates, and increases deiodinase 3, but reduce deiodinase 2 expression and activity in the placenta.
Collapse
Affiliation(s)
- Sebastián Gutiérrez-Vega
- Laboratorio de Patologías del Embarazo, Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad San Sebastián, Chile
| | - Axel Armella
- Laboratorio de Patologías del Embarazo, Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Daniela Mennickent
- Laboratorio de Patologías del Embarazo, Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Marco Loyola
- Laboratorio de Patologías del Embarazo, Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad San Sebastián, Chile
| | - Ambart Covarrubias
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Group of Research and Innovation in Vascular Health (GRIVAS-Health), Chillán, Chile
| | - Bernel Ortega-Contreras
- Laboratorio de Patologías del Embarazo, Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS-Health), Chillán, Chile
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Marcelo Gonzalez
- Group of Research and Innovation in Vascular Health (GRIVAS-Health), Chillán, Chile
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Martín Alcalá
- Facultad de Farmacia, Universidad CEU San Pablo, Ctra, Boadilla Km 5, Alcorcón, Madrid, Spain
| | - María del Pilar Ramos
- Facultad de Farmacia, Universidad CEU San Pablo, Ctra, Boadilla Km 5, Alcorcón, Madrid, Spain
| | - Marta Viana
- Facultad de Farmacia, Universidad CEU San Pablo, Ctra, Boadilla Km 5, Alcorcón, Madrid, Spain
| | - Erica Castro
- Departamento de Obstetricia y Puericultura, Facultad de Ciencias de la Salud, Universidad de Atacama, Atacama, Chile
| | - Andrea Leiva
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad San Sebastián, Chile
| | - Enrique Guzmán-Gutiérrez
- Laboratorio de Patologías del Embarazo, Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS-Health), Chillán, Chile
| |
Collapse
|
13
|
Dohare P, Kidwai A, Kaur J, Singla P, Krishna S, Klebe D, Zhang X, Hevner R, Ballabh P. GSK3β Inhibition Restores Impaired Neurogenesis in Preterm Neonates With Intraventricular Hemorrhage. Cereb Cortex 2020; 29:3482-3495. [PMID: 30192926 DOI: 10.1093/cercor/bhy217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/30/2018] [Indexed: 01/25/2023] Open
Abstract
Intraventricular hemorrhage (IVH) is a common complication of prematurity in infants born at 23-28 weeks of gestation. Survivors exhibit impaired growth of the cerebral cortex and neurodevelopmental sequeale, but the underlying mechanism(s) are obscure. Previously, we have shown that neocortical neurogenesis continues until at least 28 gestational weeks. This renders the prematurely born infants vulnerable to impaired neurogenesis. Here, we hypothesized that neurogenesis is impaired by IVH, and that signaling through GSK3β, a critical intracellular kinase regulated by Wnt and other pathways, mediates this effect. These hypotheses were tested observationally in autopsy specimens from premature infants, and experimentally in a premature rabbit IVH model. Significantly, in premature infants with IVH, the number of neurogenic cortical progenitor cells was reduced compared with infants without IVH, indicating acutely decreased neurogenesis. This finding was corroborated in the rabbit IVH model, which further demonstrated reduction of upper layer cortical neurons after longer survival. Both the acute reduction of neurogenic progenitors, and the subsequent decrease of upper layer neurons, were rescued by treatment with AR-A014418, a specific inhibitor of GSK3β. Together, these results indicate that IVH impairs late stages of cortical neurogenesis, and suggest that treatment with GSK3β inhibitors may enhance neurodevelopment in premature infants with IVH.
Collapse
Affiliation(s)
- Preeti Dohare
- Department of Pediatrics.,Dominick P. Purpura Department of Neuroscience
| | | | | | | | | | | | | | - Robert Hevner
- Department of Pathology, 9500 Gilman Dr, UCSD, La Jolla, CA, USA
| | - Praveen Ballabh
- Department of Pediatrics.,Dominick P. Purpura Department of Neuroscience.,Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
14
|
Le Dieu-Lugon B, Dupré N, Legouez L, Leroux P, Gonzalez BJ, Marret S, Leroux-Nicollet I, Cleren C. Why considering sexual differences is necessary when studying encephalopathy of prematurity through rodent models. Eur J Neurosci 2019; 52:2560-2574. [PMID: 31885096 DOI: 10.1111/ejn.14664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/25/2019] [Accepted: 12/05/2019] [Indexed: 12/01/2022]
Abstract
Preterm birth is a high-risk factor for the development of gray and white matter abnormalities, referred to as "encephalopathy of prematurity," that may lead to life-long motor, cognitive, and behavioral impairments. The prevalence and clinical outcomes of encephalopathy of prematurity differ between sexes, and elucidating the underlying biological basis has become a high-priority challenge. Human studies are often limited to assessment of brain region volumes by MRI, which does not provide much information about the underlying mechanisms of lesions related to very preterm birth. However, models using KO mice or pharmacological manipulations in rodents allow relevant observations to help clarify the mechanisms of injury sustaining sex-differential vulnerability. This review focuses on data obtained from mice aged P1-P5 or rats aged P3 when submitted to cerebral damage such as hypoxia-ischemia, as their brain lesions share similarities with lesion patterns occurring in very preterm human brain, before 32 gestational weeks. We first report data on the mechanisms underlying the development of sexual brain dimorphism in rodent, focusing on the hippocampus. In the second part, we describe sex specificities of rodent models of encephalopathy of prematurity (RMEP), focusing on mechanisms underlying differences in hippocampal vulnerability. Finally, we discuss the relevance of these RMEP. Together, this review highlights the need to systematically search for potential effects of sex when studying the mechanisms underlying deficits in RMEP in order to design effective sex-specific medical interventions in human preterms.
Collapse
Affiliation(s)
- Bérénice Le Dieu-Lugon
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Nicolas Dupré
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Lou Legouez
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Philippe Leroux
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Bruno J Gonzalez
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Stéphane Marret
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France.,Department of Neonatal Paediatrics and Intensive Care, Rouen University Hospital, Rouen, France
| | - Isabelle Leroux-Nicollet
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| | - Carine Cleren
- Normandy Centre for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 Team 4, Normandy University, Rouen, France
| |
Collapse
|
15
|
He L, Zhou W, Zhao X, Liu X, Rong X, Song Y. Development and validation of a novel scoring system to predict severe intraventricular hemorrhage in very low birth weight infants. Brain Dev 2019; 41:671-677. [PMID: 31053343 DOI: 10.1016/j.braindev.2019.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We sought to develop and validate a novel scoring system for the prediction of severe intraventricular hemorrhage (SIVH) in very low birth weight infants (VLBWI). METHODS This retrospective cohort multicenter study included 615 VLBWI born between 24 and 32 weeks gestational age (GA). Multivariable logistic regression analyses were used to determine which factors evaluated within the first 5 days of life were associated with SIVH and the weights of these variables. The accuracy of the predictive scoring system was prospectively tested in the same units. RESULTS The final SIVH scoring system included the following variables: antenatal steroid therapy, GA, birth weight (BW), 1-min Apgar score, mechanical ventilation and hypotension. The SIVH scores used to divide the subjects into three tiers (low-risk (<5), moderate-risk (5-8) and high-risk (>8)) were developed based on these variables. Of infants with a score below 5, 1.2% (4/339) developed SIVH. Of those with a score above 8, 42.5% (17/40) developed SIVH. The scores were successfully verified in 99 VLBWI. CONCLUSIONS These findings suggest that among infants with a score >8, the incidence of SIVH is significantly higher. This scoring system can be used to predict the incidence of SIVH during the first 5 days after birth and may contribute to the early intervention in and prevention of SIVH.
