1
|
Xu Y, Liu Z, Xu J, Xu L, He Z, Liu F, Wang Y. Role of brain-derived neurotrophic factor in frailty: From mechanisms to interventions. Biomed Pharmacother 2025; 186:118016. [PMID: 40187046 DOI: 10.1016/j.biopha.2025.118016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Frailty is a common medical syndrome which largely increases the risk of disability, depression, falls, hospitalization and mortality. An increasing number of research suggests that frailty is reversible by medical interventions at its early stage. Therefore, efficient detection is utterly important for frail population. Since numerous biological processes have been indicated in frail population, the critical regulators in these biological processes could provide biomarkers for early detection or treatment for frailty. The brain-derived neurotrophic factor (BDNF) has been associated with several biological process ranging from cognitive function to inflammation, therefore it could be an important regulator for frailty. In this review, we would discuss the mechanism association between different indicators of frailty and BDNF. Furthermore, we summarize the approaches to interfere with BDNF in healthy and pathologic condition, which could lead to identification of potential interventional strategies for frailty.
Collapse
Affiliation(s)
- Yuanchun Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ziyan Liu
- Department of Nursing, Traditional Chinese Medicine Hospital of Tongliang, Tongliang Chongqing 402560, China
| | - Jiao Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zongsheng He
- Department of Gastroenterology, Daping Hospital,Army Medical University, Chongqing 400042, China
| | - Fang Liu
- Department of Nursing, Traditional Chinese Medicine Hospital of Tongliang, Tongliang Chongqing 402560, China.
| | - Yaling Wang
- Department of Nursing, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
2
|
Mao L, Wang L, Huang Z, Chen JK, Tucker L, Zhang Q. Comprehensive insights into emerging advances in the Neurobiology of anorexia. J Adv Res 2025:S2090-1232(25)00206-1. [PMID: 40180244 DOI: 10.1016/j.jare.2025.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Anorexia is a complex eating disorder influenced by genetic, environmental, psychological, and socio-cultural factors. Research into its molecular mechanisms and neural circuits has deepened our understanding of its pathogenesis. Recent advances in neuroscience, molecular biology, and genetics have revealed key molecular and neural circuit mechanisms underlying anorexia. AIM OF REVIEW Clarify the peripheral and central molecular mechanisms regulating various types of anorexia, identify key cytokines and neural circuits, and propose new strategies for its treatment. Key scientific concepts of review: Anorexia animal models, including activity-induced, genetic mutation, and inflammation-induced types, are explored for their relevance to studying the disorder. Anorexic behavior is regulated by cytokines, hormones (like GDF15, GLP-1, and leptin), and neural circuits such as AgRP, serotonergic, dopaminergic, and glutamatergic pathways. Disruptions in these pathways, including GABAergic signaling in AgRP neurons and 5-HT2C and D2 receptors, contribute to anorexia. Potential therapies target neurotransmitter receptors, ghrelin receptors, and the GDF15-GFRAL pathway, offering insights for treating anorexia, immune responses, and obesity.
Collapse
Affiliation(s)
- Liwei Mao
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lian Wang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Jian-Kang Chen
- Departments of Cellular Biology & Anatomy and Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lorelei Tucker
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
3
|
Liu L, Hao M, Yu H, Tian Y, Yang C, Fan H, Zhao X, Geng F, Mo D, Xia L, Liu H. The associations of brain-derived neurotrophic factor (BDNF) levels with psychopathology and lipid metabolism parameters in adolescents with major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-025-01984-3. [PMID: 39998568 DOI: 10.1007/s00406-025-01984-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Brain-derived neurotrophic factor (BDNF) is crucial for the growth, differentiation and maintenance of neuronal systems, which is closely associated with major depressive disorder (MDD). The objective of this study was to investigate the BDNF levels and their associations with psychopathology and lipid metabolism parameters in adolescents with MDD. From January to December 2021, the study included 141 adolescents with MDD and 90 healthy controls (HCs). The Center for Epidemiological Studies Depression Scale (CES-D), the Insomnia Severity Index Scale (ISI), the Epworth Sleepiness Scale (ESS) and the Positive and Negative Suicidal Ideation Scale (PANSI) were used to assess depressive symptoms, insomnia, excessive daytime sleepiness, and suicidal ideation, respectively. BDNF levels and lipid metabolism parameters were also measured. Compared to HCs, adolescents with MDD had significantly lower BDNF levels (p < 0.001). In patients, BDNF levels were positively correlated with age, BMI, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C); and negatively correlated with the scores of CES-D and ISI (all p < 0.05). The results of the multivariate linear regression analyses indicated that BDNF levels were positively associated with age (β = 0.198, t = 2.447, p = 0.016), first-episode MDD (β = 0.176, t = 2.234, p = 0.027) and TC level (β = 0.240, t = 3.048, p = 0.003), and negatively associated with the scores of ESS (β = -0.171, t = -2.203, p = 0.029) and ISI (β = -0.231, t = -2.996, p = 0.003). Of note, the associations between BDNF and psychopathology were observed only in female and first-episode patients. BDNF levels were decreased in adolescents with MDD. Patients with low BDNF levels were in a more severe psychiatric state and had changes in lipid metabolism parameters. This study provided preliminary evidence that BDNF may play a role in the onset and progression of MDD.
Collapse
Affiliation(s)
- Lewei Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Mingru Hao
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China
| | - Haiyun Yu
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China
| | - Yinghan Tian
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Cheng Yang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Haojie Fan
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China
| | - Xin Zhao
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China
| | - Feng Geng
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Daming Mo
- Department of Psychiatry, Hefei Fourth People's Hospital, Hefei, Anhui Province, China
| | - Lei Xia
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, China.
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China.
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, China.
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China.
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, Anhui Province, China.
| |
Collapse
|
4
|
Miksza U, Bauer W, Roszkowska J, Moroz M, Buczynska A, Wiatr A, Gorska M, Adamska-Patruno E, Kretowski A. The BDNF Protein is Associated With Glucose Homeostasis and Food Intake in Carriers of Common BDNF Gene Variants. J Clin Endocrinol Metab 2025; 110:e487-e496. [PMID: 38478378 DOI: 10.1210/clinem/dgae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 01/22/2025]
Abstract
CONTEXT Brain-derived neurotrophic factor (BDNF) concentrations may differ between BDNF genotype carriers. These changes occur in individuals with metabolic and mental disorders. OBJECTIVE The aim of this study was to assess the associations of glucose homeostasis parameters and the frequency of food consumption with BDNF protein concentrations based on BDNF single nucleotide polymorphisms (SNPs). METHODS Among the 439 participants, some common rs10835211 BDNF gene variants were analyzed. We evaluated BDNF concentrations, and measured glucose and insulin after fasting and during oral glucose tolerance tests. Anthropometric measurements, body composition, and body fat distribution were assessed, and a 3-day food intake diary and food frequency questionnaire were completed. RESULTS We observed significant differences in BDNF concentration between AA and AG genotype rs10835211 carriers (P = .018). The group of AA genotype holders were older, and positive correlation was found between age and BDNF in the whole study population (P = .012) and in the GG genotype carriers (P = .023). Moreover, BDNF protein correlated with fasting insulin (P = .015), HOMA-IR (P = .031), HOMA-B (P = .010), and the visceral/subcutaneous adipose tissue (VAT/SAT) ratio (P = .026) in the GG genotype individuals. Presence of the GG genotype was negatively correlated with nut and seed (P = .047) and lean pork consumption (P = .015), and the BDNF protein. Moreover, we observed correlations between the frequency of chicken (P = .028), pasta (P = .033), and sweet food intake (P = .040) with BDNF concentration in the general population. Among carriers of the AA genotype, we observed a positive correlation between the consumption of rice (P = .048) and sweet food (P = .028) and the BDNF protein level. CONCLUSION Peripheral BDNF may be associated with VAT content and insulin concentrations in GG genotype carriers and may vary with particular food intake, which warrants further investigation.
Collapse
Affiliation(s)
- Urszula Miksza
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Clinical Research Support Centre, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Witold Bauer
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Joanna Roszkowska
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Moroz
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Angelika Buczynska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Aleksandra Wiatr
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Maria Gorska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Edyta Adamska-Patruno
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Clinical Research Support Centre, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Adam Kretowski
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Clinical Research Support Centre, Medical University of Bialystok, 15-274 Bialystok, Poland
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
5
|
Velasco-Gutierrez JA, de Alvarez-Buylla ER, Montero S, Rodríguez-Hernández A, Miranda SL, Martínez-Santillan K, Álvarez-Valadez MDR, Lemus M, Flores-Silva A, Virgen-Ortiz A. TrkB Receptor Antagonism Enhances Insulin Secretion and Increases Pancreatic Islet Size in Rats Fed a Cafeteria-Style Diet. Biomedicines 2025; 13:126. [PMID: 39857710 PMCID: PMC11763071 DOI: 10.3390/biomedicines13010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background: In recent years, the role of neurotrophins and their receptors in peripheral tissues has been of great interest. At a metabolic level, the brain-derived neurotrophic factor (BDNF) and its receptor trkB have been reported to participate in insulin secretion from the pancreas in response to increases in circulating blood glucose. Objetive: To determines the role of the BDNF-trkB pathway in insulin secretion and pancreatic morphology in rats fed a cafeteria-style diet for 16 weeks. Methods: For the study, male rats of the Wistar strain were divided into three groups as follows: (1) control group (standard diet), (2) CAF group (cafeteria-style diet) and (3) CAF group treated with ANA-12 (TrkB receptor antagonist). After 4 months of intervention, the glucose and insulin tolerance curves, serum insulin levels, body fat and hematoxylin-eosin staining pancreas were evaluated. Results: The results showed that the cafeteria-style diet induced an increase in the amount of body fat, alterations in the glucose tolerance curve, increased insulin circulation levels, increased HOMA indices and increased pancreatic islet size. The antagonism of the trkB receptor in the rats fed a cafeteria-style diet enhanced some effects such as the accumulation of body fat and insulin secretion and induced a greater increase in the pancreas islet size. Conclusions: Under conditions of cafeteria-style diet-induced obesity, the antagonism of the BDNF-trkB pathway had no enhanced effect on the increase in insulin secretion or pancreatic islet size.
