1
|
Ishihara Y, Ando M, Goto Y, Kotani S, Watanabe N, Nakatani Y, Ishii S, Miyamoto N, Mano Y, Ishikawa Y. A novel selective phosphodiesterase 9 inhibitor, irsenontrine (E2027), enhances GluA1 phosphorylation in neurons and improves learning and memory via cyclic GMP elevation. Neuropharmacology 2025; 273:110428. [PMID: 40147639 DOI: 10.1016/j.neuropharm.2025.110428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/22/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Phosphodiesterase 9 (PDE9) plays a critical role in synaptic plasticity and cognitive function by modulating cyclic GMP (cGMP). Many reports have shown that PDE9 inhibition improves cognitive function and synaptic plasticity in rodents. Several studies have found that the NO/cGMP/PKG pathway is downregulated in patients with Alzheimer's disease (AD) or dementia with Lewy bodies (DLB) and in older individuals. A PDE9 inhibitor could therefore be a potential therapeutic approach for improving cognitive dysfunction in dementia, including in AD and DLB. We previously discovered a novel PDE9 inhibitor, irsenontrine (E2027). In the current study, irsenontrine showed highly selective affinity for PDE9 with more than 1800-fold selectivity over other PDEs. Irsenontrine maleate significantly increased intracellular cGMP levels in rat cortical primary neurons, and phosphorylation of AMPA receptor subunit GluA1 was induced following cGMP elevation. Oral administration of irsenontrine significantly upregulated cGMP levels in the hippocampus and cerebrospinal fluid (CSF) of naïve rats, and a novel object recognition test showed that irsenontrine administration also significantly improved learning and memory. The effects of irsenontrine were confirmed in rats treated with Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME), a model of learning and memory impairment due to downregulation of the cGMP pathway. l-NAME downregulated cGMP in the CSF and hippocampus and impaired novel object recognition, but oral administration of irsenontrine clearly attenuated these phenotypes. These results indicate that irsenontrine improves learning and memory via the elevation of cGMP levels, and they strongly suggest that irsenontrine could be a novel therapeutic approach against cognitive dysfunction.
Collapse
Affiliation(s)
- Yasuharu Ishihara
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan; Laboratory of Genomics-based Drug Discovery, Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, Degree Program in Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Mai Ando
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Yasuaki Goto
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Sadaharu Kotani
- Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo, 112-8088, Japan
| | - Naoto Watanabe
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Yosuke Nakatani
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Satoko Ishii
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Norimasa Miyamoto
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan; Laboratory of Genomics-based Drug Discovery, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yuji Mano
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan; Laboratory of Genomics-based Drug Discovery, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yukio Ishikawa
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| |
Collapse
|
2
|
King LB, Walum H, Xiao Y, Caslin AY, Haddad FC, Young LJ, Johnson ZV. An oxytocin receptor gene polymorphism is associated with distinct neural responses to mating encounters in male prairie voles. Horm Behav 2025; 173:105761. [PMID: 40414117 DOI: 10.1016/j.yhbeh.2025.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/22/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
Oxytocin is a conserved neuropeptide that regulates social and reproductive behaviors in diverse species. Genetic variation in Oxtr, the gene encoding the oxytocin receptor (OXTR), is associated with variation in social attachment behaviors in rodents and humans; however, it is unclear how genetic variation in Oxtr shapes the function of specific neural systems during social contexts. Here we address this question using the socially monogamous prairie vole (Microtus ochrogaster), a species that expresses an array of OXTR-dependent social behaviors and possesses Oxtr gene polymorphisms that predict individual variation in brain region-specific OXTR expression. We test the neural and behavioral effects of an Oxtr gene polymorphism that has previously been associated with brain region-specific OXTR expression and social attachment behaviors in male prairie voles. Our results suggest that, during brief mating encounters, Oxtr genotype is not associated with differences in mating behavior or in expression levels of the activity-dependent immediate early gene product FOS within brain regions, but it is associated with differences in correlated FOS expression patterns across brain regions.
Collapse
Affiliation(s)
- Lanikea B King
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States of America; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America
| | - Hasse Walum
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States of America; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America
| | - Yao Xiao
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States of America; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America
| | - Asha Y Caslin
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States of America; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America
| | - Fuad C Haddad
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States of America; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America
| | - Larry J Young
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States of America; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America
| | - Zachary V Johnson
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States of America; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America.
| |
Collapse
|
3
|
Jenkins BW, Moore CF, Jantzie LL, Weerts EM. Prenatal cannabinoid exposure and the developing brain: Evidence of lasting consequences in preclinical rodent models. Neurosci Biobehav Rev 2025; 175:106207. [PMID: 40373945 DOI: 10.1016/j.neubiorev.2025.106207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/18/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Cannabis use by people who are pregnant is increasing. Understanding how prenatal cannabinoid exposure (PCE) affects infants and children is of high public health significance. Epidemiological studies have associated PCE with cognitive symptoms, including impaired learning, memory, attention, and executive control, and affective symptoms, including anxiety, emotional dysregulation, and social impairments, in children, adolescents, and young adults. PCE is also associated with neurobiological changes including decreased corticolimbic white matter and functional connectivity; however, the underlying mechanisms for these persisting effects remain unknown. Rodent models are essential for uncovering the effects of PCE on the developing brain. This review summarizes rodent studies focused on the cognitive and affective behavioral and neurobiological outcomes of PCE. Rodent studies have reported cognitive deficits, including impaired learning, memory, attention, and executive control, and affect-related impairments, including anxiety-like behavior, altered stress coping, social impairments, and anhedonia-like behavior, in adolescent and adult offspring. Studies have also demonstrated that PCE affects several underlying neurotransmitter systems, producing dopamine hyperactivity, glutamate and serotonin hypoactivity, and dysregulating GABA and opioid signaling. Evidence further suggests a marked difference in outcomes between males and females, with males being more susceptible to the enduring effects of PCE. However, studies that investigate female-specific outcomes or sex as a biological variable are scarce. Altogether, rodent studies provide corroborating evidence that PCE produces lasting cognitive and affective impairments underpinned by altered neurobiological mechanisms. Research is critically needed to improve our understanding of the risks associated with cannabis use during pregnancy and effects across the lifespan.
Collapse
Affiliation(s)
- Bryan W Jenkins
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Catherine F Moore
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - Lauren L Jantzie
- Departments of Pediatrics, Neurosurgery, and Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Elise M Weerts
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA.
| |
Collapse
|
4
|
Solakoğlu ST, Erdener ŞE, Gliko O, Can A, Sümbül U, Eren-Koçak E. Layer-specific input to medial prefrontal cortex is linked to stress susceptibility. Transl Psychiatry 2025; 15:134. [PMID: 40204689 PMCID: PMC11982315 DOI: 10.1038/s41398-025-03258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/19/2024] [Accepted: 01/23/2025] [Indexed: 04/11/2025] Open
Abstract
Stress response is essential for adapting to an ever-changing environment. However, the mechanisms that render some individuals susceptible to stress are poorly understood. While chronic stress is known to induce dendritic atrophy and spine loss in medial prefrontal cortex (mPFC), its impact on synapses made by long-range projections terminating on the mPFC remains unknown. Here, we labeled synapses on male mouse mPFC dendrites formed by ventral hippocampus (VH), basolateral amygdala (BLA) and ventral tegmental area (VTA) long-range afferents using different-colored eGRASP constructs. We obtained multispectral 3D-images of the mPFC covering all cortical laminae, and automatically segmented the dendrites and synapses. In layer II/III, the relative abundances and spatial organizations of VH-mPFC and BLA-mPFC synapses changed similarly in stress resilient (SR) and stress susceptible (SS) mice when compared to stress naïve (SN) mice. In layers Vb and VI, on the other hand, the percentage of BLA-mPFC synapses increased and that of VH-mPFC decreased only in SS mice. Moreover, the distances of VH synapses to their corresponding closest BLA synapses decreased and the distances of BLA synapses to their corresponding closest VH synapses increased in the SS group. Consistently, the percentage of single dendritic segments receiving input from multiple brain regions increased in the SS group, suggesting that long-range synaptic inputs to deep layers of mPFC were disorganized in SS mice. Our findings demonstrate afferent- and lamina-specific differential reorganization of synapses between different stress phenotypes, suggesting specific roles for different long-range projections in mediating the stress response.
Collapse
Affiliation(s)
| | - Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Olga Gliko
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Alp Can
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Uygar Sümbül
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
5
|
Pham AL, Marquardt AE, Montgomery KR, Sobota KN, McCarthy MM, VanRyzin JW. Timing matters: modeling the effects of gestational cannabis exposure on social behavior and microglia in the developing amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638714. [PMID: 40027715 PMCID: PMC11870496 DOI: 10.1101/2025.02.17.638714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Cannabis is the most frequently used illicit drug during pregnancy, with use steadily increasing in the United States as legalization and decriminalization expand to more states. Many pregnant individuals use cannabis to reduce adverse symptoms of pregnancy, considering it to be less harmful than other pharmaceuticals or alcohol. The primary psychoactive component of cannabis, delta-9-tetrahydrocannabinol (THC), acts on the endocannabinoid (eCB) system, yet whether it perturbs neural development of the fetus is poorly understood. Previously we have shown that androgen mediated eCB tone in the developing amygdala promotes microglial phagocytosis of newborn astrocytes which has enduring consequences on the neural circuits regulating sex differences in social behavior. Microglia are the resident immune cells of the brain and express both receptors of the eCB system, CB1R and CB2R, making them likely targets of modulation by THC. It is also plausible that exposure to THC at differing gestational timepoints can result in distinct outcomes, as is the case with alcohol exposure. To model human cannabis use during either late or early pregnancy, we exposed rodents to THC either directly during the early postnatal period via intraperitoneal (IP) injection or in utero during the prenatal period via dam IP injection respectively. Here we show that postnatal THC exposure results in sex specific changes in microglial phagocytosis during development as well as social behavior during the juvenile period. Interestingly prenatal exposure to THC resulted in inverse changes to phagocytosis and social behavior. These findings highlight the differential effects of THC exposure across gestation.
Collapse
Affiliation(s)
- Aidan L Pham
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ashley E Marquardt
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmacology and Physiology, University of Maryland Medicine - Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kristen R Montgomery
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Karina N Sobota
- Department of Pharmacology and Physiology, University of Maryland Medicine - Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
- Graduate Program in Physiological Sciences and Department of Physiology, State University of Londrina, Londrina, PR Brazil
| | - Margaret M McCarthy
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmacology and Physiology, University of Maryland Medicine - Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jonathan W VanRyzin
- Department of Pharmacology and Physiology, University of Maryland Medicine - Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| |
Collapse
|
6
|
Shirokova OM, Kuzmina DM, Zaborskaya OG, Shchelchkova NA, Kozliaeva EV, Korotchenko SA, Pershin VI, Vasilchikov PI, Mukhina IV. The Long-Term Effects of Chronic Unpredictable Mild Stress Experienced During Adolescence Could Vary Depending on Biological Sex. Int J Mol Sci 2025; 26:1251. [PMID: 39941015 PMCID: PMC11818548 DOI: 10.3390/ijms26031251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Sex differences in the neurobiology of responses to chronic stress have been widely discussed but remain poorly understood. We found that chronic unpredictable mild stress (CUMS) experienced during adolescence induced different behavioral patterns in adult males and females. Immunohistochemical analysis of the CA1 field of the dorsal and ventral hippocampus revealed no quantitative or morphological changes in astrocytes in the long term after CUMS. Real-time PCR analysis showed no increase in the expression level of SigmaR1 after CUMS relative to individual housekeeping genes. Analysis of mouse cerebral cortex homogenates showed that IL-1β levels only decreased after CUMS in males. However, the SigmaR1 levels were significantly higher in the CUMS groups than in the control groups in both sexes. It can be concluded that biological sex and age influence the response to CUMS, although not in all cases. Further studies are needed to understand the effects of chronic stress on males and females. This is important because men and women have different risks for stress and mental disorders.