Collapse
Affiliation(s)
- Longkai He
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zhou
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaopeng Zhao
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Liu
- Department of Hematology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiao Rong
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanyan Song
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
17
|
Vinukonda G, Liao Y, Hu F, Ivanova L, Purohit D, Finkel DA, Giri P, Bapatla L, Shah S, Zia MT, Hussein K, Cairo MS, La Gamma EF. Human Cord Blood-Derived Unrestricted Somatic Stem Cell Infusion Improves Neurobehavioral Outcome in a Rabbit Model of Intraventricular Hemorrhage. Stem Cells Transl Med 2019; 8:1157-1169. [PMID: 31322326 PMCID: PMC6811700 DOI: 10.1002/sctm.19-0082] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022] Open
Abstract
Intraventricular hemorrhage (IVH) is a severe complication of preterm birth, which leads to hydrocephalus, cerebral palsy, and mental retardation. There are no available therapies to cure IVH, and standard treatment is supportive care. Unrestricted somatic stem cells (USSCs) from human cord blood have reparative effects in animal models of brain and spinal cord injuries. USSCs were administered to premature rabbit pups with IVH and their effects on white matter integrity and neurobehavioral performance were evaluated. USSCs were injected either via intracerebroventricular (ICV) or via intravenous (IV) routes in 3 days premature (term 32d) rabbit pups, 24 hours after glycerol‐induced IVH. The pups were sacrificed at postnatal days 3, 7, and 14 and effects were compared to glycerol‐treated but unaffected or nontreated control. Using in vivo live bioluminescence imaging and immunohistochemical analysis, injected cells were found in the injured parenchyma on day 3 when using the IV route compared to ICV where cells were found adjacent to the ventricle wall forming aggregates; we did not observe any adverse events from either route of administration. The injected USSCs were functionally associated with attenuated microglial infiltration, less apoptotic cell death, fewer reactive astrocytes, and diminished levels of key inflammatory cytokines (TNFα and IL1β). In addition, we observed better preservation of myelin fibers, increased myelin gene expression, and altered reactive astrocyte distribution in treated animals, and this was associated with improved locomotor function. Overall, our findings support the possibility that USSCs exert anti‐inflammatory effects in the injured brain mitigating many detrimental consequences associated with IVH. stem cells translational medicine2019;8:1157–1169
Collapse
Affiliation(s)
- Govindaiah Vinukonda
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Furong Hu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Larisa Ivanova
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Deepti Purohit
- The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | - Dina A Finkel
- The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | - Priyadarshani Giri
- The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | | | - Shetal Shah
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | - Muhammed T Zia
- The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | - Karen Hussein
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA.,Department of Medicine, Pathology, Microbiology & Immunology, Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | - Edmund F La Gamma
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA.,Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
18
|
Zhu XY, Guo SY, Xia B, Li CQ, Wang L, Wang YH. Development of zebrafish demyelination model for evaluation of remyelination compounds and RORγt inhibitors. J Pharmacol Toxicol Methods 2019; 98:106585. [DOI: 10.1016/j.vascn.2019.106585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 11/25/2022]
|
19
|
Zeng Y, Wang H, Zhang L, Tang J, Shi J, Xiao D, Qu Y, Mu D. The optimal choices of animal models of white matter injury. Rev Neurosci 2019; 30:245-259. [PMID: 30379639 DOI: 10.1515/revneuro-2018-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/16/2018] [Indexed: 12/25/2022]
Abstract
White matter injury, the most common neurological injury in preterm infants, is a major cause of chronic neurological morbidity, including cerebral palsy. Although there has been great progress in the study of the mechanism of white matter injury in newborn infants, its pathogenesis is not entirely clear, and further treatment approaches are required. Animal models are the basis of study in pathogenesis, treatment, and prognosis of white matter injury in preterm infants. Various species have been used to establish white matter injury models, including rodents, rabbits, sheep, and non-human primates. Small animal models allow cost-effective investigation of molecular and cellular mechanisms, while large animal models are particularly attractive for pathophysiological and clinical-translational studies. This review focuses on the features of commonly used white matter injury animal models, including their modelling methods, advantages, and limitations, and addresses some clinically relevant animal models that allow reproduction of the insults associated with clinical conditions that contribute to white matter injury in human infants.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Li Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Jun Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Jing Shi
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dongqiong Xiao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, section 3, Renmin South Road, Chengdu, Sichuan 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China, Telephone: +86-28-85503226, Fax: +86-28-85559065
| |
Collapse
|
20
|
Abstract
Despite the advances in neonatal intensive care, the preterm brain remains vulnerable to white matter injury (WMI) and disruption of normal brain development (i.e., dysmaturation). Compared to severe cystic WMI encountered in the past decades, contemporary cohorts of preterm neonates experience milder WMIs. More than destructive lesions, disruption of the normal developmental trajectory of cellular elements of the white and the gray matter occurs. In the acute phase, in response to hypoxia-ischemia and/or infection and inflammation, multifocal areas of necrosis within the periventricular white matter involve all cellular elements. Later, chronic WMI is characterized by diffuse WMI with aberrant regeneration of oligodendrocytes, which fail to mature to myelinating oligodendrocytes, leading to myelination disturbances. Complete neuronal degeneration classically accompanies necrotic white matter lesions, while altered neurogenesis, represented by a reduction of the dendritic arbor and synapse formation, is observed in response to diffuse WMI. Neuroimaging studies now provide more insight in assessing both injury and dysmaturation of both gray and white matter. Preterm brain injury remains an important cause of neurodevelopmental disabilities, which are still observed in up to 50% of the preterm survivors and take the form of a complex combination of motor, cognitive, and behavioral concerns.
Collapse
Affiliation(s)
- Juliane Schneider
- Department of Woman-Mother-Child, Clinic of Neonatology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Steven P Miller
- Division of Neurology and Centre for Brain and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
21
|
Song X, He R, Han W, Li T, Xie L, Cheng L, Chen H, Xie M, Jiang L. Protective effects of the ROCK inhibitor fasudil against cognitive dysfunction following status epilepticus in male rats. J Neurosci Res 2018; 97:506-519. [PMID: 30421453 DOI: 10.1002/jnr.24355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/30/2018] [Accepted: 10/17/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaojie Song
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics Chongqing China
- Department of Neurology Children’s Hospital of Chongqing Medical University Chongqing China
| | - Rong He
- Pediatric department University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Wei Han
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics Chongqing China
| | - Tianyi Li
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics Chongqing China
- Department of Neurology Children’s Hospital of Chongqing Medical University Chongqing China
| | - Lingling Xie
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics Chongqing China
- Department of Neurology Children’s Hospital of Chongqing Medical University Chongqing China
| | - Li Cheng
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics Chongqing China
| | - Hengsheng Chen
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics Chongqing China
| | - Mingdan Xie
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics Chongqing China
| | - Li Jiang
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics Chongqing China
- Department of Neurology Children’s Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
22
|
Wang Z, Li Y, Cai S, Li R, Cao G. Cannabinoid receptor 2 agonist attenuates blood‑brain barrier damage in a rat model of intracerebral hemorrhage by activating the Rac1 pathway. Int J Mol Med 2018; 42:2914-2922. [PMID: 30132506 DOI: 10.3892/ijmm.2018.3834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/06/2018] [Indexed: 11/06/2022] Open
Abstract
