1
|
Mukunda CL, Sane SP. Encoding of antennal position and velocity by the Johnston's organ in hawkmoths. J Exp Biol 2025; 228:jeb249342. [PMID: 40099381 PMCID: PMC12079665 DOI: 10.1242/jeb.249342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Insect antennae function as versatile, multimodal sensory probes in diverse behavioural contexts. In addition to their primary role as olfactory organs, they serve essential mechanosensory functions across insects, including auditory perception, vestibular feedback, airflow detection, gravity sensing and tactile sensation. These diverse functions are facilitated by the mechanosensory Johnston's organ (JO), located at the joint between the flagellum and the pedicel (second antennal segment). This joint lacks muscles, which means that JOs can perceive only passive deflections of the flagellum. Earlier work that characterized the sensitivity and short response time of the JO sensory units in hawkmoths showed that their sensitivity to a broad frequency range is range-fractionated. This vastly expands the functional repertoire of the JO. However, it is not clear what components of antennal kinematics are encoded by the JO. Here, we conducted experiments to test the hypothesis that JO neurons encode the position and velocity of angular movements of the flagellum. We recorded intracellularly from the axons of primary sensory neurons of the JO while stimulating it with ramp-and-hold stimuli in which either the antennal position or antennal angular velocity was maintained at various constant values. Our study shows that JO neurons encode angular velocity and position of the antenna in their response. We also characterized the neural adaptation of the responses to angular velocities and positions. The majority of neurons were sensitive to a movement in the ventrad direction, in the direction of gravity. The adaptation and directional response properties give rise to a nonlinear hysteresis-like response. Together, these findings highlight the neurophysiological basis underlying the functional versatility of the JO.
Collapse
Affiliation(s)
- Chinmayee L. Mukunda
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Sanjay P. Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
2
|
Joshi S, Haney S, Wang Z, Locatelli F, Lei H, Cao Y, Smith B, Bazhenov M. Plasticity in inhibitory networks improves pattern separation in early olfactory processing. Commun Biol 2025; 8:590. [PMID: 40204909 PMCID: PMC11982548 DOI: 10.1038/s42003-025-07879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/03/2025] [Indexed: 04/11/2025] Open
Abstract
Distinguishing between nectar and non-nectar odors is challenging for animals due to shared compounds and varying ratios in complex mixtures. Changes in nectar production throughout the day and over the animal's lifetime add to the complexity. The honeybee olfactory system, containing fewer than 1000 principal neurons in the early olfactory relay, the antennal lobe (AL), must learn to associate diverse volatile blends with rewards. Previous studies identified plasticity in the AL circuits, but its role in odor learning remains poorly understood. Using a biophysical computational model, tuned by in vivo electrophysiological data, and live imaging of the honeybee's AL, we explored the neural mechanisms of plasticity in the AL. Our findings revealed that when trained with a set of rewarded and unrewarded odors, the AL inhibitory network suppresses responses to shared chemical compounds while enhancing responses to distinct compounds. This results in improved pattern separation and a more concise neural code. Our calcium imaging data support these predictions. Analysis of a graph convolutional neural network performing an odor categorization task revealed a similar mechanism for contrast enhancement. Our study provides insights into how inhibitory plasticity in the early olfactory network reshapes the coding for efficient learning of complex odors.
Collapse
Affiliation(s)
- Shruti Joshi
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Seth Haney
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Zhenyu Wang
- Department of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
| | - Fernando Locatelli
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Buenos Aires, Argentina
| | - Hong Lei
- School of Life Science, Arizona State University, Tempe, AZ, USA
| | - Yu Cao
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Brian Smith
- School of Life Science, Arizona State University, Tempe, AZ, USA
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Bisch-Knaden S, Rafter MA, Knaden M, Hansson BS. Unique neural coding of crucial versus irrelevant plant odors in a hawkmoth. eLife 2022; 11:77429. [PMID: 35622402 PMCID: PMC9142141 DOI: 10.7554/elife.77429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
The sense of smell is pivotal for nocturnal moths to locate feeding and oviposition sites. However, these crucial resources are often rare and their bouquets are intermingled with volatiles emanating from surrounding ‘background’ plants. Here, we asked if the olfactory system of female hawkmoths, Manduca sexta, could differentiate between crucial and background cues. To answer this question, we collected nocturnal headspaces of numerous plants in a natural habitat of M. sexta. We analyzed the chemical composition of these headspaces and used them as stimuli in physiological experiments at the antenna and in the brain. The intense odors of floral nectar sources evoked strong responses in virgin and mated female moths, most likely enabling the localization of profitable flowers at a distance. Bouquets of larval host plants and most background plants, in contrast, were subtle, thus potentially complicating host identification. However, despite being subtle, antennal responses and brain activation patterns evoked by the smell of larval host plants were clearly different from those evoked by other plants. Interestingly, this difference was even more pronounced in the antennal lobe of mated females, revealing a status-dependent tuning of their olfactory system towards oviposition sites. Our study suggests that female moths possess unique neural coding strategies to find not only conspicuous floral cues but also inconspicuous bouquets of larval host plants within a complex olfactory landscape.
Collapse
Affiliation(s)
- Sonja Bisch-Knaden
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | | | - Markus Knaden
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - Bill S Hansson
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| |
Collapse
|
4
|
Wang IH, Murray E, Andrews G, Jiang HC, Park SJ, Donnard E, Durán-Laforet V, Bear DM, Faust TE, Garber M, Baer CE, Schafer DP, Weng Z, Chen F, Macosko EZ, Greer PL. Spatial transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles of odor processing. Nat Neurosci 2022; 25:484-492. [PMID: 35314823 PMCID: PMC9281876 DOI: 10.1038/s41593-022-01030-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
The olfactory system's ability to detect and discriminate between the vast array of chemicals present in the environment is critical for an animal's survival. In mammals, the first step of this odor processing is executed by olfactory sensory neurons, which project their axons to a stereotyped location in the olfactory bulb (OB) to form glomeruli. The stereotyped positioning of glomeruli in the OB suggests an importance for this organization in odor perception. However, because the location of only a limited subset of glomeruli has been determined, it has been challenging to determine the relationship between glomerular location and odor discrimination. Using a combination of single-cell RNA sequencing, spatial transcriptomics and machine learning, we have generated a map of most glomerular positions in the mouse OB. These observations significantly extend earlier studies and suggest an overall organizational principle in the OB that may be used by the brain to assist in odor decoding.
Collapse
Affiliation(s)
- I-Hao Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Greg Andrews
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hao-Ching Jiang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sung Jin Park
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Elisa Donnard
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Violeta Durán-Laforet
- Department of Neurobiology and Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Daniel M Bear
- Department of Psychology, Stanford University, Palo Alto, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Palo Alto, CA, USA
| | - Travis E Faust
- Department of Neurobiology and Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Manuel Garber
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christina E Baer
- Sanderson Center for Optical Imaging and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dorothy P Schafer
- Department of Neurobiology and Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Paul L Greer
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Lei H, Haney S, Jernigan CM, Guo X, Cook CN, Bazhenov M, Smith BH. Novelty detection in early olfactory processing of the honey bee, Apis mellifera. PLoS One 2022; 17:e0265009. [PMID: 35353837 PMCID: PMC8967009 DOI: 10.1371/journal.pone.0265009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/20/2022] [Indexed: 11/19/2022] Open
Abstract
Animals are constantly bombarded with stimuli, which presents a fundamental problem of sorting among pervasive uninformative stimuli and novel, possibly meaningful stimuli. We evaluated novelty detection behaviorally in honey bees as they position their antennae differentially in an air stream carrying familiar or novel odors. We then characterized neuronal responses to familiar and novel odors in the first synaptic integration center in the brain-the antennal lobes. We found that the neurons that exhibited stronger initial responses to the odor that was to be familiarized are the same units that later distinguish familiar and novel odors, independently of chemical identities. These units, including both tentative projection neurons and local neurons, showed a decreased response to the familiar odor but an increased response to the novel odor. Our results suggest that the antennal lobe may represent familiarity or novelty to an odor stimulus in addition to its chemical identity code. Therefore, the mechanisms for novelty detection may be present in early sensory processing, either as a result of local synaptic interaction or via feedback from higher brain centers.