Collapse
Affiliation(s)
- Olesya M. Shirokova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (D.M.K.); (O.G.Z.); (V.I.P.); (I.V.M.)
| | - Daria M. Kuzmina
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (D.M.K.); (O.G.Z.); (V.I.P.); (I.V.M.)
| | - Olga G. Zaborskaya
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (D.M.K.); (O.G.Z.); (V.I.P.); (I.V.M.)
| | - Natalia A. Shchelchkova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (D.M.K.); (O.G.Z.); (V.I.P.); (I.V.M.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarina Ave., 602022 Nizhny Novgorod, Russia;
- Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius Federal Territory, 354340 Krasnodar, Russia
| | - Elizaveta V. Kozliaeva
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (D.M.K.); (O.G.Z.); (V.I.P.); (I.V.M.)
| | - Svetlana A. Korotchenko
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (D.M.K.); (O.G.Z.); (V.I.P.); (I.V.M.)
| | - Vladimir I. Pershin
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (D.M.K.); (O.G.Z.); (V.I.P.); (I.V.M.)
| | - Petr I. Vasilchikov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarina Ave., 602022 Nizhny Novgorod, Russia;
| | - Irina V. Mukhina
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (D.M.K.); (O.G.Z.); (V.I.P.); (I.V.M.)
| |
Collapse
|
7
|
Yamawaki N, Login H, Feld-Jakobsen SØ, Molnar BM, Kirkegaard MZ, Moltesen M, Okrasa A, Radulovic J, Tanimura A. Endopiriform neurons projecting to ventral CA1 are a critical node for recognition memory. eLife 2025; 13:RP99642. [PMID: 39835788 PMCID: PMC11750136 DOI: 10.7554/elife.99642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
The claustrum complex is viewed as fundamental for higher-order cognition; however, the circuit organization and function of its neuroanatomical subregions are not well understood. We demonstrated that some of the key roles of the CLA complex can be attributed to the connectivity and function of a small group of neurons in its ventral subregion, the endopiriform (EN). We identified a subpopulation of EN neurons by their projection to the ventral CA1 (ENvCA1-proj. neurons), embedded in recurrent circuits with other EN neurons and the piriform cortex. Although the ENvCA1-proj. neuron activity was biased toward novelty across stimulus categories, their chemogenetic inhibition selectively disrupted the memory-guided but not innate responses of mice to novelty. Based on our functional connectivity analysis, we suggest that ENvCA1-proj. neurons serve as an essential node for recognition memory through recurrent circuits mediating sustained attention to novelty, and through feed-forward inhibition of distal vCA1 neurons shifting memory-guided behavior from familiarity to novelty.
Collapse
Affiliation(s)
- Naoki Yamawaki
- Department of Biomedicine, Aarhus UniversityAarhusDenmark
- PROMEMO, The Center for Proteins in Memory, Aarhus UniversityAarhusDenmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus UniversityAarhusDenmark
| | - Hande Login
- Department of Biomedicine, Aarhus UniversityAarhusDenmark
- PROMEMO, The Center for Proteins in Memory, Aarhus UniversityAarhusDenmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus UniversityAarhusDenmark
| | | | | | | | - Maria Moltesen
- Department of Biomedicine, Aarhus UniversityAarhusDenmark
| | | | - Jelena Radulovic
- Department of Biomedicine, Aarhus UniversityAarhusDenmark
- PROMEMO, The Center for Proteins in Memory, Aarhus UniversityAarhusDenmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus UniversityAarhusDenmark
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineNew YorkUnited States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of MedicineNew YorkUnited States
| | - Asami Tanimura
- Department of Biomedicine, Aarhus UniversityAarhusDenmark
- PROMEMO, The Center for Proteins in Memory, Aarhus UniversityAarhusDenmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus UniversityAarhusDenmark
| |
Collapse
|
8
|
Shivakumar AB, Mehak SF, Jijimon F, Gangadharan G. Extrahippocampal Contributions to Social Memory: The Role of Septal Nuclei. Biol Psychiatry 2024; 96:835-847. [PMID: 38718881 DOI: 10.1016/j.biopsych.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 06/16/2024]
Abstract
Social memory, the ability to recognize and remember individuals within a social group, is crucial for social interactions and relationships. Deficits in social memory have been linked to several neuropsychiatric and neurodegenerative disorders. The hippocampus, especially the circuit that links dorsal CA2 and ventral CA1 neurons, is considered a neural substrate for social memory formation. Recent studies have provided compelling evidence of extrahippocampal contributions to social memory. The septal nuclei, including the medial and lateral septum, make up a basal forebrain region that shares bidirectional neuronal connections with the hippocampus and has recently been identified as critical for social memory. The focus of our review is the neural circuit mechanisms that underlie social memory, with a special emphasis on the septum. We also discuss the social memory dysfunction associated with neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Apoorva Bettagere Shivakumar
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonam Fathima Mehak
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Feyba Jijimon
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gireesh Gangadharan
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
9
|
Borsdorf S, Zeug A, Wu Y, Mitroshina E, Vedunova M, Gaitonde SA, Bouvier M, Wehr MC, Labus J, Ponimaskin E. The cell adhesion molecule CD44 acts as a modulator of 5-HT7 receptor functions. Cell Commun Signal 2024; 22:563. [PMID: 39580460 PMCID: PMC11585102 DOI: 10.1186/s12964-024-01931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Homo- and heteromerization of G protein-coupled receptors (GPCRs) plays an important role in the regulation of receptor functions. Recently, we demonstrated an interaction between the serotonin receptor 7 (5-HT7R), a class A GPCR, and the cell adhesion molecule CD44. However, the functional consequences of this interaction on 5-HT7R-mediated signaling remained enigmatic. METHODS Using a quantitative FRET (Förster resonance energy transfer) approach, we determined the affinities for the formation of homo- and heteromeric complexes of 5-HT7R and CD44. The impact of heteromerization on 5-HT7R-mediated cAMP signaling was assessed using a cAMP responsive luciferase assay and a FRET-based cAMP biosensor under basal conditions as well as upon pharmacological modulation of the 5-HT7R and/or CD44 with specific ligands. We also investigated receptor-mediated G protein activation using BRET (bioluminescence resonance energy transfer)-based biosensors in both, homo- and heteromeric conditions. Finally, we analyzed expression profiles for 5-HT7R and CD44 in the brain during development. RESULTS We found that homo- and heteromerization of the 5-HT7R and CD44 occur at similar extent. Functionally, heteromerization increased 5-HT7R-mediated cAMP production under basal conditions. In contrast, agonist-mediated cAMP production was decreased in the presence of CD44. Mechanistically, this might be explained by increased Gαs and decreased GαoB activation by 5-HT7R/CD44 heteromers. Unexpectedly, treatment of the heteromeric complex with the CD44 ligand hyaluronic acid boosted constitutive 5-HT7R-mediated cAMP signaling and receptor-mediated transcription, suggesting the existence of a transactivation mechanism. CONCLUSIONS Interaction with the hyaluronan receptor CD44 modulates both the constitutive activity of 5-HT7R as well as its agonist-mediated signaling. Heteromerization also results in the transactivation of 5-HT7R-mediated signaling via CD44 ligand.
Collapse
Affiliation(s)
- Saskia Borsdorf
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Andre Zeug
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Elena Mitroshina
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Maria Vedunova
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Supriya A Gaitonde
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Michael C Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Systasy Bioscience GmbH, Planegg-Martinsried, Germany
| | - Josephine Labus
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
10
|
Hu YB, Deng X, Liu L, Cao CC, Su YW, Gao ZJ, Cheng X, Kong D, Li Q, Shi YW, Wang XG, Ye X, Zhao H. Distinct roles of excitatory and inhibitory neurons in the medial prefrontal cortex in the expression and reconsolidation of methamphetamine-associated memory in male mice. Neuropsychopharmacology 2024; 49:1827-1838. [PMID: 38730034 PMCID: PMC11473735 DOI: 10.1038/s41386-024-01879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Methamphetamine, a commonly abused drug, is known for its high relapse rate. The persistence of addictive memories associated with methamphetamine poses a significant challenge in preventing relapse. Memory retrieval and subsequent reconsolidation provide an opportunity to disrupt addictive memories. However, the key node in the brain network involved in methamphetamine-associated memory retrieval has not been clearly defined. In this study, using the conditioned place preference in male mice, whole brain c-FOS mapping and functional connectivity analysis, together with chemogenetic manipulations of neural circuits, we identified the medial prefrontal cortex (mPFC) as a critical hub that integrates inputs from the retrosplenial cortex and the ventral tegmental area to support both the expression and reconsolidation of methamphetamine-associated memory during its retrieval. Surprisingly, with further cell-type specific analysis and manipulation, we also observed that methamphetamine-associated memory retrieval activated inhibitory neurons in the mPFC to facilitate memory reconsolidation, while suppressing excitatory neurons to aid memory expression. These findings provide novel insights into the neural circuits and cellular mechanisms involved in the retrieval process of addictive memories. They suggest that targeting the balance between excitation and inhibition in the mPFC during memory retrieval could be a promising treatment strategy to prevent relapse in methamphetamine addiction.
Collapse
Affiliation(s)
- Yu-Bo Hu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xi Deng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Lu Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Can-Can Cao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ya-Wen Su
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhen-Jie Gao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Deshan Kong
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Qi Li
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiao-Guang Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Hu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
11
|
Ning L. An information-theoretic framework for conditional causality analysis of brain networks. Netw Neurosci 2024; 8:989-1008. [PMID: 39355445 PMCID: PMC11424036 DOI: 10.1162/netn_a_00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/15/2024] [Indexed: 10/03/2024] Open
Abstract
Identifying directed network models for multivariate time series is a ubiquitous problem in data science. Granger causality measure (GCM) and conditional GCM (cGCM) are widely used methods for identifying directed connections between time series. Both GCM and cGCM have frequency-domain formulations to characterize the dependence of time series in the spectral domain. However, the original methods were developed using a heuristic approach without rigorous theoretical explanations. To overcome the limitation, the minimum-entropy (ME) estimation approach was introduced in our previous work (Ning & Rathi, 2018) to generalize GCM and cGCM with more rigorous frequency-domain formulations. In this work, this information-theoretic framework is further generalized with three formulations for conditional causality analysis using techniques in control theory, such as state-space representations and spectral factorizations. The three conditional causal measures are developed based on different ME estimation procedures that are motivated by equivalent formulations of the classical minimum mean squared error estimation method. The relationship between the three formulations of conditional causality measures is analyzed theoretically. Their performance is evaluated using simulations and real neuroimaging data to analyze brain networks. The results show that the proposed methods provide more accurate network structures than the original approach.
Collapse
Affiliation(s)
- Lipeng Ning
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Singh A, Gong S, Vu A, Li S, Obenaus A. Social deficits mirror delayed cerebrovascular dysfunction after traumatic brain injury. Acta Neuropathol Commun 2024; 12:126. [PMID: 39107831 PMCID: PMC11304659 DOI: 10.1186/s40478-024-01840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
Traumatic brain injury (TBI) survivors face debilitating long-term psychosocial consequences, including social isolation and depression. TBI modifies neurovascular physiology and behavior but the chronic physiological implications of altered brain perfusion on social interactions are unknown. Adult C57/BL6 male mice received a moderate cortical TBI, and social behaviors were assessed at baseline, 3-, 7-, 14-, 30-, and 60-days post injury (dpi). Magnetic resonance imaging (MRI, 9.4T) using dynamic susceptibility contrast perfusion weighted MRI were acquired. At 60dpi mice underwent histological angioarchitectural mapping. Analysis utilized standardized protocols followed by cross-correlation metrics. Social behavior deficits at 60dpi emerged as reduced interactions with a familiar cage-mate (partner) that mirrored significant reductions in cerebral blood flow (CBF) at 60dpi. CBF perturbations were dynamic temporally and across brain regions including regions known to regulate social behavior such as hippocampus, hypothalamus, and rhinal cortex. Social isolation in TBI-mice emerged with a significant decline in preference to spend time with a cage mate. Cortical vascular density was also reduced corroborating the decline in brain perfusion and social interactions. Thus, the late emergence of social interaction deficits mirrored the reduced vascular density and CBF in regions known to be involved in social behaviors. Vascular morphology and function improved prior to the late decrements in social function and our correlations strongly implicate a linkage between vascular density, cerebral perfusion, and social interactions. Our study provides a clinically relevant timeline of alterations in social deficits alongside functional vascular recovery that can guide future therapeutics.
Collapse
Affiliation(s)
- Aditya Singh
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
- Department of Neurology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, 120 Walter P Martin Research Center, Torrance, California, 90502, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Steven Gong
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
| | - Anh Vu
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
| | - Scott Li
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA.