Blood‑brain barrier (BBB) disruption and consequent edema formation are the most common brain injuries following intracerebral hemorrhage (ICH). Endocannabinoid receptors can alter the permeability of various epithelial barriers and have potential neuroprotective effects. The present study aimed to explore whether the selective cannabinoid receptor 2 (CNR2) agonist, JWH133, can ameliorate BBB integrity and behavioral outcome by activating Ras‑related C3 botulinum toxin substrate 1 (Rac1) following ICH. Autologous arterial blood was injected into the basal ganglia of rats to induce ICH. Animals were randomly divided into the following groups: Sham‑operated, ICH+vehicle, ICH+JWH133, ICH+JWH13+vehicle, ICH+JWH133+AM630 (a selective CNR2 antagonist), ICH+AM630, ICH+JWH133 +NSC23766 (a Rac1 antagonist) and ICH+NSC23766. JWH133 and AM630 were independently intraperitoneally administrated at 1 h prior to ICH. NSC23766 was intracerebroventricularly (ICV) administered 30 min prior to ICH. A modified Garcia test, corner test, Evans blue extravasation and brain water content analysis were performed at 24 and 72 h following ICH. Western blotting and pull‑down assays were performed at 24 h following ICH. The results demonstrated that JWH133 treatment improved neurofunctional deficits, reduced perihematomal brain edema and alleviated BBB damage at 24 and 72 h following ICH. In addition, JWH133 treatment increased the protein expression levels of guanosine‑5'‑triphosphate‑Rac1 and of the adherens junction proteins occludin, zonula occludens‑1 and claudin‑5. However, these effects were reversed by AM630 and NSC23766 treatment. In conclusion, the present findings revealed that JWH133 treatment attenuated brain injury in a rat model of ICH via activation of the Rac1 signaling pathway, thus preserving BBB integrity.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Neurosurgery, Jiulongpo District People's Hospital, Chongqing 401329, P.R. China
| | - Yongfu Li
- Department of Neurosurgery, Jiulongpo District People's Hospital, Chongqing 401329, P.R. China
| | - Shuangyong Cai
- Department of Neurosurgery, Jiulongpo District People's Hospital, Chongqing 401329, P.R. China
| | - Rui Li
- Department of Neurosurgery, Jiulongpo District People's Hospital, Chongqing 401329, P.R. China
| | - Guanbo Cao
- Department of Neurosurgery, Jiulongpo District People's Hospital, Chongqing 401329, P.R. China
| |
Collapse
|
23
|
Ellery SJ, Kelleher M, Grigsby P, Burd I, Derks JB, Hirst J, Miller SL, Sherman LS, Tolcos M, Walker DW. Antenatal prevention of cerebral palsy and childhood disability: is the impossible possible? J Physiol 2018; 596:5593-5609. [PMID: 29928763 DOI: 10.1113/jp275595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
This review covers our current knowledge of the causes of perinatal brain injury leading to cerebral palsy-like outcomes, and argues that much of this brain damage is preventable. We review the experimental evidence that there are treatments that can be safely administered to women in late pregnancy that decrease the likelihood and extent of perinatal brain damage that occurs because of acute and severe hypoxia that arises during some births, and the additional impact of chronic fetal hypoxia, infection, inflammation, growth restriction and preterm birth. We discuss the types of interventions required to ameliorate or even prevent apoptotic and necrotic cell death, and the vulnerability of all the major cell types in the brain (neurons, astrocytes, oligodendrocytes, microglia, cerebral vasculature) to hypoxia/ischaemia, and whether a pan-protective treatment given to the mother before birth is a realistic prospect.
Collapse
Affiliation(s)
- Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Meredith Kelleher
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Peta Grigsby
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Irina Burd
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Jan B Derks
- Department of Perinatal Medicine University Medical Center Utrecht, The Netherlands, Gynaecology, Monash University, Melbourne, Australia
| | - Jon Hirst
- University of Newcastle, Newcastle, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Larry S Sherman
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Mary Tolcos
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia.,School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| |
Collapse
|
24
|
Dohare P, Cheng B, Ahmed E, Yadala V, Singla P, Thomas S, Kayton R, Ungvari Z, Ballabh P. Glycogen synthase kinase-3β inhibition enhances myelination in preterm newborns with intraventricular hemorrhage, but not recombinant Wnt3A. Neurobiol Dis 2018; 118:22-39. [PMID: 29940337 DOI: 10.1016/j.nbd.2018.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/26/2018] [Accepted: 06/20/2018] [Indexed: 11/19/2022] Open
Abstract
Intraventricular hemorrhage (IVH) in preterm infants results in reduced proliferation and maturation of oligodendrocyte progenitor cells (OPCs), and survivors exhibit reduced myelination and neurological deficits. Wnt signaling regulates OPC maturation and myelination in a context dependent manner. Herein, we hypothesized that the occurrence of IVH would downregulate Wnt signaling, and that activating Wnt signaling by GSK-3β inhibition or Wnt3A recombinant human protein (rh-Wnt3A) treatment might promote maturation of OPCs, myelination of the white matter, and neurological recovery in premature rabbits with IVH. These hypotheses were tested in autopsy samples from preterm infants and in a rabbit model of IVH. Induction of IVH reduced expressions of activated β-catenin, TCF-4, and Axin2 transcription factors in preterm newborns. Both AR-A014418 (ARA) and Wnt-3A treatment activated Wnt signaling. GSK-3β inhibition by intramuscular ARA treatment accelerated maturation of OPCs, myelination, and neurological recovery in preterm rabbits with IVH compared to vehicle controls. In contrast, intracerebroventricular rh-Wnt3A treatment failed to enhance myelination and neurological function in rabbits with IVH. ARA treatment reduced microglia infiltration and IL1β expression in rabbits with IVH relative to controls, whereas Wnt3A treatment elevated TNFα, IL1β, and IL6 expression without affecting microglia density. GSK-3β inhibition downregulated, while rh-Wnt3A treatment upregulated Notch signaling; and none of the two treatments affected the Sonic-Hedgehog pathway. The administration of ARA or rh-Wnt3A did not affect gliosis. The data suggest that GSK-3β inhibition promoted myelination by suppressing inflammation and Notch signaling; and Wnt3A treatment failed to enhance myelination because of its pro-inflammatory activity and synergy with Notch signaling. GSK-3β inhibitors might improve the neurological outcome of preterm infants with IVH.
Collapse
Affiliation(s)
- Preeti Dohare
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bokun Cheng
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ehsan Ahmed
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Vivek Yadala
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pranav Singla
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sunisha Thomas
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert Kayton
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Oklahoma University, OK, USA
| | - Praveen Ballabh
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
25
|
Calzà L, Baldassarro VA, Fernandez M, Giuliani A, Lorenzini L, Giardino L. Thyroid Hormone and the White Matter of the Central Nervous System: From Development to Repair. VITAMINS AND HORMONES 2018; 106:253-281. [DOI: 10.1016/bs.vh.2017.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Back SA. White matter injury in the preterm infant: pathology and mechanisms. Acta Neuropathol 2017; 134:331-349. [PMID: 28534077 PMCID: PMC5973818 DOI: 10.1007/s00401-017-1718-6] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/27/2017] [Accepted: 04/29/2017] [Indexed: 12/22/2022]
Abstract
The human preterm brain is particularly susceptible to cerebral white matter injury (WMI) that disrupts the normal progression of developmental myelination. Advances in the care of preterm infants have resulted in a sustained reduction in the severity of WMI that has shifted from more severe focal necrotic lesions to milder diffuse WMI. Nevertheless, WMI remains a global health problem and the most common cause of chronic neurological morbidity from cerebral palsy and diverse neurobehavioral disabilities. Diffuse WMI involves maturation-dependent vulnerability of the oligodendrocyte (OL) lineage with selective degeneration of late oligodendrocyte progenitors (preOLs) triggered by oxidative stress and other insults. The magnitude and distribution of diffuse WMI are related to both the timing of appearance and regional distribution of susceptible preOLs. Diffuse WMI disrupts the normal progression of OL lineage maturation and myelination through aberrant mechanisms of regeneration and repair. PreOL degeneration is accompanied by early robust proliferation of OL progenitors that regenerate and augment the preOL pool available to generate myelinating OLs. However, newly generated preOLs fail to differentiate and initiate myelination along their normal developmental trajectory despite the presence of numerous intact-appearing axons. Disrupted preOL maturation is accompanied by diffuse gliosis and disturbances in the composition of the extracellular matrix and is mediated in part by inhibitory factors derived from reactive astrocytes. Signaling pathways implicated in disrupted myelination include those mediated by Notch, WNT-beta catenin, and hyaluronan. Hence, there exists a potentially broad but still poorly defined developmental window for interventions to promote white matter repair and myelination and potentially reverses the widespread disturbances in cerebral gray matter growth that accompanies WMI.
