1
|
Luo J, Tang Q, Lin T, Liu J, Wu Z, Zhang X, Zhang X, Jiang J, Wang Y. An optimized method for directed differentiation of hypothalamic neural stem cells in a 3D culture system. Sci Rep 2025; 15:18542. [PMID: 40425660 DOI: 10.1038/s41598-025-02847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Hypothalamic neurogenesis is a complex process that plays a crucial role in neuroendocrine homeostasis, making in vivo studies of the hypothalamus particularly challenging. In this study, we present an optimized protocol for isolating and culturing hypothalamic neural stem cells (htNSCs) from neonatal (P1) mice, followed by their directed differentiation in a three-dimensional (3D) Matrigel environment. We successfully established a primary culture system that supports the stability, growth, and distinct characteristics of htNSCs. Notably, we demonstrate that htNSCs can differentiate into GnRH-like neurons within the Matrigel-based 3D culture system. These differentiated neurons exhibit typical neuronal morphology and functional characteristics. Our findings highlight the potential of neonatal htNSCs as an invaluable model for studying hypothalamic function and neurogenesis. Furthermore, this method provides a novel platform for basic research and may serve as important implications for further studying the pathological mechanism of neuroendocrine disorders in hypothalamus.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiaoyan Tang
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Tanjing Lin
- School of Pharmacy, Guangdong Medical University, Guangdong, China
| | - Jiabang Liu
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zhiheng Wu
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xintao Zhang
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Xiaohua Zhang
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Junhai Jiang
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Yulong Wang
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
2
|
Shen Y, Wong SZH, Ma T, Zhang F, Wang Q, Kawaguchi R, Geschwind DH, Wang J, He C, Ming GL, Song H. m 6A deficiency impairs hypothalamic neurogenesis of feeding-related neurons in mice and human organoids and leads to adult obesity in mice. Cell Stem Cell 2025; 32:727-743.e8. [PMID: 40112816 DOI: 10.1016/j.stem.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/07/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
N6-methyladenosine (m6A), the most prevalent internal modification on mRNAs, plays important roles in the nervous system. Whether neurogenesis in the hypothalamus, a region critical for controlling appetite, is regulated by m6A signaling, especially in humans, remains unclear. Here, we showed that deletion of m6A writer Mettl14 in the mouse embryonic hypothalamus led to adult obesity, with impaired glucose-insulin homeostasis and increased energy intake. Mechanistically, deletion of Mettl14 leads to hypothalamic arcuate nucleus neurogenesis deficits with reduced generation of feeding-related neurons and dysregulation of neurogenesis-related m6A-tagged transcripts. Deletion of m6A writer Mettl3 or m6A reader Ythdc1 shared similar phenotypes. METTL14 or YTHDC1 knockdown also led to reduced generation of feeding-related neurons in human brain subregion-specific arcuate nucleus organoids. Our studies reveal a conserved role of m6A signaling in arcuate nucleus neurogenesis in mice and human organoids and shed light on the developmental basis of epitranscriptomic regulation of food intake and energy homeostasis.
Collapse
Affiliation(s)
- Yachen Shen
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Zheng Hao Wong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tong Ma
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qing Wang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Chuan He
- Department of Chemistry, Howard Hughes Medical Institute, the University of Chicago, Chicago, IL, USA; Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, the University of Chicago, Chicago, IL, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Wang S, Jiang D, Xiao Y, Qin Q, Zhang H, Ye L, Jin J, Jiang X, Guo Q. Human Pituitary Organoids: Transcriptional Landscape Deciphered by scRNA-Seq and Stereo-Seq, with Insights into SOX3's Role in Pituitary Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414230. [PMID: 39951008 PMCID: PMC11984888 DOI: 10.1002/advs.202414230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/03/2025] [Indexed: 04/12/2025]
Abstract
The 3D human pituitary organoid represents a promising laboratory model for investigating human pituitary diseases. Nonetheless, this technology is still in its nascent stage, with uncertainties regarding the cellular composition, intercellular interactions, and spatial distribution of the human pituitary organoids. To address these gaps, the culture conditions are systematically adjusted and the efficiency of induced pluripotent stem cells' (iPSCs') differentiation into pituitary organoids is successfully improved, achieving results comparable to or exceeding those of previous studies. Additionally, single-cell RNA-sequencing (scRNA-seq) and stereomics sequencing (Stereo-seq) are performed on the pituitary organoids for the first time, and unveil the diverse cell clusters, intricate intercellular interactions, and spatial information within the organoids. Furthermore, the SOX3 gene interference impedes the iPSCs' differentiation into pituitary organoids, thereby highlighting the potential of pituitary organoids as an ideal experimental model. Altogether, the research provides an optimized protocol for the human pituitary organoid culture and a valuable transcriptomic dataset for future explorations, laying the foundation for subsequent research in the field of pituitary organoids or pituitary diseases.
Collapse
Affiliation(s)
- Shengjie Wang
- Department of Endocrinologythe First Medical Center of Chinese PLA General HospitalBeijing100853China
| | - Deyue Jiang
- Department of Endocrinologythe First Medical Center of Chinese PLA General HospitalBeijing100853China
| | - Yan Xiao
- Department of Endocrinologythe First Medical Center of Chinese PLA General HospitalBeijing100853China
| | - Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences27 Taiping Road of Haidian DistrictBeijing100850China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences27 Taiping Road of Haidian DistrictBeijing100850China
| | - Lingtong Ye
- Department of Endocrinologythe First Medical Center of Chinese PLA General HospitalBeijing100853China
| | - Jide Jin
- Beijing Institute of Radiation Medicine27 Taiping Road of Haidian DistrictBeijing100850China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences27 Taiping Road of Haidian DistrictBeijing100850China
| | - Qinghua Guo
- Department of Endocrinologythe First Medical Center of Chinese PLA General HospitalBeijing100853China
| |
Collapse
|
4
|
Nair JM, Chauhan G, Prasad G, Bandesh K, Giri AK, Chakraborty S, Marwaha RK, Mathur S, Choudhury D, Tandon N, Basu A, Bharadwaj D. Mapping the landscape of childhood obesity: genomic insights and socioeconomic status in Indian school-going children. Obesity (Silver Spring) 2025; 33:754-765. [PMID: 40000390 DOI: 10.1002/oby.24248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/19/2024] [Accepted: 12/20/2024] [Indexed: 02/27/2025]
Abstract
OBJECTIVE Childhood obesity (OB) is influenced by complex gene-environmental interaction. While genetics of adult OB have been extensively studied, polygenic childhood OB in non-European populations is still underexplored. Furthermore, in a developing nation such as India, how the environmental component strongly modulated by the socioeconomic status (SES) shapes the genetic susceptibility is crucial to understand. METHODS A two-staged genome-wide association study (GWAS; N = 5673) and an independent exome-wide association study (ExWAS; N = 4963) were performed using a generalized linear model assuming additive effect to identify the common and rare genetic variants respectively associated with childhood OB. Rare-variant burden testing was also performed. We used the gene expression profiles and regulatory data from public databases to explain the novel associations. The implications of SES as a potential modifier of genetic susceptibility were evaluated. RESULTS GWAS identified novel associations in TCF7L2, IMMP2L, IPMK, CDC5L, SNTG1, and MX1, whereas ExWAS uncovered CNTN4, COQ4, TNFRSF10D, FLG-AS1, and BMP3. Both GWAS and ExWAS validated known associations in FTO and MC4R. Furthermore, rare-variant testing highlighted the role of 101 genes. We also observed that SES can modulate the inherent susceptibility to OB. CONCLUSIONS Our study identified genetic variants associated with childhood OB and highlighted the gene-environmental interaction in childhood OB.
