1
|
Zhang Q, Liu Y, Jiang L, Yang D. Modified Xiao-Qing-Long-decoction prevents inflammation and promotes Nur77 expression in mice with acute respiratory distress syndrome by inhibiting HDAC7 expression. PHARMACEUTICAL BIOLOGY 2025; 63:110-117. [PMID: 39902793 PMCID: PMC11795767 DOI: 10.1080/13880209.2025.2459247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/10/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
CONTEXT Modified Xiao-Qing-Long-decoction (MXQLD) is believed to have the potential to alleviate lung diseases. OBJECTIVE We explored the effects and mechanisms of MXQLD in acute respiratory distress syndrome (ARDS). MATERIALS AND METHODS Thirty male C57BL/6 mice were randomized into sham (distilled water), model (distilled water), MXQLD (1 g/kg MXQLD), DEX (distilled water + 0.7 mg/kg dexamethasone), MXQLD + oe-HDAC7 (HDAC7 over-expression + 1 g/kg MXQLD) groups. Except for HDAC7 over-expression on day 0 and dexamethasone injection on day 12, all treatments were administered every two days from day 0 to day 10. On day 12, except for the sham group, all mice underwent cecal ligation and puncture surgery to establish ARDS models. After surgery, pulmonary functions, protein concentration of bronchoalveolar lavage fluid (BALF) and lung tissue morphology in mice were detected. Furthermore, pro-inflammatory cytokine concentrations (IL-6, IL-1β, and TNF-α) in BALF supernatant and serum were quantified. Additionally, HDAC7, Nur77, ZO-1, occludin, and claudin protein expressions were detected. RESULTS MXQLD treatment improved pulmonary functions and alleviated lung injury for ARDS mice. Furthermore, MXQLD treatment decreased protein concentration in BALF, and inhibited pro-inflammatory cytokine release in BALF supernatant and serum for ARDS mice. Additionally, MXQLD treatment down-regulated HDAC7 expression, but up-regulated Nur77, ZO-1, occludin, and claudin expressions for ARDS mice. Importantly, the preventive effects of MXQLD in ARDS mice were reversed by HDAC7 over-expression. DISCUSSION AND CONCLUSION MXQLD may prevent inflammation and promote Nur77 expression in ARDS by inhibiting HDAC7 expression, indicating that MXQLD may be a promising drug for preventing ARDS.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yafen Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Lu Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Dongdong Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
2
|
Wang Y, Li N, Guan W, Wang D. Controversy and multiple roles of the solitary nucleus receptor Nur77 in disease and physiology. FASEB J 2025; 39:e70468. [PMID: 40079203 PMCID: PMC11904867 DOI: 10.1096/fj.202402775rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Neuron-derived clone 77 (Nur77), a member of the orphan nuclear receptor family, is expressed and activated rapidly in response to diverse physiological and pathological stimuli. It exerts complex biological functions, including roles in the nervous system, genome integrity, cell differentiation, homeostasis, oxidative stress, autophagy, aging, and infection. Recent studies suggest that Nur77 agonists alleviate symptoms of neurodegenerative diseases, highlighting its potential as a therapeutic target in such conditions. In cancer, Nur77 demonstrates dual roles, acting as both a tumor suppressor and promoter, depending on the cancer type and stage, making it a controversial yet promising anticancer target. This review provides a structured analysis of the functions of Nur77, focusing on its physiological and pathological roles, therapeutic potential, and existing controversies. Emphasis is placed on its emerging applications in neurodegenerative diseases and cancer, offering key insights for future research and clinical translation.
Collapse
Affiliation(s)
- Yanteng Wang
- Department of Gerontology and GeriatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Na Li
- Department of Gerontology and GeriatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Wenwei Guan
- Department of Gerontology and GeriatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Difei Wang
- Department of Gerontology and GeriatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
3
|
Kodikara IK, Pflum MKH. Scaffolding Activities of Pseudodeacetylase HDAC7. ACS Chem Biol 2025; 20:248-258. [PMID: 39908122 PMCID: PMC12051139 DOI: 10.1021/acschembio.4c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Histone deacetylase (HDAC) enzymes remove acetyl groups from acetyllysine-containing proteins, including nucleosomal histones to control gene expression. Beyond fundamental cell biology, HDAC activity is linked to various cancers, with many HDAC inhibitors developed as anticancer therapeutics. Among the 11 metal-dependent HDAC proteins, the four class IIa isoforms (HDAC4, 5, 7, and 9) are "pseudodeacetylases" without measurable enzymatic activity due to mutation of a catalytic tyrosine. Deacetylase-related activities of class IIa HDAC proteins are attributed to scaffolding functions, where recruitment of an active HDAC isoform leads to bound substrate deacetylation. Scaffolding of class IIa proteins beyond simple recruitment of an active HDAC is only starting to emerge. This review explores the various scaffolding roles of HDAC7, including recently reported acetylation-mediated reversible scaffolding, which is a form of acetyllysine-binding reader function. Studying the functional roles of HDAC7 will provide molecular insight into normal and pathological conditions, which could facilitate drug design.