- Division of Biomedical Sciences, 206 SOM Research Bldg, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
13
|
Towner TT, Applegate DT, Coleman HJ, Papastrat KM, Varlinskaya EI, Werner DF. Patterns of neuronal activation following ethanol-induced social facilitation and social inhibition in adolescent cFos-LacZ male and female rats. Behav Brain Res 2024; 471:115118. [PMID: 38906480 PMCID: PMC11633836 DOI: 10.1016/j.bbr.2024.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Alcohol-associated social facilitation together with attenuated sensitivity to adverse alcohol effects play a substantial role in adolescent alcohol use and misuse, with adolescent females being more susceptible to adverse consequences of binge drinking than adolescent males. Adolescent rodents also demonstrate individual and sex differences in sensitivity to ethanol-induced social facilitation and social inhibition, therefore the current study was designed to identify neuronal activation patterns associated with ethanol-induced social facilitation and ethanol-induced social inhibition in male and female adolescent cFos-LacZ rats. Experimental subjects were given social interaction tests on postnatal day (P) 34, 36, and 38 after an acute challenge with 0, 0.5 and 0.75 g/kg ethanol, respectively, and β-galactosidase (β-gal) expression was assessed in brain tissue of subjects socially facilitated and socially inhibited by 0.75 g/kg ethanol. In females, positive correlations were evident between overall social activity and neuronal activation of seven out of 13 ROIs, including the prefrontal cortex and nucleus accumbens, with negative correlations evident in males. Assessments of neuronal activation patterns revealed drastic sex differences between ethanol responding phenotypes. In socially inhibited males, strong correlations were evident among almost all ROIs (90 %), with markedly fewer correlations among ROIs (38 %) seen in socially facilitated males. In contrast, interconnectivity in females inhibited by ethanol was only 10 % compared to nearly 60 % in facilitated subjects. However, hub analyses revealed convergence of brain regions in males and females, with the nucleus accumbens being a hub region in socially inhibited subjects. Taken together, these findings demonstrate individual and sex-related differences in responsiveness to acute ethanol in adolescent rats, with sex differences more evident in socially inhibited by ethanol adolescents than their socially facilitated counterparts.
Collapse
Affiliation(s)
- Trevor T Towner
- Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Devon T Applegate
- Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Harper J Coleman
- Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Kimberly M Papastrat
- Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - David F Werner
- Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
14
|
Liu W, Gao J, Hao N, Li J, Pei J, Zou D, Yang S, Yin Y, Yang X, Mu P, Zhang L. Effects of miR-204-5p and Target Gene EphB2 on Cognitive Impairment Induced by Aluminum Exposure in Rats. Biol Trace Elem Res 2024; 202:3740-3749. [PMID: 37985568 DOI: 10.1007/s12011-023-03961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Aluminum is a common environmental neurotoxin. Aluminum ions can cross the blood-brain barrier and accumulate in different brain regions, damage brain tissue, and cause cognitive impairment, but the molecular mechanism of aluminum neurotoxicity is not precise. This study investigated the effects of miR-204-5p, target gene EphB2, and downstream signaling pathway NMDAR-ERK-CREB-Arc on cognitive dysfunction induced by aluminum exposure. The results showed that the learning and memory of the rats were impaired in behavior. The accumulation of aluminum in the hippocampus resulted in the damage of nerve cell morphology in the CA1 region of the hippocampus. The expression level of miR-204-5p was increased, and the mRNA and protein expressions of EphB2, NMDAR2B, ERK1/2, CREB, and Arc were decreased. The results indicated that the mechanism of impaired learning and memory induced by aluminum exposure might promote the expression of miR-204-5P and further inhibit the expression of the target gene EphB2 and its downstream signaling pathway NMDAR-ERK-CREB-Arc.
Collapse
Affiliation(s)
- Wei Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Liaoning Province 110034, Shenyang, People's Republic of China
| | - Jie Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Liaoning Province 110034, Shenyang, People's Republic of China
| | - Niping Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Liaoning Province 110034, Shenyang, People's Republic of China
| | - Jing Li
- Department of Shenyang Maternity and Child Health Hospital, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Jing Pei
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Liaoning Province 110034, Shenyang, People's Republic of China
| | - Danfeng Zou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Liaoning Province 110034, Shenyang, People's Republic of China
| | - Shuo Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Liaoning Province 110034, Shenyang, People's Republic of China
| | - Yuhua Yin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Liaoning Province 110034, Shenyang, People's Republic of China
| | - Xiaoming Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Liaoning Province 110034, Shenyang, People's Republic of China
| | - Ping Mu
- Department of Physiology, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning Province, 110034, People's Republic of China.
| | - Lifeng Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Liaoning Province 110034, Shenyang, People's Republic of China.
| |
Collapse
|
15
|
Xu QW, Larosa A, Wong TP. Roles of AMPA receptors in social behaviors. Front Synaptic Neurosci 2024; 16:1405510. [PMID: 39056071 PMCID: PMC11269240 DOI: 10.3389/fnsyn.2024.1405510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
As a crucial player in excitatory synaptic transmission, AMPA receptors (AMPARs) contribute to the formation, regulation, and expression of social behaviors. AMPAR modifications have been associated with naturalistic social behaviors, such as aggression, sociability, and social memory, but are also noted in brain diseases featuring impaired social behavior. Understanding the role of AMPARs in social behaviors is timely to reveal therapeutic targets for treating social impairment in disorders, such as autism spectrum disorder and schizophrenia. In this review, we will discuss the contribution of the molecular composition, function, and plasticity of AMPARs to social behaviors. The impact of targeting AMPARs in treating brain disorders will also be discussed.
Collapse
Affiliation(s)
- Qi Wei Xu
- Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Amanda Larosa
- Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Tak Pan Wong
- Douglas Hospital Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Chen B, Wang L, Li X, Shi Z, Duan J, Wei JA, Li C, Pang C, Wang D, Zhang K, Chen H, Na W, Zhang L, So KF, Zhou L, Jiang B, Yuan TF, Qu Y. Celsr2 regulates NMDA receptors and dendritic homeostasis in dorsal CA1 to enable social memory. Mol Psychiatry 2024; 29:1583-1594. [PMID: 35789199 DOI: 10.1038/s41380-022-01664-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022]
Abstract
Social recognition and memory are critical for survival. The hippocampus serves as a central neural substrate underlying the dynamic coding and transmission of social information. Yet the molecular mechanisms regulating social memory integrity in hippocampus remain unelucidated. Here we report unexpected roles of Celsr2, an atypical cadherin, in regulating hippocampal synaptic plasticity and social memory in mice. Celsr2-deficient mice exhibited defective social memory, with rather intact levels of sociability. In vivo fiber photometry recordings disclosed decreased neural activity of dorsal CA1 pyramidal neuron in Celsr2 mutants performing social memory task. Celsr2 deficiency led to selective impairment in NMDAR but not AMPAR-mediated synaptic transmission, and to neuronal hypoactivity in dorsal CA1. Those activity changes were accompanied with exuberant apical dendrites and immaturity of spines of CA1 pyramidal neurons. Strikingly, knockdown of Celsr2 in adult hippocampus recapitulated the behavioral and cellular changes observed in knockout mice. Restoring NMDAR transmission or CA1 neuronal activities rescued social memory deficits. Collectively, these results show a critical role of Celsr2 in orchestrating dorsal hippocampal NMDAR function, dendritic and spine homeostasis, and social memory in adulthood.
Collapse
Affiliation(s)
- Bailing Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Laijian Wang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuejun Li
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Juan Duan
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Ji-An Wei
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Cunzheng Li
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Chaoqin Pang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Diyang Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Kejiao Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Hao Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Wanying Na
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China
| | - Libing Zhou
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| | - Yibo Qu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China.
| |
Collapse
|
17
|
Sun M, Zheng Q, Wang L, Wang R, Cui H, Zhang X, Xu C, Yin F, Yan H, Qiao X. Alcohol Consumption During Adolescence Alters the Cognitive Function in Adult Male Mice by Persistently Increasing Levels of DUSP6. Mol Neurobiol 2024; 61:3161-3178. [PMID: 37978157 DOI: 10.1007/s12035-023-03794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Binge alcohol drinking during adolescence has long-term effects on the adult brain that alter brain structure and behaviors, but the underlying mechanisms remain poorly understood. Extracellular signal-regulated kinase (ERK) is involved in the synaptic plasticity and pathological brain injury by regulating the expression of cyclic adenosine monophosphate response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF). Dual-specificity phosphatase 6 (DUSP6) is a critical effector that dephosphorylates ERK1/2 to control the basal tone, amplitude, and duration of ERK signaling. To explore DUSP6 as a regulator of ERK signaling in the mPFC and its impact on long-term effects of alcohol, a male mouse model of adolescent intermittent alcohol (AIA) exposure was established. Behavioral experiments showed that AIA did not affect anxiety-like behavior or sociability in adulthood, but significantly damaged new object recognition and social recognition memory. Molecular studies further found that AIA reduced the levels of pERK-pCREB-BDNF-PSD95/NR2A involved in synaptic plasticity, while DUSP6 was significantly increased. Intra-mPFC infusion of AAV-DUSP6-shRNA restored the dendritic spine density and postsynaptic density thickness by reversing the level of p-ERK and its downstream molecular expression, and ultimately repaired adult cognitive impairment caused by chronic alcohol exposure during adolescence. These findings indicate that AIA exposure inhibits ERK-CREB-BDNF-PSD95/NR2A by increasing DUSP6 in the mPFC in adulthood that may be associated with long-lasting cognitive deficits.
Collapse
Affiliation(s)
- Mizhu Sun
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Qingmeng Zheng
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Lulu Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Runzhi Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Hengzhen Cui
- Basic Medicine, School of Medicine, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Xinlei Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Chen Xu
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Fangyuan Yin
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Hongtao Yan
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China
| | - Xiaomeng Qiao
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
18
|
Adedokun MA, Enye LA, Akinluyi ET, Ajibola TA, Edem EE. Black seed oil reverses chronic antibiotic-mediated depression and social behaviour deficits via modulation of hypothalamic mitochondrial-dependent markers and insulin expression. IBRO Neurosci Rep 2024; 16:267-279. [PMID: 38379607 PMCID: PMC10876594 DOI: 10.1016/j.ibneur.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic antibiotic use has been reported to impair mitochondrial indices, hypothalamus-mediated metabolic function, and amygdala-regulated emotional processes. Natural substances such as black seed (Nigella sativa) oil could be beneficial in mitigating these impairments. This study aimed to assess the impact of black seed oil (NSO) on depression and sociability indices, redox imbalance, mitochondrial-dependent markers, and insulin expression in mice subjected to chronic ampicillin exposure. Forty adult male BALB/c mice (30 ± 2 g) were divided into five groups: the CTRL group received normal saline, the ABT group received ampicillin, the NSO group received black seed oil, the ABT/NSO group concurrently received ampicillin and black seed oil, and the ABT+NSO group experienced pre-exposure to ampicillin followed by subsequent treatment with black seed oil. The ampicillin-exposed group exhibited depressive-like behaviours, impaired social interactive behaviours, and disruptions in mitochondrial-dependent markers in plasma and hypothalamic tissues, accompanied by an imbalance in antioxidant levels. Moreover, chronic antibiotic exposure downregulated insulin expression in the hypothalamus. However, these impairments were significantly ameliorated in the ABT/NSO, and ABT+NSO groups compared to the untreated antibiotic-exposed group. Overall, findings from this study suggest the beneficial role of NSO as an adjuvant therapy in preventing and abrogating mood behavioural and neural-metabolic impairments of chronic antibiotic exposure.