Collapse
Affiliation(s)
- Janaki M Nair
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ganesh Chauhan
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gauri Prasad
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Khushdeep Bandesh
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anil K Giri
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shraddha Chakraborty
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raman K Marwaha
- International Life Sciences Institute (ILSI), New Delhi, India
| | - Sandeep Mathur
- Department of Endocrinology, SMS Medical College and Hospital, Jaipur, India
| | | | - Nikhil Tandon
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Analabha Basu
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics, Kalyani, India
| | | |
Collapse
|
5
|
Placzek M, Chinnaiya K, Kim DW, Blackshaw S. Control of tuberal hypothalamic development and its implications in metabolic disorders. Nat Rev Endocrinol 2025; 21:118-130. [PMID: 39313573 PMCID: PMC11864813 DOI: 10.1038/s41574-024-01036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
The tuberal hypothalamus regulates a range of crucial physiological processes, including energy homeostasis and metabolism. In this Review, we explore the intricate molecular mechanisms and signalling pathways that control the development of the tuberal hypothalamus, focusing on aspects that shape metabolic outcomes. Major developmental events are discussed in the context of their effect on the establishment of both functional hypothalamic neuronal circuits and brain-body interfaces that are pivotal to the control of metabolism. Emerging evidence indicates that aberrations in molecular pathways during tuberal hypothalamic development contribute to metabolic dysregulation. Understanding the molecular underpinnings of tuberal hypothalamic development provides a comprehensive view of neurodevelopmental processes and offers a promising avenue for future targeted interventions to prevent and treat metabolic disorders.
Collapse
Affiliation(s)
- Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, UK.
- Bateson Centre, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
| | | | - Dong Won Kim
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Yu H, Chiang A, Rubinstein M, Low MJ. The homeodomain transcription factor Six3 regulates hypothalamic Pomc expression and its absence from POMC neurons induces hyperphagia and mild obesity in male mice. Mol Metab 2024; 87:101993. [PMID: 39025297 PMCID: PMC11327434 DOI: 10.1016/j.molmet.2024.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVE Proopiomelanocortin (POMC) neurons release potent anorexigenic neuropeptides, which suppress food intake and enhance energy expenditure via melanocortin receptors. Although the importance of central melanocortin in physiological regulation is well established, the underlying genetic mechanisms that define the functional identity of melanocortin neurons and maintain hypothalamic Pomc expression remain to be fully determined. In this study, we investigate the functional significance of Six3, a transcriptional regulator notably expressed in embryonic and adult mouse POMC neurons, in the regulation of hypothalamic Pomc expression and downstream physiological consequences. METHODS We first evaluated the expression of Six3 in the developing and adult hypothalamus by double fluorescence in situ hybridization. Next, we assessed POMC immunoreactivity in mutant mice selectively lacking Six3 from Pomc-expressing neurons and quantified Pomc mRNA levels in a tamoxifen-inducible Six3 knockout mouse model activated at embryonic E9.5 days. We also determined glucose and insulin sensitivity, daily food intake, body composition and body weight in adult male and female mice lacking Six3 specifically from POMC neurons. Lastly, we assessed the physiological consequences of ablating Six3 from POMC neurons in adult mice. RESULTS Six3 and Pomc were co-expressed in mouse hypothalamic neurons during development and adulthood. Mouse embryos deficient in Six3 showed reduced Pomc expression in the developing hypothalamus. Targeted deletion of Six3 specifically from POMC neurons resulted in decreased hypothalamic Pomc expression, increased daily food intake, enhanced glucose sensitivity and mild obesity in male but not in female mice. Finally, conditional removal of Six3 from POMC neurons in adult mice led to a reduction in hypothalamic POMC immunoreactivity with no significant effects in body weight or food intake. CONCLUSIONS Altogether, our results demonstrate that Six3 plays an essential role in the early establishment of POMC neuron identity and the maintenance of physiological levels of hypothalamic Pomc expression. In addition, our study demonstrates that the functional significance of Six3 expression in POMC neurons is sexually dimorphic and age-dependent.
Collapse
Affiliation(s)
- Hui Yu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States; Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, United States.
| | - Angelika Chiang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
| | - Marcelo Rubinstein
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States.
| |
Collapse
|
7
|
Mirasierra M, Fernández-Pérez A, Lizarbe B, Keiran N, Ruiz-Cañas L, Casarejos MJ, Cerdán S, Vendrell J, Fernández-Veledo S, Vallejo M. Alx3 deficiency disrupts energy homeostasis, alters body composition, and impairs hypothalamic regulation of food intake. Cell Mol Life Sci 2024; 81:343. [PMID: 39129011 PMCID: PMC11335267 DOI: 10.1007/s00018-024-05384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/03/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024]
Abstract
The coordination of food intake, energy storage, and expenditure involves complex interactions between hypothalamic neurons and peripheral tissues including pancreatic islets, adipocytes, muscle, and liver. Previous research shows that deficiency of the transcription factor Alx3 alters pancreatic islet-dependent glucose homeostasis. In this study we carried out a comprehensive assessment of metabolic alterations in Alx3 deficiency. We report that Alx3-deficient mice exhibit decreased food intake without changes in body weight, along with reduced energy expenditure and altered respiratory exchange ratio. Magnetic resonance imaging reveals increased adiposity and decreased muscle mass, which was associated with markers of motor and sympathetic denervation. By contrast, Alx3-deficient mice on a high-fat diet show attenuated weight gain and improved insulin sensitivity, compared to control mice. Gene expression analysis demonstrates altered lipogenic and lipolytic gene profiles. In wild type mice Alx3 is expressed in hypothalamic arcuate nucleus neurons, but not in major peripheral metabolic organs. Functional diffusion-weighted magnetic resonance imaging reveals selective hypothalamic responses to fasting in the arcuate nucleus of Alx3-deficient mice. Additionally, altered expression of proopiomelanocortin and melanocortin-3 receptor mRNA in the hypothalamus suggests impaired regulation of feeding behavior. This study highlights the crucial role for Alx3 in governing food intake, energy homeostasis, and metabolic nutrient partitioning, thereby influencing body mass composition.
Collapse
Affiliation(s)
- Mercedes Mirasierra
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Fernández-Pérez
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Centro para el Desarrollo Tecnológico e Industrial (CDTI), Madrid, Spain
| | - Blanca Lizarbe
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noelia Keiran
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV) - Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, Tarragona, Spain
| | - Laura Ruiz-Cañas
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
- Chronic Diseases and Cancer Area 3, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - María José Casarejos
- Neuropharmacology Laboratory, Neurobiology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
| | - Joan Vendrell
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV) - Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, Tarragona, Spain
| | - Sonia Fernández-Veledo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV) - Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, Tarragona, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Rojo D, Hael CE, Soria A, de Souza FSJ, Low MJ, Franchini LF, Rubinstein M. A mammalian tripartite enhancer cluster controls hypothalamic Pomc expression, food intake, and body weight. Proc Natl Acad Sci U S A 2024; 121:e2322692121. [PMID: 38652744 PMCID: PMC11067048 DOI: 10.1073/pnas.2322692121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.