Collapse
Affiliation(s)
- Ishadi K.M. Kodikara
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| | - Mary Kay H. Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| |
Collapse
|
4
|
Helms RS, Marin-Gonzalez A, Patel CH, Sun IH, Wen J, Leone RD, Duvall B, Gao RD, Ha T, Tsukamoto T, Slusher BS, Pomerantz JL, Powell JD. SIKs Regulate HDAC7 Stabilization and Cytokine Recall in Late-Stage T Cell Effector Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1767-1782. [PMID: 37947442 PMCID: PMC10842463 DOI: 10.4049/jimmunol.2300248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Understanding the mechanisms underlying the acquisition and maintenance of effector function during T cell differentiation is important to unraveling how these processes can be dysregulated in the context of disease and manipulated for therapeutic intervention. In this study, we report the identification of a previously unappreciated regulator of murine T cell differentiation through the evaluation of a previously unreported activity of the kinase inhibitor, BioE-1197. Specifically, we demonstrate that liver kinase B1 (LKB1)-mediated activation of salt-inducible kinases epigenetically regulates cytokine recall potential in effector CD8+ and Th1 cells. Evaluation of this phenotype revealed that salt-inducible kinase-mediated phosphorylation-dependent stabilization of histone deacetylase 7 (HDAC7) occurred during late-stage effector differentiation. HDAC7 stabilization increased nuclear HDAC7 levels, which correlated with total and cytokine loci-specific reductions in the activating transcription mark histone 3 lysine 27 acetylation (H3K27Ac). Accordingly, HDAC7 stabilization diminished transcriptional induction of cytokine genes upon restimulation. Inhibition of this pathway during differentiation produced effector T cells epigenetically poised for enhanced cytokine recall. This work identifies a previously unrecognized target for enhancing effector T cell functionality.
Collapse
Affiliation(s)
- Rachel S Helms
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alberto Marin-Gonzalez
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Chirag H Patel
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
- Calico Life Sciences LLC, South San Francisco, CA
| | - Im-Hong Sun
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Jiayu Wen
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Robert D Leone
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Run-Duo Gao
- Johns Hopkins Drug Discovery, Baltimore, MD
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Taekjip Ha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery, Baltimore, MD
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Baltimore, MD
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan D Powell
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
- Calico Life Sciences LLC, South San Francisco, CA
| |
Collapse
|
5
|
Qu Y, Zhou N, Zhang X, Li Y, Xu XF. Chromatin Remodeling Factor SMARCA5 is Essential for Hippocampal Memory Maintenance via Metabolic Pathways in Mice. Neurosci Bull 2023; 39:1087-1104. [PMID: 36807260 PMCID: PMC10313638 DOI: 10.1007/s12264-023-01032-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/27/2022] [Indexed: 02/21/2023] Open
Abstract
Gene transcription and new protein synthesis regulated by epigenetics play integral roles in the formation of new memories. However, as an important part of epigenetics, the function of chromatin remodeling in learning and memory has been less studied. Here, we showed that SMARCA5 (SWI/SNF related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 5), a critical chromatin remodeler, was responsible for hippocampus-dependent memory maintenance and neurogenesis. Using proteomics analysis, we found protein expression changes in the hippocampal dentate gyrus (DG) after the knockdown of SMARCA5 during contextual fear conditioning (CFC) memory maintenance in mice. Moreover, SMARCA5 was revealed to participate in CFC memory maintenance via modulating the proteins of metabolic pathways such as nucleoside diphosphate kinase-3 (NME3) and aminoacylase 1 (ACY1). This work is the first to describe the role of SMARCA5 in memory maintenance and to demonstrate the involvement of metabolic pathways regulated by SMARCA5 in learning and memory.
Collapse
Affiliation(s)
- Yu Qu
- Institute of Neuropsychiatric Diseases, Qingdao University, Qingdao, 266001, China
| | - Nan Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xia Zhang
- Institute of Neuropsychiatric Diseases, Qingdao University, Qingdao, 266001, China
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, K1Z7K4, Canada
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Modern Teaching Technology & College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Xu-Feng Xu
- Institute of Neuropsychiatric Diseases, Qingdao University, Qingdao, 266001, China.