Collapse
Affiliation(s)
- Mujeeb Adekunle Adedokun
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Linus Anderson Enye
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Elizabeth Toyin Akinluyi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Toheeb Adesumbo Ajibola
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Edem Ekpenyong Edem
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
19
|
Bove M, Palmieri MA, Santoro M, Agosti LP, Gaetani S, Romano A, Dimonte S, Costantino G, Sikora V, Tucci P, Schiavone S, Morgese MG, Trabace L. Amygdalar neurotransmission alterations in the BTBR mice model of idiopathic autism. Transl Psychiatry 2024; 14:193. [PMID: 38632257 PMCID: PMC11024334 DOI: 10.1038/s41398-024-02905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Autism Spectrum Disorders (ASD) are principally diagnosed by three core behavioural symptoms, such as stereotyped repertoire, communication impairments and social dysfunctions. This complex pathology has been linked to abnormalities of corticostriatal and limbic circuits. Despite experimental efforts in elucidating the molecular mechanisms behind these abnormalities, a clear etiopathogenic hypothesis is still lacking. To this aim, preclinical studies can be really helpful to longitudinally study behavioural alterations resembling human symptoms and to investigate the underlying neurobiological correlates. In this regard, the BTBR T+ Itpr3tf/J (BTBR) mice are an inbred mouse strain that exhibits a pattern of behaviours well resembling human ASD-like behavioural features. In this study, the BTBR mice model was used to investigate neurochemical and biomolecular alterations, regarding Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), together with GABAergic, glutamatergic, cholinergic, dopaminergic and noradrenergic neurotransmissions and their metabolites in four different brain areas, i.e. prefrontal cortex, hippocampus, amygdala and hypothalamus. In our results, BTBR strain reported decreased noradrenaline, acetylcholine and GABA levels in prefrontal cortex, while hippocampal measurements showed reduced NGF and BDNF expression levels, together with GABA levels. Concerning hypothalamus, no differences were retrieved. As regarding amygdala, we found reduced dopamine levels, accompanied by increased dopamine metabolites in BTBR mice, together with decreased acetylcholine, NGF and GABA levels and enhanced glutamate content. Taken together, our data showed that the BTBR ASD model, beyond its face validity, is a useful tool to untangle neurotransmission alterations that could be underpinned to the heterogeneous ASD-like behaviours, highlighting the crucial role played by amygdala.
Collapse
Affiliation(s)
- Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Maria Adelaide Palmieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Martina Santoro
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185, Rome, Italy
| | - Lisa Pia Agosti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185, Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185, Rome, Italy
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Giuseppe Costantino
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
- Department of Pathology, Sumy State University, 40007, Sumy, Ukraine
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy.
| |
Collapse
|
20
|
Ren Q, Wang S, Li J, Cao K, Zhuang M, Wu M, Geng J, Jia Z, Xie W, Liu A. Novel Social Stimulation Ameliorates Memory Deficit in Alzheimer's Disease Model through Activating α-Secretase. J Neurosci 2024; 44:e1689232024. [PMID: 38418221 PMCID: PMC10957211 DOI: 10.1523/jneurosci.1689-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
As the most common form of dementia in the world, Alzheimer's disease (AD) is a progressive neurological disorder marked by cognitive and behavioral impairment. According to previous researches, abundant social connections shield against dementia. However, it is still unclear how exactly social interactions benefit cognitive abilities in people with AD and how this process is used to increase their general cognitive performance. In this study, we found that single novel social (SNS) stimulation promoted c-Fos expression and increased the protein levels of mature ADAM10/17 and sAPPα in the ventral hippocampus (vHPC) of wild-type (WT) mice, which are hippocampal dorsal CA2 (dCA2) neuron activity and vHPC NMDAR dependent. Additionally, we discovered that SNS caused similar changes in an AD model, FAD4T mice, and these alterations could be reversed by α-secretase inhibitor. Furthermore, we also found that multiple novel social (MNS) stimulation improved synaptic plasticity and memory impairments in both male and female FAD4T mice, accompanied by α-secretase activation and Aβ reduction. These findings provide insight into the process underpinning how social interaction helps AD patients who are experiencing cognitive decline, and we also imply that novel social interaction and activation of the α-secretase may be preventative and therapeutic in the early stages of AD.
Collapse
Affiliation(s)
- Qiaoyun Ren
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Susu Wang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Junru Li
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Kun Cao
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Mei Zhuang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Miao Wu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Junhua Geng
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
- Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - An Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Shenzhen Research Institute, Southeast University, Shenzhen 518063, China
| |
Collapse
|
21
|
Towner TT, Applegate DT, Coleman HJ, Varlinskaya EI, Werner DF. Patterns of neuronal activation following ethanol-induced social facilitation and social inhibition in adolescent cFos-LacZ male and female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583793. [PMID: 38559141 PMCID: PMC10979894 DOI: 10.1101/2024.03.06.583793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Motives related to the enhancement of the positive effects of alcohol on social activity within sexes are strongly associated with alcohol use disorder and are a major contributor to adolescent alcohol use and heavy drinking. This is particularly concerning given that heightened vulnerability of the developing adolescent brain. Despite this linkage, it is unknown how adolescent non-intoxicated social behavior relates to alcohol's effects on social responding, and how the social brain network differs in response within individuals that are socially facilitated or inhibited by alcohol. Sex effects for social facilitation and inhibition during adolescence are conserved in rodents in high and low drinkers, respectively. In the current study we used cFos-LacZ transgenic rats to evaluate behavior and related neural activity in male and female subjects that differed in their social facilitatory or social inhibitory response to ethanol. Subjects were assessed using social interaction on postnatal days 34, 36 and 38 after a 0, 0.5 and 0.75 g/kg ethanol challenge, respectively, with brain tissue being evaluated following the final social interaction. Subjects were binned into those that were socially facilitated or inhibited by ethanol using a tertile split within each sex. Results indicate that both males and females facilitated by ethanol display lower social activity in the absence of ethanol compared to socially inhibited subjects. Analyses of neural activity revealed that females exhibited differences in 54% of examined socially relevant brain regions of interest (ROIs) compared to only 8% in males, with neural activity in females socially inhibited by ethanol generally being lower than facilitated subjects. Analysis of socially relevant ROI neural activity to social behavior differed for select brain regions as a function of sex, with the prefrontal cortex and nucleus accumbens being negatively correlated in males, but positively correlated in females. Females displayed additional positive correlations in other ROIs, and sex differences were noted across the rostro-caudal claustrum axis. Importantly, neural activity largely did not correlate with locomotor activity. Functional network construction of social brain regions revealed further sex dissociable effects, with 90% interconnectivity in males socially inhibited by ethanol compared to 38% of facilitated subjects, whereas interconnectivity in females inhibited by ethanol was 10% compared to nearly 60% in facilitated subjects. However, hub analyses converged on similar brain regions in males and females, with the nucleus accumbens being a hub region in socially inhibited subjects, whereas the central amygdala was disconnected in facilitated subjects. Taken together, these findings support unified brain regions that contribute to social facilitation or inhibition from ethanol despite prominent sex differences in the social brain network.
Collapse
|
22
|
Thirtamara Rajamani K, Barbier M, Lefevre A, Niblo K, Cordero N, Netser S, Grinevich V, Wagner S, Harony-Nicolas H. Oxytocin activity in the paraventricular and supramammillary nuclei of the hypothalamus is essential for social recognition memory in rats. Mol Psychiatry 2024; 29:412-424. [PMID: 38052983 PMCID: PMC11116117 DOI: 10.1038/s41380-023-02336-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Oxytocin plays an important role in modulating social recognition memory. However, the direct implication of oxytocin neurons of the paraventricular nucleus of the hypothalamus (PVH) and their downstream hypothalamic targets in regulating short- and long-term forms of social recognition memory has not been fully investigated. In this study, we employed a chemogenetic approach to target the activity of PVH oxytocin neurons in male rats and found that specific silencing of this neuronal population led to an impairment in short- and long-term social recognition memory. We combined viral-mediated fluorescent labeling of oxytocin neurons with immunohistochemical techniques and identified the supramammillary nucleus (SuM) of the hypothalamus as a target of PVH oxytocinergic axonal projections in rats. We used multiplex fluorescence in situ hybridization to label oxytocin receptors in the SuM and determined that they are predominantly expressed in glutamatergic neurons, including those that project to the CA2 region of the hippocampus. Finally, we used a highly selective oxytocin receptor antagonist in the SuM to examine the involvement of oxytocin signaling in modulating short- and long-term social recognition memory and found that it is necessary for the formation of both. This study discovered a previously undescribed role for the SuM in regulating social recognition memory via oxytocin signaling and reinforced the specific role of PVH oxytocin neurons in regulating this form of memory.
Collapse
Affiliation(s)
- Keerthi Thirtamara Rajamani
- Department of Psychiatry and Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Marie Barbier
- Department of Psychiatry and Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arthur Lefevre
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Cortical Systems and Behavior Laboratory, University of California San Diego, San Diego, CA, USA
| | - Kristi Niblo
- Department of Psychiatry and Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas Cordero
- CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY, USA
| | - Shai Netser
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Hala Harony-Nicolas
- Department of Psychiatry and Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
23
|
de Castro CM, Almeida-Santos AF, Mansk LMZ, Jaimes LF, Cammarota M, Pereira GS. BDNF-dependent signaling in the olfactory bulb modulates social recognition memory in mice. Neurobiol Learn Mem 2024; 208:107891. [PMID: 38237799 DOI: 10.1016/j.nlm.2024.107891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
An operative olfactory bulb (OB) is critical to social recognition memory (SRM) in rodents, which involves identifying conspecifics. Furthermore, OB also allocates synaptic plasticity events related to olfactory memories in their intricate neural circuit. Here, we asked whether the OB is a target for brain-derived neurotrophic factor (BDNF), a well-known mediator of plasticity and memory. Adult ICR-CD1 male mice had their SRM evaluated under the inhibition of BDNF-dependent signaling directly in the OB. We also quantified the expression of BDNF in the OB, after SRM acquisition. Our results presented an amnesic effect of anti-BDNF administered 12 h post-training. Although the western blot showed no statistical difference in pro-BDNF and BDNF expression, the analysis of fluorescence intensity in slices suggests SRM acquisition decreases BDNF in the granular cell layer of the OB. Next, to test the ability of BDNF to rescue SRM deficit, we administered the human recombinant BDNF (rBDNF) directly in the OB of socially isolated (SI) mice. Unexpectedly, rBDNF did not rescue SRM in SI mice. Furthermore, BDNF and pro-BDNF expression in the OB was unchanged by SI. Our study reinforces the OB as a plasticity locus in memory-related events. It also adds SRM as another type of memory sensitive to BDNF-dependent signaling.
Collapse
Affiliation(s)
- Caio M de Castro
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Ana F Almeida-Santos
- Departamento de Pesquisa e Desenvolvimento, Fundação Cristiano Varela. Faculdade de Minas- Faminas, Brazil
| | - Lara M Z Mansk
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do, Norte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
24
|
Pearson-Leary J, Abramenko AP, Estela-Pro V, Feindt-Scott E, Yan J, Vigderman A, Luz S, Bangasser D, Ross R, Kubin L, Bhatnagar S. Differential recruitment of brain circuits during fear extinction in non-stressed compared to stress resilient animals. Sci Rep 2024; 14:2125. [PMID: 38267506 PMCID: PMC10808124 DOI: 10.1038/s41598-023-50830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Dysfunctional fear responses in post-traumatic stress disorder (PTSD) may be partly explained by an inability to effectively extinguish fear responses elicited by trauma-related cues. However, only a subset of individuals exposed to traumatic stress develop PTSD. Therefore, studying fear extinction deficits in animal models of individual differences could help identify neural substrates underlying vulnerability or resilience to the effects of stress. We used a rat model of social defeat in which rats segregate into passively and actively coping rats. In previous work, we showed that passively coping rats exhibit disruptions in social interaction whereas actively coping rats do not display behaviors differently from controls, indicating their resilience. Here, adult male rats exposed to 7 days of social defeat were tested for fear extinction, retention of extinction, and persistence of retention using contextual fear and ethologically-relevant fear tests. Passively coping rats exhibited elevated freezing in response to the previously extinguished context. Analyses of cFos expressing cells across select brain regions showed high correlations within dorsal hippocampal subregions, while passively coping rats had high correlations between the dorsal hippocampus CA1 and the central and basolateral subregions of the amygdala. Importantly, although control and actively coping rats showed similar levels of behavioral extinction, there was little similarity between activated structures, suggesting stress resilience in response to chronic social defeat involves an adaptive differential recruitment of brain circuits to successfully extinguish fear memories.
Collapse
Affiliation(s)
- Jiah Pearson-Leary
- Stress Neurobiology Center, Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | | | - Valerie Estela-Pro
- Stress Neurobiology Center, Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Elizabeth Feindt-Scott
- Stress Neurobiology Center, Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Jason Yan
- Stress Neurobiology Center, Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Abigail Vigderman
- Stress Neurobiology Center, Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Sandra Luz
- Stress Neurobiology Center, Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Debra Bangasser
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Richard Ross
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seema Bhatnagar
- Stress Neurobiology Center, Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA.