Collapse
Affiliation(s)
- Daniela Rojo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Clara E. Hael
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Agustina Soria
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires1428, Argentina
| | - Flávio S. J. de Souza
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires1428, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48105
| | - Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires1428, Argentina
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48105
| |
Collapse
|
9
|
Li M, Yang L, Zhang L, Zhang Q, Liu Y. Specific biomarkers and neurons distribution of different brain regions in largemouth bass ( Micropterus salmoides). Front Endocrinol (Lausanne) 2024; 15:1385575. [PMID: 38745953 PMCID: PMC11091468 DOI: 10.3389/fendo.2024.1385575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
The brain regulates multiple physiological processes in fish. Despite this, knowledge about the basic structure and function of distinct brain regions in non-model fish species remains limited due to their diversity and the scarcity of common biomarkers. In the present study, four major brain parts, the telencephalon, diencephalon, mesencephalon and rhombencephalon, were isolated in largemouth bass, Micropterus salmoides. Within these parts, nine brain regions and 74 nuclei were further identified through morphological and cytoarchitectonic analysis. Transcriptome analysis revealed a total of 7153 region-highly expressed genes and 176 region-specifically expressed genes. Genes related to growth, reproduction, emotion, learning, and memory were significantly overexpressed in the olfactory bulb and telencephalon (OBT). Feeding and stress-related genes were in the hypothalamus (Hy). Visual system-related genes were predominantly enriched in the optic tectum (OT), while vision and hearing-related genes were widely expressed in the cerebellum (Ce) region. Sensory input and motor output-related genes were in the medulla oblongata (Mo). Osmoregulation, stress response, sleep/wake cycles, and reproduction-related genes were highly expressed in the remaining brain (RB). Three candidate marker genes were further identified for each brain regions, such as neuropeptide FF (npff) for OBT, pro-melanin-concentrating hormone (pmch) for Hy, vesicular inhibitory amino acid transporter (viaat) for OT, excitatory amino acid transporter 1 (eaat1) for Ce, peripherin (prph) for Mo, and isotocin neurophysin (itnp) for RB. Additionally, the distribution of seven neurotransmitter-type neurons and five types of non-neuronal cells across different brain regions were analyzed by examining the expression of their marker genes. Notably, marker genes for glutamatergic and GABAergic neurons showed the highest expression levels across all brain regions. Similarly, the marker gene for radial astrocytes exhibited high expression compared to other markers, while those for microglia were the least expressed. Overall, our results provide a comprehensive overview of the structural and functional characteristics of distinct brain regions in the largemouth bass, which offers a valuable resource for understanding the role of central nervous system in regulating physiological processes in teleost.
Collapse
Affiliation(s)
- Meijia Li
- College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, China
| | - Leshan Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| | - Lei Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| |
Collapse
|
10
|
Xu DM, He S, Liang XF, Wu JQ, Wang QL, Jia XD. Regulatory effect of NK homeobox 1 (NKX2.1) on melanocortin 4 receptor (Mc4r) promoter in Mandarin fish. J Cell Physiol 2023; 238:2867-2878. [PMID: 37850660 DOI: 10.1002/jcp.31139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
The melanocortin 4 receptor (MC4R) is a G protein-coupled transporter that mediates the regulation of thyroid hormones and leptin on energy balance and food intake. However, the mechanisms of transcriptional regulation of Mc4r by thyroid hormone and leptin in fish have been rarely reported. The messenger RNA expression of Mc4r gene was significantly higher in brain than those in other tissues of mandarin fish. We analyzed the structure and function of a 2029 bp sequence of Mc4r promoter. Meanwhile, overexpression of NKX2.1 and incubation with leptin significantly increased Mc4r promoter activity, but triiodothyronine showed the opposite effect. In addition, mutations in the NKX2.1 binding site abolished not only the activation of Mc4r promoter activity by leptin but also the inhibitory effect of thyroid hormones on Mc4r promoter activity. In summary, these results suggested that thyroid hormones and leptin might regulate the transcriptional expression of Mc4r through NKX2.1.
Collapse
Affiliation(s)
- Di-Mei Xu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Jia-Qi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Qiu-Ling Wang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Xiao-Dan Jia
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| |
Collapse
|
11
|
Krienen FM, Levandowski KM, Zaniewski H, del Rosario RC, Schroeder ME, Goldman M, Wienisch M, Lutservitz A, Beja-Glasser VF, Chen C, Zhang Q, Chan KY, Li KX, Sharma J, McCormack D, Shin TW, Harrahill A, Nyase E, Mudhar G, Mauermann A, Wysoker A, Nemesh J, Kashin S, Vergara J, Chelini G, Dimidschstein J, Berretta S, Deverman BE, Boyden E, McCarroll SA, Feng G. A marmoset brain cell census reveals regional specialization of cellular identities. SCIENCE ADVANCES 2023; 9:eadk3986. [PMID: 37824615 PMCID: PMC10569717 DOI: 10.1126/sciadv.adk3986] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
The mammalian brain is composed of many brain structures, each with its own ontogenetic and developmental history. We used single-nucleus RNA sequencing to sample over 2.4 million brain cells across 18 locations in the common marmoset, a New World monkey primed for genetic engineering, and examined gene expression patterns of cell types within and across brain structures. The adult transcriptomic identity of most neuronal types is shaped more by developmental origin than by neurotransmitter signaling repertoire. Quantitative mapping of GABAergic types with single-molecule FISH (smFISH) reveals that interneurons in the striatum and neocortex follow distinct spatial principles, and that lateral prefrontal and other higher-order cortical association areas are distinguished by high proportions of VIP+ neurons. We use cell type-specific enhancers to drive AAV-GFP and reconstruct the morphologies of molecularly resolved interneuron types in neocortex and striatum. Our analyses highlight how lineage, local context, and functional class contribute to the transcriptional identity and biodistribution of primate brain cell types.
Collapse
Affiliation(s)
- Fenna M. Krienen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kirsten M. Levandowski
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather Zaniewski
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ricardo C.H. del Rosario
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Margaret E. Schroeder
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melissa Goldman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Martin Wienisch
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alyssa Lutservitz
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria F. Beja-Glasser
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cindy Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qiangge Zhang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ken Y. Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Katelyn X. Li
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jitendra Sharma
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dana McCormack
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tay Won Shin
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Andrew Harrahill
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric Nyase
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gagandeep Mudhar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Abigail Mauermann
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Alec Wysoker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Seva Kashin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Josselyn Vergara
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gabriele Chelini
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura n.1, Rovereto (TN) 38068, Italy
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sabina Berretta
- Basic Neuroscience Division, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin E. Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ed Boyden
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Steven A. McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
12
|
Sarrafha L, Neavin DR, Parfitt GM, Kruglikov IA, Whitney K, Reyes R, Coccia E, Kareva T, Goldman C, Tipon R, Croft G, Crary JF, Powell JE, Blanchard J, Ahfeldt T. Novel human pluripotent stem cell-derived hypothalamus organoids demonstrate cellular diversity. iScience 2023; 26:107525. [PMID: 37646018 PMCID: PMC10460991 DOI: 10.1016/j.isci.2023.107525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
The hypothalamus is a region of the brain that plays an important role in regulating body functions and behaviors. There is a growing interest in human pluripotent stem cells (hPSCs) for modeling diseases that affect the hypothalamus. Here, we established an hPSC-derived hypothalamus organoid differentiation protocol to model the cellular diversity of this brain region. Using an hPSC line with a tyrosine hydroxylase (TH)-TdTomato reporter for dopaminergic neurons (DNs) and other TH-expressing cells, we interrogated DN-specific pathways and functions in electrophysiologically active hypothalamus organoids. Single-cell RNA sequencing (scRNA-seq) revealed diverse neuronal and non-neuronal cell types in mature hypothalamus organoids. We identified several molecularly distinct hypothalamic DN subtypes that demonstrated different developmental maturities. Our in vitro 3D hypothalamus differentiation protocol can be used to study the development of this critical brain structure and can be applied to disease modeling to generate novel therapeutic approaches for disorders centered around the hypothalamus.