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, K1Z7K4, Canada.
| |
Collapse
|
6
|
Auzmendi-Iriarte J, Moreno-Cugnon L, Saenz-Antoñanzas A, Grassi D, de Pancorbo MM, Arevalo MA, Wood IC, Matheu A. High levels of HDAC expression correlate with microglial aging. Expert Opin Ther Targets 2022; 26:911-922. [PMID: 36503367 DOI: 10.1080/14728222.2022.2158081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cellular damage gradually accumulates with aging, promoting a time-dependent functional decline of the brain. Microglia play an essential regulatory role in maintaining cognitive activity by phagocytosing cell debris and apoptotic cells during neurogenesis. The activities of different histone deacetylases (HDACs) regulate microglial function during development and neurodegeneration. However, no studies have described the role of HDACs in microglia during physiological aging. RESEARCH DESIGN AND METHODS HDAC and microglial marker levels were examined in microglial cells after inducing senescence in vitro and in mouse and human hippocampal biopsies in vivo, using quantitative real-time PCR. Publicly available datasets were used to determine HDAC expression in different brain areas during physiological aging. RESULTS HDAC expression increased upon the induction of senescence with bleomycin or serial passage in microglial cultures. High levels of HDACs were detected in mice and aged human brain samples. Human hippocampal samples showed a positive correlation between the expression of HDAC1, 3, and 7 and microglial and senescence markers. HDAC1 and 3 levels are enriched in the purified aged microglial population. CONCLUSIONS Several HDACs, particularly HDAC1, are elevated in microglia upon senescence induction in vitro and with aging in vivo, and correlate with microglial and senescence biomarkers.
Collapse
Affiliation(s)
| | - Leire Moreno-Cugnon
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | | | - Daniela Grassi
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Madrid, Spain.,Consejo Superior de Investigaciones Científicas (CSIC), Instituto Cajal, Madrid, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country, Vitoria, Spain
| | - Maria-Angeles Arevalo
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto Cajal, Madrid, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain
| | - Ian C Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
7
|
Chromobox homolog 4 overexpression inhibits TNF-α-induced matrix catabolism and senescence by suppressing activation of the NF-κB signaling pathway in nucleus pulposus cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1021-1029. [PMID: 35880565 PMCID: PMC9828005 DOI: 10.3724/abbs.2022063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is featured as enhanced catabolism of extracellular matrix (ECM) in the nucleus pulposus (NP), in which tumor necrosis factor-alpha (TNF-α)-related cell senescence is involved. Chromobox homolog protein 4 (CBX4) exhibits anti-inflammatory effects and shows promising therapeutic potential. Thus, in the present study, we explore the role of CBX4 in IDD. Immunohistochemistry staining reveals that CBX4 expression is decreased in severe degenerative NP tissues compared to mild degenerative tissues, and real-time PCR and western blot analysis results show that CBX4 expression is downregulated under TNF-α stimulation in NP cells. siRNA and adenoviruses are used to knockdown or overexpress CBX4, respectively. The results demonstrate that CBX4 knockdown augments the catabolism of ECM in human NP cells, while CBX4 overexpression in rat NP cells restores the ECM degradation induced by TNF-α, as illustrated by immunofluorescence and western blot analysis. In addition, transcriptome sequencing results reveal the regulatory effect of CBX4 on the cell cycle, and further western blot analysis and senescence-associated β-galactosidase staining assay indicate that CBX4 overexpression alleviates cell senescence in the presence of TNF-α. Moreover, the phosphorylation of p65, which indicates the activation of NF-κB signaling, is measured by western blot analysis and immunofluorescence assay, and the results reveal that CBX4 overexpression reduces the TNF-α-induced increase in the p-p65/p65 ratio. In addition, the effect of CBX4 overexpression in NP cells is suppressed by NF-κB agonist. In summary, our results indicate that CBX4 overexpression can suppress TNF-α-induced matrix catabolism and cell senescence in the NP by inhibiting NF-κB activation. This study may provide new approaches for preventing and treating IDD.