Collapse
Affiliation(s)
| | | | - Sergio Montero
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Colima, Mexico
| | | | - Saraí Limón Miranda
- Facultad Interdisciplinaria de Ciencias Biológicas y de Salud, Departamento de Ciencias Químico Biológicas y Agropecuarias, Unidad Regional Sur, Universidad de Sonora, Navojoa 85800, Sonora, Mexico
| | | | | | - Mónica Lemus
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Colima, Mexico
| | - Alejandra Flores-Silva
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Colima, Mexico
| | - Adolfo Virgen-Ortiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Colima, Mexico
| |
Collapse
|
6
|
Flak JN. Functionally Separate Populations of Ventromedial Hypothalamic Neurons in Obesity and Diabetes: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2025; 74:4-11. [PMID: 39418333 PMCID: PMC11664020 DOI: 10.2337/dbi24-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The ventromedial hypothalamic nucleus (VMN) maintains healthy metabolic function through several important roles. Collectively, homeostasis is maintained via intermingled cells within the VMN that raise blood glucose, lower blood glucose, and stimulate energy expenditure when needed. In this article I discuss the defining factors for the VMN cell types that govern distinct functions induced by the VMN, particularly in relation to energy balance and blood glucose levels. Special attention is given to distinct features of VMN cells responsible for these processes. Finally, these topics are reviewed in the context of research funded by the American Diabetes Association Pathway to Stop Diabetes initiative, with highlighting of key findings and current unresolved questions for future investigations.
Collapse
Affiliation(s)
- Jonathan N. Flak
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN
| |
Collapse
|
7
|
Kosse C, Ivanov J, Knight Z, Pellegrino K, Friedman J. A subcortical feeding circuit linking an interoceptive node to jaw movement. Nature 2024; 636:151-161. [PMID: 39443799 PMCID: PMC11618074 DOI: 10.1038/s41586-024-08098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The brain processes an array of stimuli, enabling the selection of appropriate behavioural responses, but the neural pathways linking interoceptive inputs to outputs for feeding are poorly understood1-3. Here we delineate a subcortical circuit in which brain-derived neurotrophic factor (BDNF)-expressing neurons in the ventromedial hypothalamus (VMH) directly connect interoceptive inputs to motor centres, controlling food consumption and jaw movements. VMHBDNF neuron inhibition increases food intake by gating motor sequences of feeding through projections to premotor areas of the jaw. When food is unavailable, VMHBDNF inhibition elicits consummatory behaviours directed at inanimate objects such as wooden blocks, and inhibition of perimesencephalic trigeminal area (pMe5) projections evokes rhythmic jaw movements. The activity of these neurons is decreased during food consumption and increases when food is in proximity but not consumed. Activity is also increased in obese animals and after leptin treatment. VMHBDNF neurons receive monosynaptic inputs from both agouti-related peptide (AgRP) and proopiomelanocortin neurons in the arcuate nucleus (Arc), and constitutive VMHBDNF activation blocks the orexigenic effect of AgRP activation. These data indicate an Arc → VMHBDNF → pMe5 circuit that senses the energy state of an animal and regulates consummatory behaviours in a state-dependent manner.
Collapse
Affiliation(s)
- Christin Kosse
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Jessica Ivanov
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Zachary Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Kyle Pellegrino
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Jeffrey Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
8
|
Zhang Z, He Z, Pan J, Yuan M, Lang Y, Wei X, Zhang C. The interaction of BDNF with estrogen in the development of hypertension and obesity, particularly during menopause. Front Endocrinol (Lausanne) 2024; 15:1384159. [PMID: 39655343 PMCID: PMC11625588 DOI: 10.3389/fendo.2024.1384159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
The expression of BDNF in both neuronal and non-neuronal cells is influenced by various stimuli, including prenatal developmental factors and postnatal conditions such as estrogens, dietary habits, and lifestyle factors like obesity, blood pressure, and aging. Central BDNF plays a crucial role in modulating how target tissues respond to these stimuli, influencing the pathogenesis of hypertension, mitigating obesity, and protecting neurons from aging. Thus, BDNF serves as a dynamic mediator of environmental influences, reflecting an individual's unique history of exposure. Estrogens, on the other hand, regulate various processes to maintain overall physiological well-being. Through nuclear estrogen receptors (ERα, ERβ) and the membrane estrogen receptor (GPER1), estrogens modulate transcriptional processes and signaling events that regulate the expression of target genes, such as ERα, components of the renin-angiotensin system (RAS), and hormone-sensitive lipase. Estrogens are instrumental in maintaining the set point for blood pressure and energy balance. BDNF and estrogens work cooperatively to prevent obesity by favoring lipolysis, and counteractively regulate blood pressure to adapt to the environment. Estrogen deficiency leads to menopause in women with low central BDNF level. This review delves into the complex mechanisms involving BDNF and estrogen, especially in the context of hypertension and obesity, particularly among postmenopausal women. The insights gained aim to inform the development of comprehensive therapeutic strategies for these prevalent syndromes affecting approximately 68% of adults.
Collapse
Affiliation(s)
- Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Ziyi He
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Minghui Yuan
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Yini Lang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xiaomeng Wei
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Chaoyun Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| |
Collapse
|
9
|
Sakata K, Fukuchi M. Accelerated BDNF expression in visceral white adipose tissues following high-fat diet feeding in mice. Genes Cells 2024; 29:1077-1084. [PMID: 39278976 DOI: 10.1111/gtc.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is expressed in the white adipose tissues (WATs), and the expression increases during high-fat diet (HFD) feeding, implicating its role in obesity. Here, we focused on BDNF expression in epididymal WAT (eWAT), a visceral adipose tissue, in mice. During 2 weeks of HFD feeding, Bdnf mRNA expression in eWAT slightly increased, but a robust increase was observed after 8 weeks of HFD feeding. This upregulation of Bdnf mRNA was correlated with significant induction of hypoxia-inducible factor 1α (Hif1α) and platelet-derived growth factor subunit B (Pdgfb) mRNA in eWAT following 8 weeks of HFD feeding. Furthermore, the increased expression of the M1 macrophage markers was strongly correlated with the elevation of Bdnf mRNA in the eWAT. Notably, 8 weeks of HFD feeding significantly elevated Tnfα mRNA expression in eWAT, while no such induction was observed in inguinal WAT (iWAT). In contrast, the expression of Adipoq (adiponectin), implicated in improved insulin sensitivity and anti-inflammatory effects, was significantly upregulated in iWAT, but not in eWAT. Thus, our study may show the role of BDNF in eWAT in obesity models, potentially contributing to the pathological state of visceral adipose tissues.
Collapse
Affiliation(s)
- Kurumi Sakata
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| |
Collapse
|
10
|
Mahishi D, Agrawal N, Jiang W, Yapici N. From Mammals to Insects: Exploring the Genetic and Neural Basis of Eating Behavior. Annu Rev Genet 2024; 58:455-485. [PMID: 39585905 DOI: 10.1146/annurev-genet-111523-102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Obesity and anorexia are life-threatening diseases that are still poorly understood at the genetic and neuronal levels. Patients suffering from these conditions experience disrupted regulation of food consumption, leading to extreme weight gain or loss and, in severe situations, death from metabolic dysfunction. Despite the development of various behavioral and pharmacological interventions, current treatments often yield limited and short-lived success. To address this, a deeper understanding of the genetic and neural mechanisms underlying food perception and appetite regulation is essential for identifying new drug targets and developing more effective treatment methods. This review summarizes the progress of past research in understanding the genetic and neural mechanisms controlling food consumption and appetite regulation, focusing on two key model organisms: the fruit fly Drosophila melanogaster and the mouse Mus musculus. These studies investigate how the brain senses energy and nutrient deficiency, how sensory signals trigger appetitive behaviors, and how food intake is regulated through interconnected neural circuits in the brain.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Naman Agrawal
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Wenshuai Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
11
|
Vázquez-Lizarraga R, Mendoza-Viveros L, Cid-Castro C, Ruiz-Montoya S, Carreño-Vázquez E, Orozco-Solis R. Hypothalamic circuits and aging: keeping the circadian clock updated. Neural Regen Res 2024; 19:1919-1928. [PMID: 38227516 PMCID: PMC11040316 DOI: 10.4103/1673-5374.389624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 01/17/2024] Open
Abstract
Over the past century, age-related diseases, such as cancer, type-2 diabetes, obesity, and mental illness, have shown a significant increase, negatively impacting overall quality of life. Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels, including transcriptional, translational, and post-translational processes, resulting from cellular stress and circadian derangements. The circadian clock emerges as a key regulator, sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes, such as stem-cell function, cellular stress responses, and inter-tissue communication, which become disrupted during aging. Given the crucial role of hypothalamic circuits in regulating organismal physiology, metabolic control, sleep homeostasis, and circadian rhythms, and their dependence on these processes, strategies aimed at enhancing hypothalamic and circadian function, including pharmacological and non-pharmacological approaches, offer systemic benefits for healthy aging. Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions, like the hypothalamus, while reducing side effects associated with systemic drug delivery, thereby presenting new therapeutic possibilities for diverse age-related conditions.