Collapse
Affiliation(s)
- Lily Sarrafha
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
| | - Drew R. Neavin
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Gustavo M. Parfitt
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
| | | | - Kristen Whitney
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular, and Cell-Based Medicine, Mount Sinai, New York, NY 10029, USA
| | - Ricardo Reyes
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
| | - Elena Coccia
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
| | - Tatyana Kareva
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
| | - Camille Goldman
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
| | - Regine Tipon
- New York Stem Cell Foundation, New York, NY 10019, USA
| | - Gist Croft
- New York Stem Cell Foundation, New York, NY 10019, USA
| | - John F. Crary
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular, and Cell-Based Medicine, Mount Sinai, New York, NY 10029, USA
- Windreich Department of Artificial Intelligence and Human Health, Mount Sinai, New York, NY 10029, USA
| | - Joseph E. Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - Joel Blanchard
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
13
|
Mio C, Baldan F, Damante G. NK2 homeobox gene cluster: Functions and roles in human diseases. Genes Dis 2023; 10:2038-2048. [PMID: 37492711 PMCID: PMC10363584 DOI: 10.1016/j.gendis.2022.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 07/27/2023] Open
Abstract
NK2 genes (NKX2 gene cluster in humans) encode for homeodomain-containing transcription factors that are conserved along the phylogeny. According to the most detailed classifications, vertebrate NKX2 genes are classified into two distinct families, NK2.1 and NK2.2. The former is constituted by NKX2-1 and NKX2-4 genes, which are homologous to the Drosophila scro gene; the latter includes NKX2-2 and NKX2-8 genes, which are homologous to the Drosophila vnd gene. Conservation of these genes is not only related to molecular structure and expression, but also to biological functions. In Drosophila and vertebrates, NK2 genes share roles in the development of ventral regions of the central nervous system. In vertebrates, NKX2 genes have a relevant role in the development of several other organs such as the thyroid, lung, and pancreas. Loss-of-function mutations in NKX2-1 and NKX2-2 are the monogenic cause of the brain-lung-thyroid syndrome and neonatal diabetes, respectively. Alterations in NKX2-4 and NKX2-8 genes may play a role in multifactorial diseases, autism spectrum disorder, and neural tube defects, respectively. NKX2-1, NKX2-2, and NKX2-8 are expressed in various cancer types as either oncogenes or tumor suppressor genes. Several data indicate that evaluation of their expression in tumors has diagnostic and/or prognostic value.
Collapse
Affiliation(s)
- Catia Mio
- Dipartimento di Area Medica, Università degli Studi di Udine, Udine 33100, Italy
| | - Federica Baldan
- Istituto di Genetica Medica, Azienda Sanitaria Universitaria Friuli Centrale, Udine 33100, Italy
| | - Giuseppe Damante
- Dipartimento di Area Medica, Università degli Studi di Udine, Udine 33100, Italy
- Istituto di Genetica Medica, Azienda Sanitaria Universitaria Friuli Centrale, Udine 33100, Italy
| |
Collapse
|
14
|
Makrygianni EA, Chrousos GP. Neural Progenitor Cells and the Hypothalamus. Cells 2023; 12:1822. [PMID: 37508487 PMCID: PMC10378393 DOI: 10.3390/cells12141822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
Neural progenitor cells (NPCs) are multipotent neural stem cells (NSCs) capable of self-renewing and differentiating into neurons, astrocytes and oligodendrocytes. In the postnatal/adult brain, NPCs are primarily located in the subventricular zone (SVZ) of the lateral ventricles (LVs) and subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). There is evidence that NPCs are also present in the postnatal/adult hypothalamus, a highly conserved brain region involved in the regulation of core homeostatic processes, such as feeding, metabolism, reproduction, neuroendocrine integration and autonomic output. In the rodent postnatal/adult hypothalamus, NPCs mainly comprise different subtypes of tanycytes lining the wall of the 3rd ventricle. In the postnatal/adult human hypothalamus, the neurogenic niche is constituted by tanycytes at the floor of the 3rd ventricle, ependymal cells and ribbon cells (showing a gap-and-ribbon organization similar to that in the SVZ), as well as suprachiasmatic cells. We speculate that in the postnatal/adult human hypothalamus, neurogenesis occurs in a highly complex, exquisitely sophisticated neurogenic niche consisting of at least four subniches; this structure has a key role in the regulation of extrahypothalamic neurogenesis, and hypothalamic and extrahypothalamic neural circuits, partly through the release of neurotransmitters, neuropeptides, extracellular vesicles (EVs) and non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Evanthia A Makrygianni
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
15
|
Lu HL, Li L, Miao YL, Liang H, Zou JM, You JJ, Liang XF, He S. Effects and regulatory pathway of proopinmelanocortin on feeding habit domestication in mandarin fish. Gene 2023:147581. [PMID: 37336270 DOI: 10.1016/j.gene.2023.147581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/21/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Proopiomelanocortin (POMC) is a hormone precursor, and has been reported to participate in domestication. However, its effects on feeding habit domestication in fish are poorly understood. Mandarin fish (Siniperca chuatsi) feeds solely on live prey fish since first-feeding. In the present study, the high expression of pomc in mandarin fish, both the pomc siRNA and MC4R inhibitor treatments increased the success rate of domestication from live prey fish to dead prey fish and food intake of dead prey fish, suggesting the role of pomc on the special feeding habit of live prey fish in mandarin fish. In addition, one c-fos binding site was identified in the region that from -1053 bp to -931 bp upstream of the transcription start site of pomc, and this region exhibited positive promoter activity. The mandarin fish brain cells treated with c-fos siRNA displayed suppressed pomc mRNA expression, indicating that c-fos positively regulated pomc expression. Furthermore, the mRNA expression of c-fos was higher in the mandarin fish which were more difficult to domesticate. The results of ChIP assay and inhibitor treatment confirmed that the activation of c-fos gene by histone H3K4me3 was catalyzed by Setd1b in mandarin fish. Three open peaks were found at the upstream regulatory region of setd1b by ATAC-seq, and the mRNA expression of setd1b was higher in the mandarin fish which were more difficult to domesticate. These results indicated that Setd1b could methylate histone H3K4 to activate the c-fos transcription, maintaining the high expression of pomc, which might contribute to the special feeding habit of mandarin fish.