- Department of Anesthesiology and Critical Care, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Leithead AB, Godino A, Barbier M, Harony-Nicolas H. Social Interaction Elicits Activity in Glutamatergic Neurons in the Posterior Intralaminar Complex of the Thalamus. Biol Psychiatry 2024; 95:112-122. [PMID: 37245781 PMCID: PMC10676449 DOI: 10.1016/j.biopsych.2023.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND The posterior intralaminar complex of the thalamus (PIL) is a multimodal nucleus that has been implicated in maternal behaviors and conspecific social behaviors in male and female rodents. Glutamatergic neurons are a major component of the PIL; however, their specific activity and role during social interactions has not yet been assessed. METHODS We used immunohistochemistry for the immediate early gene c-fos as a proxy for neuronal activity in the PIL of mice exposed to a novel social stimulus, a novel object stimulus, or no stimulus. We then used fiber photometry to record neural activity of glutamatergic neurons in the PIL in real time during social and nonsocial interactions. Finally, we used inhibitory DREADDs (designer receptors exclusively activated by designer drugs) in glutamatergic PIL neurons and tested social preference and social habituation-dishabituation. RESULTS We observed significantly more c-fos-positive cells in the PIL of mice exposed to a social stimulus versus an object stimulus or no stimulus. Neural activity of PIL glutamatergic neurons was increased when male and female mice were engaged in social interaction with a same-sex juvenile or opposite-sex adult, but not a toy mouse. Neural activity was positively correlated with social investigation bout length and negatively correlated with chronological order of bouts. Social preference was unaffected by inhibition; however, inhibiting activity of glutamatergic neurons in the PIL delayed the time that it took for female mice to form social habituation. CONCLUSIONS Together, these findings suggest that glutamatergic PIL neurons respond to social stimuli in both male and female mice and may regulate perceptual encoding of social information to facilitate recognition of social stimuli.
Collapse
Affiliation(s)
- Amanda Beth Leithead
- Department of Psychiatry, the Icahn School of Medicine, Mount Sinai, New York, New York; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Arthur Godino
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marie Barbier
- Department of Psychiatry, the Icahn School of Medicine, Mount Sinai, New York, New York; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hala Harony-Nicolas
- Department of Psychiatry, the Icahn School of Medicine, Mount Sinai, New York, New York; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, New York; Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
26
|
Socha J, Grochecki P, Smaga I, Jastrzębska J, Wronikowska-Denysiuk O, Marszalek-Grabska M, Slowik T, Kotlinski R, Filip M, Lubec G, Kotlinska JH. Social Interaction in Adolescent Rats with Neonatal Ethanol Exposure: Impact of Sex and CE-123, a Selective Dopamine Reuptake Inhibitor. Int J Mol Sci 2024; 25:1041. [PMID: 38256113 PMCID: PMC10816180 DOI: 10.3390/ijms25021041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Children with fetal alcohol spectrum disorders (FASDs) demonstrate deficits in social functioning that contribute to early withdrawal from school and delinquency, as well as the development of anxiety and depression. Dopamine is involved in reward, motivation, and social behavior. Thus, we evaluated whether neonatal ethanol exposure (in an animal model of FASDs) has an impact on social recognition memory using the three-chamber social novelty discrimination test during early and middle adolescence in male and female rats, and whether the modafinil analog, the novel atypical dopamine reuptake inhibitor CE-123, can modify this effect. Our study shows that male and female rats neonatally exposed to ethanol exhibited sex- and age-dependent deficits in social novelty discrimination in early (male) and middle (female) adolescence. These deficits were specific to the social domain and not simply due to more general deficits in learning and memory because these animals did not exhibit changes in short-term recognition memory in the novel object recognition task. Furthermore, early-adolescent male rats that were neonatally exposed to ethanol did not show changes in the anxiety index but demonstrated an increase in locomotor activity. Chronic treatment with CE-123, however, prevented the appearance of these social deficits. In the hippocampus of adolescent rats, CE-123 increased BDNF and decreased its signal transduction TrkB receptor expression level in ethanol-exposed animals during development, suggesting an increase in neuroplasticity. Thus, selective dopamine reuptake inhibitors, such as CE-123, represent interesting drug candidates for the treatment of deficits in social behavior in adolescent individuals with FASDs.
Collapse
Affiliation(s)
- Justyna Socha
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Joanna Jastrzębska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Olga Wronikowska-Denysiuk
- Independent Laboratory of Behavioral Studies, Chair of Biomedical Sciences, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland;
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Tymoteusz Slowik
- Experimental Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Robert Kotlinski
- Clinical Department of Cardiac Surgery, University of Rzeszow, 35-601 Rzeszow, Poland;
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| |
Collapse
|
27
|
Yashima J, Sakamoto T. Oxytocin receptors in the prefrontal cortex play important roles in short-term social recognition in mice. Behav Brain Res 2024; 456:114706. [PMID: 37806564 DOI: 10.1016/j.bbr.2023.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
We examined the roles of oxytocin (OT) receptors in the prefrontal cortex (PFC) in short- and long-term social recognition and anxiety-related behaviors in mice. Mice injected with high or low doses of an OT receptor antagonist (OTA) or vehicle performed the social recognition test, the open-field test, and the light-dark transition test. In the social recognition test, with three daily trials over three consecutive days, control mice showed short-term recognition of a conspecific on all three days. In contrast, a high-dose injection of OTA impaired short-term social recognition on the second and third days, and it was impaired by a low-dose injection of OTA on the third day. These results suggested that OTA injection into the PFC dose-dependently inhibited short-term social recognition within each day. All three groups did not show any long-term social recognition across three days. OTA injection did not affect anxiety related behavior in the open-field and light-dark transition tests. Our findings demonstrated that OT receptors in the PFC played important roles in short-term social recognition.
Collapse
Affiliation(s)
- Joi Yashima
- Department of Psychology, Graduate school of Health Sciences, Faculty of Health Sciences, Kyoto Tachibana University, Yamashina, Kyoto 607-8175, Japan
| | - Toshiro Sakamoto
- Department of Psychology, Graduate school of Health Sciences, Faculty of Health Sciences, Kyoto Tachibana University, Yamashina, Kyoto 607-8175, Japan.
| |
Collapse
|
28
|
L’Esperance OJ, McGhee J, Davidson G, Niraula S, Smith A, Sosunov AA, Yan SS, Subramanian J. Functional Connectivity Favors Aberrant Visual Network c-Fos Expression Accompanied by Cortical Synapse Loss in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 101:111-131. [PMID: 39121131 PMCID: PMC11810533 DOI: 10.3233/jad-240776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, visual network dysfunction has received less attention despite compelling evidence of its significance in AD patients and mouse models. We recently reported c-Fos and synaptic dysregulation in the primary visual cortex of a pre-amyloid plaque AD-model. Objective We test whether c-Fos expression and presynaptic density/dynamics differ in cortical and subcortical visual areas in an AD-model. We also examine whether aberrant c-Fos expression is inherited through functional connectivity and shaped by light experience. Methods c-Fos+ cell density, functional connectivity, and their experience-dependent modulation were assessed for visual and whole-brain networks in both sexes of 4-6-month-old J20 (AD-model) and wildtype (WT) mice. Cortical and subcortical differences in presynaptic vulnerability in the AD-model were compared using ex vivo and in vivo imaging. Results Visual cortical, but not subcortical, networks show aberrant c-Fos expression and impaired experience-dependent modulation. The average functional connectivity of a brain region in WT mice significantly predicts aberrant c-Fos expression, which correlates with impaired experience-dependent modulation in the AD-model. We observed a subtle yet selective weakening of excitatory visual cortical synapses. The size distribution of cortical boutons in the AD-model is downscaled relative to those in WT mice, suggesting a synaptic scaling-like adaptation of bouton size. Conclusions Visual network structural and functional disruptions are biased toward cortical regions in pre-plaque J20 mice, and the cellular and synaptic dysregulation in the AD-model represents a maladaptive modification of the baseline physiology seen in WT conditions.
Collapse
Affiliation(s)
- Oliver J. L’Esperance
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Josh McGhee
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Garett Davidson
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Adam Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Alexandre A. Sosunov
- Department of Neurosurgery, Columbia University Medical Center,630 W. 168th St. New York, NY 10032
| | - Shirley Shidu Yan
- Department of Neurosurgery, Columbia University Medical Center,630 W. 168th St. New York, NY 10032
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
29
|
Ayyubova G, Kodali M, Upadhya R, Madhu LN, Attaluri S, Somayaji Y, Shuai B, Rao S, Shankar G, Shetty AK. Extracellular vesicles from hiPSC-NSCs can prevent peripheral inflammation-induced cognitive dysfunction with inflammasome inhibition and improved neurogenesis in the hippocampus. J Neuroinflammation 2023; 20:297. [PMID: 38087314 PMCID: PMC10717852 DOI: 10.1186/s12974-023-02971-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Extracellular vesicles (EVs) released by human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSCs) are enriched with miRNAs and proteins capable of mediating robust antiinflammatory activity. The lack of tumorigenic and immunogenic properties and ability to permeate the entire brain to incorporate into microglia following intranasal (IN) administrations makes them an attractive biologic for curtailing chronic neuroinflammation in neurodegenerative disorders. We tested the hypothesis that IN administrations of hiPSC-NSC-EVs can alleviate chronic neuroinflammation and cognitive impairments induced by the peripheral lipopolysaccharide (LPS) challenge. Adult male, C57BL/6J mice received intraperitoneal injections of LPS (0.75 mg/kg) for seven consecutive days. Then, the mice received either vehicle (VEH) or hiPSC-NSC-EVs (~ 10 × 109 EVs/administration, thrice over 6 days). A month later, mice in all groups were investigated for cognitive function with behavioral tests and euthanized for histological and biochemical studies. Mice receiving VEH after LPS displayed deficits in associative recognition memory, temporal pattern processing, and pattern separation. Such impairments were associated with an increased incidence of activated microglia presenting NOD-, LRR-, and pyrin domain containing 3 (NLRP3) inflammasomes, elevated levels of NLRP3 inflammasome mediators and end products, and decreased neurogenesis in the hippocampus. In contrast, the various cognitive measures in mice receiving hiPSC-NSC-EVs after LPS were closer to naive mice. Significantly, these mice displayed diminished microglial activation, NLRP3 inflammasomes, proinflammatory cytokines, and a level of neurogenesis matching age-matched naïve controls. Thus, IN administrations of hiPSC-NSC-EVs are an efficacious approach to reducing chronic neuroinflammation-induced cognitive impairments.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Yogish Somayaji
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Shama Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Goutham Shankar
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA.
| |
Collapse
|
30
|
Mansk LMZ, Jaimes LF, Dias TL, Pereira GS. Social recognition memory differences between mouse strains: On the effects of social isolation, adult neurogenesis, and environmental enrichment. Brain Res 2023; 1819:148535. [PMID: 37595660 DOI: 10.1016/j.brainres.2023.148535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Remembering conspecifics is paramount for the establishment and maintenance of groups. Here we asked whether the variability in social behavior caused by different breeding strategies affects social recognition memory (SRM). We tested the hypothesis that the inbred Swiss and the outbred C57BL/6 mice behave differently on SRM. Social memory in C57BL/6 mice endured at least 14 days, while in Swiss mice lasted 24 h but not ten days. We showed previously that an enriched environment enhanced the persistence of SRM in Swiss mice. Here we reproduced this result and added that it also increases the survival of adult-born neurons in the hippocampus. Next, we tested whether prolonged SRM observed in C57BL/6 mice could be changed by diminishing the trial duration or using an interference stimulus after learning. Neither short acquisition time nor interference during consolidation affected it. However, social isolation impaired SRM in C57BL/6 mice, similar to what was previously observed in Swiss mice. Our results demonstrate that SRM expression can vary according to the mouse strain, which shows the importance of considering this variable when choosing the most suitable model to answer specific questions about this memory system. We also demonstrate the suitability of both C57BL/6 and Swiss strains for exploring the impact of environmental conditions and adult neurogenesis on social memory.
