1
|
Duffy AS, Eyo UB. Microglia and Astrocytes in Postnatal Neural Circuit Formation. Glia 2025; 73:232-250. [PMID: 39568399 DOI: 10.1002/glia.24650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Over the past two decades, microglia and astrocytes have emerged as critical mediators of neural circuit formation. Particularly during the postnatal period, both glial subtypes play essential roles in orchestrating nervous system development through communication with neurons. These functions include regulating synapse elimination, modulating neuronal density and activity, mediating synaptogenesis, facilitating axon guidance and organization, and actively promoting neuronal survival. Despite the vital roles of both microglia and astrocytes in ensuring homeostatic brain development, the extent to which the postnatal functions of these cells are regulated by sex and the manner in which these glial cells communicate with one another to coordinate nervous system development remain less well understood. Here, we review the critical functions of both microglia and astrocytes independently and synergistically in mediating neural circuit formation, focusing our exploration on the postnatal period from birth to early adulthood.
Collapse
Affiliation(s)
- Abigayle S Duffy
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Zhang Y, Wang Z, Xu F, Liu Z, Zhao Y, Yang LZ, Fang W. Progress of Astrocyte-Neuron Crosstalk in Central Nervous System Diseases. Neurochem Res 2024; 49:3187-3207. [PMID: 39292330 DOI: 10.1007/s11064-024-04241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Neurons are the primary cells responsible for information processing in the central nervous system (CNS). However, they are vulnerable to damage and insult in a variety of neurological disorders. As the most abundant glial cells in the brain, astrocytes provide crucial support to neurons and participate in synapse formation, synaptic transmission, neurotransmitter recycling, regulation of metabolic processes, and the maintenance of the blood-brain barrier integrity. Though astrocytes play a significant role in the manifestation of injury and disease, they do not work in isolation. Cellular interactions between astrocytes and neurons are essential for maintaining the homeostasis of the CNS under both physiological and pathological conditions. In this review, we explore the diverse interactions between astrocytes and neurons under physiological conditions, including the exchange of neurotrophic factors, gliotransmitters, and energy substrates, and different CNS diseases such as Alzheimer's disease, Parkinson's disease, stroke, traumatic brain injury, and multiple sclerosis. This review sheds light on the contribution of astrocyte-neuron crosstalk to the progression of neurological diseases to provide potential therapeutic targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Ziyu Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Fenglian Xu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Zijun Liu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Yu Zhao
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Lele Zixin Yang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, PA, 19107, USA
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China.
| |
Collapse
|
3
|
Garcia DW, Jacquir S. Astrocyte-mediated neuronal irregularities and dynamics: the complexity of the tripartite synapse. BIOLOGICAL CYBERNETICS 2024; 118:249-266. [PMID: 39276225 DOI: 10.1007/s00422-024-00994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/08/2024] [Indexed: 09/16/2024]
Abstract
Despite significant advancements in recent decades, gaining a comprehensive understanding of brain computations remains a significant challenge in neuroscience. Using computational models is crucial for unraveling this complex phenomenon and is equally indispensable for studying neurological disorders. This endeavor has created many neuronal models that capture brain dynamics at various scales and complexities. However, most existing models do not account for the potential influence of glial cells, particularly astrocytes, on neuronal physiology. This gap persists even with the emerging evidence indicating their critical role in regulating neural network activity, plasticity, and even neurological pathologies. To address this gap, some works proposed models that include neuron-glia interactions. Also, while some literature focuses on sophisticated models of neuron-glia interactions that mimic the complexity of physiological phenomena, there are also existing works that propose simplified models of neural-glial ensembles. Building upon these efforts, we aimed to contribute further to the field by proposing a simplified tripartite synapse model that encompasses the presynaptic neuron, postsynaptic neuron, and astrocyte. We defined the tripartite synapse model based on the Adaptive Exponential Integrate-and-Fire neuron model and a simplified scheme of the astrocyte model previously proposed by Postnov. Through our simulations, we demonstrated how astrocytes can influence neuronal firing behavior by sequentially activating and deactivating different pathways within the tripartite synapse. This modulation by astrocytes can shape neuronal behavior and introduce irregularities in the firing patterns of both presynaptic and postsynaptic neurons through the introduction of new pathways and configurations of relevant parameters.
Collapse
Affiliation(s)
- Den Whilrex Garcia
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, 91400, France.