Collapse
Affiliation(s)
- Hai-Lin Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Ling Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Yun-Liang Miao
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Hui Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jia-Ming Zou
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jun-Jie You
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
16
|
Lu C, Zhang J, Wang B, Gao Q, Ma K, Pei S, Li J, Cui S. Casein kinase 1α is required to maintain murine hypothalamic pro-opiomelanocortin expression. iScience 2023; 26:106670. [PMID: 37168577 PMCID: PMC10165255 DOI: 10.1016/j.isci.2023.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Hypothalamic pro-opiomelanocortin (POMC) neuron development is considered to play an essential role in the development of obesity. However, the underlying mechanisms remain unclear. Casein kinase 1α (CK1α) was expressed in the embryonic mouse hypothalamus at high levels and colocalized with POMC neurons. CK1α deletion in POMC neurons caused weight gain, metabolic defects, and increased food intake. The number of POMC-expressing cells was considerably decreased in Csnk1a1fl/fl;POMCcre (PKO) mice from embryonic day 15.5 to postnatal day 60, while apoptosis of POMC neurons was not affected. Furthermore, unchanged POMC progenitor cells and a decreased POMC phenotype established CK1α function in hypothalamic POMC neuron development. CK1α deletion led to elevated Notch intracellular domain (NICD) protein expression, and NICD inhibition rescued the PKO mouse phenotype. In summary, CK1α is involved in hypothalamic POMC expression via NICD-POMC signaling, deepening our understanding of POMC neuron development and control of systemic metabolic functions.
Collapse
Affiliation(s)
- Chenyang Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Jinglin Zhang
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Bingjie Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Qiao Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Kezhe Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Shaona Pei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People’s Republic of China
- Corresponding author
| |
Collapse
|
17
|
Ou Y, Zhou M, Che M, Gong H, Wu G, Peng J, Li K, Yang R, Wang X, Zhang X, Liu Y, Feng Z, Qi S. Adult neurogenesis of the median eminence contributes to structural reconstruction and recovery of body fluid metabolism in hypothalamic self-repair after pituitary stalk lesion. Cell Mol Life Sci 2022; 79:458. [PMID: 35907165 PMCID: PMC11073094 DOI: 10.1007/s00018-022-04457-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023]
Abstract
Body fluid homeostasis is critical to survival. The integrity of the hypothalamo-neurohypophysial system (HNS) is an important basis of the precise regulation of body fluid metabolism and arginine vasopressin (AVP) hormone release. Clinically, some patients with central diabetes insipidus (CDI) due to HNS lesions can experience recovery compensation of body fluid metabolism. However, whether the hypothalamus has the potential for structural plasticity and self-repair under pathological conditions remains unclear. Here, we report the repair and reconstruction of a new neurohypophysis-like structure in the hypothalamic median eminence (ME) after pituitary stalk electrical lesion (PEL). We show that activated and proliferating adult neural progenitor cells differentiate into new mature neurons, which then integrate with remodeled AVP fibers to reconstruct the local AVP hormone release neural circuit in the ME after PEL. We found that the transcription factor of NK2 homeobox 1 (NKX2.1) and the sonic hedgehog signaling pathway, mediated by NKX2.1, are the key regulators of adult hypothalamic neurogenesis. Taken together, our study provides evidence that adult ME neurogenesis is involved in the structural reconstruction of the AVP release circuit and eventually restores body fluid metabolic homeostasis during hypothalamic self-repair.
Collapse
Affiliation(s)
- Yichao Ou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Mingfeng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Mengjie Che
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haodong Gong
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guangsen Wu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Junjie Peng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Kai Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Runwei Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xingqin Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xian Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yawei Liu
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhanpeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Laboratory of Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
18
|
Benevento M, Hökfelt T, Harkany T. Ontogenetic rules for the molecular diversification of hypothalamic neurons. Nat Rev Neurosci 2022; 23:611-627. [PMID: 35906427 DOI: 10.1038/s41583-022-00615-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
The hypothalamus is an evolutionarily conserved endocrine interface that, among other roles, links central homeostatic control to adaptive bodily responses by releasing hormones and neuropeptides from its many neuronal subtypes. In its preoptic, anterior, tuberal and mammillary subdivisions, a kaleidoscope of magnocellular and parvocellular neuroendocrine command neurons, local-circuit neurons, and neurons that project to extrahypothalamic areas are intermingled in partially overlapping patches of nuclei. Molecular fingerprinting has produced data of unprecedented mass and depth to distinguish and even to predict the synaptic and endocrine competences, connectivity and stimulus selectivity of many neuronal modalities. These new insights support eminent studies from the past century but challenge others on the molecular rules that shape the developmental segregation of hypothalamic neuronal subtypes and their use of morphogenic cues for terminal differentiation. Here, we integrate single-cell RNA sequencing studies with those of mouse genetics and endocrinology to describe key stages of hypothalamus development, including local neurogenesis, the direct terminal differentiation of glutamatergic neurons, transition cascades for GABAergic and GABAergic cell-derived dopamine cells, waves of local neuronal migration, and sequential enrichment in neuropeptides and hormones. We particularly emphasize how transcription factors determine neuronal identity and, consequently, circuit architecture, and whether their deviations triggered by environmental factors and hormones provoke neuroendocrine illnesses.
Collapse
Affiliation(s)
- Marco Benevento
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria. .,Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
19
|
Vinnicombe KRT, Volkoff H. Possible role of transcription factors (BSX, NKX2.1, IRX3 and SIRT1) in the regulation of appetite in goldfish (Carassius auratus). Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111189. [PMID: 35307341 DOI: 10.1016/j.cbpa.2022.111189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 12/17/2022]
Abstract
The homeobox genes play important roles in the embryonic development of animals. Recent evidence suggests they might also regulate feeding and act as transcription factors of appetite regulators. Examples of these genes are a brain-specific homeobox transcription factor (BSX), NK2 homeobox 1 (NKX2.1) and the Iroquois homeobox 3 (IRX3). Sirtuin1 (SIRT1) acts as a transcription factor for nutrient (e.g. lipid, glucose) homeostasis and responds to stress and nutrient availability, and has been shown to interact with appetite regulators. Very little is known about the role of these genes in the regulation of feeding and nutrient homeostasis in fish. In this study, we assessed the roles of BSX, NKX2.1, IRX3 and SIRT1 in the central regulation of feeding in goldfish by examining their mRNA brain distribution, assessing the effects of fasting on their brain expression and assessing the effects of peripheral injections of cholecystokinin (CCK, a brain-gut peptide), on their brain expression. All genes showed a widespread distribution in the brain, with high levels in the hypothalamus. In both hypothalamus and telencephalon, fasting induced increases in BSX, IRX3 and NKX2.1 expressions but had no effect on SIRT1 expression levels. CCK injections increased hypothalamic expression levels of IRX3 and SIRT1, and telencephalic expression levels of NKX2.1 and SIRT1, with no effect on either hypothalamic BSX or NKX2.1 expression levels or telencephalon BSX or IRX3 expression levels. Our results suggest that, in goldfish as in mammals, central BSX, NKX2.1, IRX3 and SIRT1 are present in regions of the brain regulating feeding, are sensitive to nutrient status and interact with appetite-regulating peptides.
Collapse
Affiliation(s)
- Kelsey R T Vinnicombe
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
20
|
Croizier S, Bouret SG. Molecular Control of the Development of Hypothalamic Neurons Involved in Metabolic Regulation. J Chem Neuroanat 2022; 123:102117. [DOI: 10.1016/j.jchemneu.2022.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/03/2022] [Accepted: 06/03/2022] [Indexed: 10/18/2022]
|
21
|
Bouret SG. Developmental programming of hypothalamic melanocortin circuits. Exp Mol Med 2022; 54:403-413. [PMID: 35474338 PMCID: PMC9076880 DOI: 10.1038/s12276-021-00625-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/14/2023] Open
Abstract
The melanocortin system plays a critical role in the central regulation of food intake and energy balance. This system consists of neurons producing pro-opiomelanocortin (POMC), melanocortin receptors (MC4Rs), and the endogenous antagonist agouti-related peptide (AgRP). Pomc and Mc4r deficiency in rodents and humans causes early onset of obesity, whereas a loss of Agrp function is associated with leanness. Accumulating evidence shows that many chronic diseases, including obesity, might originate during early life. The melanocortin system develops during a relatively long period beginning during embryonic life with the birth of POMC and AgRP neurons and continuing postnatally with the assembly of their neuronal circuitry. The development of the melanocortin system requires the tight temporal regulation of molecular factors, such as transcription factors and axon guidance molecules, and cellular mechanisms, such as autophagy. It also involves a complex interplay of endocrine and nutritional factors. The disruption of one or more of these developmental factors can lead to abnormal maturation and function of the melanocortin system and has profound metabolic consequences later in life.