Collapse
Affiliation(s)
| | - Lucia Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | - Carolina Cid-Castro
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | | | | | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| |
Collapse
|
12
|
Gatta C, Avallone L, Costagliola A, Scocco P, D’Angelo L, de Girolamo P, De Felice E. Immunolocalization of Two Neurotrophins, NGF and BDNF, in the Pancreas of the South American Sea Lion Otaria flavescens and Bottlenose Dolphin Tursiops truncatus. Animals (Basel) 2024; 14:2336. [PMID: 39199870 PMCID: PMC11350702 DOI: 10.3390/ani14162336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
In this study, we have investigated the immunolocalization of NGF (Nerve Growth Factor) and BDNF (Brain-Derived Neurotrophic Factor) in the pancreas of two species of marine mammals: Tursiops truncatus (common bottlenose dolphin), belonging to the order of the Artiodactyla, and Otaria flavescens (South American sea lion), belonging to the order of the Carnivora. Our results demonstrated a significant presence of NGF and BDNF in the pancreas of both species with a wide distribution pattern observed in the exocrine and endocrine components. We identified some differences that can be attributed to the different feeding habits of the two species, which possess a different morphological organization of the digestive system. Altogether, these preliminary observations open new perspectives on the function of neurotrophins and the adaptive mechanisms of marine mammals in the aquatic environment, suggesting potential parallels between the physiology of marine and terrestrial mammals.
Collapse
Affiliation(s)
- Claudia Gatta
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (C.G.); (L.A.); (A.C.); (L.D.); (P.d.G.)
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (C.G.); (L.A.); (A.C.); (L.D.); (P.d.G.)
| | - Anna Costagliola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (C.G.); (L.A.); (A.C.); (L.D.); (P.d.G.)
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Livia D’Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (C.G.); (L.A.); (A.C.); (L.D.); (P.d.G.)
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (C.G.); (L.A.); (A.C.); (L.D.); (P.d.G.)
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| |
Collapse
|
13
|
Zhang Y, Wei X, Zhang W, Jin F, Cao W, Yue M, Mo S. The BDNF Val66Met polymorphism serves as a potential marker of body weight in patients with psychiatric disorders. AIMS Neurosci 2024; 11:188-202. [PMID: 38988887 PMCID: PMC11230859 DOI: 10.3934/neuroscience.2024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a predominant neurotrophic factor in the brain, indispensable for neuronal growth, synaptic development, neuronal repair, and hippocampal neuroplasticity. Among its genetic variants, the BDNF Val66Met polymorphism is widespread in the population and has been associated with the onset and aggravation of diverse pathologies, including metabolic conditions like obesity and diabetes, cardiovascular ailments, cancer, and an array of psychiatric disorders. Psychiatric disorders constitute a broad category of mental health issues that influence mood, cognition, and behavior. Despite advances in research and treatment, challenges persist that hinder our understanding and effective intervention of these multifaceted conditions. Achieving and maintaining stable body weight is pivotal for overall health and well-being, and the relationship between psychiatric conditions and body weight is notably intricate and reciprocal. Both weight gain and loss have been linked to varying mental health challenges, making the disentanglement of this relationship critical for crafting holistic treatment strategies. The BDNF Val66Met polymorphism's connection to weight fluctuation in psychiatric patients has garnered attention. This review investigated the effects and underlying mechanisms by which the BDNF Val66Met polymorphism moderates body weight among individuals with psychiatric disorders. It posits the polymorphism as a potential biomarker, offering prospects for improved monitoring and therapeutic approaches for mental illnesses.
Collapse
Affiliation(s)
- Yinghua Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinyue Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenhao Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenbo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China
| | - Mingjin Yue
- Henan Tianxing Education and Media Company, Limited, Zhengzhou, China
| | - Saijun Mo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China
| |
Collapse
|
14
|
Carvalho LML, Jorge AADL, Bertola DR, Krepischi ACV, Rosenberg C. A Comprehensive Review of Syndromic Forms of Obesity: Genetic Etiology, Clinical Features and Molecular Diagnosis. Curr Obes Rep 2024; 13:313-337. [PMID: 38277088 DOI: 10.1007/s13679-023-00543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 01/27/2024]
Abstract
Syndromic obesity refers to obesity occurring with additional clinical findings, such as intellectual disability/developmental delay, dysmorphic features, and congenital malformations. PURPOSE OF REVIEW: To present a narrative review regarding the genetic etiology, clinical description, and molecular diagnosis of syndromic obesity, which is a rare condition with high phenotypic variability and genetic heterogeneity. The following syndromes are presented in this review: Prader-Willi, Bardet-Biedl, Pseudohypoparathyroidism, Alström, Smith-Magenis, Cohen, Temple, 1p36 deletion, 16p11.2 microdeletion, Kleefstra, SIM1-related, Börjeson-Forssman-Lehmann, WAGRO, Carpenter, MORM, and MYT1L-related syndromes. RECENT FINDINGS: There are three main groups of mechanisms for syndromic obesity: imprinting, transcriptional activity regulation, and cellular cilia function. For molecular diagnostic, methods of genome-wide investigation should be prioritized over sequencing of panels of syndromic obesity genes. In addition, we present novel syndromic conditions that need further delineation, but evidences suggest they have a higher frequency of obesity. The etiology of syndromic obesity tends to be linked to disrupted neurodevelopment (central) and is associated with a diversity of genes and biological pathways. In the genetic investigation of individuals with syndromic obesity, the possibility that the etiology of the syndromic condition is independent of obesity should be considered. The accurate genetic diagnosis impacts medical management, treatment, and prognosis, and allows proper genetic counseling.
Collapse
Affiliation(s)
- Laura Machado Lara Carvalho
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
| | - Alexander Augusto de Lima Jorge
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory (LIM/25), Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
- Genetics Unit of Instituto da Criança, Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
| | - Carla Rosenberg
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Chermon D, Birk R. Brain-derived neurotrophic factor gene rs925946 associates with Israeli females' obesity predisposition: An interaction between genetics, eating habits, and physical inactivity. Nutr Res 2024; 125:61-68. [PMID: 38503023 DOI: 10.1016/j.nutres.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
The global obesity pandemic presents a pressing health challenge, with an increasing prevalence shaped by an intricate interplay of genetics and environment. Brain-derived neurotrophic factor (BDNF) plays a pivotal role in regulating feeding behavior and energy expenditure. BDNF single nucleotide polymorphisms have been linked to obesity risk. We hypothesized that BDNF rs925946 is positively associated with obesity susceptibility in the Israeli population. We aimed to study BDNF rs925946 association with obesity susceptibility and its interaction with environmental factors, including eating habits, sugar-sweetened beverages, and physical activity. A data cohort of 4668 Israeli adults (≥18 years, Jewish) was analyzed. Participants' genotypic data for the BDNF rs925946 and lifestyle and eating behavior questionnaire data were analyzed for the association between obesity predisposition and gene-environment interactions. Female (n = 3259) BDNF rs925946 T-allele carriers had an elevated obesity odd (odds ratio [OR] = 1.2; 95% confidence interval [CI], 1.03-1.4, P = .02). BDNF rs925946 genotype interacted significantly with physical inactivity, sugar-sweetened beverage consumption, and eating habits score to enhance obesity odds (OR = 1.4; 95% CI, 1.14-1.7; OR = 1.54, 95% CI, 1.1-2.15; and OR = 1.4; 95% CI, 1.2-2.11, respectively). Our data demonstrated a significant association between BDNF rs925946 T-allele female carriers and a higher obesity predisposition, affected by modifiable lifestyle factors.
Collapse
Affiliation(s)
- Danyel Chermon
- Nutrition Department, Health Sciences Faculty, Ariel University, 407000, Israel
| | - Ruth Birk
- Nutrition Department, Health Sciences Faculty, Ariel University, 407000, Israel.
| |
Collapse
|
16
|
Ichimura-Shimizu M, Kurrey K, Miyata M, Dezawa T, Tsuneyama K, Kojima M. Emerging Insights into the Role of BDNF on Health and Disease in Periphery. Biomolecules 2024; 14:444. [PMID: 38672461 PMCID: PMC11048455 DOI: 10.3390/biom14040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a growth factor that promotes the survival and growth of developing neurons. It also enhances circuit formation to synaptic transmission for mature neurons in the brain. However, reduced BDNF expression and single nucleotide polymorphisms (SNP) are reported to be associated with functional deficit and disease development in the brain, suggesting that BDNF is a crucial molecule for brain health. Interestingly, BDNF is also expressed in the hypothalamus in appetite and energy metabolism. Previous reports demonstrated that BDNF knockout mice exhibited overeating and obesity phenotypes remarkably. Therefore, we could raise a hypothesis that the loss of function of BDNF may be associated with metabolic syndrome and peripheral diseases. In this review, we describe our recent finding that BDNF knockout mice develop metabolic dysfunction-associated steatohepatitis and recent reports demonstrating the role of one of the BDNF receptors, TrkB-T1, in some peripheral organ functions and diseases, and would provide an insight into the role of BDNF beyond the brain.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Khuleshwari Kurrey
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT 06520, USA;
| | - Misaki Miyata
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| | - Takuya Dezawa
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Masami Kojima
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| |
Collapse
|
17
|
Harvey T, Rios M. The Role of BDNF and TrkB in the Central Control of Energy and Glucose Balance: An Update. Biomolecules 2024; 14:424. [PMID: 38672441 PMCID: PMC11048226 DOI: 10.3390/biom14040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The global rise in obesity and related health issues, such as type 2 diabetes and cardiovascular disease, is alarming. Gaining a deeper insight into the central neural pathways and mechanisms that regulate energy and glucose homeostasis is crucial for developing effective interventions to combat this debilitating condition. A significant body of evidence from studies in humans and rodents indicates that brain-derived neurotrophic factor (BDNF) signaling plays a key role in regulating feeding, energy expenditure, and glycemic control. BDNF is a highly conserved neurotrophin that signals via the tropomyosin-related kinase B (TrkB) receptor to facilitate neuronal survival, differentiation, and synaptic plasticity and function. Recent studies have shed light on the mechanisms through which BDNF influences energy and glucose balance. This review will cover our current understanding of the brain regions, neural circuits, and cellular and molecular mechanisms underlying the metabolic actions of BDNF and TrkB.