- Department of Engineering, Lyceum of the Philippines University, Cavite, Philippines.
| | - Sabir Jacquir
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, 91400, France.
| |
Collapse
|
4
|
Sutley-Koury SN, Taitano-Johnson C, Kulinich AO, Farooq N, Wagner VA, Robles M, Hickmott PW, Santhakumar V, Mimche PN, Ethell IM. EphB2 Signaling Is Implicated in Astrocyte-Mediated Parvalbumin Inhibitory Synapse Development. J Neurosci 2024; 44:e0154242024. [PMID: 39327008 PMCID: PMC11551896 DOI: 10.1523/jneurosci.0154-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Impaired inhibitory synapse development is suggested to drive neuronal hyperactivity in autism spectrum disorders (ASD) and epilepsy. We propose a novel mechanism by which astrocytes control the development of parvalbumin (PV)-specific inhibitory synapses in the hippocampus, implicating ephrin-B/EphB signaling. Here, we utilize genetic approaches to assess functional and structural connectivity between PV and pyramidal cells (PCs) through whole-cell patch-clamp electrophysiology, optogenetics, immunohistochemical analysis, and behaviors in male and female mice. While inhibitory synapse development is adversely affected by PV-specific expression of EphB2, a strong candidate ASD risk gene, astrocytic ephrin-B1 facilitates PV→PC connectivity through a mechanism involving EphB signaling in PV boutons. In contrast, the loss of astrocytic ephrin-B1 reduces PV→PC connectivity and inhibition, resulting in increased seizure susceptibility and an ASD-like phenotype. Our findings underscore the crucial role of astrocytes in regulating inhibitory circuit development and discover a new role of EphB2 receptors in PV-specific inhibitory synapse development.
Collapse
Affiliation(s)
- Samantha N Sutley-Koury
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Christopher Taitano-Johnson
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
- Neuroscience Graduate Program, University of California Riverside, Riverside, California 92521
| | - Anna O Kulinich
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Nadia Farooq
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Victoria A Wagner
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
- Neuroscience Graduate Program, University of California Riverside, Riverside, California 92521
| | - Marissa Robles
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Peter W Hickmott
- Neuroscience Graduate Program, University of California Riverside, Riverside, California 92521
| | | | - Patrice N Mimche
- Department of Dermatology, and Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis Indiana 46202
| | - Iryna M Ethell
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
- Neuroscience Graduate Program, University of California Riverside, Riverside, California 92521
| |
Collapse
|
5
|
Lopez-Ortiz AO, Eyo UB. Astrocytes and microglia in the coordination of CNS development and homeostasis. J Neurochem 2024; 168:3599-3614. [PMID: 37985374 PMCID: PMC11102936 DOI: 10.1111/jnc.16006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
Glia have emerged as important architects of central nervous system (CNS) development and maintenance. While traditionally glial contributions to CNS development and maintenance have been studied independently, there is growing evidence that either suggests or documents that glia may act in coordinated manners to effect developmental patterning and homeostatic functions in the CNS. In this review, we focus on astrocytes, the most abundant glia in the CNS, and microglia, the earliest glia to colonize the CNS highlighting research that documents either suggestive or established coordinated actions by these glial cells in various CNS processes including cell and/or debris clearance, neuronal survival and morphogenesis, synaptic maturation, and circuit function, angio-/vasculogenesis, myelination, and neurotransmission. Some molecular mechanisms underlying these processes that have been identified are also described. Throughout, we categorize the available evidence as either suggestive or established interactions between microglia and astrocytes in the regulation of the respective process and raise possible avenues for further research. We conclude indicating that a better understanding of coordinated astrocyte-microglial interactions in the developing and mature brain holds promise for developing effective therapies for brain pathologies where these processes are perturbed.
Collapse
Affiliation(s)
- Aída Oryza Lopez-Ortiz
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Ahtiainen A, Genocchi B, Subramaniyam NP, Tanskanen JMA, Rantamäki T, Hyttinen JAK. Astrocytes facilitate gabazine-evoked electrophysiological hyperactivity and distinct biochemical responses in mature neuronal cultures. J Neurochem 2024; 168:3076-3094. [PMID: 39001671 DOI: 10.1111/jnc.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 10/04/2024]
Abstract
Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the adult brain that binds to GABA receptors and hyperpolarizes the postsynaptic neuron. Gabazine acts as a competitive antagonist to type A GABA receptors (GABAAR), thereby causing diminished neuronal hyperpolarization and GABAAR-mediated inhibition. However, the biochemical effects and the potential regulatory role of astrocytes in this process remain poorly understood. To address this, we investigated the neuronal responses of gabazine in rat cortical cultures containing varying ratios of neurons and astrocytes. Electrophysiological characterization was performed utilizing microelectrode arrays (MEAs) with topologically controlled microcircuit cultures that enabled control of neuronal network growth. Biochemical analysis of the cultures was performed using traditional dissociated cultures on coverslips. Our study indicates that, upon gabazine stimulation, astrocyte-rich neuronal cultures exhibit elevated electrophysiological activity and tyrosine phosphorylation of tropomyosin receptor kinase B (TrkB; receptor for brain-derived neurotrophic factor), along with distinct cytokine secretion profiles. Notably, neurons lacking proper astrocytic support were found to experience synapse loss and decreased mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, astrocytes contributed to neuronal viability, morphology, vascular endothelial growth factor (VEGF) secretion, and overall neuronal network functionality, highlighting the multifunctional role of astrocytes.