Collapse
Affiliation(s)
- Sebastien G Bouret
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition Research Center, UMR-S 1172, Lille, 59000, France.
- University of Lille, FHU 1,000 Days for Health, Lille, 59000, France.
| |
Collapse
|
22
|
Yu H, Rubinstein M, Low MJ. Developmental single-cell transcriptomics of hypothalamic POMC neurons reveal the genetic trajectories of multiple neuropeptidergic phenotypes. eLife 2022; 11:e72883. [PMID: 35044906 PMCID: PMC8806186 DOI: 10.7554/elife.72883] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
Proopiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus are essential to regulate food intake and energy balance. However, the ontogenetic transcriptional programs that specify the identity and functioning of these neurons are poorly understood. Here, we use single-cell RNA-sequencing (scRNA-seq) to define the transcriptomes characterizing Pomc-expressing cells in the developing hypothalamus and translating ribosome affinity purification with RNA-sequencing (TRAP-seq) to analyze the subsequent translatomes of mature POMC neurons. Our data showed that Pomc-expressing neurons give rise to multiple developmental pathways expressing different levels of Pomc and unique combinations of transcription factors. The predominant cluster, featured by high levels of Pomc and Prdm12 transcripts, represents the canonical arcuate POMC neurons. Additional cell clusters expressing medium or low levels of Pomc mature into different neuronal phenotypes featured by distinct sets of transcription factors, neuropeptides, processing enzymes, cell surface, and nuclear receptors. We conclude that the genetic programs specifying the identity and differentiation of arcuate POMC neurons are diverse and generate a heterogeneous repertoire of neuronal phenotypes early in development that continue to mature postnatally.
Collapse
Affiliation(s)
- Hui Yu
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Marcelo Rubinstein
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos AiresArgentina
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
23
|
López JM, Jiménez S, Morona R, Lozano D, Moreno N. Analysis of Islet-1, Nkx2.1, Pax6, and Orthopedia in the forebrain of the sturgeon Acipenser ruthenus identifies conserved prosomeric characteristics. J Comp Neurol 2021; 530:834-855. [PMID: 34547112 DOI: 10.1002/cne.25249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022]
Abstract
The distribution patterns of a set of conserved brain developmental regulatory transcription factors were analyzed in the forebrain of the basal actinopterygian fish Acipenser ruthenus, consistent with the prosomeric model. In the telencephalon, the pallium was characterized by ventricular expression of Pax6. In the subpallium, the combined expression of Nkx2.1/Islet-1 (Isl1) allowed to propose ventral and dorsal areas, as the septo-pallidal (Nkx2.1/Isl1+) and striatal derivatives (Isl1+), respectively, and a dorsal portion of the striatal derivatives, ventricularly rich in Pax6 and devoid of Isl1 expression. Dispersed Orthopedia (Otp) cells were found in the supracommissural and posterior nuclei of the ventral telencephalon, related to the medial portion of the amygdaloid complex. The preoptic area was identified by the Nkx2.1/Isl1 expression. In the alar hypothalamus, an Otp-expressing territory, lacking Nkx2.1/Isl1, was identified as the paraventricular domain. The adjacent subparaventricular domain (Spa) was subdivided in a rostral territory expressing Nkx2.1 and an Isl1+ caudal one. In the basal hypothalamus, the tuberal region was defined by the Nkx2.1/Isl1 expression and a rostral Otp-expressing domain was identified. Moreover, the Otp/Nkx2.1 combination showed an additional zone lacking Isl1, tentatively identified as the mamillary area. In the diencephalon, both Pax6 and Isl1 defined the prethalamic domain, and within the basal prosomere 3, scattered Pax6- and Isl1-expressing cells were observed in the posterior tubercle. Finally, a small group of Pax6 cells was observed in the pretectal area. These results improve the understanding of the forebrain evolution and demonstrate that its basic bauplan is present very early in the vertebrate lineage.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| |
Collapse
|
24
|
Adlanmerini M, Nguyen HC, Krusen BM, Teng CW, Geisler CE, Peed LC, Carpenter BJ, Hayes MR, Lazar MA. Hypothalamic REV-ERB nuclear receptors control diurnal food intake and leptin sensitivity in diet-induced obese mice. J Clin Invest 2021; 131:140424. [PMID: 33021965 DOI: 10.1172/jci140424] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity occurs when energy expenditure is outweighed by energy intake. Tuberal hypothalamic nuclei, including the arcuate nucleus (ARC), ventromedial nucleus (VMH), and dorsomedial nucleus (DMH), control food intake and energy expenditure. Here we report that, in contrast with females, male mice lacking circadian nuclear receptors REV-ERBα and -β in the tuberal hypothalamus (HDKO mice) gained excessive weight on an obesogenic high-fat diet due to both decreased energy expenditure and increased food intake during the light phase. Moreover, rebound food intake after fasting was markedly increased in HDKO mice. Integrative transcriptomic and cistromic analyses revealed that such disruption in feeding behavior was due to perturbed REV-ERB-dependent leptin signaling in the ARC. Indeed, in vivo leptin sensitivity was impaired in HDKO mice on an obesogenic diet in a diurnal manner. Thus, REV-ERBs play a crucial role in hypothalamic control of food intake and diurnal leptin sensitivity in diet-induced obesity.
Collapse
Affiliation(s)
- Marine Adlanmerini
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | - Hoang Cb Nguyen
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | - Brianna M Krusen
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | - Clare W Teng
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | - Caroline E Geisler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lindsey C Peed
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | - Bryce J Carpenter
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | - Matthew R Hayes
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine.,Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| |
Collapse
|
25
|
Wang H, Zhou C, Hou M, Huang H, Sun Y. Neurogenesis Potential Evaluation and Transcriptome Analysis of Fetal Hypothalamic Neural Stem/Progenitor Cells With Prenatal High Estradiol Exposure. Front Genet 2021; 12:677935. [PMID: 34239542 PMCID: PMC8258253 DOI: 10.3389/fgene.2021.677935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
High maternal estradiol is reported to induce metabolic disorders by modulating hypothalamic gene expression in offspring. Since neurogenesis plays a crucial role during hypothalamus development, we explored whether prenatal high estradiol exposure (HE) affects proliferation and differentiation of fetal hypothalamic neural stem/progenitor cells (NSC/NPCs) in mice and performed RNA sequencing to identify the critical genes involved. NSC/NPCs in HE mice presented attenuated cell proliferation but increased neuronal differentiation in vitro compared with control (NC) cells. Gene set enrichment analysis of mRNA profiles indicated that genes downregulated in HE NSC/NPCs were enriched in neurogenesis-related Gene Ontology (GO) terms, while genes upregulated in HE NSC/NPCs were enriched in response to estradiol. Protein-protein interaction analysis of genes with core enrichment in GO terms of neurogenesis and response to estradiol identified 10 Hub mRNAs, among which three were potentially correlated with six differentially expressed (DE) lncRNAs based on lncRNA profiling and co-expression analysis. These findings offer important insights into developmental modifications in hypothalamic NSC/NPCs and may provide new clues for further investigation on maternal environment programmed neural development disorders.