Collapse
|
8
|
Creighton SD, Stefanelli G, Reda A, Zovkic IB. Epigenetic Mechanisms of Learning and Memory: Implications for Aging. Int J Mol Sci 2020; 21:E6918. [PMID: 32967185 PMCID: PMC7554829 DOI: 10.3390/ijms21186918] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
The neuronal epigenome is highly sensitive to external events and its function is vital for producing stable behavioral outcomes, such as the formation of long-lasting memories. The importance of epigenetic regulation in memory is now well established and growing evidence points to altered epigenome function in the aging brain as a contributing factor to age-related memory decline. In this review, we first summarize the typical role of epigenetic factors in memory processing in a healthy young brain, then discuss the aspects of this system that are altered with aging. There is general agreement that many epigenetic marks are modified with aging, but there are still substantial inconsistencies in the precise nature of these changes and their link with memory decline. Here, we discuss the potential source of age-related changes in the epigenome and their implications for therapeutic intervention in age-related cognitive decline.
Collapse
Affiliation(s)
- Samantha D. Creighton
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (S.D.C.); (G.S.)
| | - Gilda Stefanelli
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (S.D.C.); (G.S.)
| | - Anas Reda
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S, Canada;
| | - Iva B. Zovkic
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (S.D.C.); (G.S.)
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S, Canada;
| |
Collapse
|
9
|
Kumar D, Ambasta RK, Kumar P. Ubiquitin biology in neurodegenerative disorders: From impairment to therapeutic strategies. Ageing Res Rev 2020; 61:101078. [PMID: 32407951 DOI: 10.1016/j.arr.2020.101078] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
The abnormal accumulation of neurotoxic proteins is the typical hallmark of various age-related neurodegenerative disorders (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis and Multiple sclerosis. The anomalous proteins, such as Aβ, Tau in Alzheimer's disease and α-synuclein in Parkinson's disease, perturb the neuronal physiology and cellular homeostasis in the brain thereby affecting the millions of human lives across the globe. Here, ubiquitin proteasome system (UPS) plays a decisive role in clearing the toxic metabolites in cells, where any aberrancy is widely reported to exaggerate the neurodegenerative pathologies. In spite of well-advancement in the ubiquitination research, their molecular markers and mechanisms for target-specific protein ubiquitination and clearance remained elusive. Therefore, this review substantiates the role of UPS in the brain signaling and neuronal physiology with their mechanistic role in the NDD's specific pathogenic protein clearance. Moreover, current and future promising therapies are discussed to target UPS-mediated neurodegeneration for better public health.
Collapse
|
10
|
Musaus M, Navabpour S, Jarome TJ. The diversity of linkage-specific polyubiquitin chains and their role in synaptic plasticity and memory formation. Neurobiol Learn Mem 2020; 174:107286. [PMID: 32745599 DOI: 10.1016/j.nlm.2020.107286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Over the last 20 years, a number of studies have provided strong support for protein degradation mediated by the ubiquitin-proteasome system in synaptic plasticity and memory formation. In this system, target substrates become covalently modified by the small protein ubiquitin through a series of enzymatic reactions involving hundreds of different ligases. While some substrates will acquire only a single ubiquitin, most will be marked by multiple ubiquitin modifications, which link together at specific lysine sites or the N-terminal methionine on the previous ubiquitin to form a polyubiquitin chain. There are at least eight known linkage-specific polyubiquitin chains a target protein can acquire, many of which are independent of the proteasome, and these chains can be homogenous, mixed, or branched in nature, all of which result in different functional outcomes and fates for the target substrate. However, as the focus has remained on protein degradation, much remains unknown about the role of these diverse ubiquitin chains in the brain, particularly during activity- and learning-dependent synaptic plasticity. Here, we review the different types and functions of ubiquitin chains and summarize evidence suggesting a role for these diverse ubiquitin modifications in synaptic plasticity and memory formation. We conclude by discussing how technological limitations have limited our ability to identify and elucidate the role of different ubiquitin chains in the brain and speculate on the future directions and implications of understanding linkage-specific ubiquitin modifications in activity- and learning-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Timothy J Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
11
|
Wang J, Ishfaq M, Fan Q, Chen C, Li J. 7-Hydroxycoumarin Attenuates Colistin-Induced Kidney Injury in Mice Through the Decreased Level of Histone Deacetylase 1 and the Activation of Nrf2 Signaling Pathway. Front Pharmacol 2020; 11:1146. [PMID: 32848758 PMCID: PMC7399215 DOI: 10.3389/fphar.2020.01146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/14/2020] [Indexed: 12/29/2022] Open