Collapse
Affiliation(s)
- Annika Ahtiainen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Barbara Genocchi
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Narayan Puthanmadam Subramaniyam
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jarno M A Tanskanen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jari A K Hyttinen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
7
|
Irala D, Wang S, Sakers K, Nagendren L, Ulloa Severino FP, Bindu DS, Savage JT, Eroglu C. Astrocyte-secreted neurocan controls inhibitory synapse formation and function. Neuron 2024; 112:1657-1675.e10. [PMID: 38574730 PMCID: PMC11098688 DOI: 10.1016/j.neuron.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Astrocytes strongly promote the formation and maturation of synapses by secreted proteins. Several astrocyte-secreted synaptogenic proteins controlling excitatory synapse development were identified; however, those that induce inhibitory synaptogenesis remain elusive. Here, we identify neurocan as an astrocyte-secreted inhibitory synaptogenic protein. After secretion from astrocytes, neurocan is cleaved into N- and C-terminal fragments. We found that these fragments have distinct localizations in the extracellular matrix. The neurocan C-terminal fragment localizes to synapses and controls cortical inhibitory synapse formation and function. Neurocan knockout mice lacking the whole protein or only its C-terminal synaptogenic domain have reduced inhibitory synapse numbers and function. Through super-resolution microscopy, in vivo proximity labeling by secreted TurboID, and astrocyte-specific rescue approaches, we discovered that the synaptogenic domain of neurocan localizes to somatostatin-positive inhibitory synapses and strongly regulates their formation. Together, our results unveil a mechanism through which astrocytes control circuit-specific inhibitory synapse development in the mammalian brain.
Collapse
Affiliation(s)
- Dolores Irala
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Shiyi Wang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kristina Sakers
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Leykashree Nagendren
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Francesco Paolo Ulloa Severino
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA; Instituto Cajal, CSIC 28002 Madrid, Spain
| | | | - Justin T Savage
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences (DIBS), Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Van Steenwinckel J, Bokobza C, Laforge M, Shearer IK, Miron VE, Rua R, Matta SM, Hill‐Yardin EL, Fleiss B, Gressens P. Key roles of glial cells in the encephalopathy of prematurity. Glia 2024; 72:475-503. [PMID: 37909340 PMCID: PMC10952406 DOI: 10.1002/glia.24474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023]
Abstract
Across the globe, approximately one in 10 babies are born preterm, that is, before 37 weeks of a typical 40 weeks of gestation. Up to 50% of preterm born infants develop brain injury, encephalopathy of prematurity (EoP), that substantially increases their risk for developing lifelong defects in motor skills and domains of learning, memory, emotional regulation, and cognition. We are still severely limited in our abilities to prevent or predict preterm birth. No longer just the "support cells," we now clearly understand that during development glia are key for building a healthy brain. Glial dysfunction is a hallmark of EoP, notably, microgliosis, astrogliosis, and oligodendrocyte injury. Our knowledge of glial biology during development is exponentially expanding but hasn't developed sufficiently for development of effective neuroregenerative therapies. This review summarizes the current state of knowledge for the roles of glia in infants with EoP and its animal models, and a description of known glial-cell interactions in the context of EoP, such as the roles for border-associated macrophages. The field of perinatal medicine is relatively small but has worked passionately to improve our understanding of the etiology of EoP coupled with detailed mechanistic studies of pre-clinical and human cohorts. A primary finding from this review is that expanding our collaborations with computational biologists, working together to understand the complexity of glial subtypes, glial maturation, and the impacts of EoP in the short and long term will be key to the design of therapies that improve outcomes.
Collapse
Affiliation(s)
| | - Cindy Bokobza
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
| | | | - Isabelle K. Shearer
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Veronique E. Miron
- Barlo Multiple Sclerosis CentreSt. Michael's HospitalTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- College of Medicine and Veterinary MedicineThe Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Rejane Rua
- CNRS, INSERM, Centre d'Immunologie de Marseille‐Luminy (CIML), Turing Centre for Living SystemsAix‐Marseille UniversityMarseilleFrance
| | - Samantha M. Matta
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Elisa L. Hill‐Yardin
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Bobbi Fleiss
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | | |
Collapse
|
9
|
Scott EY, Safarian N, Casasbuenas DL, Dryden M, Tockovska T, Ali S, Peng J, Daniele E, Nie Xin Lim I, Bang KWA, Tripathy S, Yuzwa SA, Wheeler AR, Faiz M. Integrating single-cell and spatially resolved transcriptomic strategies to survey the astrocyte response to stroke in male mice. Nat Commun 2024; 15:1584. [PMID: 38383565 PMCID: PMC10882052 DOI: 10.1038/s41467-024-45821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Astrocytes, a type of glial cell in the central nervous system (CNS), adopt diverse states in response to injury that are influenced by their location relative to the insult. Here, we describe a platform for spatially resolved, single-cell transcriptomics and proteomics, called tDISCO (tissue-digital microfluidic isolation of single cells for -Omics). We use tDISCO alongside two high-throughput platforms for spatial (Visium) and single-cell transcriptomics (10X Chromium) to examine the heterogeneity of the astrocyte response to a cortical ischemic stroke in male mice. We show that integration of Visium and 10X Chromium datasets infers two astrocyte populations, proximal or distal to the injury site, while tDISCO determines the spatial boundaries and molecular profiles that define these populations. We find that proximal astrocytes show differences in lipid shuttling, with enriched expression of Apoe and Fabp5. Our datasets provide a resource for understanding the roles of astrocytes in stroke and showcase the utility of tDISCO for hypothesis-driven, spatially resolved single-cell experiments.