Collapse
Affiliation(s)
- Huihui Wang
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Animal Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengliang Zhou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Min Hou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Animal Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Na ES, Lam DD, Yokosawa E, Adams JM, Olson DP, Low MJ. Decreased sensitivity to the anorectic effects of leptin in mice that lack a Pomc-specific neural enhancer. PLoS One 2021; 15:e0244793. [PMID: 33382813 PMCID: PMC7775064 DOI: 10.1371/journal.pone.0244793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Enhancer redundancy has been postulated to provide a buffer for gene expression against genetic and environmental perturbations. While work in Drosophila has identified functionally overlapping enhancers, work in mammalian models has been limited. Recently, we have identified two partially redundant enhancers, nPE1 and nPE2, that drive proopiomelanocortin gene expression in the hypothalamus. Here we demonstrate that deletion of nPE1 produces mild obesity while knockout of nPE2 has no discernible metabolic phenotypes. Additionally, we show that acute leptin administration has significant effects on nPE1 knockout mice, with food intake and body weight change significantly impacted by peripheral leptin treatment. nPE1 knockout mice became less responsive to leptin treatment over time as percent body weight change increased over 2 week exposure to peripheral leptin. Both Pomc and Agrp mRNA were not differentially affected by chronic leptin treatment however we did see a decrease in Pomc and Agrp mRNA in both nPE1 and nPE2 knockout calorie restricted mice as compared to calorie restricted PBS-treated WT mice. Collectively, these data suggest dynamic regulation of Pomc by nPE1 such that mice with nPE1 knockout become less responsive to the anorectic effects of leptin treatment over time. Our results also support our earlier findings in which nPE2 may only be critical in adult mice that lack nPE1, indicating that these neural enhancers work synergistically to influence metabolism.
Collapse
Affiliation(s)
- Elisa S. Na
- Department of Psychology & Philosophy Texas Woman’s University, Denton, Texas, United States of America
- * E-mail: (ESN); (DDL)
| | - Daniel D. Lam
- Institute of Neurogenomics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Neurogenetics, Neurological Clinic and Polyclinic, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- * E-mail: (ESN); (DDL)
| | - Eva Yokosawa
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jessica M. Adams
- Division of Endocrinology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - David P. Olson
- Division of Endocrinology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Malcolm J. Low
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
27
|
Yu H, Thompson Z, Kiran S, Jones GL, Mundada L, Rubinstein M, Low MJ. Expression of a hypomorphic Pomc allele alters leptin dynamics during late pregnancy. J Endocrinol 2020; 245:115-127. [PMID: 32027603 DOI: 10.1530/joe-19-0576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
Proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC) are essential for normal energy homeostasis. Maximal ARC Pomc transcription is dependent on neuronal Pomc enhancer 1 (nPE1), located 12 kb upstream from the promoter. Selective deletion of nPE1 in mice decreases ARC Pomc expression by 70%, sufficient to induce mild obesity. Because nPE1 is located exclusively in the genomes of placental mammals, we questioned whether its hypomorphic mutation would also alter placental Pomc expression and the metabolic adaptations associated with pregnancy and lactation. We assessed placental development, pup growth, circulating leptin and expression of Pomc, Agrp and alternatively spliced leptin receptor (LepR) isoforms in the ARC and placenta of Pomc∆1/∆1 and Pomc+/+ dams. Despite indistinguishable body weights, lean mass, food intake, placental histology and Pomc expression and overall pregnancy outcomes between the genotypes, Pomc ∆1/∆1 females had increased pre-pregnancy fat mass that paradoxically decreased to control levels by parturition. However, Pomc∆1/∆1 dams had exaggerated increases in circulating leptin, up to twice of that of the typically elevated levels in Pomc+/+ mice at the end of pregnancy, despite their equivalent fat mass. Pomc∆1/∆1dams also had increased placental expression of soluble leptin receptor (LepRe), although the protein levels of LEPRE in circulation were the same as Pomc+/+ controls. Together, these data suggest that the hypomorphic Pomc∆1/∆1 allele is responsible for the perinatal super hyperleptinemia of Pomc∆1/∆1 dams, possibly due to upregulated leptin secretion from individual adipocytes.
Collapse
Affiliation(s)
- Hui Yu
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zoe Thompson
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sylee Kiran
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,School of Literature, Science, and Arts, University of Michigan, Ann Arbor, Michigan, USA
| | - Graham L Jones
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Lakshmi Mundada
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | -
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Marcelo Rubinstein
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos, Buenos Aires, Argentina
| | - Malcolm J Low
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
28
|
Ding W, Zhang C, Wang B, Zhou X, Sun L, Zhong S, Liu J, Zhang J, Wang X, Wu Q. Loss of the centrosomal protein Cenpj leads to dysfunction of the hypothalamus and obesity in mice. SCIENCE CHINA-LIFE SCIENCES 2020; 64:419-433. [PMID: 32803714 DOI: 10.1007/s11427-020-1767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
Cenpj is a centrosomal protein located at the centrosomes and the base of cilia, it plays essential roles in regulating neurogenesis and cerebral cortex development. Although centrosomal and cilium dysfunction are one of the causes of obesity, insulin resistance, and type 2 diabetes, the role that Cenpj plays in the regulation of body weight remains unclear. Here, we deleted Cenpj by crossing Cenpjflox/flox mice with Nkx2.1-Cre mice. Loss of the centrosomal protein Cenpj in Nkx2.1-expressing cells causes morbid obesity in mice at approximately 4 months of age with expended brain ventricles but no change of brain size. We found that hypothalamic cells exhibited reduced proliferation and increased apoptosis upon Cenpj depletion at the embryonic stages, resulting in a dramatic decrease in the number of Proopiomelanocortin (POMC) neurons and electrophysiological dysfunction of NPY neurons in the arcuate nucleus (ARC) in adults. Furthermore, depletion of Cenpj also reduced the neuronal projection from the ARC to the paraventricular nucleus (PVN), with decreased melanocortin-4 receptors (MC4R) expression in PVN neurons. The study defines the roles that Cenpj plays in regulating hypothalamus development and body weight, providing a foundation for further understanding of the pathological mechanisms of related diseases.