Collapse
Affiliation(s)
- Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Seth Haney
- Department of Medicine, University of California, San Diego, CA, United States of America
| | | | - Xiaojiao Guo
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Chelsea N. Cook
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego, CA, United States of America
| | - Brian H. Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
6
|
Tuckman H, Patel M, Lei H. Effects of Mechanosensory Input on the Tracking of Pulsatile Odor Stimuli by Moth Antennal Lobe Neurons. Front Neurosci 2021; 15:739730. [PMID: 34690678 PMCID: PMC8529024 DOI: 10.3389/fnins.2021.739730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Air turbulence ensures that in a natural environment insects tend to encounter odor stimuli in a pulsatile fashion. The frequency and duration of odor pulses varies with distance from the source, and hence successful mid-flight odor tracking requires resolution of spatiotemporal pulse dynamics. This requires both olfactory and mechanosensory input (from wind speed), a form of sensory integration observed within the antennal lobe (AL). In this work, we employ a model of the moth AL to study the effect of mechanosensory input on AL responses to pulsatile stimuli; in particular, we examine the ability of model neurons to: (1) encode the temporal length of a stimulus pulse; (2) resolve the temporal dynamics of a high frequency train of brief stimulus pulses. We find that AL glomeruli receiving olfactory input are adept at encoding the temporal length of a stimulus pulse but less effective at tracking the temporal dynamics of a pulse train, while glomeruli receiving mechanosensory input but little olfactory input can efficiently track the temporal dynamics of high frequency pulse delivery but poorly encode the duration of an individual pulse. Furthermore, we show that stronger intrinsic small-conductance calcium-dependent potassium (SK) currents tend to skew cells toward being better trackers of pulse frequency, while weaker SK currents tend to entail better encoding of the temporal length of individual pulses. We speculate a possible functional division of labor within the AL, wherein, for a particular odor, glomeruli receiving strong olfactory input exhibit prolonged spiking responses that facilitate detailed discrimination of odor features, while glomeruli receiving mechanosensory input (but little olfactory input) serve to resolve the temporal dynamics of brief, pulsatile odor encounters. Finally, we discuss how this hypothesis extends to explaining the functional significance of intraglomerular variability in observed phase II response patterns of AL neurons.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Mathematics, William & Mary, Williamsburg, VA, United States
| | - Mainak Patel
- Department of Mathematics, William & Mary, Williamsburg, VA, United States
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
7
|
Olfactory encoding within the insect antennal lobe: The emergence and role of higher order temporal correlations in the dynamics of antennal lobe spiking activity. J Theor Biol 2021; 522:110700. [PMID: 33819477 DOI: 10.1016/j.jtbi.2021.110700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
In this review, we focus on the antennal lobe (AL) of three insect species - the fruit fly, sphinx moth, and locust. We first review the experimentally elucidated anatomy and physiology of the early olfactory system of each species; empirical studies of AL activity, however, often focus on assessing firing rates (averaged over time scales of about 100 ms), and hence the AL odor code is often analyzed in terms of a temporally evolving vector of firing rates. However, such a perspective necessarily misses the possibility of higher order temporal correlations in spiking activity within a single cell and across multiple cells over shorter time scales (of about 10 ms). Hence, we then review our prior theoretical work, where we constructed biophysically detailed, species-specific AL models within the fly, moth, and locust, finding that in each case higher order temporal correlations in spiking naturally emerge from model dynamics (i.e., without a prioriincorporation of elements designed to produce correlated activity). We therefore use our theoretical work to argue the perspective that temporal correlations in spiking over short time scales, which have received little experimental attention to-date, may provide valuable coding dimensions (complementing the coding dimensions provided by the vector of firing rates) that nature has exploited in the encoding of odors within the AL. We further argue that, if the AL does indeed utilize temporally correlated activity to represent odor information, such an odor code could be naturally and easily deciphered within the Mushroom Body.
Collapse
|
8
|
Network mechanism for insect olfaction. Cogn Neurodyn 2021; 15:103-129. [PMID: 33786083 DOI: 10.1007/s11571-020-09640-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/25/2020] [Accepted: 09/30/2020] [Indexed: 10/22/2022] Open
Abstract
Early olfactory pathway responses to the presentation of an odor exhibit remarkably similar dynamical behavior across phyla from insects to mammals, and frequently involve transitions among quiescence, collective network oscillations, and asynchronous firing. We hypothesize that the time scales of fast excitation and fast and slow inhibition present in these networks may be the essential element underlying this similar behavior, and design an idealized, conductance-based integrate-and-fire model to verify this hypothesis via numerical simulations. To better understand the mathematical structure underlying the common dynamical behavior across species, we derive a firing-rate model and use it to extract a slow passage through a saddle-node-on-an-invariant-circle bifurcation structure. We expect this bifurcation structure to provide new insights into the understanding of the dynamical behavior of neuronal assemblies and that a similar structure can be found in other sensory systems.
Collapse
|
9
|
Getahun MN, Ahuya P, Ngiela J, Orone A, Masiga D, Torto B. Shared volatile organic compounds between camel metabolic products elicits strong Stomoxys calcitrans attraction. Sci Rep 2020; 10:21454. [PMID: 33293684 PMCID: PMC7722739 DOI: 10.1038/s41598-020-78495-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/20/2020] [Indexed: 11/09/2022] Open
Abstract
The sources of animal odours are highly diverse, yet their ecological importance, in host-vector communication, remains unexplored. Here, using the camel (host)-Stomoxys calcitrans (vector) interaction, we collected and analyzed the Volatile Organic Compounds (VOCs) of camels from four of its different odour sources: breath, body (skin), urine, and dung. On non-metric model multivariate analyses of VOCs we show that substantial chemo-diversity exists between metabolic products associated with an individual camel. VOCs from the four metabolic products were distinct and widely segregated. Next, we show electrophysiologically, that VOCs shared between metabolic products activated more Olfactory Sensory Neurons (OSNs) and elicited strong behavioural attractive responses from S. calcitrans under field conditions independent of geography. In our extended studies on house flies, the behavioural response to these VOCs appears to be conserved. Overall, our results establish that VOCs from a range of metabolic products determine host-vector ecological interactions and may provide a more rigorous approach for discovery of unique and more potent attractants.
Collapse
Affiliation(s)
- Merid Negash Getahun
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772‑00100, Nairobi, Kenya.
| | - Peter Ahuya
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772‑00100, Nairobi, Kenya
| | - John Ngiela
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772‑00100, Nairobi, Kenya
| | - Abel Orone
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772‑00100, Nairobi, Kenya
- Biotechnology Research Institute, Kenya Agricultural & Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772‑00100, Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772‑00100, Nairobi, Kenya
| |
Collapse
|
10
|
Bennett MM, Cook CN, Smith BH, Lei H. Early olfactory, but not gustatory processing, is affected by the selection of heritable cognitive phenotypes in honey bee. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 207:17-26. [PMID: 33201304 DOI: 10.1007/s00359-020-01451-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Associative learning enables animals to predict rewards or punishments by their associations with predictive stimuli, while non-associative learning occurs without reinforcement. The latter includes latent inhibition (LI), whereby animals learn to ignore an inconsequential 'familiar' stimulus. Individual honey bees display heritable differences in expression of LI. We examined the behavioral and neuronal responses between honey bee genetic lines exhibiting high and low LI. We observed, as in previous studies, that high LI lines learned a familiar odor more slowly than low LI bees. By measuring gustatory responses to sucrose, we determined that perception of sucrose reward was similar between both lines, thereby not contributing to the LI phenotype. We then used extracellular electrophysiology to determine differences in neural responses of the antennal lobe (AL) to familiar and novel odors between the lines. Low LI bees responded significantly more strongly to both familiar and novel odors than the high LI bees, but the lines showed equivalent differences in response to the novel and familiar odors. This work suggests that some effects of genotype are present in early olfactory processing, and those effects could complement how LI is manifested at later stages of processing in brains of bees in the different lines.
Collapse
Affiliation(s)
- Meghan M Bennett
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, 85719, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Chelsea N Cook
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53233, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
11
|
Tuckman H, Kim J, Rangan A, Lei H, Patel M. Dynamics of sensory integration of olfactory and mechanical stimuli within the response patterns of moth antennal lobe neurons. J Theor Biol 2020; 509:110510. [PMID: 33022286 DOI: 10.1016/j.jtbi.2020.110510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 11/19/2022]
Abstract
Odors emanating from a biologically relevant source are rapidly embedded within a windy, turbuluent medium that folds and spins filaments into fragmented strands of varying sizes. Environmental odor plumes therefore exhibit complex spatiotemporal dynamics, and rarely yield an easily discernible concentration gradient marking an unambiguous trail to an odor source. Thus, sensory integration of chemical input, encoding odor identity or concentration, and mechanosensory input, encoding wind speed, is a critical task that animals face in resolving the complex dynamics of odor plumes and tracking an odor source. In insects, who employ olfactory navigation as their primary means of foraging for food and finding mates, the antennal lobe (AL) is the first brain structure that processes sensory odor information. Although the importance of chemosensory and mechanosensory integration is widely recognized, the AL itself has traditionally been viewed purely from the perspective of odor encoding, with little attention given to its role as a bimodal integrator. In this work, we seek to explore the AL as a model for studying sensory integration - it boasts well-understood architecture, well-studied olfactory responses, and easily measurable cells. Using a moth model, we present experimental data that clearly demonstrates that AL neurons respond, in dynamically distinct ways, to both chemosensory and mechanosensory input; mechanosensory responses are transient and temporally precise, while olfactory responses are long-lasting but lack temporal precision. We further develop a computational model of the AL, show that our model captures odor response dynamics reported in the literature, and examine the dynamics of our model with the inclusion of mechanosensory input; we then use our model to pinpoint dynamical mechanisms underlying the bimodal AL responses revealed in our experimental work. Finally, we propose a novel hypothesis about the role of mechanosensory input in sculpting AL dynamics and the implications for biological odor tracking.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Mathematics, William & Mary Williamsburg, VA 23187, USA
| | - Jungmin Kim
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Aaditya Rangan
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Mainak Patel
- Department of Mathematics, William & Mary Williamsburg, VA 23187, USA.
| |
Collapse
|
12
|
Neuronal Responses of Antennal Olfactory Sensilla to Insect Chemical Repellents in the Yellow Fever Mosquito, Aedes aegypti. J Chem Ecol 2018; 44:1120-1126. [PMID: 30291492 DOI: 10.1007/s10886-018-1022-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
The yellow fever mosquito, Aedes aegypti, is a vector of many human diseases such as yellow fever, dengue fever, and Zika. As insecticide resistance has been widely reported, chemical repellents have been adopted as alternative options for mosquito and mosquito-borne disease control. This study characterized the responses of olfactory receptor neurons (ORNs) in different types of antennal olfactory sensilla in Ae. aegypti to 48 chemicals that exhibited repellent activity in various insect species. Both excitatory and inhibitory responses were observed from ORNs in response to these chemicals and differential tuning properties were also observed among ORNs. Remarkable excitatory responses were recorded from the ORNs in sensilla SST1, SST2, SBTI, SBTII, and LST2, while inhibitory activities were detected from a neuron in sensillum SST2 in response to several terpene/terpenoid compounds. Moreover, the temporal dynamics of neuronal responses were found to be compound-specific and concentration-dependent. Hierarchical cluster analysis and principal component analysis of the response to each compound across ORNs in seven types of olfactory sensilla in Ae. aegypti revealed that odor reception depended not only on chemical class but also specific chemical structure. Results of this study give new insights into the sensory physiology of Aedes mosquitoes to the chemical repellents and should contribute to the development of new repellent reagents for human protection.