Collapse
Affiliation(s)
- Lara M Z Mansk
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thomaz L Dias
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
31
|
Shah P, Kaneria A, Fleming G, Williams CRO, Sullivan RM, Lemon CH, Smiley J, Saito M, Wilson DA. Homeostatic NREM sleep and salience network function in adult mice exposed to ethanol during development. Front Neurosci 2023; 17:1267542. [PMID: 38033546 PMCID: PMC10682725 DOI: 10.3389/fnins.2023.1267542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Developmental exposure to ethanol is a leading cause of cognitive, emotional and behavioral problems, with fetal alcohol spectrum disorder (FASD) affecting more than 1:100 children. Recently, comorbid sleep deficits have been highlighted in these disorders, with sleep repair a potential therapeutic target. Animal models of FASD have shown non-REM (NREM) sleep fragmentation and slow-wave oscillation impairments that predict cognitive performance. Here we use a mouse model of perinatal ethanol exposure to explore whether reduced sleep pressure may contribute to impaired NREM sleep, and compare the function of a brain network reported to be impacted by insomnia-the Salience network-in developmental ethanol-exposed mice with sleep-deprived, saline controls. Mice were exposed to ethanol or saline on postnatal day 7 (P7) and allowed to mature to adulthood for testing. At P90, telemetered cortical recordings were made for assessment of NREM sleep in home cage before and after 4 h of sleep deprivation to assess basal NREM sleep and homeostatic NREM sleep response. To assess Salience network functional connectivity, mice were exposed to the 4 h sleep deprivation period or left alone, then immediately sacrificed for immunohistochemical analysis of c-Fos expression. The results show that developmental ethanol severely impairs both normal rebound NREM sleep and sleep deprivation induced increases in slow-wave activity, consistent with reduced sleep pressure. Furthermore, the Salience network connectome in rested, ethanol-exposed mice was most similar to that of sleep-deprived, saline control mice, suggesting a sleep deprivation-like state of Salience network function after developmental ethanol even without sleep deprivation.
Collapse
Affiliation(s)
- Prachi Shah
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
| | - Aayush Kaneria
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
| | - Gloria Fleming
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
| | - Colin R. O. Williams
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
- Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, United States
| | - Christian H. Lemon
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
| | - John Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
- Department of Psychiatry, New York University Medical Center, New York, NY,United States
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
- Department of Psychiatry, New York University Medical Center, New York, NY,United States
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
- Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
32
|
Kesner AJ, Mozaffarilegha M, Thirtamara Rajamani K, Arima Y, Harony-Nicolas H, Hashimotodani Y, Ito HT, Song J, Ikemoto S. Hypothalamic Supramammillary Control of Cognition and Motivation. J Neurosci 2023; 43:7538-7546. [PMID: 37940587 PMCID: PMC10634554 DOI: 10.1523/jneurosci.1320-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 11/10/2023] Open
Abstract
The supramammillary nucleus (SuM) is a small region in the ventromedial posterior hypothalamus. The SuM has been relatively understudied with much of the prior focus being on its connection with septo-hippocampal circuitry. Thus, most studies conducted until the 21st century examined its role in hippocampal processes, such as theta rhythm and learning/memory. In recent years, the SuM has been "rediscovered" as a crucial hub for several behavioral and cognitive processes, including reward-seeking, exploration, and social memory. Additionally, it has been shown to play significant roles in hippocampal plasticity and adult neurogenesis. This review highlights findings from recent studies using cutting-edge systems neuroscience tools that have shed light on these fascinating roles for the SuM.
Collapse
Affiliation(s)
- Andrew J Kesner
- Unit on Motivation and Arousal, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Keerthi Thirtamara Rajamani
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Yosuke Arima
- Neurocircuitry of Motivation Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
- Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20894
| | - Hala Harony-Nicolas
- Department of Psychiatry, Department of Neuroscience, Seaver Autism Center for Research and Treatment, Friedman Brain Institute, Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yuki Hashimotodani
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto Japan 610-0394
| | - Hiroshi T Ito
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany 60438
| | - Juan Song
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
- Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Satoshi Ikemoto
- Neurocircuitry of Motivation Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
33
|
Rudolph S, Badura A, Lutzu S, Pathak SS, Thieme A, Verpeut JL, Wagner MJ, Yang YM, Fioravante D. Cognitive-Affective Functions of the Cerebellum. J Neurosci 2023; 43:7554-7564. [PMID: 37940582 PMCID: PMC10634583 DOI: 10.1523/jneurosci.1451-23.2023] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 11/10/2023] Open
Abstract
The cerebellum, traditionally associated with motor coordination and balance, also plays a crucial role in various aspects of higher-order function and dysfunction. Emerging research has shed light on the cerebellum's broader contributions to cognitive, emotional, and reward processes. The cerebellum's influence on autonomic function further highlights its significance in regulating motivational and emotional states. Perturbations in cerebellar development and function have been implicated in various neurodevelopmental disorders, including autism spectrum disorder and attention deficit hyperactivity disorder. An increasing appreciation for neuropsychiatric symptoms that arise from cerebellar dysfunction underscores the importance of elucidating the circuit mechanisms that underlie complex interactions between the cerebellum and other brain regions for a comprehensive understanding of complex behavior. By briefly discussing new advances in mapping cerebellar function in affective, cognitive, autonomic, and social processing and reviewing the role of the cerebellum in neuropathology beyond the motor domain, this Mini-Symposium review aims to provide a broad perspective of cerebellar intersections with the limbic brain in health and disease.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Aleksandra Badura
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Stefano Lutzu
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, D-45147, Germany
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, Maryland 20814
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Diasynou Fioravante
- Center for Neuroscience, University of California-Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, California 95618
| |
Collapse
|
34
|
Solano JL, Novoa C, Lamprea MR, Ortega LA. Stress effects on spatial memory retrieval and brain c-Fos expression pattern in adults are modulated by early nicotine exposure. Neurobiol Learn Mem 2023; 205:107831. [PMID: 37730099 DOI: 10.1016/j.nlm.2023.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/31/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
The cognitive effects of nicotine are linked to persistent modifications in extended neural systems that regulate cognitive and emotional processes, and these changes occur during development. Additionally, acute stress has modulatory effects on cognition that involve broad neural systems and can be influenced by prior environmental challenges. The effects of nicotine and stress may be interconnected, leading to modifications in a network of shared brain substrates. Here, we explored the interaction between nicotine and stress by evaluating the effects of acute stress exposure in spatial memory retrieval for animals pretreated with nicotine during adolescence or adulthood. Adolescent (35 days old) and adult (70 days old) male Wistar rats were treated for 21 days with one daily subcutaneous injection of nicotine 0.14 mg/ml (free base). 30 days after the last injection, rats were trained in the Barnes maze and tested 24 h later, half the rats were tested under regular conditions, and half of them were exposed to 1 h of restraining stress before the retrieval test, and brain samples were collected and c-Fos immunopositive cells were stained. Prolonged nicotine withdrawal or acute stress improved spatial memory retrieval. Acute stress in nicotine pretreated adults impaired spatial memory retrieval. Nicotine exposure during early adulthood resulted in long-lasting brain adaptations that amplified emotional responses to acute stress after prolonged drug withdrawal.
Collapse
Affiliation(s)
- José L Solano
- Laboratorio de Neurociencias, Departamento de Psicología, Facultad de Ciencias Humanas, Universidad Nacional de Colombia, Colombia
| | - Carlos Novoa
- Laboratorio de Neurociencias, Departamento de Psicología, Facultad de Ciencias Humanas, Universidad Nacional de Colombia, Colombia
| | - Marisol R Lamprea
- Laboratorio de Neurociencias, Departamento de Psicología, Facultad de Ciencias Humanas, Universidad Nacional de Colombia, Colombia
| | - Leonardo A Ortega
- Facultad de Psicología, Fundación Universitaria Konrad Lorenz, Colombia.
| |
Collapse
|
35
|
Voelker P, Weible AP, Niell CM, Rothbart MK, Posner MI. Molecular Mechanisms for Changing Brain Connectivity in Mice and Humans. Int J Mol Sci 2023; 24:15840. [PMID: 37958822 PMCID: PMC10648558 DOI: 10.3390/ijms242115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The goal of this study was to examine commonalities in the molecular basis of learning in mice and humans. In previous work we have demonstrated that the anterior cingulate cortex (ACC) and hippocampus (HC) are involved in learning a two-choice visuospatial discrimination task. Here, we began by looking for candidate genes upregulated in mouse ACC and HC with learning. We then determined which of these were also upregulated in mouse blood. Finally, we used RT-PCR to compare candidate gene expression in mouse blood with that from humans following one of two forms of learning: a working memory task (network training) or meditation (a generalized training shown to change many networks). Two genes were upregulated in mice following learning: caspase recruitment domain-containing protein 6 (Card6) and inosine monophosphate dehydrogenase 2 (Impdh2). The Impdh2 gene product catalyzes the first committed step of guanine nucleotide synthesis and is tightly linked to cell proliferation. The Card6 gene product positively modulates signal transduction. In humans, Card6 was significantly upregulated, and Impdh2 trended toward upregulation with training. These genes have been shown to regulate pathways that influence nuclear factor kappa B (NF-κB), a factor previously found to be related to enhanced synaptic function and learning.
Collapse
Affiliation(s)
- Pascale Voelker
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
| | - Aldis P. Weible
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
| | - Cristopher M. Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Mary K. Rothbart
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
| | - Michael I. Posner
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
| |
Collapse
|
36
|
Hung YC, Wu YJ, Chien ME, Lin YT, Tsai CF, Hsu KS. Loss of oxytocin receptors in hilar mossy cells impairs social discrimination. Neurobiol Dis 2023; 187:106311. [PMID: 37769745 DOI: 10.1016/j.nbd.2023.106311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Hippocampal oxytocin receptor (OXTR) signaling is crucial for discrimination of social stimuli to guide social recognition, but circuit mechanisms and cell types involved remain incompletely understood. Here, we report a role for OXTR-expressing hilar mossy cells (MCs) of the dentate gyrus in social stimulus discrimination by regulating granule cell (GC) activity. Using a Cre-loxP recombination approach, we found that ablation of Oxtr from MCs impairs discrimination of social, but not object, stimuli in adult male mice. Ablation of MC Oxtr increases spontaneous firing rate of GCs, synaptic excitation to inhibition ratio of MC-to-GC circuit, and GC firing when temporally associated with the lateral perforant path inputs. Using mouse hippocampal slices, we found that bath application of OXTR agonist [Thr4,Gly7]-oxytocin causes membrane depolarization and increases MC firing activity. Optogenetic activation of MC-to-GC circuit ameliorates social discrimination deficit in MC OXTR deficient mice. Together, our results uncover a previously unknown role of MC OXTR signaling for discrimination of social stimuli and delineate a MC-to-GC circuit responsible for social information processing.
Collapse
Affiliation(s)
- Yu-Chieh Hung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Jen Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan; Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Miao-Er Chien
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan
| | - Yu-Ting Lin
- Institute of Systems Neuroscience, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Fang Tsai
- Department of Physical Medicine and Rehabilitation, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
37
|
Arihara Y, Fukuyama Y, Kida S. Consolidation, reconsolidation, and extinction of contextual fear memory depend on de novo protein synthesis in the locus coeruleus. Brain Res Bull 2023; 202:110746. [PMID: 37604301 DOI: 10.1016/j.brainresbull.2023.110746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Memory consolidation is the process underlying the stabilization of labile short-term memory and the generation of long-term memory for persistent memory storage. The retrieval of contextual fear memory induces two distinct and opposite memory processes: reconsolidation and extinction. Reconsolidation re-stabilizes retrieved memory for re-storage, whereas memory extinction weakens fear memory and generates a new inhibitory memory. Importantly, the requirement for new gene expression is a critical biochemical feature of the consolidation, reconsolidation, and long-term extinction of memory. The locus coeruleus (LC) is a small nucleus in the brain stem that is composed predominantly of noradrenergic neurons that project to many brain regions. Recent studies have shown that the LC plays modulatory roles in the consolidation and extinction of auditory fear memory through its projections to brain regions contributing to memory storage. Here, we show that the LC is required for the consolidation, reconsolidation, and long-term extinction of contextual fear memory. We first observed that c-fos expression was induced in the LC following contextual fear conditioning to induce consolidation and following short and long re-exposure to the conditioning context to induce reconsolidation and long-term extinction, respectively. More importantly, inhibition of protein synthesis in the LC by a micro-infusion of anisomycin blocked the consolidation, reconsolidation, and long-term extinction of contextual fear memory. Our findings suggest that consolidation, reconsolidation, and long-term extinction occur in the LC and that the LC plays an essential role in memory storage and maintenance.