Abstract
Colistin has been considered as the last line of defense against Gram-negative bacterial infections, however, the potential nephrotoxicity limited its clinical use. 7-Hydroxycoumarin (7-HC) possesses many beneficial pharmacological activities. This study aimed to investigate the nephroprotective effects of 7-HC against colistin-induced kidney injury. In vivo experiments showed that 7-HC alleviated kidney injury induced by colistin, as indicated by lower levels of serum neutrophil gelatinase-associated lipocalin, blood urea nitrogen and creatinine levels. Both in vivo and in vitro results demonstrated that 7-HC alleviated oxidative stress and apoptosis induced by colistin, as shown by decreased malondialdehyde levels, decreased caspase-3 and caspase-9 activities, and increased superoxide dismutase and catalase activities. We also found that colistin significantly induced histone deacetylase (HDAC) 1 expression that deacetylated histone 3 at Lys27 acetylation (H3K27AC) of Nrf2 promoter region and hence inhibiting Nrf2 signaling. 7-HC treatment restored histone acetylation at the Nrf2 promoter region and hence promoted Nrf2 expression. These results suggested that 7-HC alleviates colistin-induced renal injury and this effect was achieved by enhancement of renal antioxidant capacity with the decreased level of HDAC1 and the activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jian Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qianqian Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunli Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
González B, Bernardi A, Torres OV, Jayanthi S, Gomez N, Sosa MH, García‐Rill E, Urbano FJ, Cadet J, Bisagno V. HDAC superfamily promoters acetylation is differentially regulated by modafinil and methamphetamine in the mouse medial prefrontal cortex. Addict Biol 2020; 25:e12737. [PMID: 30811820 DOI: 10.1111/adb.12737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
Dysregulation of histone deacetylases (HDAC) has been proposed as a potential contributor to aberrant transcriptional profiles that can lead to changes in cognitive functions. It is known that METH negatively impacts the prefrontal cortex (PFC) leading to cognitive decline and addiction whereas modafinil enhances cognition and has a low abuse liability. We investigated if modafinil (90 mg/kg) and methamphetmine (METH) (1 mg/kg) may differentially influence the acetylation status of histones 3 and 4 (H3ac and H4ac) at proximal promoters of class I, II, III, and IV HDACs. We found that METH produced broader acetylation effects in comparison with modafinil in the medial PFC. For single dose, METH affected H4ac by increasing its acetylation at class I Hdac1 and class IIb Hdac10, decreasing it at class IIa Hdac4 and Hdac5. Modafinil increased H3ac and decreased H4ac of Hdac7. For mRNA, single-dose METH increased Hdac4 and modafinil increased Hdac7 expression. For repeated treatments (4 d after daily injections over 7 d), we found specific effects only for METH. We found that METH increased H4ac in class IIa Hdac4 and Hdac5 and decreased H3/H4ac at class I Hdac1, Hdac2, and Hdac8. At the mRNA level, repeated METH increased Hdac4 and decreased Hdac2. Class III and IV HDACs were only responsive to repeated treatments, where METH affected the H3/H4ac status of Sirt2, Sirt3, Sirt7, and Hdac11. Our results suggest that HDAC targets linked to the effects of modafinil and METH may be related to the cognitive-enhancing vs cognitive-impairing effects of these psychostimulants.
Collapse
Affiliation(s)
- Betina González
- Instituto de Investigaciones FarmacológicasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Alejandra Bernardi
- Instituto de Investigaciones FarmacológicasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Oscar V. Torres
- Department of Behavioral SciencesSan Diego Mesa College San Diego CA USA
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research BranchNIH/NIDA Intramural Research Program Baltimore MD USA
| | - Natalia Gomez
- Instituto de Investigaciones FarmacológicasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Máximo H. Sosa
- Instituto de Investigaciones FarmacológicasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Edgar García‐Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental SciencesUniversity of Arkansas for Medical Sciences Little Rock AR USA
| | - Francisco J. Urbano
- Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y NeurocienciasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Jean‐Lud Cadet
- Molecular Neuropsychiatry Research BranchNIH/NIDA Intramural Research Program Baltimore MD USA
| | - Verónica Bisagno
- Instituto de Investigaciones FarmacológicasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| |
Collapse
|
13
|
Jiang N, Niu G, Pan YH, Pan W, Zhang MF, Zhang CZ, Shen H. CBX4 transcriptionally suppresses KLF6 via interaction with HDAC1 to exert oncogenic activities in clear cell renal cell carcinoma. EBioMedicine 2020; 53:102692. [PMID: 32113161 PMCID: PMC7044754 DOI: 10.1016/j.ebiom.2020.102692] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