Collapse
Affiliation(s)
- Stephen A Back
- Division of Pediatric Neuroscience, Departments of Pediatrics and Neurology, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd, Portland, OR, 97239-3098, USA.
| |
Collapse
|
27
|
Noda M. Thyroid Hormone in the CNS: Contribution of Neuron-Glia Interaction. VITAMINS AND HORMONES 2017; 106:313-331. [PMID: 29407440 DOI: 10.1016/bs.vh.2017.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endocrine system and the central nervous system (CNS) are intimately linked. Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the regulation of development and differentiation of neurons and neuroglia and hence for development and function of the CNS. T3 (3,3',5-triiodothyronine), an active form of TH, is important not only for neuronal development but also for differentiation of astrocytes and oligodendrocytes, and for microglial development. In adult brain, T3 affects glial morphology with sex- and age-dependent manner and therefore may affect their function, leading to influence on neuron-glia interaction. T3 is an important signaling factor that affects microglial functions such as migration and phagocytosis via complex mechanisms. Therefore, dysfunction of THs may impair glial function as well as neuronal function and thus disturb the brain, which may cause mental disorders. Investigations on molecular and cellular basis of hyperthyroidism and hypothyroidism will help us to understand changes in neuron-glia interaction and therefore consequent psychiatric symptoms.
Collapse
Affiliation(s)
- Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
28
|
Tolcos M, Petratos S, Hirst JJ, Wong F, Spencer SJ, Azhan A, Emery B, Walker DW. Blocked, delayed, or obstructed: What causes poor white matter development in intrauterine growth restricted infants? Prog Neurobiol 2017; 154:62-77. [PMID: 28392287 DOI: 10.1016/j.pneurobio.2017.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 03/17/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022]
Abstract
Poor white matter development in intrauterine growth restricted (IUGR) babies remains a major, untreated problem in neonatology. New therapies, guided by an understanding of the mechanisms that underlie normal and abnormal oligodendrocyte development and myelin formation, are required. Much of our knowledge of the mechanisms that underlie impaired myelination come from studies in adult demyelinating disease, preterm brain injury, or experimental models of hypoxia-ischemia. However, relatively less is known for IUGR which is surprising because IUGR is a leading cause of perinatal mortality and morbidity, second only to premature birth. IUGR is also a significant risk factor for the later development of cerebral palsy, and is a greater risk compared to some of the more traditionally researched antecedents - asphyxia and inflammation. Recent evidence suggests that the white matter injury and reduced myelination in the brains of some preterm babies is due to impaired maturation of oligodendrocytes thereby resulting in the reduced capacity to synthesize myelin. Therefore, it is not surprising that the hypomyelination observable in the central nervous system of IUGR infants has similarly lead to investigations identifying a delay or blockade in the progress of maturation of oligodendrocytes in these infants. This review will discuss current ideas thought to account for the poor myelination often present in the neonate's brain following IUGR, and discuss novel interventions that are promising as treatments that promote oligodendrocyte maturation, and thereby repair the myelination deficits that otherwise persist into infancy and childhood and lead to neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia.
| | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Flora Wong
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia; Monash Newborn and Monash University, Clayton, Victoria, 3168, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Aminath Azhan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
| | - Ben Emery
- Oregon Health and Science University, Portland, OR, 97239-3098, USA
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
29
|
Yuan Q, Bu XY, Yan ZY, Liu XZ, Wei ZY, Ma CX, Qu MQ. Combination of endogenous neural stem cell mobilization and lithium chloride treatment for hydrocephalus following intraventricular hemorrhage. Exp Ther Med 2016; 12:3275-3281. [PMID: 27882149 PMCID: PMC5103777 DOI: 10.3892/etm.2016.3778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/16/2016] [Indexed: 01/04/2023] Open
Abstract
As there are multiple factors causing hydrocephalus subsequent to intraventricular hemorrhage (IVH), it is difficult to achieve the best treatment effect using a single drug alone. In the present study, the protective effect of combination treatment with granulocyte-colony stimulating factor (G-CSF) and lithium chloride against hydrocephalus after IVH was investigated. A total of 130 adult male Sprague-Dawley rats were divided into five groups, including the IVH control, G-CSF treatment, lithium chloride treatment, combination treatment and sham surgery groups. An IVH rat model was established in order to examine the effect of combination treatment on hydrocephalus incidence. A TUNEL assay was performed to detect neuronal apoptosis in the five groups. In addition, the protein expression levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were detected by western blot analysis. The differentiation of nerve cells in the brain tissue obtained from the five rat groups was also determined with double immunofluorescence staining. The results demonstrated that administration of G-CSF or lithium chloride alone was able to only partly relieve the incidence of hydrocephalus after IVH. By contrast, combination treatment with G-CSF and lithium chloride significantly attenuated the development of hydrocephalus following IVH. TUNEL assay showed that neuronal apoptosis was significantly reduced by the combination treatment with G-CSF and lithium chloride. Furthermore, the expression of Bcl-2 was upregulated, whereas Bax expression was downregulated in the combination treatment group. The results also detected the highest expression of BrdU/GFAP, BrdU/NeuN and BrdU/PSA-NCAM in the combination treatment group. In conclusion, the combination of endogenous neural stem cell mobilization (using G-CSF) and lithium chloride treatment resulted in highly reduced incidence of hydrocephalus after IVH by inhibiting neuronal apoptosis.
Collapse
Affiliation(s)
- Qiang Yuan
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Xing-Yao Bu
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Zhao-Yue Yan
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Xian-Zhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Zhen-Yu Wei
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Chun-Xiao Ma
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Ming-Qi Qu
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
30
|
Low Tri-Iodothyronine Syndrome in Neurosurgical Patients: A Systematic Review of Literature. World Neurosurg 2016; 95:197-207. [DOI: 10.1016/j.wneu.2016.07.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022]
|
31
|
Chew LJ, DeBoy CA. Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology. Neuropharmacology 2016; 110:605-625. [PMID: 26116759 PMCID: PMC4690794 DOI: 10.1016/j.neuropharm.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
White matter disease afflicts both developing and mature central nervous systems. Both cell intrinsic and extrinsic dysregulation result in profound changes in cell survival, axonal metabolism and functional performance. Experimental models of developmental white matter (WM) injury and demyelination have not only delineated mechanisms of signaling and inflammation, but have also paved the way for the discovery of pharmacological approaches to intervention. These reagents have been shown to enhance protection of the mature oligodendrocyte cell, accelerate progenitor cell recruitment and/or differentiation, or attenuate pathological stimuli arising from the inflammatory response to injury. Here we highlight reports of studies in the CNS in which compounds, namely peptides, hormones, and small molecule agonists/antagonists, have been used in experimental animal models of demyelination and neonatal brain injury that affect aspects of excitotoxicity, oligodendrocyte development and survival, and progenitor cell function, and which have been demonstrated to attenuate damage and improve WM protection in experimental models of injury. The molecular targets of these agents include growth factor and neurotransmitter receptors, morphogens and their signaling components, nuclear receptors, as well as the processes of iron transport and actin binding. By surveying the current evidence in non-immune targets of both the immature and mature WM, we aim to better understand pharmacological approaches modulating endogenous oligodendroglia that show potential for success in the contexts of developmental and adult WM pathology. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, USA
| |
Collapse
|
32
|
Howells FM, Donald KA, Roos A, Woods RP, Zar HJ, Narr KL, Stein DJ. Reduced glutamate in white matter of male neonates exposed to alcohol in utero: a (1)H-magnetic resonance spectroscopy study. Metab Brain Dis 2016; 31:1105-12. [PMID: 27311608 PMCID: PMC6465962 DOI: 10.1007/s11011-016-9850-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
Abstract
In utero exposure to alcohol leads to a spectrum of fetal alcohol related disorders (FASD). However, few studies used have used proton magnetic resonance spectroscopy ((1)H-MRS) to understand how neurochemical disturbances relate to the pathophysiology of FASD. Further, no studies to date have assessed brain metabolites in infants exposed to alcohol in utero. We hypothesize that neonates exposed to alcohol in utero will show decreased glutamatergic activity, pre-emptive of their clinical diagnosis or behavioural phenotype. Single voxel (1)H-MRS data, sampled in parietal white and gray matter, were acquired from 36 neonates exposed to alcohol in utero, and 31 control unexposed healthy neonates, in their 2nd-4th week of life. Metabolites relative to creatine with phosophocreatine and metabolites absolute concentrations using a water reference are reported. Male infants exposed to alcohol in utero were found to have reduced concentration of glutamate with glutamine (Glx) in their parietal white matter (PWM), compared to healthy male infants (p = 0.02). Further, male infants exposed to alcohol in utero had reduced concentration and ratio for glutamate (Glu) in their PWM (p = 0.02), compared to healthy male infants and female infants exposed to alcohol in utero. Female infants showed higher relative Glx and Glu ratios for parietal gray matter (PGM, p < 0.01), compared to male infants. We speculate that the decreased Glx and Glu concentrations in PWM are a result of delayed oligodendrocyte maturation, which may be a result of dysfunctional thyroid hormone activity in males exposed to alcohol in utero. Further study is required to elucidate the relationship between Glx and Glu, thyroid hormone activity, and oligodendrocyte maturation in infants exposure to alcohol in utero.