Collapse
Affiliation(s)
- Yu Arihara
- :Department of Applied Biological Chemistry, Graduate school of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yudai Fukuyama
- :Department of Applied Biological Chemistry, Graduate school of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan; Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Satoshi Kida
- :Department of Applied Biological Chemistry, Graduate school of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan.
| |
Collapse
|
38
|
Wang Y, Hong Q, Xia Y, Zhang Z, Wen B. The Lysine Demethylase KDM7A Regulates Immediate Early Genes in Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301367. [PMID: 37565374 PMCID: PMC10558696 DOI: 10.1002/advs.202301367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/11/2023] [Indexed: 08/12/2023]
Abstract
Lysine demethylase KDM7A removes histone modifications H3K9me1/2 and H3K27me1/2. KDM7A plays critical roles in gene expression and contribute to biological processes including tumorigenesis, metabolism, and embryonic development. However, the functions of KDM7A in mammalian nervous system are still poorly explored. In this study, functional roles of KDM7A are comprehensively investigated in neuronal cells by applying CUT&Tag-seq, RNA-seq and mice models. Knockdown of Kdm7a in N2A cells result in the alteration of histone modifications near transcription start sites (TSSs) and the expression changes of a large number of genes. In particular, the expression of immediate early genes (IEGs), a series of genes maintaining the function of the nervous system and associating with neurological disorders, are significantly decreased upon Kdm7a knockdown. Furthermore, in vivo knockdown of Kdm7a in dentate gyrus (DG) neuron of mice hippocampus, via Adeno-associated virus (AAV)-based stereotaxic microinjection, led to a significant decrease of the expression of c-Fos, a marker of neuron activity. Behavior assays in mice further revealed that Kdm7a knockdown in hippocampus repress neuron activity, which leading to impairment of emotion and memory. Collectively, the study reveals that KDM7A affects neuron functions by regulating IEGs, which may provide new clues for understanding epigenetic mechanisms in neurological disorders.
Collapse
Affiliation(s)
- Yifan Wang
- Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan University200032130 Dong An RoadShanghaiChina
| | - Qin Hong
- Shengli Clinical Medical College of Fujian Medical University, Center for Experimental Research in Clinical MedicineFujian Provincial Hospital134 East StreetFuzhou350001China
| | - Yueyue Xia
- Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan University200032130 Dong An RoadShanghaiChina
| | - Zhao Zhang
- Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan University200032130 Dong An RoadShanghaiChina
| | - Bo Wen
- Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan University200032130 Dong An RoadShanghaiChina
| |
Collapse
|
39
|
Chao OY, Pathak SS, Zhang H, Augustine GJ, Christie JM, Kikuchi C, Taniguchi H, Yang YM. Social memory deficit caused by dysregulation of the cerebellar vermis. Nat Commun 2023; 14:6007. [PMID: 37752149 PMCID: PMC10522595 DOI: 10.1038/s41467-023-41744-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Social recognition memory (SRM) is a key determinant of social interactions. While the cerebellum emerges as an important region for social behavior, how cerebellar activity affects social functions remains unclear. We selectively increased the excitability of molecular layer interneurons (MLIs) to suppress Purkinje cell firing in the mouse cerebellar vermis. Chemogenetic perturbation of MLIs impaired SRM without affecting sociability, anxiety levels, motor coordination or object recognition. Optogenetic interference of MLIs during distinct phases of a social recognition test revealed the cerebellar engagement in the retrieval, but not encoding, of social information. c-Fos mapping after the social recognition test showed that cerebellar manipulation decreased brain-wide interregional correlations and altered network structure from medial prefrontal cortex and hippocampus-centered to amygdala-centered modules. Anatomical tracing demonstrated hierarchical projections from the central cerebellum to the social brain network integrating amygdalar connections. Our findings suggest that the cerebellum organizes the neural matrix necessary for SRM.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Hao Zhang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| | - Jason M Christie
- University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Chikako Kikuchi
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Hiroki Taniguchi
- Department of Pathology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Chronic Brain Injury, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
40
|
Kotlinska JH, Grochecki P, Michalak A, Pankowska A, Kochalska K, Suder P, Ner-Kluza J, Matosiuk D, Marszalek-Grabska M. Neonatal Maternal Separation Induces Sexual Dimorphism in Brain Development: The Influence on Amino Acid Levels and Cognitive Disorders. Biomolecules 2023; 13:1449. [PMID: 37892131 PMCID: PMC10605115 DOI: 10.3390/biom13101449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Repeated maternal separation (MS) is a useful experimental model in rodents for studying the long-term influence of early-life stress on brain neurophysiology. In our work, we assessed the effect of repeated MS (postnatal day (PND)1-21, 180 min/day) on the postnatal development of rat brain regions involved in memory using proton magnetic resonance spectroscopy (1HMRS) for tissue volume and the level of amino acids such as glutamate, aspartate, glutamine, glycine and gamma-aminobutyric acid (GABA) in the hippocampus. We assessed whether these effects are sex dependent. We also use novel object recognition (NOR) task to examine the effect of MS on memory and the effect of ethanol on it. Finally, we attempted to ameliorate postnatal stress-induced memory deficits by using VU-29, a positive allosteric modulator (PAM) of the metabotropic glutamate type 5 (mGlu5) receptor. In males, we noted deficits in the levels of glutamate, glycine and glutamine and increases in GABA in the hippocampus. In addition, the values of perirhinal cortex, prefrontal cortex and insular cortex and CA3 were decreased in these animals. MS females, in contrast, demonstrated significant increase in glutamate levels and decrease in GABA levels in the hippocampus. Here, the CA1 values alone were increased. VU-29 administration ameliorated these cognitive deficits. Thus, MS stress disturbs amino acids levels mainly in the hippocampus of adult male rats, and enhancement of glutamate neurotransmission reversed recognition memory deficits in these animals.
Collapse
Affiliation(s)
- Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland;
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland;
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University, Chodzki 4A, 20-093 Lublin, Poland;
| | - Anna Pankowska
- Department of Radiography, Medical University, Staszica 16, 20-081 Lublin, Poland; (A.P.); (K.K.)
| | - Katarzyna Kochalska
- Department of Radiography, Medical University, Staszica 16, 20-081 Lublin, Poland; (A.P.); (K.K.)
| | - Piotr Suder
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland; (P.S.); (J.N.-K.)
| | - Joanna Ner-Kluza
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland; (P.S.); (J.N.-K.)
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University, Chodzki 4A, 20-093 Lublin, Poland;
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8B, 20-090 Lublin, Poland;
| |
Collapse
|
41
|
Verpeut JL, Bergeler S, Kislin M, William Townes F, Klibaite U, Dhanerawala ZM, Hoag A, Janarthanan S, Jung C, Lee J, Pisano TJ, Seagraves KM, Shaevitz JW, Wang SSH. Cerebellar contributions to a brainwide network for flexible behavior in mice. Commun Biol 2023; 6:605. [PMID: 37277453 PMCID: PMC10241932 DOI: 10.1038/s42003-023-04920-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
The cerebellum regulates nonmotor behavior, but the routes of influence are not well characterized. Here we report a necessary role for the posterior cerebellum in guiding a reversal learning task through a network of diencephalic and neocortical structures, and in flexibility of free behavior. After chemogenetic inhibition of lobule VI vermis or hemispheric crus I Purkinje cells, mice could learn a water Y-maze but were impaired in ability to reverse their initial choice. To map targets of perturbation, we imaged c-Fos activation in cleared whole brains using light-sheet microscopy. Reversal learning activated diencephalic and associative neocortical regions. Distinctive subsets of structures were altered by perturbation of lobule VI (including thalamus and habenula) and crus I (including hypothalamus and prelimbic/orbital cortex), and both perturbations influenced anterior cingulate and infralimbic cortex. To identify functional networks, we used correlated variation in c-Fos activation within each group. Lobule VI inactivation weakened within-thalamus correlations, while crus I inactivation divided neocortical activity into sensorimotor and associative subnetworks. In both groups, high-throughput automated analysis of whole-body movement revealed deficiencies in across-day behavioral habituation to an open-field environment. Taken together, these experiments reveal brainwide systems for cerebellar influence that affect multiple flexible responses.
Collapse
Affiliation(s)
- Jessica L Verpeut
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA.
| | - Silke Bergeler
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Mikhail Kislin
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - F William Townes
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Ugne Klibaite
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 01451, USA
| | - Zahra M Dhanerawala
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Austin Hoag
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Sanjeev Janarthanan
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Caroline Jung
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Junuk Lee
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Thomas J Pisano
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Kelly M Seagraves
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Joshua W Shaevitz
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Samuel S-H Wang
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, 08544, USA.
| |
Collapse
|
42
|
Gerasimenko M, Higashida H. Remission of social behavior impairment by oral administration of a precursor of NAD in CD157, but not in CD38, knockout mice. Front Immunol 2023; 14:1166609. [PMID: 37215105 PMCID: PMC10192747 DOI: 10.3389/fimmu.2023.1166609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a substrate of adenosine diphosphate (ADP)-ribosyl cyclase and is catalyzed to cyclic ADP-ribose (cADPR) by CD38 and/or CD157. cADPR, a Ca2+ mobilizing second messenger, is critical in releasing oxytocin from the hypothalamus into the brain. Although NAD precursors effectively play a role in neurodegenerative disorders, muscular dystrophy, and senescence, the beneficial effects of elevating NAD by NAD precursor supplementation on brain function, especially social interaction, and whether CD38 is required in this response, has not been intensely studied. Here, we report that oral gavage administration of nicotinamide riboside, a perspective NAD precursor with high bioavailability, for 12 days did not show any suppressive or increasing effects on sociability (mouse's interest in social targets compared to non-social targets) in both CD157KO and CD38KO male mice models in a three-chamber test. CD157KO and CD38KO mice displayed no social preference (that is, more interest towards a novel mouse than a familiar one) behavior. This defect was rescued after oral gavage administration of nicotinamide riboside for 12 days in CD157KO mice, but not in CD38KO mice. Social memory was not observed in CD157KO and CD38KO mice; subsequently, nicotinamide riboside administration had no effect on social memory. Together with the results that nicotinamide riboside had essentially no or little effect on body weight during treatment in CD157KO mice, nicotinamide riboside is less harmful and has beneficial effect on defects in recovery from social behavioral, for which CD38 is required in mice.
Collapse
Affiliation(s)
- Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
43
|
A B L, A G, M B, H HN. Social Interaction Elicits Activity in Glutamatergic Neurons in the Posterior Intralaminar Complex of the Thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538114. [PMID: 37163009 PMCID: PMC10168253 DOI: 10.1101/2023.04.24.538114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background The posterior intralaminar (PIL) complex of the thalamus is a multimodal nucleus that has been implicated in maternal behaviors and conspecific social behaviors in male and female rodents. Glutamatergic neurons are a major component of the PIL; however, their specific activity and role during social interactions has not yet been assessed. Methods We used immunohistochemistry for the immediate early gene c-fos as a proxy for neuronal activity in the PIL of mice exposed to a novel social stimulus, a novel object stimulus, or no stimulus. We then used fiber photometry to record neural activity of glutamatergic neurons in the PIL in real-time during social and non-social interactions. Finally, we used inhibitory DREADDs in glutamatergic PIL neurons and tested social preference and social habituation-dishabituation. Results We observed significantly more c-fos -positive cells in the PIL of mice exposed to social versus object or no stimuli. Neural activity of PIL glutamatergic neurons was increased when male and female mice were engaged in social interaction with a same-sex juvenile or opposite-sex adult, but not a toy mouse. Neural activity positively correlated with social investigation bout length and negatively correlated with chronological order of bouts. Social preference was unaffected by inhibition; however, inhibiting activity of glutamatergic neurons in the PIL delayed the time it took female mice to form social habituation. Conclusions Together these findings suggest that glutamatergic PIL neurons respond to social stimuli in both male and female mice and may regulate perceptual encoding of social information to facilitate recognition of social stimuli.