Collapse
Affiliation(s)
- Erica Y Scott
- Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Nickie Safarian
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, Ontario, M5T 1R8, Canada
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, CA, 250 College St., Toronto, Ontario, M5T 1R8, Canada
| | - Daniela Lozano Casasbuenas
- Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Michael Dryden
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Teodora Tockovska
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Shawar Ali
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Jiaxi Peng
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Emerson Daniele
- Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
- Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Isabel Nie Xin Lim
- Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - K W Annie Bang
- Lunenfeld-Tanenbaum Research Institute, Flow Cytometry Core, Sinai Health, Toronto, Ontario, M5G 1X5, Canada
| | - Shreejoy Tripathy
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, Ontario, M5T 1R8, Canada
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, CA, 250 College St., Toronto, Ontario, M5T 1R8, Canada
| | - Scott A Yuzwa
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | - Maryam Faiz
- Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
- Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
10
|
Napier M, Reynolds K, Scott AL. Glial-mediated dysregulation of neurodevelopment in Fragile X Syndrome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:187-215. [PMID: 37993178 DOI: 10.1016/bs.irn.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Astrocytes are highly involved in a multitude of developmental processes that are known to be dysregulated in Fragile X Syndrome. Here, we examine these processes individually and review the roles astrocytes play in contributing to the pathology of this syndrome. As a growing area of interest in the field, new and exciting insight is continually emerging. Understanding these glial-mediated roles is imperative for elucidating the underlying molecular mechanisms at play, not only in Fragile X Syndrome, but also other ASD-related disorders. Understanding these roles will be central to the future development of effective, clinically-relevant treatments of these disorders.
Collapse
Affiliation(s)
- M Napier
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - K Reynolds
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada; Department of Neuroscience, Tufts University School of Medicine, Boston, United States
| | - A L Scott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.
| |
Collapse
|
11
|
Purushotham SS, Buskila Y. Astrocytic modulation of neuronal signalling. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1205544. [PMID: 37332623 PMCID: PMC10269688 DOI: 10.3389/fnetp.2023.1205544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Neuronal signalling is a key element in neuronal communication and is essential for the proper functioning of the CNS. Astrocytes, the most prominent glia in the brain play a key role in modulating neuronal signalling at the molecular, synaptic, cellular, and network levels. Over the past few decades, our knowledge about astrocytes and their functioning has evolved from considering them as merely a brain glue that provides structural support to neurons, to key communication elements. Astrocytes can regulate the activity of neurons by controlling the concentrations of ions and neurotransmitters in the extracellular milieu, as well as releasing chemicals and gliotransmitters that modulate neuronal activity. The aim of this review is to summarise the main processes through which astrocytes are modulating brain function. We will systematically distinguish between direct and indirect pathways in which astrocytes affect neuronal signalling at all levels. Lastly, we will summarize pathological conditions that arise once these signalling pathways are impaired focusing on neurodegeneration.
Collapse
Affiliation(s)
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- The MARCS Institute, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
12
|
Gradisnik L, Velnar T. Astrocytes in the central nervous system and their functions in health and disease: A review. World J Clin Cases 2023; 11:3385-3394. [PMID: 37383914 PMCID: PMC10294192 DOI: 10.12998/wjcc.v11.i15.3385] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/19/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Astrocytes are key cells in the central nervous system. They are involved in many important functions under physiological and pathological conditions. As part of neuroglia, they have been recognised as cellular elements in their own right. The name astrocyte was first proposed by Mihaly von Lenhossek in 1895 because of the finely branched processes and star-like appearance of these particular cells. As early as the late 19th and early 20th centuries, Ramon y Cajal and Camillo Golgi had noted that although astrocytes have stellate features, their morphology is extremely diverse. Modern research has confirmed the morphological diversity of astrocytes both in vitro and in vivo and their complex, specific, and important roles in the central nervous system. In this review, the functions of astrocytes and their roles are described.