Collapse
Affiliation(s)
- F M Howells
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.
| | - K A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa
| | - A Roos
- Medical Research Council Anxiety and Stress Disorders Unit, University of Stellenbosch, Stellenbosch, South Africa
| | - R P Woods
- Departments of Neurology and of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - H J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa
| | - K L Narr
- Departments of Neurology and of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - D J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
33
|
AMPA-Kainate Receptor Inhibition Promotes Neurologic Recovery in Premature Rabbits with Intraventricular Hemorrhage. J Neurosci 2016; 36:3363-77. [PMID: 26985043 DOI: 10.1523/jneurosci.4329-15.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Intraventricular hemorrhage (IVH) in preterm infants leads to cerebral inflammation, reduced myelination of the white matter, and neurological deficits. No therapeutic strategy exists against the IVH-induced white matter injury. AMPA-kainate receptor induced excitotoxicity contributes to oligodendrocyte precursor cell (OPC) damage and hypomyelination in both neonatal and adult models of brain injury. Here, we hypothesized that IVH damages white matter via AMPA receptor activation, and that AMPA-kainate receptor inhibition suppresses inflammation and restores OPC maturation, myelination, and neurologic recovery in preterm newborns with IVH. We tested these hypotheses in a rabbit model of glycerol-induced IVH and evaluated the expression of AMPA receptors in autopsy samples from human preterm infants. GluR1-GluR4 expressions were comparable between preterm humans and rabbits with and without IVH. However, GluR1 and GluR2 levels were significantly lower in the embryonic white matter and germinal matrix relative to the neocortex in both infants with and without IVH. Pharmacological blockade of AMPA-kainate receptors with systemic NBQX, or selective AMPA receptor inhibition by intramuscular perampanel restored myelination and neurologic recovery in rabbits with IVH. NBQX administration also reduced the population of apoptotic OPCs, levels of several cytokines (TNFα, IL-β, IL-6, LIF), and the density of Iba1(+) microglia in pups with IVH. Additionally, NBQX treatment inhibited STAT-3 phosphorylation, but not astrogliosis or transcription factors regulating gliosis. Our data suggest that AMPA-kainate receptor inhibition alleviates OPC loss and IVH-induced inflammation and restores myelination and neurologic recovery in preterm rabbits with IVH. Therapeutic use of FDA-approved perampanel treatment might enhance neurologic outcome in premature infants with IVH. SIGNIFICANCE STATEMENT Intraventricular hemorrhage (IVH) is a major complication of prematurity and a large number of survivors with IVH develop cerebral palsy and cognitive deficits. The development of IVH leads to inflammation of the periventricular white matter, apoptosis and arrested maturation of oligodendrocyte precursor cells, and hypomyelination. Here, we show that AMPA-kainate receptor inhibition by NBQX suppresses inflammation, attenuates apoptosis of oligodendrocyte precursor cells, and promotes myelination as well as clinical recovery in preterm rabbits with IVH. Importantly, AMPA-specific inhibition by the FDA-approved perampanel, which unlike NBQX has a low side-effect profile, also enhances myelination and neurological recovery in rabbits with IVH. Hence, the present study highlights the role of AMPA-kainate receptor in IVH-induced white matter injury and identifies a novel strategy of neuroprotection, which might improve the neurological outcome for premature infants with IVH.
Collapse
|
34
|
Lee JY, Petratos S. Thyroid Hormone Signaling in Oligodendrocytes: from Extracellular Transport to Intracellular Signal. Mol Neurobiol 2016; 53:6568-6583. [PMID: 27427390 DOI: 10.1007/s12035-016-0013-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/10/2016] [Indexed: 01/24/2023]
Abstract
Thyroid hormone plays an important role in central nervous system (CNS) development, including the myelination of variable axonal calibers. It is well-established that thyroid hormone is required for the terminal differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes by inducing rapid cell-cycle arrest and constant transcription of pro-differentiation genes. This is well supported by the hypomyelinating phenotypes exhibited by patients with congenital hypothyroidism, cretinism. During development, myelinating oligodendrocytes only appear after the formation of neural circuits, indicating that the timing of oligodendrocyte differentiation is important. Since fetal and post-natal serum thyroid hormone levels peak at the stage of active myelination, it is suspected that the timing of oligodendrocyte development is finely controlled by thyroid hormone. The essential machinery for thyroid hormone signaling such as deiodinase activity (utilized by cells to auto-regulate the level of thyroid hormone), and nuclear thyroid hormone receptors (for gene transcription) are expressed on oligodendrocytes. In this review, we discuss the known and potential thyroid hormone signaling pathways that may regulate oligodendrocyte development and CNS myelination. Moreover, we evaluate the potential of targeting thyroid hormone signaling for white matter injury or disease.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia.,ToolGen, Inc., #1204, Byucksan Digital Valley 6-cha, Seoul, South Korea
| | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia.
| |
Collapse
|
35
|
Fernández M, Baldassarro VA, Sivilia S, Giardino L, Calzà L. Inflammation severely alters thyroid hormone signaling in the central nervous system during experimental allergic encephalomyelitis in rat: Direct impact on OPCs differentiation failure. Glia 2016; 64:1573-89. [PMID: 27404574 DOI: 10.1002/glia.23025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 01/01/2023]
Abstract
Differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes is severely impaired by inflammatory cytokines and this could lead to remyelination failure in inflammatory/demyelinating diseases. Due to the role of thyroid hormone in the maturation of OPCs and developmental myelination, in this study we investigated (i) the possible occurrence of dysregulation of thyroid hormone signaling in the CNS tissue during experimental neuroinflammation; (ii) the possible impact of inflammatory cytokines on thyroid hormone signaling and OPCs differentiation in vitro. The disease model is the experimental allergic encephalomyelitis in female Dark-Agouti rats, whereas in vitro experiments were carried out in OPCs derived from neural stem cells. The main results are the following: (i) a strong upregulation of cytokine mRNA expression level was found in the spinal cord during experimental allergic encephalomyelitis; (ii) thyroid hormone signaling in the spinal cord (thyroid hormone receptors; deiodinase; thyroid hormone membrane transporter) is substantially downregulated, due to the upregulation of the thyroid hormone inactivating enzyme deiodinase 3 and the downregulation of thyroid hormone receptors, as investigated at mRNA expression level; (iii) when exposed to inflammatory cytokines, deiodinase 3 is upregulated in OPCs as well, and OPCs differentiation is blocked; (iv) deiodinase 3 inhibition by iopanoic acid recovers OPCs differentiation in the presence on inflammatory cytokines. These data suggest that cellular hypothyroidism occurs during experimental allergic encephalomyelitis, possibly impacting on thyroid hormone-dependent cellular processes, including maturation of OPCs into myelinating oligodendrocytes. GLIA 2016;64:1573-1589.