Collapse
Affiliation(s)
- Theresa Harvey
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Maribel Rios
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
18
|
Aldhshan MS, Mizuno TM. Environmental enrichment accentuates glucose-induced feeding suppression and glial cell line-derived neurotrophic factor gene expression in the hypothalamus of mice. Nutr Neurosci 2024; 27:106-119. [PMID: 36634108 DOI: 10.1080/1028415x.2023.2165938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The hypothalamus controls food intake by integrating nutrient signals, of which one of the most important is glucose. Consequently, impairments in hypothalamic glucose-sensing mechanisms are associated with hyperphagia and obesity. Environmental enrichment (EE) is an animal housing protocol that provides complex sensory, motor, and social stimulations and has been proven to reduce adiposity in laboratory mice. However, the mechanism by which EE promotes adiposity-suppressing effect remains incompletely understood. Neurotrophic factors play an important role in the development and maintenance of the nervous system, but they are also involved in the hypothalamic regulation of feeding. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) are expressed in the hypothalamus and their expression is stimulated by glucose. EE is associated with increased expression of Bdnf mRNA in the hypothalamus. Therefore, we hypothesized that EE potentiates the anorectic action of glucose by altering the expression of neurotrophic factor genes in the hypothalamus. Male C57BL/6 mice were maintained under standard or EE conditions to investigate the feeding response to glucose and the associated expression of feeding-related neurotrophic factor genes in the hypothalamus. Intraperitoneal glucose injection reduced food intake in both control and EE mice with a significantly greater reduction in the EE group compared to the control group. EE caused a significantly enhanced response of Gdnf mRNA expression to glucose without altering basal Gdnf mRNA expression and Bdnf mRNA response to glucose. These findings suggest that EE enhances glucose-induced feeding suppression, at least partly, by enhancing hypothalamic glucose-sensing ability that involves GDNF.
Collapse
Affiliation(s)
- Muhammad S Aldhshan
- Division of Endocrinology and Metabolic Diseases, Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Tooru M Mizuno
- Division of Endocrinology and Metabolic Diseases, Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
19
|
Ameroso D, Rios M. Synaptic plasticity and the role of astrocytes in central metabolic circuits. WIREs Mech Dis 2024; 16:e1632. [PMID: 37833830 PMCID: PMC10842964 DOI: 10.1002/wsbm.1632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Neural circuits in the brain, primarily in the hypothalamus, are paramount to the homeostatic control of feeding and energy utilization. They integrate hunger, satiety, and body adiposity cues from the periphery and mediate the appropriate behavioral and physiological responses to satisfy the energy demands of the animal. Notably, perturbations in central homeostatic circuits have been linked to the etiology of excessive feeding and obesity. Considering the ever-changing energy requirements of the animal and required adaptations, it is not surprising that brain-feeding circuits remain plastic in adulthood and are subject to changes in synaptic strength as a consequence of nutritional status. Indeed, synapse density, probability of presynaptic transmitter release, and postsynaptic responses in hypothalamic energy balance centers are tailored to behavioral and physiological responses required to sustain survival. Mounting evidence supports key roles of astrocytes facilitating some of this plasticity. Here we discuss these synaptic plasticity mechanisms and the emerging roles of astrocytes influencing energy and glucose balance control in health and disease. This article is categorized under: Cancer > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Dominique Ameroso
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Maribel Rios
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
20
|
Tucker JAL, Bornath DPD, McCarthy SF, Hazell TJ. Leptin and energy balance: exploring Leptin's role in the regulation of energy intake and energy expenditure. Nutr Neurosci 2024; 27:87-95. [PMID: 36583502 DOI: 10.1080/1028415x.2022.2161135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Leptin is a tonic appetite-regulating hormone, which is integral for the long-term regulation of energy balance. The current evidence suggests that the typical orexigenic or anorexigenic response of many of these appetite-regulating hormones, most notably ghrelin and cholecystokinin (CCK), require leptin to function whereas glucagon-like peptide-1 (GLP-1) is required for leptin to function, and these responses are altered when leptin injection or gene therapy is administered in combination with these same hormones or respective agonists. The appetite-regulatory pathway is complex, thus peptide tyrosine tyrosine (PYY), brain-derived neurotrophic factor (BDNF), orexin-A (OXA), and amylin also maintain ties to leptin, however these are less well understood. While reviews to date have focused on the existing relationships between leptin and the various neuropeptide modulators of appetite within the central nervous system (CNS) or it's role in thermogenesis, no review paper has synthesised the information regarding the interactions between appetite-regulating hormones and how leptin as a chronic regulator of energy balance can influence the acute appetite-regulatory response. Current evidence suggests that potential relationships exist between leptin and the circulating peripheral appetite hormones ghrelin, GLP-1, CCK, OXA and amylin to exhibit either synergistic or opposing effects on appetite inhibition. Though more research is warranted, leptin appears to be integral in both energy intake and energy expenditure. More specifically, functional leptin receptors appear to play an essential role in these processes.
Collapse
Affiliation(s)
- Jessica A L Tucker
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| | - Derek P D Bornath
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| | - Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| |
Collapse
|
21
|
Albini M, Krawczun-Rygmaczewska A, Cesca F. Astrocytes and brain-derived neurotrophic factor (BDNF). Neurosci Res 2023; 197:42-51. [PMID: 36780947 DOI: 10.1016/j.neures.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023]
Abstract
Astrocytes are emerging in the neuroscience field as crucial modulators of brain functions, from the molecular control of synaptic plasticity to orchestrating brain-wide circuit activity for cognitive processes. The cellular pathways through which astrocytes modulate neuronal activity and plasticity are quite diverse. In this review, we focus on neurotrophic pathways, mostly those mediated by brain-derived neurotrophic factor (BDNF). Neurotrophins are a well-known family of trophic factors with pleiotropic functions in neuronal survival, maturation and activity. Within the brain, BDNF is the most abundantly expressed and most studied of all neurotrophins. While we have detailed knowledge of the effect of BDNF on neurons, much less is known about its physiology on astroglia. However, over the last years new findings emerged demonstrating that astrocytes take an active part into BDNF physiology. In this work, we discuss the state-of-the-art knowledge about astrocytes and BDNF. Indeed, astrocytes sense extracellular BDNF through its specific TrkB receptors and activate intracellular responses that greatly vary depending on the brain area, stage of development and receptors expressed. Astrocytes also uptake and recycle BDNF / proBDNF at synapses contributing to synaptic plasticity. Finally, experimental evidence is now available describing deficits in astrocytic BDNF in several neuropathologies, suggesting that astrocytic BDNF may represent a promising target for clinical translation.
Collapse
Affiliation(s)
- Martina Albini
- Department of Experimental Medicine, University of Genova, Italy; IIT Center for Synaptic Neuroscience and Technology, Genova, Italy
| | - Alicja Krawczun-Rygmaczewska
- IIT Center for Synaptic Neuroscience and Technology, Genova, Italy; Department of Life Sciences, University of Trieste, Italy
| | - Fabrizia Cesca
- IIT Center for Synaptic Neuroscience and Technology, Genova, Italy; Department of Life Sciences, University of Trieste, Italy.
| |
Collapse
|
22
|
Javed S, Chang YT, Cho Y, Lee YJ, Chang HC, Haque M, Lin YC, Huang WH. Smith-Magenis syndrome protein RAI1 regulates body weight homeostasis through hypothalamic BDNF-producing neurons and neurotrophin downstream signalling. eLife 2023; 12:RP90333. [PMID: 37956053 PMCID: PMC10642964 DOI: 10.7554/elife.90333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Retinoic acid-induced 1 (RAI1) haploinsufficiency causes Smith-Magenis syndrome (SMS), a genetic disorder with symptoms including hyperphagia, hyperlipidemia, severe obesity, and autism phenotypes. RAI1 is a transcriptional regulator with a pan-neural expression pattern and hundreds of downstream targets. The mechanisms linking neural Rai1 to body weight regulation remain unclear. Here we find that hypothalamic brain-derived neurotrophic factor (BDNF) and its downstream signalling are disrupted in SMS (Rai1+/-) mice. Selective Rai1 loss from all BDNF-producing cells or from BDNF-producing neurons in the paraventricular nucleus of the hypothalamus (PVH) induced obesity in mice. Electrophysiological recordings revealed that Rai1 ablation decreased the intrinsic excitability of PVHBDNF neurons. Chronic treatment of SMS mice with LM22A-4 engages neurotrophin downstream signalling and delayed obesity onset. This treatment also partially rescued disrupted lipid profiles, insulin intolerance, and stereotypical repetitive behaviour in SMS mice. These data argue that RAI1 regulates body weight and metabolic function through hypothalamic BDNF-producing neurons and that targeting neurotrophin downstream signalling might improve associated SMS phenotypes.