Collapse
|
13
|
Lin T, Li C, Liu J, Smith BH, Lei H, Zeng X. Glomerular Organization in the Antennal Lobe of the Oriental Fruit Fly Bactrocera dorsalis. Front Neuroanat 2018; 12:71. [PMID: 30233333 PMCID: PMC6127620 DOI: 10.3389/fnana.2018.00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/06/2018] [Indexed: 11/30/2022] Open
Abstract
The oriental fruit fly, Bactrocera dorsalis is one of the most destructive pests of horticultural crops in tropical and subtropical Asia. The insect relies heavily on its olfactory system to select suitable hosts for development and reproduction. To understand the neural basis of its odor-driven behaviors, it is fundamental to characterize the anatomy of its olfactory system. In this study, we investigated the anatomical organization of the antennal lobe (AL), the primary olfactory center, in B. dorsalis, and constructed a 3D glomerular atlas of the AL based on synaptic antibody staining combined with computerized 3D reconstruction. To facilitate identification of individual glomeruli, we also applied mass staining of olfactory sensory neurons (OSNs) and projection neurons (PNs). In total, 64 or 65 glomeruli are identifiable in both sexes based on their shape, size, and relative spatial relationship. The overall glomerular volume of two sexes is not statistically different. However, eight glomeruli are sexually dimorphic: four (named AM2, C1, L2, and L3) are larger in males, and four are larger in females (A3, AD1, DM3, and M1). The results from anterograde staining, obtained by applying dye in the antennal lobe, show that three typical medial, media lateral, and lateral antennal-lobe tracts form parallel connections between the antennal lobe and protocerebrum. In addition to these three tracts, we also found a transverse antennal-lobe tract. Based on the retrograde staining of the calyx in the mushroom body, we also characterize the arrangement of roots and cell body clusters linked to the medial antennal-lobe tracts. These data provide a foundation for future studies on the olfactory processing of host odors in B. dorsalis.
Collapse
Affiliation(s)
- Tao Lin
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, China
| | - Chaofeng Li
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, China
| | - Jiali Liu
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, China
| | - Brian H. Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Xinnian Zeng
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Pratt B, Deora T, Mohren T, Daniel T. Neural evidence supports a dual sensory-motor role for insect wings. Proc Biol Sci 2018; 284:rspb.2017.0969. [PMID: 28904136 PMCID: PMC5597827 DOI: 10.1098/rspb.2017.0969] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/09/2017] [Indexed: 01/29/2023] Open
Abstract
Flying insects use feedback from various sensory modalities including vision and mechanosensation to navigate through their environment. The rapid speed of mechanosensory information acquisition and processing compensates for the slower processing times associated with vision, particularly under low light conditions. While halteres in dipteran species are well known to provide such information for flight control, less is understood about the mechanosensory roles of their evolutionary antecedent, wings. The features that wing mechanosensory neurons (campaniform sensilla) encode remains relatively unexplored. We hypothesized that the wing campaniform sensilla of the hawkmoth, Manduca sexta, rapidly and selectively extract mechanical stimulus features in a manner similar to halteres. We used electrophysiological and computational techniques to characterize the encoding properties of wing campaniform sensilla. To accomplish this, we developed a novel technique for localizing receptive fields using a focused IR laser that elicits changes in the neural activity of mechanoreceptors. We found that (i) most wing mechanosensors encoded mechanical stimulus features rapidly and precisely, (ii) they are selective for specific stimulus features, and (iii) there is diversity in the encoding properties of wing campaniform sensilla. We found that the encoding properties of wing campaniform sensilla are similar to those for haltere neurons. Therefore, it appears that the neural architecture that underlies the haltere sensory function is present in wings, which lends credence to the notion that wings themselves may serve a similar sensory function. Thus, wings may not only function as the primary actuator of the organism but also as sensors of the inertial dynamics of the animal.
Collapse
Affiliation(s)
- Brandon Pratt
- Department of Biology, University of Washington, Seattle, WA 98105, USA
| | - Tanvi Deora
- Department of Biology, University of Washington, Seattle, WA 98105, USA
| | - Thomas Mohren
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98105, USA
| | - Thomas Daniel
- Department of Biology, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
15
|
Ochs CL, Suntres T, Zygowska A, Pitcher T, Zielinski BS. Organization of glomerular territories in the olfactory bulb of post-embryonic wild chinook salmonOncorhynchus tshawytscha. J Morphol 2017; 278:464-474. [DOI: 10.1002/jmor.20641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/01/2016] [Accepted: 12/04/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Cory L. Ochs
- Department of Biological Sciences; University of Windsor; 401 Sunset Avenue Windsor Ontario Canada N9B 3P4
| | - Tina Suntres
- Department of Biological Sciences; University of Windsor; 401 Sunset Avenue Windsor Ontario Canada N9B 3P4
| | - Alexandra Zygowska
- Department of Biological Sciences; University of Windsor; 401 Sunset Avenue Windsor Ontario Canada N9B 3P4
| | - Trevor Pitcher
- Department of Biological Sciences; University of Windsor; 401 Sunset Avenue Windsor Ontario Canada N9B 3P4
- Great Lakes Institute for Environmental Research, University of Windsor; 2990 Riverside Dr. W. Windsor Ontario N9C 1A2
| | - Barbara S. Zielinski
- Department of Biological Sciences; University of Windsor; 401 Sunset Avenue Windsor Ontario Canada N9B 3P4
- Great Lakes Institute for Environmental Research, University of Windsor; 2990 Riverside Dr. W. Windsor Ontario N9C 1A2
| |
Collapse
|
16
|
Reisenman CE, Lei H, Guerenstein PG. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects. Front Physiol 2016; 7:271. [PMID: 27445858 PMCID: PMC4928593 DOI: 10.3389/fphys.2016.00271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022] Open
Abstract
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology and Essig Museum of Entomology, University of California, BerkeleyBerkeley, CA, USA
| | - Hong Lei
- Department of Neuroscience, University of ArizonaTucson, AZ, USA
| | - Pablo G. Guerenstein
- Lab. de Estudio de la Biología de Insectos, CICyTTP-CONICETDiamante, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre RíosOro Verde, Argentina
| |
Collapse
|
17
|
Reisenman CE, Riffell JA. The neural bases of host plant selection in a Neuroecology framework. Front Physiol 2015; 6:229. [PMID: 26321961 PMCID: PMC4532911 DOI: 10.3389/fphys.2015.00229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
Understanding how animals make use of environmental information to guide behavior is a fundamental problem in the field of neuroscience. Similarly, the field of ecology seeks to understand the role of behavior in shaping interactions between organisms at various levels of organization, including population-, community- and even ecosystem-level scales. Together, the newly emerged field of “Neuroecology” seeks to unravel this fundamental question by studying both the function of neurons at many levels of the sensory pathway and the interactions between organisms and their natural environment. The interactions between herbivorous insects and their host plants are ideal examples of Neuroecology given the strong ecological and evolutionary forces and the underlying physiological and behavioral mechanisms that shaped these interactions. In this review we focus on an exemplary herbivorous insect within the Lepidoptera, the giant sphinx moth Manduca sexta, as much is known about the natural behaviors related to host plant selection and the involved neurons at several level of the sensory pathway. We also discuss how herbivore-induced plant odorants and secondary metabolites in floral nectar in turn can affect moth behavior, and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Carolina E Reisenman
- Department of Molecular and Cell Biology, University of California Berkeley, CA, USA
| | | |
Collapse
|
18
|
Brill MF, Meyer A, Rössler W. It takes two-coincidence coding within the dual olfactory pathway of the honeybee. Front Physiol 2015; 6:208. [PMID: 26283968 PMCID: PMC4516877 DOI: 10.3389/fphys.2015.00208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/10/2015] [Indexed: 11/23/2022] Open
Abstract
To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code).