Collapse
Affiliation(s)
- Mercedes Fernández
- Health Science and Technology Interdepartmental Center for Industrial Research, University of Bologna, Bologna, Italy
| | - Vito A Baldassarro
- Health Science and Technology Interdepartmental Center for Industrial Research, University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sandra Sivilia
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.,IRET Foundation, Ozzano Emilia, Bologna, Italy
| | - Laura Calzà
- Health Science and Technology Interdepartmental Center for Industrial Research, University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,IRET Foundation, Ozzano Emilia, Bologna, Italy
| |
Collapse
|
36
|
P2X7 Receptor Suppression Preserves Blood-Brain Barrier through Inhibiting RhoA Activation after Experimental Intracerebral Hemorrhage in Rats. Sci Rep 2016; 6:23286. [PMID: 26980524 PMCID: PMC4793194 DOI: 10.1038/srep23286] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/03/2016] [Indexed: 02/01/2023] Open
Abstract
Blockading P2X7 receptor(P2X7R) provides neuroprotection toward various neurological disorders, including stroke, traumatic brain injury, and subarachnoid hemorrhage. However, whether and how P2X7 receptor suppression protects blood-brain barrier(BBB) after intracerebral hemorrhage(ICH) remains unexplored. In present study, intrastriatal autologous-blood injection was used to mimic ICH in rats. Selective P2X7R inhibitor A438079, P2X7R agonist BzATP, and P2X7R siRNA were administrated to evaluate the effects of P2X7R suppression. Selective RhoA inhibitor C3 transferase was administered to clarify the involvement of RhoA. Post-assessments, including neurological deficits, Fluoro-Jade C staining, brain edema, Evans blue extravasation and fluorescence, western blot, RhoA activity assay and immunohistochemistry were performed. Then the key results were verified in collagenase induced ICH model. We found that endogenous P2X7R increased at 3 hrs after ICH with peak at 24 hrs, then returned to normal at 72 hrs after ICH. Enhanced immunoreactivity was observed on the neurovascular structure around hematoma at 24 hrs after ICH, along with perivascular astrocytes and endothelial cells. Both A438079 and P2X7R siRNA alleviated neurological deficits, brain edema, and BBB disruption after ICH, in association with RhoA activation and down-regulated endothelial junction proteins. However, BzATP abolished those effects. In addition, C3 transferase reduced brain injury and increased endothelial junction proteins’ expression after ICH. These data indicated P2X7R suppression could preserve BBB integrity after ICH through inhibiting RhoA activation.
Collapse
|
37
|
van Tilborg E, Heijnen CJ, Benders MJ, van Bel F, Fleiss B, Gressens P, Nijboer CH. Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets. Prog Neurobiol 2015; 136:28-49. [PMID: 26655283 DOI: 10.1016/j.pneurobio.2015.11.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022]
Abstract
Preterm birth is an evolving challenge in neonatal health care. Despite declining mortality rates among extremely premature neonates, morbidity rates remain very high. Currently, perinatal diffuse white matter injury (WMI) is the most commonly observed type of brain injury in preterm infants and has become an important research area. Diffuse WMI is associated with impaired cognitive, sensory and psychological functioning and is increasingly being recognized as a risk factor for autism-spectrum disorders, ADHD, and other psychological disturbances. No treatment options are currently available for diffuse WMI and the underlying pathophysiological mechanisms are far from being completely understood. Preterm birth is associated with maternal inflammation, perinatal infections and disrupted oxygen supply which can affect the cerebral microenvironment by causing activation of microglia, astrogliosis, excitotoxicity, and oxidative stress. This intricate interplay of events negatively influences oligodendrocyte development, causing arrested oligodendrocyte maturation or oligodendrocyte cell death, which ultimately results in myelination failure in the developing white matter. This review discusses the current state in perinatal WMI research, ranging from a clinical perspective to basic molecular pathophysiology. The complex regulation of oligodendrocyte development in healthy and pathological conditions is described, with a specific focus on signaling cascades that may play a role in WMI. Furthermore, emerging concepts in the field of WMI and issues regarding currently available animal models are put forward. Novel insights into the molecular mechanisms underlying impeded oligodendrocyte maturation in diffuse WMI may aid the development of novel treatment options which are desperately needed to improve the quality-of-life of preterm neonates.
Collapse
Affiliation(s)
- Erik van Tilborg
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manon J Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Bel
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bobbi Fleiss
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Pierre Gressens
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
38
|
Gereben B, McAninch EA, Ribeiro MO, Bianco AC. Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol 2015; 11:642-652. [PMID: 26416219 PMCID: PMC5003781 DOI: 10.1038/nrendo.2015.155] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The coordinated expression and activity of the iodothyronine deiodinases regulate thyroid hormone levels in hypothyroidism. Once heralded as the pathway underpinning adequate thyroid-hormone replacement therapy with levothyroxine, the role of these enzymes has come into question as they have been implicated in both an inability to normalize serum levels of tri-iodothyronine (T3) and the incomplete resolution of hypothyroid symptoms. These observations, some of which were validated in animal models of levothyroxine monotherapy, challenge the paradigm that tissue levels of T3 and thyroid-hormone signalling can be fully restored by administration of levothyroxine alone. The low serum levels of T3 observed among patients receiving levothyroxine monotherapy occur as a consequence of type 2 iodothyronine deiodinase (DIO2) in the hypothalamus being fairly insensitive to ubiquitination. In addition, residual symptoms of hypothyroidism have been linked to a prevalent polymorphism in the DIO2 gene that might be a risk factor for neurodegenerative disease. Here, we discuss how these novel findings underscore the clinical importance of iodothyronine deiodinases in hypothyroidism and how an improved understanding of these enzymes might translate to therapeutic advances in the care of millions of patients with this condition.
Collapse
Affiliation(s)
- Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony Street 43, Budapest H-1083, Hungary
| | - Elizabeth A McAninch
- Division of Endocrinology and Metabolism, Rush University Medical Center, 212 Cohn Building, 1735 West Harrison Street, Chicago, IL 60612, USA
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center for Biological and Health Science, Mackenzie Presbyterian University, Rua da Consolação 930, Building 16, São Paulo, SP 01302, Brazil
| | - Antonio C Bianco
- Division of Endocrinology and Metabolism, Rush University Medical Center, 212 Cohn Building, 1735 West Harrison Street, Chicago, IL 60612, USA
| |
Collapse
|
39
|
Penn AA, Gressens P, Fleiss B, Back SA, Gallo V. Controversies in preterm brain injury. Neurobiol Dis 2015; 92:90-101. [PMID: 26477300 DOI: 10.1016/j.nbd.2015.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/08/2015] [Accepted: 10/14/2015] [Indexed: 01/24/2023] Open
Abstract
In this review, we highlight critical unresolved questions in the etiology and mechanisms causing preterm brain injury. Involvement of neurons, glia, endogenous factors and exogenous exposures is considered. The structural and functional correlates of interrupted development and injury in the premature brain are under active investigation, with the hope that the cellular and molecular mechanisms underlying developmental abnormalities in the human preterm brain can be understood, prevented or repaired.