Collapse
Affiliation(s)
- Sehrish Javed
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Ya-Ting Chang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Yoobin Cho
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Yu-Ju Lee
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Hao-Cheng Chang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Minza Haque
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Yu Cheng Lin
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Wei-Hsiang Huang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| |
Collapse
|
23
|
Neto A, Fernandes A, Barateiro A. The complex relationship between obesity and neurodegenerative diseases: an updated review. Front Cell Neurosci 2023; 17:1294420. [PMID: 38026693 PMCID: PMC10665538 DOI: 10.3389/fncel.2023.1294420] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is a global epidemic, affecting roughly 30% of the world's population and predicted to rise. This disease results from genetic, behavioral, societal, and environmental factors, leading to excessive fat accumulation, due to insufficient energy expenditure. The adipose tissue, once seen as a simple storage depot, is now recognized as a complex organ with various functions, including hormone regulation and modulation of metabolism, inflammation, and homeostasis. Obesity is associated with a low-grade inflammatory state and has been linked to neurodegenerative diseases like multiple sclerosis (MS), Alzheimer's (AD), and Parkinson's (PD). Mechanistically, reduced adipose expandability leads to hypertrophic adipocytes, triggering inflammation, insulin and leptin resistance, blood-brain barrier disruption, altered brain metabolism, neuronal inflammation, brain atrophy, and cognitive decline. Obesity impacts neurodegenerative disorders through shared underlying mechanisms, underscoring its potential as a modifiable risk factor for these diseases. Nevertheless, further research is needed to fully grasp the intricate connections between obesity and neurodegeneration. Collaborative efforts in this field hold promise for innovative strategies to address this complex relationship and develop effective prevention and treatment methods, which also includes specific diets and physical activities, ultimately improving quality of life and health.
Collapse
Affiliation(s)
- Alexandre Neto
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Barateiro
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Esvald EE, Tuvikene J, Kiir CS, Avarlaid A, Tamberg L, Sirp A, Shubina A, Cabrera-Cabrera F, Pihlak A, Koppel I, Palm K, Timmusk T. Revisiting the expression of BDNF and its receptors in mammalian development. Front Mol Neurosci 2023; 16:1182499. [PMID: 37426074 PMCID: PMC10325033 DOI: 10.3389/fnmol.2023.1182499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes the survival and functioning of neurons in the central nervous system and contributes to proper functioning of many non-neural tissues. Although the regulation and role of BDNF have been extensively studied, a rigorous analysis of the expression dynamics of BDNF and its receptors TrkB and p75NTR is lacking. Here, we have analyzed more than 3,600 samples from 18 published RNA sequencing datasets, and used over 17,000 samples from GTEx, and ~ 180 samples from BrainSpan database, to describe the expression of BDNF in the developing mammalian neural and non-neural tissues. We show evolutionarily conserved dynamics and expression patterns of BDNF mRNA and non-conserved alternative 5' exon usage. Finally, we also show increasing BDNF protein levels during murine brain development and BDNF protein expression in several non-neural tissues. In parallel, we describe the spatiotemporal expression pattern of BDNF receptors TrkB and p75NTR in both murines and humans. Collectively, our in-depth analysis of the expression of BDNF and its receptors gives insight into the regulation and signaling of BDNF in the whole organism throughout life.
Collapse
Affiliation(s)
- Eli-Eelika Esvald
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Protobios LLC, Tallinn, Estonia
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Protobios LLC, Tallinn, Estonia
- dxlabs LLC, Tallinn, Estonia
| | - Carl Sander Kiir
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Annela Avarlaid
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Laura Tamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Alex Sirp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Anastassia Shubina
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | | | - Indrek Koppel
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Protobios LLC, Tallinn, Estonia
| |
Collapse
|
25
|
Chu P, Guo W, You H, Lu B. Regulation of Satiety by Bdnf-e2-Expressing Neurons through TrkB Activation in Ventromedial Hypothalamus. Biomolecules 2023; 13:biom13050822. [PMID: 37238691 DOI: 10.3390/biom13050822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The transcripts for Bdnf (brain-derived neurotrophic factor), driven by different promoters, are expressed in different brain regions to control different body functions. Specific promoter(s) that regulates energy balance remain unclear. We show that disruption of Bdnf promoters I and II but not IV and VI in mice (Bdnf-e1-/-, Bdnf-e2-/-) results in obesity. Whereas Bdnf-e1-/- exhibited impaired thermogenesis, Bdnf-e2-/- showed hyperphagia and reduced satiety before the onset of obesity. The Bdnf-e2 transcripts were primarily expressed in ventromedial hypothalamus (VMH), a nucleus known to regulate satiety. Re-expressing Bdnf-e2 transcript in VMH or chemogenetic activation of VMH neurons rescued the hyperphagia and obesity of Bdnf-e2-/- mice. Deletion of BDNF receptor TrkB in VMH neurons in wildtype mice resulted in hyperphagia and obesity, and infusion of TrkB agonistic antibody into VMH of Bdnf-e2-/- mice alleviated these phenotypes. Thus, Bdnf-e2-transcripts in VMH neurons play a key role in regulating energy intake and satiety through TrkB pathway.
Collapse
Affiliation(s)
- Pengcheng Chu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Guo
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - He You
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Centre, 10 Marais Street, Stellenbosch 7600, South Africa
| |
Collapse
|
26
|
Tavernarakis N. Remote control of autophagy and metabolism in the liver. Cell Metab 2023; 35:725-727. [PMID: 37137284 DOI: 10.1016/j.cmet.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Systemic control of homeostatic processes is of fundamental importance for survival and adaptation in metazoans. In this issue of Cell Metabolism, Chen and colleagues identify and methodically dissect a signaling cascade that is mobilized by the agouti-related peptide (AgRP)-expressing neurons in the hypothalamus, to ultimately modulate autophagy and metabolism in the liver upon starvation.
Collapse
Affiliation(s)
- Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion 70013, Crete, Greece.
| |
Collapse
|
27
|
Fan Y, Støving RK, Berreira Ibraim S, Hyötyläinen T, Thirion F, Arora T, Lyu L, Stankevic E, Hansen TH, Déchelotte P, Sinioja T, Ragnarsdottir O, Pons N, Galleron N, Quinquis B, Levenez F, Roume H, Falony G, Vieira-Silva S, Raes J, Clausen L, Telléus GK, Bäckhed F, Oresic M, Ehrlich SD, Pedersen O. The gut microbiota contributes to the pathogenesis of anorexia nervosa in humans and mice. Nat Microbiol 2023; 8:787-802. [PMID: 37069399 PMCID: PMC10159860 DOI: 10.1038/s41564-023-01355-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 03/03/2023] [Indexed: 04/19/2023]
Abstract
Anorexia nervosa (AN) is an eating disorder with a high mortality. About 95% of cases are women and it has a population prevalence of about 1%, but evidence-based treatment is lacking. The pathogenesis of AN probably involves genetics and various environmental factors, and an altered gut microbiota has been observed in individuals with AN using amplicon sequencing and relatively small cohorts. Here we investigated whether a disrupted gut microbiota contributes to AN pathogenesis. Shotgun metagenomics and metabolomics were performed on faecal and serum samples, respectively, from a cohort of 77 females with AN and 70 healthy females. Multiple bacterial taxa (for example, Clostridium species) were altered in AN and correlated with estimates of eating behaviour and mental health. The gut virome was also altered in AN including a reduction in viral-bacterial interactions. Bacterial functional modules associated with the degradation of neurotransmitters were enriched in AN and various structural variants in bacteria were linked to metabolic features of AN. Serum metabolomics revealed an increase in metabolites associated with reduced food intake (for example, indole-3-propionic acid). Causal inference analyses implied that serum bacterial metabolites are potentially mediating the impact of an altered gut microbiota on AN behaviour. Further, we performed faecal microbiota transplantation from AN cases to germ-free mice under energy-restricted feeding to mirror AN eating behaviour. We found that the reduced weight gain and induced hypothalamic and adipose tissue gene expression were related to aberrant energy metabolism and eating behaviour. Our 'omics' and mechanistic studies imply that a disruptive gut microbiome may contribute to AN pathogenesis.
Collapse
Affiliation(s)
- Yong Fan
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - René Klinkby Støving
- Center for Eating Disorders, Odense University Hospital, and Research Unit for Medical Endocrinology, Mental Health Services in the Region of Southern Denmark, Open Patient data Explorative Network (OPEN) and Clinical Institute, University of Southern Denmark, Odense, Denmark
| | | | | | | | - Tulika Arora
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Liwei Lyu
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, University of Copenhagen and Herlev-Gentofte University Hospital, Copenhagen, Denmark
| | - Evelina Stankevic
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Tue Haldor Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Pierre Déchelotte
- INSERM U1073 Research Unit and TargEDys, Rouen University, Rouen, France
| | - Tim Sinioja
- School of Science and Technology, Örebro University, Örebro, Sweden
| | | | - Nicolas Pons
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France
| | | | | | | | - Hugo Roume
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France
| | - Gwen Falony
- Laboratory of Molecular bacteriology, Department of Microbiology and Immunology, Rega Institute Ku Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Sara Vieira-Silva
- Laboratory of Molecular bacteriology, Department of Microbiology and Immunology, Rega Institute Ku Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Jeroen Raes
- Laboratory of Molecular bacteriology, Department of Microbiology and Immunology, Rega Institute Ku Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Loa Clausen
- Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Gry Kjaersdam Telléus
- Unit for Psychiatric Research, Aalborg University Hospital, Aalborg, Denmark
- Department of Communication and Psychology, The Faculty of Social Sciences and Humanities, Aalborg University, Aalborg, Denmark
| | - Fredrik Bäckhed
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Matej Oresic
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - S Dusko Ehrlich
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
- Department of Medicine, University of Copenhagen and Herlev-Gentofte University Hospital, Copenhagen, Denmark.
| |
Collapse
|
28
|
Mashoodh R, Habrylo IB, Gudsnuk K, Champagne FA. Sex-specific effects of chronic paternal stress on offspring development are partially mediated via mothers. Horm Behav 2023; 152:105357. [PMID: 37062113 DOI: 10.1016/j.yhbeh.2023.105357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Paternal stress exposure is known to impact the development of stress-related behaviors in offspring. Previous work has highlighted the importance of sperm mediated factors, such as RNAs, in transmitting the effects of parental stress. However, a key unanswered question is whether mothers behavior could drive or modulate the transmission of paternal stress effects on offspring development. Here we investigate how chronic variable stress in Balb/C mice influences the sex-specific development of anxiety- and depression-like neural and behavioral development in offspring. Moreover, we examined how stressed fathers influenced mate maternal investment towards their offspring and how this may modulate the transmission of paternal stress effects on offspring. We show that paternal stress leads to sex-specific effects on offspring behavior. Males that are chronically stressed sire female offspring that show increased anxiety and depression-like behaviors. However, male offspring of stressed fathers show reductions in anxiety- and depression-behaviors and are generally more exploratory. Moreover, we show that females mated with stressed males gain less weight during pregnancy and provide less care towards their offspring which additionally influenced offspring development. These data indicate that paternal stress can influence offspring development both directly and indirectly via changes in mothers, with implications for sex-specific offspring development.