Collapse
Affiliation(s)
- Lidija Gradisnik
- Institute of Biomedical Sciences, Medical Faculty Maribor, Maribor 2000, Slovenia
| | - Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- AMEU ECM Maribor, Maribor 2000, Slovenia
| |
Collapse
|
13
|
Irala D, Wang S, Sakers K, Nagendren L, Ulloa-Severino FP, Bindu DS, Eroglu C. Astrocyte-Secreted Neurocan Controls Inhibitory Synapse Formation and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535448. [PMID: 37066164 PMCID: PMC10104008 DOI: 10.1101/2023.04.03.535448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Astrocytes strongly promote the formation and maturation of synapses by secreted proteins. To date, several astrocyte-secreted synaptogenic proteins controlling different stages of excitatory synapse development have been identified. However, the identities of astrocytic signals that induce inhibitory synapse formation remain elusive. Here, through a combination of in vitro and in vivo experiments, we identified Neurocan as an astrocyte-secreted inhibitory synaptogenic protein. Neurocan is a chondroitin sulfate proteoglycan that is best known as a protein localized to the perineuronal nets. However, Neurocan is cleaved into two after secretion from astrocytes. We found that the resulting N- and C-terminal fragments have distinct localizations in the extracellular matrix. While the N-terminal fragment remains associated with perineuronal nets, the Neurocan C-terminal fragment localizes to synapses and specifically controls cortical inhibitory synapse formation and function. Neurocan knockout mice lacking the whole protein or only its C-terminal synaptogenic region have reduced inhibitory synapse numbers and function. Through super-resolution microscopy and in vivo proximity labeling by secreted TurboID, we discovered that the synaptogenic domain of Neurocan localizes to somatostatin-positive inhibitory synapses and strongly regulates their formation. Together, our results unveil a mechanism through which astrocytes control circuit-specific inhibitory synapse development in the mammalian brain.
Collapse
|
14
|
Liu C. The Role of Mesenchymal Stem Cells in Regulating Astrocytes-Related Synapse Dysfunction in Early Alzheimer’s Disease. Front Neurosci 2022; 16:927256. [PMID: 35801178 PMCID: PMC9253587 DOI: 10.3389/fnins.2022.927256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD), a neurodegenerative disease, is characterized by the presence of extracellular amyloid-β (Aβ) aggregates and intracellular neurofibrillary tangles formed by hyperphosphorylated tau as pathological features and the cognitive decline as main clinical features. An important cellular correlation of cognitive decline in AD is synapse loss. Soluble Aβ oligomer has been proposed to be a crucial early event leading to synapse dysfunction in AD. Astrocytes are crucial for synaptic formation and function, and defects in astrocytic activation and function have been suggested in the pathogenesis of AD. Astrocytes may contribute to synapse dysfunction at an early stage of AD by participating in Aβ metabolism, brain inflammatory response, and synaptic regulation. While mesenchymal stem cells can inhibit astrogliosis, and promote non-reactive astrocytes. They can also induce direct regeneration of neurons and synapses. This review describes the role of mesenchymal stem cells and underlying mechanisms in regulating astrocytes-related Aβ metabolism, neuroinflammation, and synapse dysfunction in early AD, exploring the open questions in this field.
Collapse
|
15
|
Ameroso D, Meng A, Chen S, Felsted J, Dulla CG, Rios M. Astrocytic BDNF signaling within the ventromedial hypothalamus regulates energy homeostasis. Nat Metab 2022; 4:627-643. [PMID: 35501599 PMCID: PMC9177635 DOI: 10.1038/s42255-022-00566-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/28/2022] [Indexed: 11/12/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is essential for maintaining energy and glucose balance within the central nervous system. Because the study of its metabolic actions has been limited to effects in neuronal cells, its role in other cell types within the brain remains poorly understood. Here we show that astrocytic BDNF signaling within the ventromedial hypothalamus (VMH) modulates neuronal activity in response to changes in energy status. This occurs via the truncated TrkB.T1 receptor. Accordingly, either fasting or central BDNF depletion enhances astrocytic synaptic glutamate clearance, thereby decreasing neuronal activity in mice. Notably, selective depletion of TrkB.T1 in VMH astrocytes blunts the effects of energy status on excitatory transmission, as well as on responses to leptin, glucose and lipids. These effects are driven by increased astrocytic invasion of excitatory synapses, enhanced glutamate reuptake and decreased neuronal activity. We thus identify BDNF/TrkB.T1 signaling in VMH astrocytes as an essential mechanism that participates in energy and glucose homeostasis.