Collapse
|
44
|
Perez SM, Boley AM, McCoy AM, Lodge DJ. Aberrant Dopamine System Function in the Ferrous Amyloid Buthionine (FAB) Rat Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:7196. [PMID: 37108357 PMCID: PMC10138591 DOI: 10.3390/ijms24087196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Antipsychotics increase the risk of death in elderly patients with Alzheimer's disease (AD). Thus, there is an immediate need for novel therapies to treat comorbid psychosis in AD. Psychosis has been attributed to a dysregulation of the dopamine system and is associated with aberrant regulation by the hippocampus. Given that the hippocampus is a key site of pathology in AD, we posit that aberrant regulation of the dopamine system may contribute to comorbid psychosis in AD. A ferrous amyloid buthionine (FAB) rodent model was used to model a sporadic form of AD. FAB rats displayed functional hippocampal alterations, which were accompanied by decreases in spontaneous, low-frequency oscillations and increases in the firing rates of putative pyramidal neurons. Additionally, FAB rats exhibited increases in dopamine neuron population activity and augmented responses to the locomotor-inducing effects of MK-801, as is consistent with rodent models of psychosis-like symptomatology. Further, working memory deficits in the Y-maze, consistent with an AD-like phenotype, were observed in FAB rats. These data suggest that the aberrant hippocampal activity observed in AD may contribute to dopamine-dependent psychosis, and that the FAB model may be useful for the investigation of comorbid psychosis related to AD. Understanding the pathophysiology that leads to comorbid psychosis in AD will ultimately lead to the discovery of novel targets for the treatment of this disease.
Collapse
Affiliation(s)
- Stephanie M. Perez
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA; (A.M.B.); (D.J.L.)
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| | - Angela M. Boley
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA; (A.M.B.); (D.J.L.)
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| | - Alexandra M. McCoy
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA; (A.M.B.); (D.J.L.)
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| | - Daniel J. Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA; (A.M.B.); (D.J.L.)
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| |
Collapse
|
45
|
Kietzman HW, Gourley SL. How social information impacts action in rodents and humans: the role of the prefrontal cortex and its connections. Neurosci Biobehav Rev 2023; 147:105075. [PMID: 36736847 PMCID: PMC10026261 DOI: 10.1016/j.neubiorev.2023.105075] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Day-to-day choices often involve social information and can be influenced by prior social experience. When making a decision in a social context, a subject might need to: 1) recognize the other individual or individuals, 2) infer their intentions and emotions, and 3) weigh the values of all outcomes, social and non-social, prior to selecting an action. These elements of social information processing all rely, to some extent, on the medial prefrontal cortex (mPFC). Patients with neuropsychiatric disorders often have disruptions in prefrontal cortical function, likely contributing to deficits in social reasoning and decision making. To better understand these deficits, researchers have turned to rodents, which have revealed prefrontal cortical mechanisms for contending with the complex information processing demands inherent to making decisions in social contexts. Here, we first review literature regarding social decision making, and the information processing underlying it, in humans and patient populations. We then turn to research in rodents, discussing current procedures for studying social decision making, and underlying neural correlates.
Collapse
Affiliation(s)
- Henry W Kietzman
- Medical Scientist Training Program, Emory University School of Medicine, USA; Department of Pediatrics, Emory University School of Medicine, USA; Department of Psychiatry, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, USA; Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta GA 30329, USA.
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, USA; Department of Psychiatry, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, USA; Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta GA 30329, USA; Children's Healthcare of Atlanta, USA.
| |
Collapse
|
46
|
Liu Y, Zhao R, Xiong X, Ren X. A Bibliometric Analysis of Consumer Neuroscience towards Sustainable Consumption. Behav Sci (Basel) 2023; 13:bs13040298. [PMID: 37102812 PMCID: PMC10136158 DOI: 10.3390/bs13040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Consumer neuroscience is a new paradigm for studying consumer behavior, focusing on neuroscientific tools to explore the underlying neural processes and behavioral implications of consumption. Based on the bibliometric analysis tools, this paper provides a review of progress in research on consumer neuroscience during 2000–2021. In this paper, we identify research hotspots and frontiers in the field through a statistical analysis of bibliometric indicators, including the number of publications, countries, institutions, and keywords. Aiming at facilitating carbon neutrality via sustainable consumption, this paper discusses the prospects of applying neuroscience to sustainable consumption. The results show 364 publications in the field during 2000–2021, showing a rapid upward trend, indicating that consumer neuroscience research is gaining ground. The majority of these consumer neuroscience studies chose to use electroencephalogram tools, accounting for 63.8% of the total publications; the cutting-edge research mainly involved event-related potential (ERP) studies of various marketing stimuli interventions, functional magnetic resonance imaging (fMRI)-based studies of consumer decision-making and emotion-specific brain regions, and machine-learning-based studies of consumer decision-making optimization models.
Collapse
|
47
|
Thivisol UMCC, Binder MD, Hannan AJ, Pang TY. Loss of Tyro3 causes anxiety-relevant behavioural changes in female mice. Brain Res 2023; 1807:148319. [PMID: 36898476 DOI: 10.1016/j.brainres.2023.148319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/19/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
White-matter brain abnormalities have been found across a variety of psychiatric disorders. The extent of white matter pathology is proposed to be predictive of the severity of anxiety disorders. However, it is still unknown whether disruptions of white matter integrity precede, and are sufficient to give rise to, the behavioural symptoms. Interestingly, mood disturbances feature prominently in central demyelinating diseases such as multiple sclerosis. It is unclear whether the greater frequency of neuropsychiatric symptoms is linked to underlying neuropathology. In this study, we characterised male and female Tyro3 knockout (KO) mice using a variety of behavioural paradigms. Anxiety-related behaviours were assessed with the elevated-plus maze and light-dark box. Fear memory processing was assessed using fear conditioning and extinction paradigms. Finally, we assessed immobility time in the Porsolt swim test as a measure of depression-related behavioural despair. Surprisingly, loss of Tyro3 did not lead to manifestation of major shifts in baseline behaviour. We noted significant differences in habituation to novel environments and post-conditioning freezing levels of female Tyro3 KO mice, which are consistent with the female bias in anxiety disorders and could be indicative of maladaptive stress-responses. This study has demonstrated that white matter pathology related to a loss of Tyro3 is associated with pro-anxiety behavioural responses of female mice. Future studies could probe their contribution to increased risk for neuropsychiatric disorders when combined with stressful triggering events.
Collapse
Affiliation(s)
- Ulysse M C C Thivisol
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Department of Anatomy & Physiology, University of Melbourne, VIC 3010, Australia
| | - Michele D Binder
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Department of Anatomy & Physiology, University of Melbourne, VIC 3010, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Department of Anatomy & Physiology, University of Melbourne, VIC 3010, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Department of Anatomy & Physiology, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
48
|
Fu P, Luo S, Liu Z, Furuhara K, Tsuji T, Higashida H, Yokoyama S, Zhong J, Tsuji C. Oral Supplementation with Maca Improves Social Recognition Deficits in the Valproic Acid Animal Model of Autism Spectrum Disorder. Brain Sci 2023; 13:brainsci13020316. [PMID: 36831858 PMCID: PMC9954495 DOI: 10.3390/brainsci13020316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Autism spectrum disorder (ASD) is a congenital, lifelong neurodevelopmental disorder whose main symptom is impaired social communication and interaction. However, no drug can treat social deficits in patients with ASD, and treatments to alleviate social behavioral deficits are sorely needed. Here, we examined the effect of oral supplementation of maca (Lepidium meyenii) on social deficits of in utero-exposed valproic acid (VPA) mice, widely used as an ASD model. Although maca is widely consumed as a fertility enhancer and aphrodisiac, it possesses multiple beneficial activities. Additionally, it benefits learning and memory in experimental animal models. Therefore, the effect of maca supplementation on the social behavioral deficit of VPA mice was assessed using a social interaction test, a three-stage open field test, and a five-trial social memory test. The oral supplementation of maca attenuated social interaction behavior deficit and social memory impairment. The number of c-Fos-positive cells and the percentage of c-Fos-positive oxytocin neurons increased in supraoptic and paraventricular neurons of maca-treated VPA mice. These results reveal for the first time that maca is beneficial to social memory and that it restores social recognition impairments by augmenting the oxytocinergic neuronal pathways, which play an essential role in diverse social behaviors.
Collapse
Affiliation(s)
- Pinyue Fu
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa 920-8640, Japan
| | - Shuxin Luo
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Physiological Department, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Zhongyu Liu
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Physiological Department, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Kazumi Furuhara
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Takahiro Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa 920-8640, Japan
| | - Jing Zhong
- Physiological Department, Guangxi University of Chinese Medicine, Nanning 530011, China
- Correspondence: (J.Z.); or (C.T.); Tel.: +81-(0)-76-265-2458 (C.T.)
| | - Chiharu Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Correspondence: (J.Z.); or (C.T.); Tel.: +81-(0)-76-265-2458 (C.T.)
| |
Collapse
|
49
|
Yan P, Liu J, Ma H, Feng Y, Cui J, Bai Y, Huang X, Zhu Y, Wei S, Lai J. Effects of glycogen synthase kinase-3β activity inhibition on cognitive, behavioral, and hippocampal ultrastructural deficits in adulthood associated with adolescent methamphetamine exposure. Front Mol Neurosci 2023; 16:1129553. [PMID: 36949769 PMCID: PMC10025487 DOI: 10.3389/fnmol.2023.1129553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Objective Glycogen synthase kinase-3β (GSK3β) has been implicated in the maintenance of synaptic plasticity, memory process, and psychostimulant-induced behavioral effects. Hyperactive GSK3β in the Cornu Ammonis 1 (CA1) subregion of the dorsal hippocampus (DHP) was associated with adolescent methamphetamine (METH) exposure-induced behavioral and cognitive deficits in adulthood. This study aimed to evaluate the possible therapeutic effects of GSK3β inhibition in adulthood on adolescent METH exposure-induced long-term neurobiological deficits. Methods Adolescent male mice were treated with METH from postnatal day (PND) 45-51. In adulthood, three intervention protocols (acute lithium chloride systemic administration, chronic lithium chloride systemic administration, and chronic SB216763 administration within CA1) were used for GSK3β activity inhibition. The effect of GSK3β intervention on cognition, behavior, and GSK3β activity and synaptic ultrastructure in the DHP CA1 subregion were detected in adulthood. Results In adulthood, all three interventions reduced adolescent METH exposure-induced hyperactivity (PND97), while only chronic systemic and chronic within CA1 administration ameliorated the induced impairments in spatial (PND99), social (PND101) and object (PND103) recognition memory. In addition, although three interventions reversed the aberrant GSK3β activity in the DHP CA1 subregion (PND104), only chronic systemic and chronic within CA1 administration rescued adolescent METH exposure-induced synaptic ultrastructure changes in the DHP CA1 subregion (PND104) in adulthood. Conclusion Rescuing synaptic ultrastructural abnormalities in the dHIP CA1 subregion by chronic administration of a GSK3β inhibitor may be a suitable therapeutic strategy for the treatment of behavioral and cognitive deficits in adulthood associated with adolescent METH abuse.
Collapse
Affiliation(s)
- Peng Yan
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jincen Liu
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Haotian Ma
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yue Feng
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jingjing Cui
- Forensic Identification Institute, The Fourth People’s Hospital of Yancheng, Yancheng, China
| | - Yuying Bai
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Xin Huang
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yongsheng Zhu
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Shuguang Wei
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Shuguang Wei,
| | - Jianghua Lai
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
- Jianghua Lai,
| |
Collapse
|
50
|
The potential role of the cholecystokinin system in declarative memory. Neurochem Int 2023; 162:105440. [PMID: 36375634 DOI: 10.1016/j.neuint.2022.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
As one of the most abundant neuropeptides in the central nervous system, cholecystokinin (CCK) has been suggested to be associated with higher brain functions, including learning and memory. In this review, we examined the potential role of the CCK system in declarative memory. First, we summarized behavioral studies that provide evidence for an important role of CCK in two forms of declarative memory-fear memory and spatial memory. Subsequently, we examined the electrophysiological studies that support the diverse roles of CCK-2 receptor activation in neocortical and hippocampal synaptic plasticity, and discussed the potential mechanisms that may be involved. Last but not least, we discussed whether the reported CCK-mediated synaptic plasticity can explain the strong influence of the CCK signaling system in neocortex and hippocampus dependent declarative memory. The available research supports the role of CCK-mediated synaptic plasticity in neocortex dependent declarative memory acquisition, but further study on the association between CCK-mediated synaptic plasticity and neocortex dependent declarative memory consolidation and retrieval is necessary. Although a direct link between CCK-mediated synaptic plasticity and hippocampus dependent declarative memory is missing, noticeable evidence from morphological, behavioral, and electrophysiological studies encourages further investigation regarding the potential role of CCK-dependent synaptic plasticity in hippocampus dependent declarative memory.
Collapse
|