Collapse
Affiliation(s)
- Rahia Mashoodh
- University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| | - Ireneusz B Habrylo
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, Schermerhorn Hall, New York, NY 10027, United States of America
| | - Kathryn Gudsnuk
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, Schermerhorn Hall, New York, NY 10027, United States of America
| | - Frances A Champagne
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, Schermerhorn Hall, New York, NY 10027, United States of America; University of Texas Austin, Department of Psychology, 108 Dean Keeton, Austin, TX 78712, United States of America
| |
Collapse
|
29
|
Ye W, Xing J, Yu Z, Hu X, Zhao Y. Mechanism and treatments of antipsychotic-induced weight gain. Int J Obes (Lond) 2023; 47:423-433. [PMID: 36959286 DOI: 10.1038/s41366-023-01291-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
The long-term use of antipsychotics (APs) may cause a variety of diseases, such as metabolic syndrome, antipsychotic-induced weight gain (AIWG), and even obesity. This paper reviews the various mechanisms of AIWG and obesity in detail, involving genetics, the central nervous system, the neuroendocrine system, and the gut microbiome. The common drug and non-drug therapies used in clinical practice are also introduced, providing the basis for research on the molecular mechanisms and the future selection of treatments.
Collapse
Affiliation(s)
- Wujie Ye
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyu Xing
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zekai Yu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingang Hu
- Internal encephalopathy of traditional Chinese medicine, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Yan Zhao
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
30
|
Zhang J, Li S, Luo X, Zhang C. Emerging role of hypothalamus in the metabolic regulation in the offspring of maternal obesity. Front Nutr 2023; 10:1094616. [PMID: 36819678 PMCID: PMC9928869 DOI: 10.3389/fnut.2023.1094616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Maternal obesity has a significant impact on the metabolism of offspring both in childhood and adulthood. The metabolic regulation of offspring is influenced by the intrauterine metabolic programming induced by maternal obesity. Nevertheless, the precise mechanisms remain unclear. The hypothalamus is the primary target of metabolic programming and the principal regulatory center of energy metabolism. Accumulating evidence has indicated the crucial role of hypothalamic regulation in the metabolism of offspring exposed to maternal obesity. This article reviews the development of hypothalamus, the role of the hypothalamic regulations in energy homeostasis, possible mechanisms underlying the developmental programming of energy metabolism in offspring, and the potential therapeutic approaches for preventing metabolic diseases later in life. Lastly, we discuss the challenges and future directions of hypothalamic regulation in the metabolism of children born to obese mothers.
Collapse
|
31
|
Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother 2022; 156:113808. [DOI: 10.1016/j.biopha.2022.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
|
32
|
Sanetra AM, Palus-Chramiec K, Chrobok L, Jeczmien-Lazur JS, Gawron E, Klich JD, Pradel K, Lewandowski MH. High-Fat-Diet-Evoked Disruption of the Rat Dorsomedial Hypothalamic Clock Can Be Prevented by Restricted Nighttime Feeding. Nutrients 2022; 14:nu14235034. [PMID: 36501063 PMCID: PMC9735604 DOI: 10.3390/nu14235034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity is a growing health problem for modern society; therefore, it has become extremely important to study not only its negative implications but also its developmental mechanism. Its links to disrupted circadian rhythmicity are indisputable but are still not well studied on the cellular level. Circadian food intake and metabolism are controlled by a set of brain structures referred to as the food-entrainable oscillator, among which the dorsomedial hypothalamus (DMH) seems to be especially heavily affected by diet-induced obesity. In this study, we evaluated the effects of a short-term high-fat diet (HFD) on the physiology of the male rat DMH, with special attention to its day/night changes. Using immunofluorescence and electrophysiology we found that both cFos immunoreactivity and electrical activity rhythms become disrupted after as few as 4 weeks of HFD consumption, so before the onset of excessive weight gain. This indicates that the DMH impairment is a possible factor in obesity development. The DMH cellular activity under an HFD became increased during the non-active daytime, which coincides with a disrupted rhythm in food intake. In order to explore the relationship between them, a separate group of rats underwent time-restricted feeding with access to food only during the nighttime. Such an approach completely abolished the disruptive effects of the HFD on the DMH clock, confirming its dependence on the feeding schedule of the animal. The presented data highlight the importance of a temporally regulated feeding pattern on the physiology of the hypothalamic center for food intake and metabolism regulation, and propose time-restricted feeding as a possible prevention of the circadian dysregulation observed under an HFD.
Collapse
Affiliation(s)
- Anna Magdalena Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland
- Correspondence: (A.M.S.); (M.H.L.); Tel.: +48-12-664-53-56 (A.M.S.); +48-12-664-53-73 (M.H.L.)
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland
| | - Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, University Walk, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - Jagoda Stanislawa Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland
| | - Emilia Gawron
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland
| | - Jasmin Daniela Klich
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland
| | - Marian Henryk Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland
- Correspondence: (A.M.S.); (M.H.L.); Tel.: +48-12-664-53-56 (A.M.S.); +48-12-664-53-73 (M.H.L.)
| |
Collapse
|
33
|
Autry AE. Function of brain-derived neurotrophic factor in the hypothalamus: Implications for depression pathology. Front Mol Neurosci 2022; 15:1028223. [PMID: 36466807 PMCID: PMC9708894 DOI: 10.3389/fnmol.2022.1028223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Depression is a prevalent mental health disorder and is the number one cause of disability worldwide. Risk factors for depression include genetic predisposition and stressful life events, and depression is twice as prevalent in women compared to men. Both clinical and preclinical research have implicated a critical role for brain-derived neurotrophic factor (BDNF) signaling in depression pathology as well as therapeutics. A preponderance of this research has focused on the role of BDNF and its primary receptor tropomyosin-related kinase B (TrkB) in the cortex and hippocampus. However, much of the symptomatology for depression is consistent with disruptions in functions of the hypothalamus including changes in weight, activity levels, responses to stress, and sociability. Here, we review evidence for the role of BDNF and TrkB signaling in the regions of the hypothalamus and their role in these autonomic and behavioral functions associated with depression. In addition, we identify areas for further research. Understanding the role of BDNF signaling in the hypothalamus will lead to valuable insights for sex- and stress-dependent neurobiological underpinnings of depression pathology.
Collapse
Affiliation(s)
- Anita E. Autry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- *Correspondence: Anita E. Autry,
| |
Collapse
|
34
|
Martinez-Sanchez N, Sweeney O, Sidarta-Oliveira D, Caron A, Stanley SA, Domingos AI. The sympathetic nervous system in the 21st century: Neuroimmune interactions in metabolic homeostasis and obesity. Neuron 2022; 110:3597-3626. [PMID: 36327900 PMCID: PMC9986959 DOI: 10.1016/j.neuron.2022.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
The sympathetic nervous system maintains metabolic homeostasis by orchestrating the activity of organs such as the pancreas, liver, and white and brown adipose tissues. From the first renderings by Thomas Willis to contemporary techniques for visualization, tracing, and functional probing of axonal arborizations within organs, our understanding of the sympathetic nervous system has started to grow beyond classical models. In the present review, we outline the evolution of these findings and provide updated neuroanatomical maps of sympathetic innervation. We offer an autonomic framework for the neuroendocrine loop of leptin action, and we discuss the role of immune cells in regulating sympathetic terminals and metabolism. We highlight potential anti-obesity therapeutic approaches that emerge from the modern appreciation of SNS as a neural network vis a vis the historical fear of sympathomimetic pharmacology, while shifting focus from post- to pre-synaptic targeting. Finally, we critically appraise the field and where it needs to go.
Collapse
Affiliation(s)
| | - Owen Sweeney
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Davi Sidarta-Oliveira
- Physician-Scientist Graduate Program, Obesity and Comorbidities Research Center, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana I Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
35
|
Zhou Q, Liu C, Chen T, Liu Y, Cao R, Ni X, Yang WZ, Shen Q, Sun H, Shen WL. Cooling-activated dorsomedial hypothalamic BDNF neurons control cold defense in mice. J Neurochem 2022; 163:220-232. [PMID: 35862478 DOI: 10.1111/jnc.15666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022]
Abstract
BDNF and its expressing neurons in the brain critically control feeding and energy expenditure (EE) in both rodents and humans. However, whether BDNF neurons would function in thermoregulation during temperature challenges is unclear. Here, we show that BDNF neurons in the dorsomedial hypothalamus (DMHBDNF ) of mice are activated by afferent cooling signals. These cooling-activated BDNF neurons are mainly GABAergic. Activation of DMHBDNF neurons or the GABAergic subpopulations is sufficient to increase body temperature, EE, and physical activity. Conversely, blocking DMHBDNF neurons substantially impairs cold defense and reduces energy expenditure, physical activity, and UCP1 expression in BAT, which eventually results in bodyweight gain and glucose/insulin intolerance. Therefore, we identify a subset of DMHBDNF neurons as a novel type of cooling-activated neurons to promote cold defense. Thus, we reveal a critical role of BDNF circuitry in thermoregulation, which deepens our understanding of BDNF in controlling energy homeostasis and obesity.