Collapse
Affiliation(s)
- Anna A Penn
- Fetal Medicine Institute, Neonatology, Center for Neuroscience Research, Children's National Medical Center, George Washington University School of Medicine, Washington, DC, USA.
| | - Pierre Gressens
- Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; Centre for the Developing Brain, King's College, St Thomas' Campus, London, UK
| | - Bobbi Fleiss
- Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; Centre for the Developing Brain, King's College, St Thomas' Campus, London, UK
| | - Stephen A Back
- Departments of Pediatrics and Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Medical Center, George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
40
|
Thyroid Hormone Potentially Benefits Multiple Sclerosis via Facilitating Remyelination. Mol Neurobiol 2015; 53:4406-16. [PMID: 26243185 DOI: 10.1007/s12035-015-9375-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/22/2015] [Indexed: 01/23/2023]
Abstract
Myelin destruction due to inflammatory damage of oligodendrocytes (OLs) in conjunction with axonal degeneration is one of the major histopathological hallmarks of multiple sclerosis (MS), a common autoimmune disorder affecting the central nervous system (CNS). Therapies over the last 20 years mainly focus on the immune system and, more specifically, on the modulation of immune cell behavior. It seems to be effective in MS with relapse, while it is of little benefit to progressive MS in which neurodegeneration following demyelination outweighs inflammation. Otherwise, remyelination, as a result of oligodendrocyte production from oligodendrocyte precursor cells (OPCs), is considered to be a potential target for the treatment of progressive MS. In this review, positive effects of remyelination on MS will be discussed in view of the critical role played by thyroid hormone (TH), focusing on the following points: (1) promising treatment of TH on MS that potentially targets to remyelination; (2) the active role of TH that is able to promote remyelination; (3) the regulative role of TH that works on endogenous stem and precursor cells; (4) the effect of TH on gene transcription; and (5) a working hypothesis which is developed that TH can alleviate MS by promoting remyelination, and the mechanism of which is its regulative role in gene transcription of OPCs.
Collapse
|
41
|
Li Q, Tsuneki M, Krauthammer M, Couture R, Schwartz M, Madri JA. Modulation of Sox10, HIF-1α, Survivin, and YAP by Minocycline in the Treatment of Neurodevelopmental Handicaps following Hypoxic Insult. THE AMERICAN JOURNAL OF PATHOLOGY 2015. [PMID: 26209807 DOI: 10.1016/j.ajpath.2015.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Premature infants are at an increased risk of developing cognitive and motor handicaps due to chronic hypoxia. Although the current therapies have reduced the incidence of these handicaps, untoward side effects abound. Using a murine model of sublethal hypoxia, we demonstrated reduction in several transcription factors that modulate expression of genes known to be involved in several neural functions. We demonstrate the induction of these genes by minocycline, a tetracycline antibiotic with noncanonical functions, in both in vitro and in vivo studies. Specifically, there was induction of genes, including Sox10, Hif1a, Hif2a, Birc5, Yap1, Epo, Bdnf, Notch1 (cleaved), Pcna, Mag, Mobp, Plp1, synapsin, Adgra2, Pecam1, and reduction in activation of caspase 3, all known to affect proliferation, apoptosis, synaptic transmission, and nerve transmission. Minocycline treatment of mouse pups reared under sublethal hypoxic conditions resulted in improvement in open field testing parameters. These studies demonstrate beneficial effects of minocycline treatment following hypoxic insult, document up-regulation of several genes associated with improved cognitive function, and support the possibility of minocycline as a potential therapeutic target in the treatment of neurodevelopmental handicaps observed in the very premature newborn population. Additionally, these studies may aid in further interpretation of the effects of minocycline in the treatment trials and animal model studies of fragile X syndrome and multiple sclerosis.
Collapse
Affiliation(s)
- Qi Li
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Masayuki Tsuneki
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; Division of Cancer Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Michael Krauthammer
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Rachael Couture
- Department Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Michael Schwartz
- Department Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Joseph A Madri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
42
|
Calzà L, Fernández M, Giardino L. Role of the Thyroid System in Myelination and Neural Connectivity. Compr Physiol 2015; 5:1405-21. [DOI: 10.1002/cphy.c140035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Noda M. Possible role of glial cells in the relationship between thyroid dysfunction and mental disorders. Front Cell Neurosci 2015; 9:194. [PMID: 26089777 PMCID: PMC4452882 DOI: 10.3389/fncel.2015.00194] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022] Open
Abstract
It is widely accepted that there is a close relationship between the endocrine system and the central nervous system (CNS). Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the development and function of the CNS; not only for neuronal cells but also for glial development and differentiation. Any impairment of TH supply to the developing CNS causes severe and irreversible changes in the overall architecture and function of the human brain, leading to various neurological dysfunctions. In the adult brain, impairment of THs, such as hypothyroidism and hyperthyroidism, can cause psychiatric disorders such as schizophrenia, bipolar disorder, anxiety and depression. Although impact of hypothyroidism on synaptic transmission and plasticity is known, its effect on glial cells and related cellular mechanisms remain enigmatic. This mini-review article summarizes how THs are transported into the brain, metabolized in astrocytes and affect microglia and oligodendrocytes, demonstrating an example of glioendocrine system. Neuroglial effects may help to understand physiological and/or pathophysiological functions of THs in the CNS and how hypo- and hyper-thyroidism may cause mental disorders.
Collapse
Affiliation(s)
- Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka, Japan
| |
Collapse
|
44
|
Yang F, Wang Z, Zhang JH, Tang J, Liu X, Tan L, Huang QY, Feng H. Receptor for Advanced Glycation End-Product Antagonist Reduces Blood–Brain Barrier Damage After Intracerebral Hemorrhage. Stroke 2015; 46:1328-36. [DOI: 10.1161/strokeaha.114.008336] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/18/2015] [Indexed: 01/03/2023]
Abstract
Background and Purpose—
To determine whether the receptor for advanced glycation end-products (RAGE) plays a role in early brain injury from intracerebral hemorrhage (ICH), RAGE expression and activation after injury were examined in a rat model of ICH with or without administration of a RAGE-specific antagonist (FPS-ZM1).
Methods—
Autologous arterial blood was injected into the basal ganglia of rats to induce ICH. The motor function of the rats was examined, and water content was detected after euthanization. Blood–brain barrier permeability was determined by Evans blue staining and colloidal gold nanoparticle tracers. Nerve fiber injury in white matter was determined by diffusion tensor imaging analysis, and the expression of target genes was analyzed by Western blotting and quantitative reverse transcription polymerase chain reaction. FPS-ZM1 was administered by intraperitoneal injection.
Results—
Expression of RAGE and its ligand high-mobility group protein B1 were increased at 12 hours after ICH, along with blood–brain barrier permeability and perihematomal nerve fiber injury. RAGE and nuclear factor-κB p65 upregulation were also observed when FeCl
2
was infused into the basal ganglia at 24 hours. FPS-ZM1 administration resulted in significant improvements of blood–brain barrier damage, brain edema, motor dysfunction, and nerve fiber injury, and the expression of RAGE, nuclear factor-κB p65, proinflammatory mediators interleukin 1β, interleukin-6, interleukin-8R, cyclooxygenase-2, inducible nitric oxide synthase, and matrix metallopeptidase-9 was attenuated. Moreover, decreases in claudin-5 and occludin expression were partially recovered. FPS-ZM1 also reversed FeCl
2
-induced RAGE and nuclear factor-κB p65 upregulation.
Conclusions—
RAGE signaling is involved in blood–brain barrier and white matter fiber damage after ICH, the initiation of which is associated with iron. RAGE antagonists represent a novel therapeutic intervention to prevent early brain injury after ICH.