Collapse
Affiliation(s)
- Martin F. Brill
- *Correspondence: Martin F. Brill, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York, NY 11724, USA
| | | | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology, Biozentrum, University of WürzburgWürzburg, Germany
| |
Collapse
|
19
|
Locatelli FF, Rela L. Mosaic activity patterns and their relation to perceptual similarity: open discussions on the molecular basis and circuitry of odor recognition. J Neurochem 2014; 131:546-53. [PMID: 25123415 DOI: 10.1111/jnc.12931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 02/04/2023]
Abstract
Enormous advances have been made in the recent years in regard to the mechanisms and neural circuits by which odors are sensed and perceived. Part of this understanding has been gained from parallel studies in insects and rodents that show striking similarity in the mechanisms they use to sense, encode, and perceive odors. In this review, we provide a short introduction to the functioning of olfactory systems from transduction of odorant stimuli into electrical signals in sensory neurons to the anatomical and functional organization of the networks involved in neural representation of odors in the central nervous system. We make emphasis on the functional and anatomical architecture of the first synaptic relay of the olfactory circuit, the olfactory bulb in vertebrates and the antennal lobe in insects. We discuss how the exquisite and conserved architecture of this structure is established and how different odors are encoded in mosaic activity patterns. Finally, we discuss the validity of methods used to compare activation patterns in relation to perceptual similarity.
Collapse
Affiliation(s)
- Fernando F Locatelli
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE-CONICET, Argentina
| | | |
Collapse
|
20
|
Tabansky I, Quinkert AW, Rahman N, Muller SZ, Lofgren J, Rudling J, Goodman A, Wang Y, Pfaff DW. Temporally-patterned deep brain stimulation in a mouse model of multiple traumatic brain injury. Behav Brain Res 2014; 273:123-32. [PMID: 25072520 DOI: 10.1016/j.bbr.2014.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/16/2014] [Accepted: 07/19/2014] [Indexed: 10/25/2022]
Abstract
We report that mice with closed-head multiple traumatic brain injury (TBI) show a decrease in the motoric aspects of generalized arousal, as measured by automated, quantitative behavioral assays. Further, we found that temporally-patterned deep brain stimulation (DBS) can increase generalized arousal and spontaneous motor activity in this mouse model of TBI. This arousal increase is input-pattern-dependent, as changing the temporal pattern of DBS can modulate its effect on motor activity. Finally, an extensive examination of mouse behavioral capacities, looking for deficits in this model of TBI, suggest that the strongest effects of TBI in this model are found in the initiation of any kind of movement.
Collapse
Affiliation(s)
- Inna Tabansky
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States.
| | - Amy Wells Quinkert
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States
| | - Nadera Rahman
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States
| | - Salomon Zev Muller
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States
| | - Jesper Lofgren
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States; Linkoping University, Faculty of Health Sciences, Hälsouniversitetet Kansliet 581 83 Linköping, Sweden
| | - Johan Rudling
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States; Linkoping University, Faculty of Health Sciences, Hälsouniversitetet Kansliet 581 83 Linköping, Sweden
| | - Alyssa Goodman
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States
| | - Yingping Wang
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, Box 275, New York, NY 10065, United States
| |
Collapse
|
21
|
Riffell JA, Shlizerman E, Sanders E, Abrell L, Medina B, Hinterwirth AJ, Kutz JN. Sensory biology. Flower discrimination by pollinators in a dynamic chemical environment. Science 2014; 344:1515-8. [PMID: 24970087 DOI: 10.1126/science.1251041] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pollinators use their sense of smell to locate flowers from long distances, but little is known about how they are able to discriminate their target odor from a mélange of other natural and anthropogenic odors. Here, we measured the plume from Datura wrightii flowers, a nectar resource for Manduca sexta moths, and show that the scent was dynamic and rapidly embedded among background odors. The moth's ability to track the odor was dependent on the background and odor frequency. By influencing the balance of excitation and inhibition in the antennal lobe, background odors altered the neuronal representation of the target odor and the ability of the moth to track the plume. These results show that the mix of odors present in the environment influences the pollinator's olfactory ability.
Collapse
Affiliation(s)
- Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| | - Eli Shlizerman
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195-3925, USA
| | - Elischa Sanders
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Leif Abrell
- Department of Chemistry and Biochemistry and Department of Soil, Water, and Environmental Science, University of Arizona, AZ 85721-0077, USA
| | - Billie Medina
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Armin J Hinterwirth
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - J Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195-3925, USA
| |
Collapse
|
22
|
Guidobaldi F, May-Concha IJ, Guerenstein PG. Morphology and physiology of the olfactory system of blood-feeding insects. ACTA ACUST UNITED AC 2014; 108:96-111. [PMID: 24836537 DOI: 10.1016/j.jphysparis.2014.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/21/2014] [Accepted: 04/29/2014] [Indexed: 01/12/2023]
Abstract
Several blood-feeding (hematophagous) insects are vectors of a number of diseases including dengue, Chagas disease and leishmaniasis which persistently affect public health throughout Latin America. The vectors of those diseases include mosquitoes, triatomine bugs and sandflies. As vector control is an efficient way to prevent these illnesses it is important to understand the sensory biology of those harmful insects. We study the physiology of the olfactory system of those insects and apply that knowledge on the development of methods to manipulate their behavior. Here we review some of the latest information on insect olfaction with emphasis on hematophagous insects. The insect olfactory sensory neurons are housed inside hair-like organs called sensilla which are mainly distributed on the antenna and mouthparts. The identity of many of the odor compounds that those neurons detect are already known in hematophagous insects. They include several constituents of host (vertebrate) odor, sex, aggregation and alarm pheromones, and compounds related to egg-deposition behavior. Recent work has contributed significant knowledge on how odor information is processed in the insect first odor-processing center in the brain, the antennal lobe. The quality, quantity, and temporal features of the odor stimuli are encoded by the neural networks of the antennal lobe. Information regarding odor mixtures is also encoded. While natural mixtures evoke strong responses, synthetic mixtures that deviate from their natural counterparts in terms of key constituents or proportions of those constituents evoke weaker responses. The processing of olfactory information is largely unexplored in hematophagous insects. However, many aspects of their olfactory behavior are known. As in other insects, responses to relevant single odor compounds are weak while natural mixtures evoke strong responses. Future challenges include studying how information about odor mixtures is processed in their brain. This could help develop highly attractive synthetic odor blends to lure them into traps.
Collapse
Affiliation(s)
- F Guidobaldi
- Laboratorio de Neuroetología Ecológica, CICyTTP-CONICET, Diamante, Entre Ríos, Argentina; Facultad de Ingeniería, UNER, Oro Verde, Entre Ríos, Argentina
| | - I J May-Concha
- Laboratorio de Neuroetología Ecológica, CICyTTP-CONICET, Diamante, Entre Ríos, Argentina; Centro Regional de Investigación en Salud Pública (CRISP), Instituto Nacional de Salud Pública (INSP), Tapachula, Chiapas, Mexico.
| | - P G Guerenstein
- Laboratorio de Neuroetología Ecológica, CICyTTP-CONICET, Diamante, Entre Ríos, Argentina; Facultad de Ingeniería, UNER, Oro Verde, Entre Ríos, Argentina
| |
Collapse
|
23
|
Dieudonne A, Daniel TL, Sane SP. Encoding properties of the mechanosensory neurons in the Johnston's organ of the hawk moth, Manduca sexta. J Exp Biol 2014; 217:3045-56. [DOI: 10.1242/jeb.101568] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Antennal mechanosensors play a key role in control and stability of insect flight. In addition to the well-established role of antennae as airflow detectors, recent studies have indicated that the sensing of antennal vibrations by Johnston’s organs also provides a mechanosensory feedback relevant for flight stabilization. However, few studies have addressed how the individual units, or scolopidia, of the Johnston's organs encode these antennal vibrations and communicate it to the brain. Here, we characterize the encoding properties of individual scolopidia from the Johnston’s organs in the hawk moth, Manduca sexta through intracellular neurophysiological recordings from axons of the scolopidial neurons. We stimulated the flagellum-pedicel joint using a custom setup that delivered mechanical stimuli of various (step, sinusoidal, frequency and amplitude sweeps) waveforms. Single units of the Johnston’s organs typically displayed phaso-tonic responses to step stimuli with short (3-5 ms) latencies. Their phase-locked response to sinusoidal stimuli in the 0.1–100 Hz frequency range showed high fidelity (vector strengths >0.9). The neurons were able to encode different phases of the stimulus motion and are also extremely sensitive to small amplitude (<0.05º) deflections with some indication of directional tuning. In many cases, the firing frequency of the neurons varied linearly as a function of the stimulus frequency at wing beat and double wing beat frequencies, which may be relevant to their role in flight stabiliization. Iontophoretic-fills of these neurons with fluorescent dyes showed that they all projected in the Antennal Mechanosensory and Motor Center (AMMC) area of the brain. Together, these results showcase the speed and high sensitivity of scolopidia of the Johnston’s organs, and hence their ability to encode fine antennal vibrations.