Collapse
Affiliation(s)
- Qian Zhou
- School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Changhao Liu
- School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Ting Chen
- School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Yanyang Liu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ren Cao
- School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Xinyan Ni
- School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Wen Z Yang
- School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongbin Sun
- School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Wei L Shen
- School of Life Science and Technology, Shanghaitech University, Shanghai, China
| |
Collapse
|
36
|
Glucose and fructose directly stimulate brain-derived neurotrophic factor gene expression in microglia. Neuroreport 2022; 33:583-589. [DOI: 10.1097/wnr.0000000000001820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Fadahunsi N, Lund J, Breum AW, Mathiesen CV, Larsen IB, Knudsen GM, Klein AB, Clemmensen C. Acute and long-term effects of psilocybin on energy balance and feeding behavior in mice. Transl Psychiatry 2022; 12:330. [PMID: 35953488 PMCID: PMC9372155 DOI: 10.1038/s41398-022-02103-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022] Open
Abstract
Psilocybin and other serotonergic psychedelics have re-emerged as therapeutics for neuropsychiatric disorders, including addiction. Psilocybin induces long-lasting effects on behavior, likely due to its profound ability to alter consciousness and augment neural connectivity and plasticity. Impaired synaptic plasticity in obesity contributes to 'addictive-like' behaviors, including heightened motivation for palatable food, and excessive food seeking and consumption. Here, we evaluate the effects of psilocybin on feeding behavior, energy metabolism, and as a weight-lowering agent in mice. We demonstrate that a single dose of psilocybin substantially alters the prefrontal cortex transcriptome but has no acute or long-lasting effects on food intake or body weight in diet-induced obese mice or in genetic mouse models of obesity. Similarly, sub-chronic microdosing of psilocybin has no metabolic effects in obese mice and psilocybin does not augment glucagon-like peptide-1 (GLP-1) induced weight loss or enhance diet-induced weight loss. A single high dose of psilocybin reduces sucrose preference but fails to counter binge-like eating behavior. Although these preclinical data discourage clinical investigation, there may be nuances in the mode of action of psychedelic drugs that are difficult to capture in rodent models, and thus require human evaluation to uncover.
Collapse
Affiliation(s)
- Nicole Fadahunsi
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alberte Wollesen Breum
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Vad Mathiesen
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Isabella Beck Larsen
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- grid.4973.90000 0004 0646 7373Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bue Klein
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
38
|
Application of Network Analysis to Uncover Variables Contributing to Functional Recovery after Stroke. Brain Sci 2022; 12:brainsci12081065. [PMID: 36009129 PMCID: PMC9405603 DOI: 10.3390/brainsci12081065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
To estimate network structures to discover the interrelationships among variables and distinguish the difference between networks. Three hundred and forty-eight stroke patients were enrolled in this retrospective study. A network analysis was used to investigate the association between those variables. A Network Comparison Test was performed to compare the correlation of variables between networks. Three hundred and twenty-five connections were identified, and 22 of these differed significantly between the high- and low-Functional Independence Measurement (FIM) groups. In the high-FIM network structure, brain-derived neurotrophic factor (BDNF) and length of stay (LOS) had associations with other nodes. However, there was no association with BDNF and LOS in the low-FIM network. In addition, the use of amantadine was associated with shorter LOS and lower FIM motor subscores in the high-FIM network, but there was no such connection in the low-FIM network. Centrality indices revealed that amantadine use had high centrality with others in the high-FIM network but not the low-FIM network. Coronary artery disease (CAD) had high centrality in the low-FIM network structure but not the high-FIM network. Network analysis revealed a new correlation of variables associated with stroke recovery. This approach might be a promising method to facilitate the discovery of novel factors important for stroke recovery.
Collapse
|
39
|
Sanetra AM, Palus-Chramiec K, Chrobok L, Lewandowski MH. Electrophysiological complexity in the rat dorsomedial hypothalamus and its susceptibility to daily rhythms and high-fat diet. Eur J Neurosci 2022; 56:4363-4377. [PMID: 35796742 DOI: 10.1111/ejn.15759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 12/30/2022]
Abstract
The dorsomedial hypothalamus (DMH) in amongst the most important brain structures involved in the regulation of feeding behaviour and metabolism. In contrast to other hypothalamic centres, its main role is related to the circadian rhythmicity of food intake and energy homeostasis; both reported to be disrupted in obesity. In modern world, overweight and obesity reached global epidemic proportions. Thus, not only is it important to study their negative implications but also the mechanism responsible for their development. Here, we exposed rats to short-term (2-4 weeks) high-fat diet (HFD)-not long enough to induce obesity. Next, we performed electrophysiological patch-clamp recordings ex vivo from neurons in the DMH either during the day or at night. Our results showed a day-to-night change in the firing frequency of DMH cells, with higher activity during the dark phase. This was abolished by HFD consumption, resulting in a decreased threshold for action potential generation during the day and therefore increased electrical activity at this phase. We propose this electrophysiological disturbance as a mechanism for the induction of abnormal daytime feeding, previously observed for HFD-fed animals, which might in turn contribute to the development of obesity. In addition, we provide an electrophysiological characteristic of DMH neurons with a separation into three anatomically and functionally distinct subpopulations, namely, the compact part, separating the structure into the ventral and dorsal divisions. Our study is the first to show electrophysiological complexity of the DMH with its sensitivity to diet and daily rhythms.
Collapse
Affiliation(s)
- Anna Magdalena Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.,School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Marian Henryk Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
40
|
Aldhshan MS, Mizuno TM. Effect of environmental enrichment on aggression and the expression of brain-derived neurotrophic factor transcript variants in group-housed male mice. Behav Brain Res 2022; 433:113986. [DOI: 10.1016/j.bbr.2022.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/20/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
|
41
|
Ghosh-Swaby OR, Reichelt AC, Sheppard PAS, Davies J, Bussey TJ, Saksida LM. Metabolic hormones mediate cognition. Front Neuroendocrinol 2022; 66:101009. [PMID: 35679900 DOI: 10.1016/j.yfrne.2022.101009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Recent biochemical and behavioural evidence indicates that metabolic hormones not only regulate energy intake and nutrient content, but also modulate plasticity and cognition in the central nervous system. Disruptions in metabolic hormone signalling may provide a link between metabolic syndromes like obesity and diabetes, and cognitive impairment. For example, altered metabolic homeostasis in obesity is a strong determinant of the severity of age-related cognitive decline and neurodegenerative disease. Here we review the evidence that eating behaviours and metabolic hormones-particularly ghrelin, leptin, and insulin-are key players in the delicate regulation of neural plasticity and cognition. Caloric restriction and antidiabetic therapies, both of which affect metabolic hormone levels can restore metabolic homeostasis and enhance cognitive function. Thus, metabolic hormone pathways provide a promising target for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Olivia R Ghosh-Swaby
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada
| | - Amy C Reichelt
- Faculty of Health and Medical Sciences, Adelaide Medical School, Adelaide, Australia
| | - Paul A S Sheppard
- Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Jeffrey Davies
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Timothy J Bussey
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Lisa M Saksida
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada.
| |
Collapse
|
42
|
Stincic TL, Kelly MJ. Estrogenic regulation of reproduction and energy homeostasis by a triumvirate of hypothalamic arcuate neurons. J Neuroendocrinol 2022; 34:e13145. [PMID: 35581942 DOI: 10.1111/jne.13145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Abstract
Pregnancy is energetically demanding and therefore, by necessity, reproduction and energy balance are inextricably linked. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy or produce unhealthy offspring. Gonadotropin-releasing hormone neurons are responsible for initiating both the pulsatile and subsequent surge release of luteinizing hormone to control ovulation. Meticulous work has identified two hypothalamic populations of kisspeptin (Kiss1) neurons that are critical for this pattern of release. The involvement of the hypothalamus is unsurprising because its quintessential function is to couple the endocrine and nervous systems, coordinating energy balance and reproduction. Estrogens, more specifically 17β-estradiol (E2 ), orchestrate the activity of a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool, these cells differentiate into ARH kisspeptin, pro-opiomelanocortin (POMC), and agouti related peptide/neuropeptide Y (AgRP) neurons. Although the excitability of all these subpopulations is subject to genomic and rapid estrogenic regulation, Kiss1 neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we review recent findings on how Kiss1 neurons interact with gonadotropin-releasing hormone, AgRP and POMC neurons, as well as how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction. In particular, we highlight how Kiss1 and POMC neurons conspire to inhibit AgRP neurons and diminish food motivation in service of reproductive success.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| |
Collapse
|
43
|
Tu L, Fukuda M, Tong Q, Xu Y. The ventromedial hypothalamic nucleus: watchdog of whole-body glucose homeostasis. Cell Biosci 2022; 12:71. [PMID: 35619170 PMCID: PMC9134642 DOI: 10.1186/s13578-022-00799-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
The brain, particularly the ventromedial hypothalamic nucleus (VMH), has been long known for its involvement in glucose sensing and whole-body glucose homeostasis. However, it is still not fully understood how the brain detects and responds to the changes in the circulating glucose levels, as well as brain-body coordinated control of glucose homeostasis. In this review, we address the growing evidence implicating the brain in glucose homeostasis, especially in the contexts of hypoglycemia and diabetes. In addition to neurons, we emphasize the potential roles played by non-neuronal cells, as well as extracellular matrix in the hypothalamus in whole-body glucose homeostasis. Further, we review the ionic mechanisms by which glucose-sensing neurons sense fluctuations of ambient glucose levels. We also introduce the significant implications of heterogeneous neurons in the VMH upon glucose sensing and whole-body glucose homeostasis, in which sex difference is also addressed. Meanwhile, research gaps have also been identified, which necessities further mechanistic studies in future.