Background Dysregulation of polycomb chromobox (CBX) proteins that mediate epigenetic gene silencing contributes to the progression of human cancers. Yet their roles in clear cell renal cell carcinoma (ccRCC) remain to be explored. Methods The expression of CBX4 and its clinical significance were determined by qRT-PCR, western blot, immunohistochemistry and statistical analyses. The biological function of CBX4 in ccRCC tumor growth and metastasis and the underlying mechanism were investigated using in vitro and in vivo models. Findings CBX4 exerts oncogenic activities in ccRCC via interaction with HDAC1 to transcriptionally suppress tumor suppressor KLF6. CBX4 expression is increased in ccRCC and correlated with poor prognosis in two independent cohorts containing 840 patients. High CBX4 expression is significantly associated with Fuhrman grade and tumor lymph node invasion. CBX4 overexpression promotes tumor growth and metastasis, whereas CBX4 knockdown results in the opposite phenotypes. Mechanistically, CBX4 downregulates KLF6 via repressing the transcriptional activity of its promoter. Further studies show that CBX4 physically binds to HDAC1 to maintain its localization on the KLF6 promoter. Ectopic expression of KLF6 or disruption of CBX4-HDAC1 interaction attenuates CBX4-mediated cell growth and migration. Furthermore, CBX4 depletion markedly enhances the histone deacetylase inhibitor (HDACi)-induced cell apoptosis and suppression of tumor growth. Interpretation Our data suggest CBX4 as an oncogene with prognostic potential in ccRCC. The newly identified CBX4/HDAC1/KLF6 axis may represent a potential therapeutic target for the clinical intervention of ccRCC.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Gang Niu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ying-Hua Pan
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510600, China
| | - Wenwei Pan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mei-Fang Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, China; State Key Laboratory of Oncology in South China, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Chris Zhiyi Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, China; State Key Laboratory of Oncology in South China, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Huimin Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
14
|
Qian W, Yu C, Wang S, Niu A, Shi G, Cheng Y, Xu N, Jin Q, Jing X. Depressive-Like Behaviors Induced by Chronic Social Defeat Stress Are Associated With HDAC7 Reduction in the Nucleus Accumbens. Front Psychiatry 2020; 11:586904. [PMID: 33574772 PMCID: PMC7870706 DOI: 10.3389/fpsyt.2020.586904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Persistent symptoms of depression indicate the adaptive involvement of stable molecules in the brain that may be manifested at the level of chromatin remodeling, such as histone acetylation. Former studies have identified alterations in histone acetylation and deacetylation in several animal models about depression. However, the specific histone deacetylases related with depression are needed to be explored. Here, social avoidance behaviors, anxiety-, and depression-like behaviors were all found in mice suffered from chronic social defeat stress. Moreover, we also discovered that the amount of the class II histone deacetylase, HDAC7 rather than HDAC2, was significantly decreased in the nucleus accumbens of defeated mice, which suggested that HDAC7 might be a crucial histone deacetylase in a chronic social defeat stress model. Our data showed that the depressive-like behaviors induced by chronic social defeat stress were associated with HDAC7 reduction in nucleus accumbens. HDAC7 might be a promising therapeutic target for depression.
Collapse
Affiliation(s)
- Weijun Qian
- Imaging Department, Kaifeng Central Hospital, Kaifeng, China
| | - Chao Yu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuai Wang
- Key Laboratory of Brain Functional Remodeling, Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China
| | - Aijun Niu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangyan Shi
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuancui Cheng
- Department of Obstetrics, The Second Hospital of Shandong University, Jinan, China
| | - Ning Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiangqiang Jin
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xu Jing
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
15
|
Hegde AN, Smith SG. Recent developments in transcriptional and translational regulation underlying long-term synaptic plasticity and memory. ACTA ACUST UNITED AC 2019; 26:307-317. [PMID: 31416904 PMCID: PMC6699410 DOI: 10.1101/lm.048769.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
Formation of long-term synaptic plasticity that underlies long-term memory requires new protein synthesis. Years of research has elucidated some of the transcriptional and translational mechanisms that contribute to the production of new proteins. Early research on transcription focused on the transcription factor cAMP-responsive element binding protein. Since then, other transcription factors, such as the Nuclear Receptor 4 family of proteins that play a role in memory formation and maintenance have been identified. In addition, several studies have revealed details of epigenetic mechanisms consisting of new types of chemical alterations of DNA such as hydroxymethylation, and various histone modifications in long-term synaptic plasticity and memory. Our understanding of translational control critical for memory formation began with the identification of molecules that impinge on the 5′ and 3′ untranslated regions of mRNAs and continued with the appreciation for local translation near synaptic sites. Lately, a role for noncoding RNAs such as microRNAs in regulating translation factors and other molecules critical for memory has been found. This review describes the past research in brief and mainly focuses on the recent work on molecular mechanisms of transcriptional and translational regulation that form the underpinnings of long-term synaptic plasticity and memory.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia 31061, USA