Collapse
Affiliation(s)
- Dominique Ameroso
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Alice Meng
- Graduate Program in Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Stella Chen
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Jennifer Felsted
- Graduate Program in Biochemical and Molecular Nutrition, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chris G Dulla
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Graduate Program in Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Maribel Rios
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
- Graduate Program in Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
16
|
Boggess T, Williamson JC, Niebergall EB, Sexton H, Mazur A, Egleton RD, Grover LM, Risher WC. Alterations in Excitatory and Inhibitory Synaptic Development Within the Mesolimbic Dopamine Pathway in a Mouse Model of Prenatal Drug Exposure. Front Pediatr 2021; 9:794544. [PMID: 34966707 PMCID: PMC8710665 DOI: 10.3389/fped.2021.794544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
The rise in rates of opioid abuse in recent years in the United States has led to a dramatic increase in the incidence of neonatal abstinence syndrome (NAS). Despite improved understanding of NAS and its acute symptoms, there remains a paucity of information regarding the long-term effects of prenatal exposure to drugs of abuse on neurological development. The primary goal of this study was to investigate the effects of prenatal drug exposure on synaptic connectivity within brain regions associated with the mesolimbic dopamine pathway, the primary reward pathway associated with drug abuse and addiction, in a mouse model. Our secondary goal was to examine the role of the Ca+2 channel subunit α2δ-1, known to be involved in key developmental synaptogenic pathways, in mediating these effects. Pregnant mouse dams were treated orally with either the opioid drug buprenorphine (commonly used in medication-assisted treatment for substance use patients), gabapentin (neuropathic pain drug that binds to α2δ-1 and has been increasingly co-abused with opioids), a combination of both drugs, or vehicle daily from gestational day 6 until postnatal day 11. Confocal fluorescence immunohistochemistry (IHC) imaging of the brains of the resulting wild-type (WT) pups at postnatal day 21 revealed a number of significant alterations in excitatory and inhibitory synaptic populations within the anterior cingulate cortex (ACC), nucleus accumbens (NAC), and medial prefrontal cortex (PFC), particularly in the buprenorphine or combinatorial buprenorphine/gabapentin groups. Furthermore, we observed several drug- and region-specific differences in synaptic connectivity between WT and α2δ-1 haploinsufficient mice, indicating that critical α2δ-1-associated synaptogenic pathways are disrupted with early life drug exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - W. Christopher Risher
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
17
|
Chen J, Ma XL, Zhao H, Wang XY, Xu MX, Wang H, Yang TQ, Peng C, Liu SS, Huang M, Zhou YD, Shen Y. Increasing astrogenesis in the developing hippocampus induces autistic-like behavior in mice via enhancing inhibitory synaptic transmission. Glia 2021; 70:106-122. [PMID: 34498776 PMCID: PMC9291003 DOI: 10.1002/glia.24091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized primarily by impaired social communication and rigid, repetitive, and stereotyped behaviors. Many studies implicate abnormal synapse development and the resultant abnormalities in synaptic excitatory–inhibitory (E/I) balance may underlie many features of the disease, suggesting aberrant neuronal connections and networks are prone to occur in the developing autistic brain. Astrocytes are crucial for synaptic formation and function, and defects in astrocytic activation and function during a critical developmental period may also contribute to the pathogenesis of ASD. Here, we report that increasing hippocampal astrogenesis during development induces autistic‐like behavior in mice and a concurrent decreased E/I ratio in the hippocampus that results from enhanced GABAergic transmission in CA1 pyramidal neurons. Suppressing the aberrantly elevated GABAergic synaptic transmission in hippocampal CA1 area rescues autistic‐like behavior and restores the E/I balance. Thus, we provide direct evidence for a developmental role of astrocytes in driving the behavioral phenotypes of ASD, and our results support that targeting the altered GABAergic neurotransmission may represent a promising therapeutic strategy for ASD.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Lin Ma
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hui Zhao
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yu Wang
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Min-Xin Xu
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Tian-Qi Yang
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Peng
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shuang-Shuang Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dong Zhou
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,Department of Pharmacology, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Yi Shen
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,National Human Brain Bank for Health and Disease, Hangzhou, China
| |
Collapse
|
18
|
Tripartite synaptomics: Cell-surface proximity labeling in vivo. Neurosci Res 2021; 173:14-21. [PMID: 34019951 DOI: 10.1016/j.neures.2021.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 11/23/2022]
Abstract
The astrocyte is a central glial cell and plays a critical role in the architecture and activity of neuronal circuits and brain functions through forming a tripartite synapse with neurons. Emerging evidence suggests that dysfunction of tripartite synaptic connections contributes to a variety of psychiatric and neurodevelopmental disorders. Furthermore, recent advancements with transcriptome profiling, cell biological and physiological approaches have provided new insights into the molecular mechanisms into how astrocytes control synaptogenesis in the brain. In addition to these findings, we have recently developed in vivo cell-surface proximity-dependent biotinylation (BioID) approaches, TurboID-surface and Split-TurboID, to comprehensively understand the molecular composition between astrocytes and neuronal synapses. These proteomic approaches have discovered a novel molecular framework for understanding the tripartite synaptic cleft that arbitrates neuronal circuit formation and function. Here, this short review highlights novel in vivo cell-surface BioID approaches and recent advances in this rapidly evolving field, emphasizing how astrocytes regulate excitatory and inhibitory synapse formation in vitro and in vivo.