Collapse
Affiliation(s)
- Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA
| | - Makoto Fukuda
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
44
|
Gruber T, García-Cáceres C. Astroglial clean-up of satiety synapses. Nat Metab 2022; 4:505-506. [PMID: 35501600 DOI: 10.1038/s42255-022-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tim Gruber
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München & German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München & German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
45
|
Ameroso D, Meng A, Chen S, Felsted J, Dulla CG, Rios M. Astrocytic BDNF signaling within the ventromedial hypothalamus regulates energy homeostasis. Nat Metab 2022; 4:627-643. [PMID: 35501599 PMCID: PMC9177635 DOI: 10.1038/s42255-022-00566-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/28/2022] [Indexed: 11/12/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is essential for maintaining energy and glucose balance within the central nervous system. Because the study of its metabolic actions has been limited to effects in neuronal cells, its role in other cell types within the brain remains poorly understood. Here we show that astrocytic BDNF signaling within the ventromedial hypothalamus (VMH) modulates neuronal activity in response to changes in energy status. This occurs via the truncated TrkB.T1 receptor. Accordingly, either fasting or central BDNF depletion enhances astrocytic synaptic glutamate clearance, thereby decreasing neuronal activity in mice. Notably, selective depletion of TrkB.T1 in VMH astrocytes blunts the effects of energy status on excitatory transmission, as well as on responses to leptin, glucose and lipids. These effects are driven by increased astrocytic invasion of excitatory synapses, enhanced glutamate reuptake and decreased neuronal activity. We thus identify BDNF/TrkB.T1 signaling in VMH astrocytes as an essential mechanism that participates in energy and glucose homeostasis.
Collapse
Affiliation(s)
- Dominique Ameroso
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Alice Meng
- Graduate Program in Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Stella Chen
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Jennifer Felsted
- Graduate Program in Biochemical and Molecular Nutrition, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chris G Dulla
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Graduate Program in Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Maribel Rios
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
- Graduate Program in Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
46
|
Rossetti C, Cherix A, Guiraud LF, Cardinaux JR. New Insights Into the Pivotal Role of CREB-Regulated Transcription Coactivator 1 in Depression and Comorbid Obesity. Front Mol Neurosci 2022; 15:810641. [PMID: 35242012 PMCID: PMC8886117 DOI: 10.3389/fnmol.2022.810641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Depression and obesity are major public health concerns, and there is mounting evidence that they share etiopathophysiological mechanisms. The neurobiological pathways involved in both mood and energy balance regulation are complex, multifactorial and still incompletely understood. As a coactivator of the pleiotropic transcription factor cAMP response element-binding protein (CREB), CREB-regulated transcription coactivator 1 (CRTC1) has recently emerged as a novel regulator of neuronal plasticity and brain functions, while CRTC1 dysfunction has been associated with neurodegenerative and psychiatric diseases. This review focuses on recent evidence emphasizing the critical role of CRTC1 in the neurobiology of depression and comorbid obesity. We discuss the role of CRTC1 downregulation in mediating chronic stress-induced depressive-like behaviors, and antidepressant response in the light of the previously characterized Crtc1 knockout mouse model of depression. The putative role of CRTC1 in the alteration of brain energy homeostasis observed in depression is also discussed. Finally, we highlight rodent and human studies supporting the critical involvement of CRTC1 in depression-associated obesity.
Collapse
Affiliation(s)
- Clara Rossetti
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Antoine Cherix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laetitia F. Guiraud
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jean-René Cardinaux
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
47
|
Abstract
The role of central estrogen in cognitive, metabolic, and reproductive health has long fascinated the lay public and scientists alike. In the last two decades, insight into estrogen signaling in the brain and its impact on female physiology is beginning to catch up with the vast information already established for its actions on peripheral tissues. Using newer methods to manipulate estrogen signaling in hormone-sensitive brain regions, neuroscientists are now identifying the molecular pathways and neuronal subtypes required for controlling sex-dependent energy allocation. However, the immense cellular complexity of these hormone-sensitive brain regions makes it clear that more research is needed to fully appreciate how estrogen modulates neural circuits to regulate physiological and behavioral end points. Such insight is essential for understanding how natural or drug-induced hormone fluctuations across lifespan affect women's health.
Collapse
Affiliation(s)
- Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| | - Candice B Herber
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| | - William C Krause
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| |
Collapse
|
48
|
Tacad DKM, Tovar AP, Richardson CE, Horn WF, Keim NL, Krishnan GP, Krishnan S. Satiety Associated with Calorie Restriction and Time-Restricted Feeding: Central Neuroendocrine Integration. Adv Nutr 2022; 13:758-791. [PMID: 35134815 PMCID: PMC9156369 DOI: 10.1093/advances/nmac011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
This review focuses on summarizing current knowledge on how time-restricted feeding (TRF) and continuous caloric restriction (CR) affect central neuroendocrine systems involved in regulating satiety. Several interconnected regions of the hypothalamus, brainstem, and cortical areas of the brain are involved in the regulation of satiety. Following CR and TRF, the increase in hunger and reduction in satiety signals of the melanocortin system [neuropeptide Y (NPY), proopiomelanocortin (POMC), and agouti-related peptide (AgRP)] appear similar between CR and TRF protocols, as do the dopaminergic responses in the mesocorticolimbic circuit. However, ghrelin and leptin signaling via the melanocortin system appears to improve energy balance signals and reduce hyperphagia following TRF, which has not been reported in CR. In addition to satiety systems, CR and TRF also influence circadian rhythms. CR influences the suprachiasmatic nucleus (SCN) or the primary circadian clock as seen by increased clock gene expression. In contrast, TRF appears to affect both the SCN and the peripheral clocks, as seen by phasic changes in the non-SCN (potentially the elusive food entrainable oscillator) and metabolic clocks. The peripheral clocks are influenced by the primary circadian clock but are also entrained by food timing, sleep timing, and other lifestyle parameters, which can supersede the metabolic processes that are regulated by the primary circadian clock. Taken together, TRF influences hunger/satiety, energy balance systems, and circadian rhythms, suggesting a role for adherence to CR in the long run if implemented using the TRF approach. However, these suggestions are based on only a few studies, and future investigations that use standardized protocols for the evaluation of the effect of these diet patterns (time, duration, meal composition, sufficiently powered) are necessary to verify these preliminary observations.
Collapse
Affiliation(s)
- Debra K M Tacad
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Ashley P Tovar
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | | | - William F Horn
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA
| | - Nancy L Keim
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Giri P Krishnan
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | | |
Collapse
|
49
|
Mukherjee S, Skrede S, Milbank E, Andriantsitohaina R, López M, Fernø J. Understanding the Effects of Antipsychotics on Appetite Control. Front Nutr 2022; 8:815456. [PMID: 35047549 PMCID: PMC8762106 DOI: 10.3389/fnut.2021.815456] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Antipsychotic drugs (APDs) represent a cornerstone in the treatment of schizophrenia and other psychoses. The effectiveness of the first generation (typical) APDs are hampered by so-called extrapyramidal side effects, and they have gradually been replaced by second (atypical) and third-generation APDs, with less extrapyramidal side effects and, in some cases, improved efficacy. However, the use of many of the current APDs has been limited due to their propensity to stimulate appetite, weight gain, and increased risk for developing type 2 diabetes and cardiovascular disease in this patient group. The mechanisms behind the appetite-stimulating effects of the various APDs are not fully elucidated, partly because their diverse receptor binding profiles may affect different downstream pathways. It is critical to identify the molecular mechanisms underlying drug-induced hyperphagia, both because this may lead to the development of new APDs, with lower appetite-stimulating effects but also because such insight may provide new knowledge about appetite regulation in general. Hence, in this review, we discuss the receptor binding profile of various APDs in relation to the potential mechanisms by which they affect appetite.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Silje Skrede
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Edward Milbank
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Madrid, Spain.,SOPAM, U1063, INSERM, University of Angers, SFR ICAT, Bat IRIS-IBS, Angers, France
| | | | - Miguel López
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Madrid, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
50
|
Suzuki T, Tanaka KF. Downregulation of Bdnf Expression in Adult Mice Causes Body Weight Gain. Neurochem Res 2022; 47:2645-2655. [PMID: 34982395 DOI: 10.1007/s11064-021-03523-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
Gain or loss of appetite and resulting body weight changes are commonly observed in major depressive disorders (MDDs). Brain-derived neurotrophic factor (BDNF) is broadly expressed in the brain and is thought to play a role in the pathophysiology of MDDs and obesity. Congenital loss of function of BDNF causes weight gain in both humans and rodents; however, it is not clear whether acquired loss of function of BDNF also affects body weight. Thus, we exploited mutant mice in which the Bdnf expression level is regulated by the tetracycline-dependent transcriptional silencer (tTS)-tetracycline operator sequence (tetO) system. Time-controlled Bdnf expression using this system allowed us to establish congenital and acquired loss of function of Bdnf in mice. We demonstrated that changes in Bdnf expression influenced body weight during not only the developmental stage but also the adult stage of mice. Although it is still unclear whether acquired Bdnf loss of function in rodents mimics the pathology of MDD, our findings may bridge the mechanistic gap between MDDs and body weight gain in line with BDNF dysfunction.
Collapse
Affiliation(s)
- Toru Suzuki
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| |
Collapse
|