| | - Spencer G Smith
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia 31061, USA
| |
Collapse
|
16
|
Boltz TA, Khuri S, Wuchty S. Promoter conservation in HDACs points to functional implications. BMC Genomics 2019; 20:613. [PMID: 31351464 PMCID: PMC6660948 DOI: 10.1186/s12864-019-5973-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 07/12/2019] [Indexed: 01/05/2023] Open
Abstract
Background Histone deacetylases (HDACs) are the proteins responsible for removing the acetyl group from lysine residues of core histones in chromosomes, a crucial component of gene regulation. Eleven known HDACs exist in humans and most other vertebrates. While the basic function of HDACs has been well characterized and new discoveries are still being made, the transcriptional regulation of their corresponding genes is still poorly understood. Results Here, we conducted a computational analysis of the eleven HDAC promoter sequences in 25 vertebrate species to determine whether transcription factor binding sites (TFBSs) are conserved in HDAC evolution, and if so, whether they provide useful information about HDAC expression and function. Furthermore, we used tissue-specific information of transcription factors to investigate the potential expression patterns of HDACs in different human tissues based on their transcription factor binding sites. We found that the TFBS profiles of most of the HDACs were well conserved in closely related species for all HDAC promoters except HDAC7 and HDAC10. HDAC5 had particularly strong conservation across over half of the species studied, with nearly identical profiles in the primate species. Our comparisons of TFBSs with the tissue specific gene expression profiles of their corresponding TFs showed that most HDACs had the ability to be ubiquitously expressed. A few HDAC promoters exhibited the potential for preferential expression in certain tissues, most notably HDAC11 in gall bladder, while HDAC9 seemed to have less propensity for expression in the nervous system. Conclusions In general, we found evolutionary conservation in HDAC promoters that seems to be more prominent for the ubiquitously expressed HDACs. In turn, when conservation did not follow usual phylogeny, human TFBS patterns indicated possible functional relevance. While we found that HDACs appear to uniformly expressed, we confirm that the functional differences in HDACs may be less a matter of location of activity than a question of which proteins and which acetyl groups they may be acting on. Electronic supplementary material The online version of this article (10.1186/s12864-019-5973-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Toni A Boltz
- Department of Computer Science, University of Miami, Coral Gables, FL, USA.,Present address: University of California, Los Angeles, Los Angeles, CA, USA
| | - Sawsan Khuri
- University of Exeter College of Medicine and Health, Exeter, UK
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Coral Gables, FL, USA. .,Department of Biology, University of Miami, Coral Gables, FL, USA. .,Center of Computational Science, University of Miami, Coral Gables, FL, USA. .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
17
|
Fear conditioning downregulates miR-138 expression in the hippocampus to facilitate the formation of fear memory. Neuroreport 2019; 29:1418-1424. [PMID: 30199441 DOI: 10.1097/wnr.0000000000001129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fear memory is important for the survival of animals and is associated with certain anxiety disorders, such as posttraumatic stress disorder. A thorough understanding of the molecular mechanisms of fear memory, especially associative fear memory, is imperative. MicroRNA-138 (miR-138) is a widely distributed microRNA in the brain and is locally enriched at synaptic sites. The role of miR-138 in the formation of fear memory is still largely unknown. In this study, a contextual fear conditioning (CFC) paradigm, bioinformatic methods, a luciferase assay, real-time PCR and western blot were used to evaluate the detailed effects of miR-138 on fear memory. We found that miR-138 transiently decreased in the dorsal hippocampus (DH) after CFC training. Upregulation or downregulation of miR-138 in the DH with miR-138 agomir or antagomir treatment significantly impaired or enhanced the formation of CFC memory, respectively. Moreover, the effects of miR-138 in the DH on the formation of CFC memory were achieved by changing the expression of the downstream target gene calpain 1 (Capn1). Taken together, both the in-vitro evidence and the in-vivo evidence presented in this study support the involvement of miR-138 in CFC memory formation, at least partly via the regulation of Capn1-mediated synaptic plasticity changes. Therapeutic use of miR-138/Capn1 is promising as an alternative option in the treatment of fear memory-related anxiety disorders.