Collapse
|
19
|
Yamagata K. Astrocyte-induced synapse formation and ischemic stroke. J Neurosci Res 2021; 99:1401-1413. [PMID: 33604930 DOI: 10.1002/jnr.24807] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022]
Abstract
Astrocytes are closely associated with the regulation of synapse formation and function. In addition, astrocytes have been shown to block certain brain impairments, including synaptic damage from stroke and other diseases of the central nervous system (CNS). Although astrocytes do not completely prevent synaptic damage, they appear to be protective and to restore synaptic function following damage. The purpose of this study is to discuss the role of astrocytes in synaptogenesis and synaptic damage in ischemic stroke. I detail the mechanism of action of the multiple factors secreted by astrocytes that are involved in synapse formation. In particular, I describe the characteristics and role in synapse formation of each secreted molecule related to synaptic structure and function. Furthermore, I discuss the effect of astrocytes on synaptogenesis and repair in ischemic stroke and in other CNS diseases. Astrocytes release molecules such as thrombospondin, hevin, secreted protein acidic rich in cysteine, etc., due to activation by ischemia to induce synaptic structure and function, an effect associated with protection of the brain from synaptic damage in ischemic stroke. In conclusion, I show that astrocytes may regulate synaptic transmission while having the potential to block and repair synaptic dysfunction in stroke-associated brain damage.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Department of Food Bioscience & Biotechnology, College of Bioresource Science, Nihon University (UNBS), Fujisawa, Japan
| |
Collapse
|
20
|
Tan CX, Burrus Lane CJ, Eroglu C. Role of astrocytes in synapse formation and maturation. Curr Top Dev Biol 2021; 142:371-407. [PMID: 33706922 DOI: 10.1016/bs.ctdb.2020.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Astrocytes are the most abundant glial cells in the mammalian brain and directly participate in the proper functioning of the nervous system by regulating ion homeostasis, controlling glutamate reuptake, and maintaining the blood-brain barrier. In the last two decades, a growing body of work also identified critical roles for astrocytes in regulating synaptic connectivity. Stemming from the observation that functional and morphological development of astrocytes occur concurrently with synapse formation and maturation, these studies revealed that both developmental processes are directly linked. In fact, astrocytes both physically contact numerous synaptic structures and actively instruct many aspects of synaptic development and function via a plethora of secreted and adhesion-based molecular signals. The complex astrocyte-to-neuron signaling modalities control different stages of synaptic development such as regulating the initial formation of structural synapses as well as their functional maturation. Furthermore, the synapse-modulating functions of astrocytes are evolutionarily conserved and contribute to the development and plasticity of diverse classes of synapses and circuits throughout the central nervous system. Importantly, because impaired synapse formation and function is a hallmark of many neurodevelopmental disorders, deficits in astrocytes are likely to be major contributors to disease pathogenesis. In this chapter, we review our current understanding of the cellular and molecular mechanisms by which astrocytes contribute to synapse development and discuss the bidirectional secretion-based and contact-mediated mechanisms responsible for these essential developmental processes.
Collapse
Affiliation(s)
- Christabel X Tan
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Caley J Burrus Lane
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC, United States; Duke Institute for Brain Sciences, Durham, NC, United States; Regeneration Next Initiative, Duke University, Durham, NC, United States.
| |
Collapse
|
21
|
Takeda K, Watanabe T, Oyabu K, Tsukamoto S, Oba Y, Nakano T, Kubota K, Katsurabayashi S, Iwasaki K. Valproic acid-exposed astrocytes impair inhibitory synapse formation and function. Sci Rep 2021; 11:23. [PMID: 33420078 PMCID: PMC7794250 DOI: 10.1038/s41598-020-79520-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Valproic acid (VPA) is widely prescribed to treat epilepsy. Maternal VPA use is, however, clinically restricted because of the severe risk that VPA may cause neurodevelopmental disorders in offspring, such as autism spectrum disorder. Understanding the negative action of VPA may help to prevent VPA-induced neurodevelopmental disorders. Astrocytes play a vital role in neurodevelopment and synapse function; however, the impact of VPA on astrocyte involvement in neurodevelopment and synapse function has not been examined. In this study, we examined whether exposure of cultured astrocytes to VPA alters neuronal morphology and synapse function of co-cultured neurons. We show that synaptic transmission by inhibitory neurons was small because VPA-exposed astrocytes reduced the number of inhibitory synapses. However, synaptic transmission by excitatory neurons and the number of excitatory synapses were normal with VPA-exposed astrocytes. VPA-exposed astrocytes did not affect the morphology of inhibitory neurons. These data indicate that VPA-exposed astrocytes impair synaptogenesis specifically of inhibitory neurons. Our results indicate that maternal use of VPA would affect not only neurons but also astrocytes and would result in perturbed astrocyte-mediated neurodevelopment.