Collapse
|
24
|
Synchronous firing of antennal-lobe projection neurons encodes the behaviorally effective ratio of sex-pheromone components in male Manduca sexta. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:963-79. [PMID: 24002682 DOI: 10.1007/s00359-013-0849-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
Olfactory stimuli that are essential to an animal's survival and reproduction are often complex mixtures of volatile organic compounds in characteristic proportions. Here, we investigated how these proportions are encoded in the primary olfactory processing center, the antennal lobe, of male Manduca sexta moths. Two key components of the female's sex pheromone, present in an approximately 2:1 ratio, are processed in each of two neighboring glomeruli in the macroglomerular complex (MGC) of males of this species. In wind-tunnel flight experiments, males exhibited behavioral selectivity for ratios approximating the ratio released by conspecific females. The ratio between components was poorly represented, however, in the firing-rate output of uniglomerular MGC projection neurons (PNs). PN firing rate was mostly insensitive to the ratio between components, and individual PNs did not exhibit a preference for a particular ratio. Recording simultaneously from pairs of PNs in the same glomerulus, we found that the natural ratio between components elicited the most synchronous spikes, and altering the proportion of either component decreased the proportion of synchronous spikes. The degree of synchronous firing between PNs in the same glomerulus thus selectively encodes the natural ratio that most effectively evokes the natural behavioral response to pheromone.
Collapse
|
25
|
Lei H, Chiu HY, Hildebrand JG. Responses of protocerebral neurons in Manduca sexta to sex-pheromone mixtures. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:997-1014. [PMID: 23974854 DOI: 10.1007/s00359-013-0844-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/28/2013] [Accepted: 08/01/2013] [Indexed: 11/28/2022]
Abstract
Male Manduca sexta moths are attracted to a mixture of two components of the female's sex pheromone at the natural concentration ratio. Deviation from this ratio results in reduced attraction. Projection neurons innervating prominent male-specific glomeruli in the male's antennal lobe produce maximal synchronized spiking activity in response to synthetic mixtures of the two components centering around the natural ratio, suggesting that behaviorally effective mixture ratios are encoded by synchronous neuronal activity. We investigated the physiological activity and morphology of downstream protocerebral neurons that responded to antennal stimulation with single pheromone components and their mixtures at various concentration ratios. Among the tested neurons, only a few gave stronger responses to the mixture at the natural ratio whereas most did not distinguish among the mixtures that were tested. We also found that the population response distinguished among the two pheromone components and their mixtures, prior to the peak population response. This observation is consistent with our previous finding that synchronous firing of antennal-lobe projection neurons reaches its maximum before the firing rate reaches its peak. Moreover, the response patterns of protocerebral neurons are diverse, suggesting that the representation of olfactory stimuli at the level of protocerebrum is complex.
Collapse
Affiliation(s)
- Hong Lei
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA,
| | | | | |
Collapse
|
26
|
Intensity invariant dynamics and odor-specific latencies in olfactory receptor neuron response. J Neurosci 2013; 33:6285-97. [PMID: 23575828 DOI: 10.1523/jneurosci.0426-12.2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Odors elicit spatiotemporal patterns of activity in the brain. Spatial patterns arise from the specificity of the interaction between odorants and odorant receptors expressed in different olfactory receptor neurons (ORNs), but the origin of temporal patterns of activity and their role in odor coding remain unclear. We investigate how physiological aspects of ORN response and physical aspects of odor stimuli give rise to diverse responses in Drosophila ORNs. We show that odor stimuli have intrinsic dynamics that depend on odor type and strongly affect ORN response. Using linear-nonlinear modeling to remove the contribution of the stimulus dynamics from the ORN dynamics, we study the physiological properties of the response to different odorants and concentrations. For several odorants and receptor types, the ORN response dynamics normalized by the peak response are independent of stimulus intensity for a large portion of the dynamic range of the neuron. Adaptation to a background odor changes the gain and dynamic range of the response but does not affect normalized response dynamics. Stimulating ORNs with various odorants reveals significant odor-dependent delays in the ORN response functions. However, these differences can be dominated by differences in stimulus dynamics. In one case the response of one ORN to two odorants is predicted solely from measurements of the odor signals. Within a large portion of their dynamic range, ORNs can capture information about stimulus dynamics independently from intensity while introducing odor-dependent delays. How insects might use odor-specific stimulus dynamics and ORN dynamics in discrimination and navigation tasks remains an open question.
Collapse
|
27
|
Riffell JA, Lei H, Abrell L, Hildebrand JG. Neural Basis of a Pollinator's Buffet: Olfactory Specialization and Learning in Manduca sexta. Science 2012; 339:200-4. [DOI: 10.1126/science.1225483] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
28
|
Løfaldli BB, Kvello P, Kirkerud N, Mustaparta H. Activity in Neurons of a Putative Protocerebral Circuit Representing Information about a 10 Component Plant Odor Blend in Heliothis virescens. Front Syst Neurosci 2012; 6:64. [PMID: 23060753 PMCID: PMC3461648 DOI: 10.3389/fnsys.2012.00064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/21/2012] [Indexed: 11/24/2022] Open
Abstract
The olfactory pathway in the insect brain is anatomically well described from the antennal lobe (AL) to the mushroom bodies and the lateral protocerebrum (LP) in several species. Less is known about the further connections of the olfactory network in protocerebrum and how information about relevant plant odorants and mixtures are represented in this network, resulting in output information mediated by descending neurons. In the present study we have recorded intracellularly followed by dye injections from neurons in the LP and superior protocerebrum (SP) of the moth, Heliothis virescens. As relevant stimuli, we have used selected primary plant odorants and mixtures of them. The results provide the morphology and physiological responses of neurons involved in a putative circuit connecting the mushroom body lobes, the SP, and the LP, as well as input to SP and LP by one multiglomerular AL neuron and output from the LP by one descending neuron. All neurons responded to a particular mixture of ten primary plant odorants, some of them also to single odorants of the mixture. Altogether, the physiological data indicate integration in protocerebral neurons of information from several of the receptor neuron types functionally described in this species.
Collapse
Affiliation(s)
- Bjarte Bye Løfaldli
- Neuroscience Unit, Department of Biology, Norwegian University of Science and Technology Trondheim, Norway
| | | | | | | |
Collapse
|
29
|
George NT, Sponberg S, Daniel TL. Temperature gradients drive mechanical energy gradients in the flight muscle of Manduca sexta. ACTA ACUST UNITED AC 2012; 215:471-9. [PMID: 22246256 DOI: 10.1242/jeb.062901] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A temperature gradient throughout the dominant flight muscle (dorsolongitudinal muscle, DLM(1)) of the hawkmoth Manduca sexta, together with temperature-dependent muscle contractile rates, demonstrates that significant spatial variation in power production is possible within a single muscle. Using in situ work-loop analyses under varying muscle temperatures and phases of activation, we show that regional differences in muscle temperature will induce a spatial gradient in the mechanical power output throughout the DLM(1). Indeed, we note that this power gradient spans from positive to negative values across the predicted temperature range. Warm ventral subunits produce positive power at their in vivo operating temperatures, and therefore act as motors. Concurrently, as muscle temperature decreases dorsally, the subunits produce approximately zero mechanical power output, acting as an elastic energy storage source, and negative power output, behaving as a damper. Adjusting the phase of activation further influences the temperature sensitivity of power output, significantly affecting the mechanical power output gradient that is expressed. Additionally, the separate subregions of the DLM(1) did not appear to employ significant physiological compensation for the temperature-induced differences in power output. Thus, although the components of a muscle are commonly thought to operate uniformly, a significant within-muscle temperature gradient has the potential to induce a mechanical power gradient, whereby subunits within a muscle operate with separate and distinct functional roles.
Collapse
Affiliation(s)
- N T George
- University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
30
|
Carcaud J, Hill T, Giurfa M, Sandoz JC. Differential coding by two olfactory subsystems in the honeybee brain. J Neurophysiol 2012; 108:1106-21. [PMID: 22572948 DOI: 10.1152/jn.01034.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory systems use parallel processing to extract and process different features of environmental stimuli. Parallel processing has been studied in the auditory, visual, and somatosensory systems, but equivalent research in the olfactory modality is scarce. The honeybee Apis mellifera is an interesting model for such research as its relatively simple brain contains a dual olfactory system, with a clear neural dichotomy from the periphery to higher-order centers, based on two main neuronal tracts [medial (m) and lateral (l) antenno-protocerebral tract (APT)]. The function of this dual system is as yet unknown, and attributes like odor quality and odor quantity might be separately encoded in these subsystems. We have thus studied olfactory coding at the input of both subsystems, using in vivo calcium imaging. As one of the subsystems (m-APT) has never been imaged before, a novel imaging preparation was developed to this end, and responses to a panel of aliphatic odorants at different concentrations were compared in both subsystems. Our data show a global redundancy of olfactory coding at the input of both subsystems but unravel some specificities for encoding chemical group and carbon chain length of odor molecules.
Collapse
Affiliation(s)
- Julie Carcaud
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, Toulouse Cedex, France
| | | | | | | |
Collapse
|
31
|
Galizia CG, Franke T, Menzel R, Sandoz JC. Optical imaging of concealed brain activity using a gold mirror in honeybees. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:743-749. [PMID: 22414536 DOI: 10.1016/j.jinsphys.2012.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 05/31/2023]
Abstract
Brain activity is inherently combinatorial and three-dimensional. Optical imaging techniques offer a suitable opportunity to record many activity foci simultaneously, but under conventional microscopy conditions, optical access is generally limited to the frontal part of the brain. Thus, even for cases in which optical recordings have delivered substantial data, our knowledge of deeper layers is deficient. Using the honeybee olfactory system as a test system, we report that by using a gold-sputtered cover slip as a minute mirror, it is possible to optically access and record from otherwise inaccessible brain areas. In insects, the first brain area to code for odors is the antennal lobe (comparable to the vertebrate olfactory bulb). Several previous studies have characterized glomerular odor response patterns of the frontal view, readily accessible when the head capsule of the bee is opened. However, until now, the back and the sides of the antennal lobe have remained utterly unexplored. This is particularly relevant because in the honeybee these two views coincide with two separate olfactory subsystems, related to two axonal tracts of second-order neurons: the lAPT and the mAPT. Combining wide-field microscopy, calcium imaging, and a minute mirror, we report the first glomerular odor responses from the side of the honeybee antennal lobe.