Collapse
Affiliation(s)
- Fan Yang
- From the Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine (F.Y., Q.-Y.H.), Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital (Z.W., X.L., L.T., H.F.), Third Military Medical University, Chongqing, China; and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA (J.H.Z., J.T.)
| | - Zhe Wang
- From the Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine (F.Y., Q.-Y.H.), Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital (Z.W., X.L., L.T., H.F.), Third Military Medical University, Chongqing, China; and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA (J.H.Z., J.T.)
| | - John H. Zhang
- From the Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine (F.Y., Q.-Y.H.), Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital (Z.W., X.L., L.T., H.F.), Third Military Medical University, Chongqing, China; and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA (J.H.Z., J.T.)
| | - Jiping Tang
- From the Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine (F.Y., Q.-Y.H.), Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital (Z.W., X.L., L.T., H.F.), Third Military Medical University, Chongqing, China; and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA (J.H.Z., J.T.)
| | - Xin Liu
- From the Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine (F.Y., Q.-Y.H.), Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital (Z.W., X.L., L.T., H.F.), Third Military Medical University, Chongqing, China; and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA (J.H.Z., J.T.)
| | - Liang Tan
- From the Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine (F.Y., Q.-Y.H.), Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital (Z.W., X.L., L.T., H.F.), Third Military Medical University, Chongqing, China; and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA (J.H.Z., J.T.)
| | - Qing-Yuan Huang
- From the Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine (F.Y., Q.-Y.H.), Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital (Z.W., X.L., L.T., H.F.), Third Military Medical University, Chongqing, China; and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA (J.H.Z., J.T.)
| | - Hua Feng
- From the Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine (F.Y., Q.-Y.H.), Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital (Z.W., X.L., L.T., H.F.), Third Military Medical University, Chongqing, China; and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA (J.H.Z., J.T.)
| |
Collapse
|
45
|
Bunevicius A, Iervasi G, Bunevicius R. Neuroprotective actions of thyroid hormones and low-T3 syndrome as a biomarker in acute cerebrovascular disorders. Expert Rev Neurother 2015; 15:315-26. [DOI: 10.1586/14737175.2015.1013465] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Zhang M, Zhan XL, Ma ZY, Chen XS, Cai QY, Yao ZX. Thyroid hormone alleviates demyelination induced by cuprizone through its role in remyelination during the remission period. Exp Biol Med (Maywood) 2015; 240:1183-96. [PMID: 25577802 DOI: 10.1177/1535370214565975] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/12/2014] [Indexed: 01/09/2023] Open
Abstract
Multiple sclerosis (MS) is a disease induced by demyelination in the central nervous system, and the remission period of MS is crucial for remyelination. In addition, abnormal levels of thyroid hormone (TH) have been identified in MS. However, in the clinic, insufficient attention has been paid to the role of TH in the remission period. Indeed, TH not only functions in the development of the brain but also affects myelination. Therefore, it is necessary to observe the effect of TH on remyelination during this period. A model of demyelination induced by cuprizone (CPZ) was used to observe the function of TH in remyelination during the remission period of MS. Through weighing and behavioral tests, we found that TH improved the physical symptoms of mice impaired by CPZ. Supplementation of TH led to the repair of myelin as detected by immunohistochemistry and western blot. In addition, a sufficient TH supply resulted in an increase in myelinated axons without affecting myelin thickness and g ratio in the corpus callosum, as detected by electron microscopy. Double immunostaining with myelin basic protein and neurofilament 200 (NF200) showed that the CPZ-induced impairment of axons was alleviated by TH. Conversely, insufficient TH induced by 6-propyl-2-thiouracil resulted in the enlargement of mitochondria. Furthermore, we found that an adequate supply of TH promoted the proliferation and differentiation of oligodendrocyte lineage cells by immunofluorescence, which was beneficial to remyelination. Further, we found that TH reduced the number of astrocytes without affecting microglia. Conclusively, it was shown that TH alleviated demyelination induced by CPZ by promoting the development of oligodendrocyte lineage cells and remyelination. The critical time for remyelination is the remission period of MS. TH plays a significant role in alleviating demyelination during the remission period in the clinical treatment of MS.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Xiao L Zhan
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Zi Y Ma
- Battalion 14 of Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | - Xing S Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Qi Y Cai
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Zhong X Yao
- Department of Physiology, Third Military Medical University, Chongqing 400038, China Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
47
|
Pantos C, Mourouzis I. Translating thyroid hormone effects into clinical practice: the relevance of thyroid hormone receptor α1 in cardiac repair. Heart Fail Rev 2014; 20:273-82. [DOI: 10.1007/s10741-014-9465-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Ballabh P, LaGamma EF. Strategies for working with a preterm rabbit model of glycerol-induced intraventricular hemorrhage: strengths and limitations. Pediatr Res 2014; 76:495-6. [PMID: 25105256 DOI: 10.1038/pr.2014.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/23/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Praveen Ballabh
- Department of Pediatrics, Cell Biology and Anatomy, New York Medical College-Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, New York
| | - Edmund F LaGamma
- Department of Pediatrics, Biochemistry and Molecular Biology, New York Medical College-Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, New York
| |
Collapse
|
49
|
Gallo V, Deneen B. Glial development: the crossroads of regeneration and repair in the CNS. Neuron 2014; 83:283-308. [PMID: 25033178 DOI: 10.1016/j.neuron.2014.06.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 02/07/2023]
Abstract
Given the complexities of the mammalian CNS, its regeneration is viewed as the holy grail of regenerative medicine. Extraordinary efforts have been made to understand developmental neurogenesis, with the hopes of clinically applying this knowledge. CNS regeneration also involves glia, which comprises at least 50% of the cellular constituency of the brain and is involved in all forms of injury and disease response, recovery, and regeneration. Recent developmental studies have given us unprecedented insight into the processes that regulate the generation of CNS glia. Because restorative processes often parallel those found in development, we will peer through the lens of developmental gliogenesis to gain a clearer understanding of the processes that underlie glial regeneration under pathological conditions. Specifically, this review will focus on key signaling pathways that regulate astrocyte and oligodendrocyte development and describe how these mechanisms are reutilized in these populations during regeneration and repair after CNS injury.
Collapse
Affiliation(s)
- Vittorio Gallo
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA.
| | - Benjamin Deneen
- Department of Neuroscience and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
50
|
Lourbopoulos A, Mourouzis I, Karapanayiotides T, Nousiopoulou E, Chatzigeorgiou S, Mavridis T, Kokkinakis I, Touloumi O, Irinopoulou T, Chouliaras K, Pantos C, Karacostas D, Grigoriadis N. Changes in thyroid hormone receptors after permanent cerebral ischemia in male rats. J Mol Neurosci 2014; 54:78-91. [PMID: 24577884 DOI: 10.1007/s12031-014-0253-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/04/2014] [Indexed: 11/25/2022]
Abstract
Thyroid hormones (TH) and receptors (TRs) may play an important role in the pathophysiology of acute cerebral ischemia. In the present study, we sought to determine whether serum triodothyronine (T3)/thyroxine (T4) and brain TRs (TRα1, TRβ1) might change after experimental stroke. Male adult Wistar rats were subjected to permanent middle cerebral artery occlusion (group P) and compared to sham-operated controls (group S). Animals were followed clinically for 14 days until brain collection for Western blot (WB) or neuropathological analysis of TRs in three different brain areas (infarcted tissue, E1; noninfarcted ipsilateral hemisphere, E2; and contralateral hemisphere, E3). Analysis of serum TH levels showed a reduction of T4 in group P (p = 0.002) at days 2 to 14, while half of the animals also displayed "low T3" values (p = 0.012) on day 14. This T4 reduction was inversely correlated to the clinical severity of stroke and the concomitant body weight loss (p < 0.005). WB analysis of TRα1 and TRβ1 protein expression showed heterogenic responses at day 14: total and nuclear TRα1 were similar between the two groups, while total TRβ1 decreased 7.5-fold within E1 (p ≤ 0.001) with a concomitant 1.8-fold increase of nuclear TRβ1 in E2 area (p = 0.03); TRβ1 expression did not differ in E3. Neuropathological analysis revealed that activated macrophages/microglia exclusively expressed nuclear TRα1 within the infarct core. Astrocytes mildly expressed nuclear TRα1 in and around the infarct, along with a prominent TRβ nuclear signal restricted in the astrocytic scar. Neurons around the infarct expressed mainly TRα1 and, to a milder degree, TRβ. Surprisingly enough, we detected for the first time a TRβ expression in the paranodal region of Ranvier nodes, of unknown significance so far. Our data support that cerebral ischemia induces a low TH response, associated with significant and heterogenic changes in brain TR expression. These findings could imply an important role of TH signaling in cerebral ischemia.
Collapse
Affiliation(s)
- Athanasios Lourbopoulos
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Stilponos Kiriakides str. 1, 54636, Thessaloniki, Macedonia, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|