Collapse
|
18
|
Cadet JL, Patel R, Jayanthi S. Compulsive methamphetamine taking and abstinence in the presence of adverse consequences: Epigenetic and transcriptional consequences in the rat brain. Pharmacol Biochem Behav 2019; 179:98-108. [PMID: 30797763 DOI: 10.1016/j.pbb.2019.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Methamphetamine addiction is characterized by compulsive binges of drug intake despite adverse life consequences. A model of methamphetamine self-administration that includes contingent footshocks to constitute adverse consequences has helped to segregate rats that reduce or stop lever pressing for methamphetamine (sensitive) from those that continue to lever press for the drug (resistant) in the presence of negative outcomes. We have observed differential DNA hydroxymethylation and increased expression of potassium channel mRNAs in the nucleus accumbens of sensitive compared to resistant rats, suggesting a role of these channels in suppressing methamphetamine intake. There were also significant increases in nerve growth factor (NGF) expression and activation of its downstream signaling pathway (NGF-TrkA and p75NTR/MAPK signaling) in only the dorsal striatum of sensitive rats after a month of abstinence. In contrast, oxytocin mRNA expression was increased in only the nucleus accumbens of resistant rats compared to sensitive rats euthanized after that time. These results indicate that footshocks can differentiate two behavioral phenotypes with differential biochemical and epigenetic consequences in the ventral and dorsal striatum.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, USA.
| | - Ravish Patel
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, USA
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
19
|
Affiliation(s)
- Andre Fischer
- Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.
- Department for Systems Medicine and Brain Diseases, German Center for Neurodegenerative Diseases (DZNE) site Göttingen, Göttingen, Germany.
| |
Collapse
|
20
|
Sodium butyrate improves memory and modulates the activity of histone deacetylases in aged rats after the administration of d-galactose. Exp Gerontol 2018; 113:209-217. [DOI: 10.1016/j.exger.2018.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/01/2018] [Accepted: 10/04/2018] [Indexed: 01/31/2023]
|
21
|
Uchida S, Shumyatsky GP. Epigenetic regulation of Fgf1 transcription by CRTC1 and memory enhancement. Brain Res Bull 2018; 141:3-12. [PMID: 29477835 PMCID: PMC6128695 DOI: 10.1016/j.brainresbull.2018.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/30/2018] [Accepted: 02/20/2018] [Indexed: 01/06/2023]
Abstract
Recent evidence demonstrates that epigenetic regulation of gene transcription is critically involved in learning and memory. Here, we discuss the role of histone acetylation and DNA methylation, which are two best understood epigenetic processes in memory processes. More specifically, we focus on learning-strength-dependent changes in chromatin on the fibroblast growth factor 1 (Fgf1) gene and on the molecular events that modulate regulation of Fgf1 transcription, required for memory enhancement, with the specific focus on CREB-regulated transcription coactivator 1 (CRTC1).
Collapse
Affiliation(s)
- Shusaku Uchida
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Gleb P Shumyatsky
- Department of Genetics, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA.
| |
Collapse
|
22
|
Cheng X, Zheng J, Li G, Göbel V, Zhang H. Degradation for better survival? Role of ubiquitination in epithelial morphogenesis. Biol Rev Camb Philos Soc 2018; 93:1438-1460. [PMID: 29493067 DOI: 10.1111/brv.12404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
As a prevalent post-translational modification, ubiquitination is essential for many developmental processes. Once covalently attached to the small and conserved polypeptide ubiquitin (Ub), a substrate protein can be directed to perform specific biological functions via its Ub-modified form. Three sequential catalytic reactions contribute to this process, among which E3 ligases serve to identify target substrates and promote the activated Ub to conjugate to substrate proteins. Ubiquitination has great plasticity, with diverse numbers, topologies and modifications of Ub chains conjugated at different substrate residues adding a layer of complexity that facilitates a huge range of cellular functions. Herein, we highlight key advances in the understanding of ubiquitination in epithelial morphogenesis, with an emphasis on the latest insights into its roles in cellular events involved in polarized epithelial tissue, including cell adhesion, asymmetric localization of polarity determinants and cytoskeletal organization. In addition, the physiological roles of ubiquitination are discussed for typical examples of epithelial morphogenesis, such as lung branching, vascular development and synaptic formation and plasticity. Our increased understanding of ubiquitination in epithelial morphogenesis may provide novel insights into the molecular mechanisms underlying epithelial regeneration and maintenance.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Verena Göbel
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114,, U.S.A
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
23
|
Chen XR, Sun SC, Teng SW, Li L, Bie YF, Yu H, Li DL, Chen ZY, Wang Y. Uhrf2 deletion impairs the formation of hippocampus-dependent memory by changing the structure of the dentate gyrus. Brain Struct Funct 2017; 223:609-618. [DOI: 10.1007/s00429-017-1512-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022]
|