Collapse
|
32
|
Martin JP, Beyerlein A, Dacks AM, Reisenman CE, Riffell JA, Lei H, Hildebrand JG. The neurobiology of insect olfaction: sensory processing in a comparative context. Prog Neurobiol 2011; 95:427-47. [PMID: 21963552 DOI: 10.1016/j.pneurobio.2011.09.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/10/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
The simplicity and accessibility of the olfactory systems of insects underlie a body of research essential to understanding not only olfactory function but also general principles of sensory processing. As insect olfactory neurobiology takes advantage of a variety of species separated by millions of years of evolution, the field naturally has yielded some conflicting results. Far from impeding progress, the varieties of insect olfactory systems reflect the various natural histories, adaptations to specific environments, and the roles olfaction plays in the life of the species studied. We review current findings in insect olfactory neurobiology, with special attention to differences among species. We begin by describing the olfactory environments and olfactory-based behaviors of insects, as these form the context in which neurobiological findings are interpreted. Next, we review recent work describing changes in olfactory systems as adaptations to new environments or behaviors promoting speciation. We proceed to discuss variations on the basic anatomy of the antennal (olfactory) lobe of the brain and higher-order olfactory centers. Finally, we describe features of olfactory information processing including gain control, transformation between input and output by operations such as broadening and sharpening of tuning curves, the role of spiking synchrony in the antennal lobe, and the encoding of temporal features of encounters with an odor plume. In each section, we draw connections between particular features of the olfactory neurobiology of a species and the animal's life history. We propose that this perspective is beneficial for insect olfactory neurobiology in particular and sensory neurobiology in general.
Collapse
Affiliation(s)
- Joshua P Martin
- Department of Neuroscience, College of Science, University of Arizona, 1040 East Fourth Street, Tucson, AZ 85721-0077, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Brandstaetter AS, Kleineidam CJ. Distributed representation of social odors indicates parallel processing in the antennal lobe of ants. J Neurophysiol 2011; 106:2437-49. [PMID: 21849606 DOI: 10.1152/jn.01106.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In colonies of eusocial Hymenoptera cooperation is organized through social odors, and particularly ants rely on a sophisticated odor communication system. Neuronal information about odors is represented in spatial activity patterns in the primary olfactory neuropile of the insect brain, the antennal lobe (AL), which is analog to the vertebrate olfactory bulb. The olfactory system is characterized by neuroanatomical compartmentalization, yet the functional significance of this organization is unclear. Using two-photon calcium imaging, we investigated the neuronal representation of multicomponent colony odors, which the ants assess to discriminate friends (nestmates) from foes (nonnestmates). In the carpenter ant Camponotus floridanus, colony odors elicited spatial activity patterns distributed across different AL compartments. Activity patterns in response to nestmate and nonnestmate colony odors were overlapping. This was expected since both consist of the same components at differing ratios. Colony odors change over time and the nervous system has to constantly adjust for this (template reformation). Measured activity patterns were variable, and variability was higher in response to repeated nestmate than to repeated nonnestmate colony odor stimulation. Variable activity patterns may indicate neuronal plasticity within the olfactory system, which is necessary for template reformation. Our results indicate that information about colony odors is processed in parallel in different neuroanatomical compartments, using the computational power of the whole AL network. Parallel processing might be advantageous, allowing reliable discrimination of highly complex social odors.
Collapse
Affiliation(s)
- Andreas Simon Brandstaetter
- Department of Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
34
|
Similar odorants elicit different behavioral and physiological responses, some supersustained. J Neurosci 2011; 31:7891-9. [PMID: 21613503 DOI: 10.1523/jneurosci.6254-10.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An intriguing question in the field of olfaction is how animals distinguish among structurally similar odorants. We systematically analyzed olfactory responses elicited by a panel of 25 pyrazines. We found that structurally similar pyrazines elicit a wide range of behavioral responses from Drosophila larvae. Each pyrazine was tested against all functional receptors of the larval Odor receptor (Or) repertoire, yielding 525 odorant-receptor combinations. Different pyrazines vary markedly in the responses they elicit from the Or repertoire, with most strong responses deriving from two receptors, Or33b and Or59a. Surprisingly, 2-ethylpyrazine and 2-methylpyrazine, which elicit strikingly similar physiological responses across the receptor repertoire, elicit dramatically different behavioral responses. A small fraction of odorant-receptor combinations elicit remarkably long responses. These responses, which we term "supersustained" responses, are receptor specific and odorant specific, and can last for minutes. Such supersustained responses may prevent olfactory neurons from reporting contemporaneous information about the local odor environment. Odors that elicit such responses could provide a novel means of controlling insect pests and vectors of human disease by impairing the location of human hosts, food sources, and mates.
Collapse
|
35
|
Friends and foes from an ant brain's point of view--neuronal correlates of colony odors in a social insect. PLoS One 2011; 6:e21383. [PMID: 21731724 PMCID: PMC3121771 DOI: 10.1371/journal.pone.0021383] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 06/01/2011] [Indexed: 12/02/2022] Open
Abstract
Background Successful cooperation depends on reliable identification of friends and foes. Social insects discriminate colony members (nestmates/friends) from foreign workers (non-nestmates/foes) by colony-specific, multi-component colony odors. Traditionally, complex processing in the brain has been regarded as crucial for colony recognition. Odor information is represented as spatial patterns of activity and processed in the primary olfactory neuropile, the antennal lobe (AL) of insects, which is analogous to the vertebrate olfactory bulb. Correlative evidence indicates that the spatial activity patterns reflect odor-quality, i.e., how an odor is perceived. For colony odors, alternatively, a sensory filter in the peripheral nervous system was suggested, causing specific anosmia to nestmate colony odors. Here, we investigate neuronal correlates of colony odors in the brain of a social insect to directly test whether they are anosmic to nestmate colony odors and whether spatial activity patterns in the AL can predict how odor qualities like “friend” and “foe” are attributed to colony odors. Methodology/Principal Findings Using ant dummies that mimic natural conditions, we presented colony odors and investigated their neuronal representation in the ant Camponotus floridanus. Nestmate and non-nestmate colony odors elicited neuronal activity: In the periphery, we recorded sensory responses of olfactory receptor neurons (electroantennography), and in the brain, we measured colony odor specific spatial activity patterns in the AL (calcium imaging). Surprisingly, upon repeated stimulation with the same colony odor, spatial activity patterns were variable, and as variable as activity patterns elicited by different colony odors. Conclusions Ants are not anosmic to nestmate colony odors. However, spatial activity patterns in the AL alone do not provide sufficient information for colony odor discrimination and this finding challenges the current notion of how odor quality is coded. Our result illustrates the enormous challenge for the nervous system to classify multi-component odors and indicates that other neuronal parameters, e.g., precise timing of neuronal activity, are likely necessary for attribution of odor quality to multi-component odors.
Collapse
|
36
|
George NT, Daniel TL. Temperature gradients in the flight muscles of Manduca sexta imply a spatial gradient in muscle force and energy output. ACTA ACUST UNITED AC 2011; 214:894-900. [PMID: 21346115 DOI: 10.1242/jeb.047969] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is a significant dorso-ventral temperature gradient in the dominant flight muscles [dorsolongitudinal muscles (DLM(1))] of the hawkmoth Manduca sexta during tethered flight. The mean temperature difference was 5.6°C (range=3.8-6.9°C) between the warmer, ventral-most subunits and the cooler, dorsal-most subunits. As force generation in muscle depends on temperature, the mechanical energy output of more dorsal subunits will differ from that of deeper and warmer muscle subunits. To test this hypothesis, we isolated the dorsal subunits and the ventral subunits and recorded both single and 25 Hz (wingbeat frequency) isometric contractions at a range of temperatures. Our data show that the contractile dynamics of the various regions of the DLM(1) are similarly affected by temperature, with higher temperatures leading to reduced contraction times. Furthermore, using standard electromyography, we showed that the different regions are activated nearly simultaneously (mean time difference=0.22 ms). These observations suggest that the existence of a temperature gradient will necessarily produce a mechanical energy gradient in the DLM(1) in M. sexta.
Collapse
Affiliation(s)
- Nicole T George
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
37
|
Störtkuhl KF, Fiala A. The Smell of Blue Light: A New Approach toward Understanding an Olfactory Neuronal Network. Front Neurosci 2011; 5:72. [PMID: 21647413 PMCID: PMC3103046 DOI: 10.3389/fnins.2011.00072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/06/2011] [Indexed: 11/13/2022] Open
Abstract
Olfaction is one of the most important senses throughout the animal kingdom. It enables animals to discriminate between a wide variety of attractive and repulsive odorants and often plays a decisive role in species specific communication. In recent years the analysis of olfactory systems both invertebrates and invertebrates has attracted much scientific interest. In this context a pivotal question is how the properties and connectivities of individual neurons contribute to a functioning neuronal network that mediates odor-guided behavior. As a novel approach to analyze the role of individual neurons within a circuitry, techniques have been established that make use of light-sensitive proteins. In this review we introduce a non-invasive, optogenetic technique which was used to manipulate the activity of individual neurons in the olfactory system of Drosophila melanogaster larvae. Both channelrhodopsin-2 and the photosensitive adenylyl cyclase PAC α in individual olfactory receptor neurons (ORNs) of the olfactory system of Drosophila larvae allows stimulating individual receptor neurons by light. Depending on which particular ORN is optogenetically activated, repulsion or attraction behavior can be induced, indicating which sensory neurons underlie which type of behavior.