Collapse
Affiliation(s)
- Wenyu Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Changjiang Zhang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baisong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Xin Zhou
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Sun
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jing Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junjing Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China. .,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
29
|
Piórkowska K, Żukowski K, Połtowicz K, Nowak J, Ropka-Molik K, Derebecka N, Wesoły J, Wojtysiak D. Identification of candidate genes and regulatory factors related to growth rate through hypothalamus transcriptome analyses in broiler chickens. BMC Genomics 2020; 21:509. [PMID: 32703165 PMCID: PMC7376931 DOI: 10.1186/s12864-020-06884-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background Intensive selection for growth rate (GR) in broiler chickens carries negative after-effects, such as aberrations in skeletal development and the immune system, heart failure, and deterioration of meat quality. In Poland, fast-growing chicken populations are highly non-uniform in term of growth rate, which is highly unprofitable for poultry producers. Therefore, the identification of genetic markers for boiler GR that could support the selection process is needed. The hypothalamus is strongly associated with growth regulation by inducing important pituitary hormones. Therefore, the present study used this tissue to pinpoint genes involved in chicken growth control. Results The experiment included male broilers of Ross 308 strain in two developmental stages, after 3rd and 6th week of age, which were maintained in the same housing and feeding conditions. The obtained results show for the overexpression of genes related to orexigenic molecules, such as neuropeptide Y (NPY), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), galanin (GAL), and pro-melanin concentrating hormone (PMCH) in low GR cockerels. Conclusion The results reveal strong associations between satiety centre and the growth process. The present study delivers new insights into hypothalamic regulation in broiler chickens and narrows the area for the searching of genetic markers for GR. Graphical abstract ![]()
Collapse
Affiliation(s)
- Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Kacper Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, Balice, Poland
| | - Katarzyna Połtowicz
- Department of Poultry Breeding, National Research Institute of Animal Production, Balice, Poland.
| | - Joanna Nowak
- Department of Poultry Breeding, National Research Institute of Animal Production, Balice, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Natalia Derebecka
- Adam Mickiewicz University, Faculty of Biology, Laboratory of High Throughput Technologies Institute of Molecular Biology and Biotechnology, Poznań, Poland
| | - Joanna Wesoły
- Adam Mickiewicz University, Faculty of Biology, Laboratory of High Throughput Technologies Institute of Molecular Biology and Biotechnology, Poznań, Poland
| | - Dorota Wojtysiak
- Department of Animal Genetics, Breeding and Ethology, University of Agriculture in Krakow, Cracow, Poland
| |
Collapse
|
30
|
Chen X, Wyler SC, Li L, Arnold AG, Wan R, Jia L, Landy MA, Lai HC, Xu P, Liu C. Comparative Transcriptomic Analyses of Developing Melanocortin Neurons Reveal New Regulators for the Anorexigenic Neuron Identity. J Neurosci 2020; 40:3165-3177. [PMID: 32213554 PMCID: PMC7159888 DOI: 10.1523/jneurosci.0155-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Despite their opposing actions on food intake, POMC and NPY/AgRP neurons in the arcuate nucleus of the hypothalamus (ARH) are derived from the same progenitors that give rise to ARH neurons. However, the mechanism whereby common neuronal precursors subsequently adopt either the anorexigenic (POMC) or the orexigenic (NPY/AgRP) identity remains elusive. We hypothesize that POMC and NPY/AgRP cell fates are specified and maintained by distinct intrinsic factors. In search of them, we profiled the transcriptomes of developing POMC and NPY/AgRP neurons in mice. Moreover, cell-type-specific transcriptomic analyses revealed transcription regulators that are selectively enriched in either population, but whose developmental functions are unknown in these neurons. Among them, we found the expression of the PR domain-containing factor 12 (Prdm12) was enriched in POMC neurons but absent in NPY/AgRP neurons. To study the role of Prdm12 in vivo, we developed and characterized a floxed Prdm12 allele. Selective ablation of Prdm12 in embryonic POMC neurons led to significantly reduced Pomc expression as well as early-onset obesity in mice of either sex that recapitulates symptoms of human POMC deficiency. Interestingly, however, specific deletion of Prdm12 in adult POMC neurons showed that it is no longer required for Pomc expression or energy balance. Collectively, these findings establish a critical role for Prdm12 in the anorexigenic neuron identity and suggest that it acts developmentally to program body weight homeostasis. Finally, the combination of cell-type-specific genomic and genetic analyses provides a means to dissect cellular and functional diversity in the hypothalamus whose neurodevelopment remains poorly studied.SIGNIFICANCE STATEMENT POMC and NPY/AgRP neurons are derived from the same hypothalamic progenitors but have opposing effects on food intake. We profiled the transcriptomes of genetically labeled POMC and NPY/AgRP neurons in the developing mouse hypothalamus to decipher the transcriptional codes behind the versus orexigenic neuron identity. Our analyses revealed 29 transcription regulators that are selectively enriched in one of the two populations. We generated new mouse genetic models to selective ablate one of POMC-neuron enriched transcription factors Prdm12 in developing and adult POMC neurons. Our studies establish a previously unrecognized role for Prdm12 in the anorexigenic neuron identity and suggest that it acts developmentally to program body weight homeostasis.
Collapse
Affiliation(s)
- Xiameng Chen
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Steven C Wyler
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Li Li
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Amanda G Arnold
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Rong Wan
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Lin Jia
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Mark A Landy
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Helen C Lai
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Pin Xu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Chen Liu
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
31
|
Hael CE, Rojo D, Orquera DP, Low MJ, Rubinstein M. The transcriptional regulator PRDM12 is critical for Pomc expression in the mouse hypothalamus and controlling food intake, adiposity, and body weight. Mol Metab 2020; 34:43-53. [PMID: 32180559 PMCID: PMC7011018 DOI: 10.1016/j.molmet.2020.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Regulation of food intake and energy balance depends on a group of hypothalamic neurons that release anorexigenic melanocortins encoded by the Pomc gene. Although the physiological importance of central melanocortins is well appreciated, the genetic program that defines the functional identity of melanocortin neurons and assures high levels of hypothalamic Pomc expression is only beginning to be understood. This study assessed whether the transcriptional regulator PRDM12, identified as a highly expressed gene in adult mouse POMC neurons, plays an important role in the identity and function of melanocortin neurons. METHODS We first determined the cellular distribution of PRDM12 in the developing hypothalamus. Then we studied mutant mice with constitutively inactivated Prdm12 to evaluate possible changes in hypothalamic Pomc expression. In addition, we characterized conditional mutant mice specifically lacking Prdm12 in ISL1-positive or POMC neurons during development. Finally, we measured food intake, body weight progression up to 16 weeks of age, adiposity, and glucose tolerance in adult mice lacking Prdm12 selectively from POMC neurons. RESULTS PRDM12 co-expressed with POMC in mouse hypothalamic neurons from early development to adulthood. Mice lacking Prdm12 displayed greatly reduced Pomc expression in the developing hypothalamus. Selective ablation of Prdm12 from ISL1 neurons prevented hypothalamic Pomc expression. The conditional ablation of Prdm12 limited to POMC neurons greatly reduced Pomc expression in the developing hypothalamus and in adult mice led to increased food intake, adiposity, and obesity. CONCLUSIONS Altogether, our results demonstrate that PRDM12 plays an essential role in the early establishment of hypothalamic melanocortin neuron identity and the maintenance of high expression levels of Pomc. Its absence in adult mice greatly impairs Pomc expression and leads to increased food intake, adiposity, and obesity.
Collapse
Affiliation(s)
- Clara E Hael
- Institute of Investigations in Genetic Engineering and Molecular Biology, National Council of Scientific and Technological Research, 1428 Buenos Aires, Argentina
| | - Daniela Rojo
- Institute of Investigations in Genetic Engineering and Molecular Biology, National Council of Scientific and Technological Research, 1428 Buenos Aires, Argentina
| | - Daniela P Orquera
- Institute of Investigations in Genetic Engineering and Molecular Biology, National Council of Scientific and Technological Research, 1428 Buenos Aires, Argentina
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA.
| | - Marcelo Rubinstein
- Institute of Investigations in Genetic Engineering and Molecular Biology, National Council of Scientific and Technological Research, 1428 Buenos Aires, Argentina; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA; Department of Physiology, Molecular and Cellular Biology, School of Exact and Natural Sciences, University of Buenos Aires, 1428 Buenos Aires, Argentina.
| |
Collapse
|