Collapse
Affiliation(s)
- Klemens F Störtkuhl
- AG Physiology of Senses, Department of Biology and Biotechnology, Ruhr University Bochum Bochum, Germany
| | | |
Collapse
|
38
|
Trona F, Anfora G, Bengtsson M, Witzgall P, Ignell R. Coding and interaction of sex pheromone and plant volatile signals in the antennal lobe of the codling moth Cydia pomonella. ACTA ACUST UNITED AC 2011; 213:4291-303. [PMID: 21113011 DOI: 10.1242/jeb.047365] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the codling moth Cydia pomonella (Lepidoptera: Tortricidae) plant volatiles attract males and females by upwind flight and synergise the male response to the female-produced sex pheromone, indicating a close relationship between the perception of social and environmental olfactory signals. We have studied the anatomical and functional organisation of the antennal lobe (AL), the primary olfactory centre, of C. pomonella with respect to the integration of sex pheromone and host-plant volatile information. A three-dimensional reconstruction of the glomerular structure of the AL revealed 50±2 and 49±2 glomeruli in males and females, respectively. These glomeruli are functional units involved in the coding of odour quality. The glomerular map of the AL was then integrated with electrophysiological recordings of the response of individual neurons in the AL of males and females to sex pheromone components and behaviourally active plant volatiles. By means of intracellular recordings and stainings, we physiologically characterised ca. 50 neurons in each sex, revealing complex patterns of activation and a wide variation in response dynamics to these test compounds. Stimulation with single chemicals and their two-component blends produced both synergistic and inhibitory interactions in projection neurons innervating ordinary glomeruli and the macroglomerular complex. Our results show that the sex pheromone and plant odours are processed in an across-fibre coding pattern. The lack of a clear segregation between the pheromone and general odour subsystems in the AL of the codling moth suggests a level of interaction that has not been reported from other insects.
Collapse
Affiliation(s)
- Federica Trona
- IASMA Research and Innovation Center, Fondazione E. Mach, via E. Mach 1, 38010 S. Michele a/A (TN), Italy.
| | | | | | | | | |
Collapse
|
39
|
Reisenman CE, Dacks AM, Hildebrand JG. Local interneuron diversity in the primary olfactory center of the moth Manduca sexta. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:653-65. [PMID: 21286727 DOI: 10.1007/s00359-011-0625-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/10/2011] [Accepted: 01/15/2011] [Indexed: 02/06/2023]
Abstract
Local interneurons (LNs) play important roles in shaping and modulating the activity of output neurons in primary olfactory centers. Here, we studied the morphological characteristics, odor responses, and neurotransmitter content of LNs in the antennal lobe (AL, the insect primary olfactory center) of the moth Manduca sexta. We found that most LNs are broadly tuned, with all LNs responding to at least one odorant. 70% of the odorants evoked a response, and 22% of the neurons responded to all the odorants tested. Some LNs showed excitatory (35%) or inhibitory (33%) responses only, while 33% of the neurons showed both excitatory and inhibitory responses, depending on the odorant. LNs that only showed inhibitory responses were the most responsive, with 78% of the odorants evoking a response. Neurons were morphologically diverse, with most LNs innervating almost all glomeruli and others innervating restricted portions of the AL. 61 and 39% of LNs were identified as GABA-immunoreactive (GABA-ir) and non-GABA-ir, respectively. We found no correlations between odor responses and GABA-ir, neither between morphology and GABA-ir. These results show that, as observed in other insects, LNs are diverse, which likely determines the complexity of the inhibitory network that regulates AL output.
Collapse
|
40
|
Stefanescu RA, Jirsa VK. Reduced representations of heterogeneous mixed neural networks with synaptic coupling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:026204. [PMID: 21405893 DOI: 10.1103/physreve.83.026204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 10/21/2010] [Indexed: 05/30/2023]
Abstract
In the human brain, large-scale neural networks are considered to instantiate the integrative mechanisms underlying higher cognitive, motor, and sensory functions. Computational models of such large-scale networks typically lump thousands of neurons into a functional unit, which serves as the "atom" for the network integration. These atoms display a low dimensional dynamics corresponding to the only type of behavior available for the neurons within the unit, namely, the synchronized regime. Other dynamical features are not part of the unit's repertoire. With this limitation in mind, here we have studied the dynamical behavior of a neural network comprising "all-to-all" synaptically connected excitatory and inhibitory nonidentical neurons. We found that the network exhibits various dynamical characteristics, synchronization being only a particular case. Then we construct a low-dimensional representation of the network dynamics, and we show that this reduced system captures well the main dynamical features of the entire population. Our approach provides an alternate model for a neurocomputational unit of a large-scale network that can account for rich dynamical features of the network at low computational costs.
Collapse
Affiliation(s)
- Roxana A Stefanescu
- Department of Physics, Florida Atlantic University, Boca Raton, Florida 33431, USA.
| | | |
Collapse
|
41
|
Quinkert AW, Schiff ND, Pfaff DW. Temporal patterning of pulses during deep brain stimulation affects central nervous system arousal. Behav Brain Res 2010; 214:377-85. [PMID: 20558210 DOI: 10.1016/j.bbr.2010.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/05/2010] [Indexed: 11/29/2022]
Abstract
Regulation of CNS arousal is important for a wide variety of functions, including the initiation of all motivated behaviors. Usually studied with pharmacological or hormonal tools, CNS arousal can also be elevated by deep brain stimulation (DBS), in the human brain and in animals. The effectiveness of DBS is conventionally held to depend on pulse width, frequency, amplitude and stimulation duration. We demonstrate a novel approach for testing the effectiveness of DBS to increase arousal in intact female mice: all of the foregoing parameters are held constant. Only the temporal patterning of the pulses within the stimulation is varied. To create differentially patterned pulse trains, a deterministic nonlinear dynamic equation was used to generate a series of pulses with a predetermined average frequency. Three temporal patterns of stimulation were defined: two nonlinear patterns, Nonlinear1 (NL1) and Nonlinear2 (NL2), and the conventional pattern, Fixed Frequency (FF). Female mice with bilateral monopolar electrodes were observed before, during and after hippocampal or medial thalamic stimulation. NL1 hippocampal stimulation was significantly more effective at increasing behavioral arousal than either FF or NL2; however, FF and NL2 stimulation of the medial thalamus were more effective than NL1. During the same experiments, we recorded an unpredicted increase in the spectral power of slow waves in the cortical EEG. Our data comprise the first demonstration that the temporal pattern of DBS can be used to elevate its effectiveness, and also point the way toward the use of nonlinear dynamics in the exploration of means to optimize DBS.
Collapse
Affiliation(s)
- Amy Wells Quinkert
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, New York, NY 10065, United States.
| | | | | |
Collapse
|
42
|
Namiki S, Kanzaki R. Offset response of the olfactory projection neurons in the moth antennal lobe. Biosystems 2010; 103:348-54. [PMID: 21078362 DOI: 10.1016/j.biosystems.2010.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/01/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
Abstract
We investigated a population activity of central olfactory neurons after the termination of odor input. Olfactory response of projection neurons in the moth primary olfactory center was characterized using in vivo intracellular recording and staining techniques. The population activity changed rapidly to the different states after the stimulus offset. The response after stimulus offset represents information regarding odor identity. We analyzed the spatial distribution of offset-activated glomeruli in a virtual neuronal population that was reconstructed using accumulated individual recordings obtained from different specimens. The offset-activated glomeruli tended to be widely distributed, whereas the onset-activated glomeruli were relatively clustered. These results suggest the importance of lateral interaction in shaping the offset olfactory response.
Collapse
Affiliation(s)
- Shigehiro Namiki
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Meguro, Japan
| | | |
Collapse
|
43
|
Martin JP, Hildebrand JG. Innate recognition of pheromone and food odors in moths: a common mechanism in the antennal lobe? Front Behav Neurosci 2010; 4. [PMID: 20953251 PMCID: PMC2955495 DOI: 10.3389/fnbeh.2010.00159] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 08/09/2010] [Indexed: 11/13/2022] Open
Abstract
The survival of an animal often depends on an innate response to a particular sensory stimulus. For an adult male moth, two categories of odors are innately attractive: pheromone released by conspecific females, and the floral scents of certain, often co-evolved, plants. These odors consist of multiple volatiles in characteristic mixtures. Here, we review evidence that both categories of odors are processed as sensory objects, and we suggest a mechanism in the primary olfactory center, the antennal lobe (AL), that encodes the configuration of these mixtures and may underlie recognition of innately attractive odors. In the pheromone system, mixtures of two or three volatiles elicit upwind flight. Peripheral changes are associated with behavioral changes in speciation, and suggest the existence of a pattern recognition mechanism for pheromone mixtures in the AL. Moths are similarly innately attracted to certain floral scents. Though floral scents consist of multiple volatiles that activate a broad array of receptor neurons, only a smaller subset, numerically comparable to pheromone mixtures, is necessary and sufficient to elicit behavior. Both pheromone and floral scent mixtures that produce attraction to the odor source elicit synchronous action potentials in particular populations of output (projection) neurons (PNs) in the AL. We propose a model in which the synchronous output of a population of PNs encodes the configuration of an innately attractive mixture, and thus comprises an innate mechanism for releasing odor-tracking behavior. The particular example of olfaction in moths may inform the general question of how sensory objects trigger innate responses.
Collapse
Affiliation(s)
- Joshua P Martin
- Department of Neuroscience, University of Arizona Tucson, AZ, USA
| | | |
Collapse
|
44
|
Abstract
Attempts to relate brain size to behaviour and cognition have rarely integrated information from insects with that from vertebrates. Many insects, however, demonstrate that highly differentiated motor repertoires, extensive social structures and cognition are possible with very small brains, emphasising that we need to understand the neural circuits, not just the size of brain regions, which underlie these feats. Neural network analyses show that cognitive features found in insects, such as numerosity, attention and categorisation-like processes, may require only very limited neuron numbers. Thus, brain size may have less of a relationship with behavioural repertoire and cognitive capacity than generally assumed, prompting the question of what large brains are for. Larger brains are, at least partly, a consequence of larger neurons that are necessary in large animals due to basic biophysical constraints. They also contain greater replication of neuronal circuits, adding precision to sensory processes, detail to perception, more parallel processing and enlarged storage capacity. Yet, these advantages are unlikely to produce the qualitative shifts in behaviour that are often assumed to accompany increased brain size. Instead, modularity and interconnectivity may be more important.
Collapse
|
45
|
Calcium imaging in the ant Camponotus fellah reveals a conserved odour-similarity space in insects and mammals. BMC Neurosci 2010; 11:28. [PMID: 20187931 PMCID: PMC2841603 DOI: 10.1186/1471-2202-11-28] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 02/26/2010] [Indexed: 01/27/2023] Open
Abstract
Background Olfactory systems create representations of the chemical world in the animal brain. Recordings of odour-evoked activity in the primary olfactory centres of vertebrates and insects have suggested similar rules for odour processing, in particular through spatial organization of chemical information in their functional units, the glomeruli. Similarity between odour representations can be extracted from across-glomerulus patterns in a wide range of species, from insects to vertebrates, but comparison of odour similarity in such diverse taxa has not been addressed. In the present study, we asked how 11 aliphatic odorants previously tested in honeybees and rats are represented in the antennal lobe of the ant Camponotus fellah, a social insect that relies on olfaction for food search and social communication. Results Using calcium imaging of specifically-stained second-order neurons, we show that these odours induce specific activity patterns in the ant antennal lobe. Using multidimensional analysis, we show that clustering of odours is similar in ants, bees and rats. Moreover, odour similarity is highly correlated in all three species. Conclusion This suggests the existence of similar coding rules in the neural olfactory spaces of species among which evolutionary divergence happened hundreds of million years ago.
Collapse
|
46
|
Encoding properties of haltere neurons enable motion feature detection in a biological gyroscope. Proc Natl Acad Sci U S A 2010; 107:3840-5. [PMID: 20133721 DOI: 10.1073/pnas.0912548107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The halteres of dipteran insects are essential sensory organs for flight control. They are believed to detect Coriolis and other inertial forces associated with body rotation during flight. Flies use this information for rapid flight control. We show that the primary afferent neurons of the haltere's mechanoreceptors respond selectively with high temporal precision to multiple stimulus features. Although we are able to identify many stimulus features contributing to the response using principal component analysis, predictive models using only two features, common across the cell population, capture most of the cells' encoding activity. However, different sensitivity to these two features permits each cell to respond to sinusoidal stimuli with a different preferred phase. This feature similarity, combined with diverse phase encoding, allows the haltere to transmit information at a high rate about numerous inertial forces, including Coriolis forces.
Collapse
|
47
|
Yamagata N, Schmuker M, Szyszka P, Mizunami M, Menzel R. Differential odor processing in two olfactory pathways in the honeybee. Front Syst Neurosci 2009; 3:16. [PMID: 20198105 PMCID: PMC2802323 DOI: 10.3389/neuro.06.016.2009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 11/17/2009] [Indexed: 11/13/2022] Open
Abstract
An important component in understanding central olfactory processing and coding in the insect brain relates to the characterization of the functional divisions between morphologically distinct types of projection neurons (PN). Using calcium imaging, we investigated how the identity, concentration and mixtures of odors are represented in axon terminals (boutons) of two types of PNs – lPN and mPN. In lPN boutons we found less concentration dependence, narrow tuning profiles at a high concentration, which may be optimized for fine, concentration-invariant odor discrimination. In mPN boutons, however, we found clear rising concentration dependence, broader tuning profiles at a high concentration, which may be optimized for concentration coding. In addition, we found more mixture suppression in lPNs than in mPNs, indicating lPNs better adaptation for synthetic mixture processing. These results suggest a functional division of odor processing in both PN types.
Collapse
Affiliation(s)
- Nobuhiro Yamagata
- Institut für Neurobiologie, Freie Universität Berlin Berlin, Germany
| | | | | | | | | |
Collapse
|
48
|
Neural correlates of behavior in the moth Manduca sexta in response to complex odors. Proc Natl Acad Sci U S A 2009; 106:19219-26. [PMID: 19907000 DOI: 10.1073/pnas.0910592106] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With Manduca sexta as a model system, we analyzed how natural odor mixtures that are most effective in eliciting flight and foraging behaviors are encoded in the primary olfactory center in the brain, the antennal lobe. We used gas chromatography coupled with multiunit neural-ensemble recording to identify key odorants from flowers of two important nectar resources, the desert plants Datura wrightii and Agave palmeri, that elicited responses from individual antennal-lobe neurons. Neural-ensemble responses to the A. palmeri floral scent, comprising >60 odorants, could be reproduced by stimulation with a mixture of six of its constituents that had behavioral effectiveness equivalent to that of the complete scent. Likewise, a mixture of three floral volatiles from D. wrightii elicited normal flight and feeding behaviors. By recording responses of neural ensembles to mixtures of varying behavioral effectiveness, we analyzed the coding of behaviorally "meaningful" odors. We considered four possible ensemble-coding mechanisms--mean firing rate, mean instantaneous firing rate, pattern of synchronous ensemble firing, and total net synchrony of firing--and found that mean firing rate and the pattern of ensemble synchrony were best correlated with behavior (R = 41% and 43%, respectively). Stepwise regression analysis showed that net synchrony and mean instantaneous firing rate contributed little to the variation in the behavioral results. We conclude that a combination of mean-rate coding and synchrony of firing of antennal-lobe neurons underlies generalization among related, behaviorally effective floral mixtures while maintaining sufficient contrast for discrimination of distinct scents.
Collapse
|
49
|
Abstract
Odors evoke complex spatiotemporal responses in the insect antennal lobe (AL) and mammalian olfactory bulb. However, the behavioral relevance of spatiotemporal coding remains unclear. In the present work we combined behavioral analyses with calcium imaging of odor induced activity in the honeybee AL to evaluate the relevance of this temporal dimension in the olfactory code. We used a new way for evaluation of odor similarity of binary mixtures in behavioral studies, which involved testing whether a match of odor-sampling time is necessary between training and testing conditions for odor recognition during associative learning. Using graded changes in the similarity of the mixture ratios, we found high correlations between the behavioral generalization across those mixtures and a gradient of activation in AL output. Furthermore, short odor stimuli of 500 ms or less affected how well odors were matched with a memory template, and this time corresponded to a shift from a sampling-time-dependent to a sampling-time-independent memory. Accordingly, 375 ms corresponded to the time required for spatiotemporal AL activity patterns to reach maximal separation according to imaging studies. Finally, we compared spatiotemporal representations of binary mixtures in trained and untrained animals. AL activity was modified by conditioning to improve separation of odor representations. These data suggest that one role of reinforcement is to "tune" the AL such that relevant odors become more discriminable.
Collapse
|
50
|
Riveros AJ, Gronenberg W. Learning from learning and memory in bumblebees. Commun Integr Biol 2009; 2:437-40. [PMID: 19907712 PMCID: PMC2775245 DOI: 10.4161/cib.2.5.9240] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 11/19/2022] Open
Abstract
The difficulty to simultaneously record neural activity and behavior presents a considerable limitation for studying mechanisms of insect learning and memory. The challenge is finding a model suitable for the use of behavioral paradigms under the restrained conditions necessary for neural recording. In honeybees, Pavlovian conditioning relying on the proboscis extension reflex (PER) has been used with great success to study different aspects of insect cognition. However, it is desirable to combine the advantages of the PER with a more robust model that allows simultaneous electrical or optical recording of neural activity. Here, we briefly discuss the potential use of bumblebees as models for the study of learning and memory under restrained conditions. We base our arguments on the well-known cognitive abilities of bumblebees, their social organization and phylogenetic proximity to honeybees, our recent success using Pavlovian conditioning to study learning in two bumblebee species, and on the recently demonstrated robustness of bumblebees under conditions suitable for electrophysiological recording.
Collapse
Affiliation(s)
- Andre J Riveros
- Center for Insect Science and ARL, Division of Neurobiology, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|