Collapse
Affiliation(s)
- Kotomi Takeda
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan. .,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.
| | - Kohei Oyabu
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Shuntaro Tsukamoto
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Yuki Oba
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Takafumi Nakano
- Department of Pharmaceutical and Health Care Management, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.,A.I.G. Collaborative Research Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| |
Collapse
|
22
|
Li L, Shi Y. When glia meet induced pluripotent stem cells (iPSCs). Mol Cell Neurosci 2020; 109:103565. [PMID: 33068719 PMCID: PMC10506562 DOI: 10.1016/j.mcn.2020.103565] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/20/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
The importance of glial cells, mainly astrocytes, oligodendrocytes, and microglia, in the central nervous system (CNS) has been increasingly appreciated. Recent advances have demonstrated the diversity of glial cells and their contribution to human CNS development, normal CNS functions, and disease progression. The uniqueness of human glial cells is also supported by multiple lines of evidence. With the discovery of induced pluripotent stem cells (iPSCs) and the progress of generating glial cells from human iPSCs, there are numerous studies to model CNS diseases using human iPSC-derived glial cells. Here we summarize the basic characteristics of glial cells, with the focus on their classical functions, heterogeneity, and uniqueness in human species. We further review the findings from recent studies that use iPSC-derived glial cells for CNS disease modeling. We conclude with promises and future directions of using iPSC-derived glial cells for CNS disease modeling.
Collapse
Affiliation(s)
- Li Li
- Division of Stem Cell Biology, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Yanhong Shi
- Division of Stem Cell Biology, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
23
|
Takano T, Wallace JT, Baldwin KT, Purkey AM, Uezu A, Courtland JL, Soderblom EJ, Shimogori T, Maness PF, Eroglu C, Soderling SH. Chemico-genetic discovery of astrocytic control of inhibition in vivo. Nature 2020; 588:296-302. [PMID: 33177716 PMCID: PMC8011649 DOI: 10.1038/s41586-020-2926-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/19/2020] [Indexed: 01/06/2023]
Abstract
Perisynaptic astrocytic processes are an integral part of central nervous system synapses1,2; however, the molecular mechanisms that govern astrocyte-synapse adhesions and how astrocyte contacts control synapse formation and function are largely unknown. Here we use an in vivo chemico-genetic approach that applies a cell-surface fragment complementation strategy, Split-TurboID, and identify a proteome that is enriched at astrocyte-neuron junctions in vivo, which includes neuronal cell adhesion molecule (NRCAM). We find that NRCAM is expressed in cortical astrocytes, localizes to perisynaptic contacts and is required to restrict neuropil infiltration by astrocytic processes. Furthermore, we show that astrocytic NRCAM interacts transcellularly with neuronal NRCAM coupled to gephyrin at inhibitory postsynapses. Depletion of astrocytic NRCAM reduces numbers of inhibitory synapses without altering glutamatergic synaptic density. Moreover, loss of astrocytic NRCAM markedly decreases inhibitory synaptic function, with minor effects on excitation. Thus, our results present a proteomic framework for how astrocytes interface with neurons and reveal how astrocytes control GABAergic synapse formation and function.
Collapse
Affiliation(s)
- Tetsuya Takano
- The Department of Cell Biology, Duke University Medical School, Durham, NC, USA.
| | - John T Wallace
- The Department of Cell Biology, Duke University Medical School, Durham, NC, USA
| | - Katherine T Baldwin
- The Department of Cell Biology, Duke University Medical School, Durham, NC, USA
| | - Alicia M Purkey
- The Department of Cell Biology, Duke University Medical School, Durham, NC, USA
| | - Akiyoshi Uezu
- The Department of Cell Biology, Duke University Medical School, Durham, NC, USA
| | - Jamie L Courtland
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA
| | - Erik J Soderblom
- The Department of Cell Biology, Duke University Medical School, Durham, NC, USA.,Duke Proteomics and Metabolomics Shared Resource and Duke Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC, USA
| | - Tomomi Shimogori
- Molecular Mechanisms of Brain Development, Center for Brain Science (CBS), RIKEN, Saitama, Japan
| | - Patricia F Maness
- Department of Biochemistry, University of North Carolina School of Medicine, Chapel Hill, NC, USA.,Department of Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Cagla Eroglu
- The Department of Cell Biology, Duke University Medical School, Durham, NC, USA. .,Department of Neurobiology, Duke University Medical School, Durham, NC, USA.
| | - Scott H Soderling
- The Department of Cell Biology, Duke University Medical School, Durham, NC, USA. .,Department of Neurobiology, Duke University Medical School, Durham, NC, USA.
| |
Collapse
|
24
|
Adult and endemic neurogenesis in the vestibular nuclei after unilateral vestibular neurectomy. Prog Neurobiol 2020; 196:101899. [PMID: 32858093 DOI: 10.1016/j.pneurobio.2020.101899] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 11/23/2022]
Abstract
We previously revealed adult reactive neurogenesis in deafferented vestibular nuclei following unilateral vestibular neurectomy (UVN) in the feline model. We recently replicated the same surgery in a rodent model and aimed to elucidate the origin and fate of newly generated cells following UVN. We used specific markers of cell proliferation, glial reaction, and cell differentiation in the medial vestibular nucleus (MVN) of adult rats. UVN induced an intense cell proliferation and glial reaction with an increase of GFAP-Immunoreactive (Ir), IBA1-Ir and Olig2-Ir cells 3 days after the lesion in the deafferented MVN. Most of the newly generated cells survived after UVN and differentiated into oligodendrocytes, astrocytes, microglial cells and GABAergic neurons. Interestingly, UVN induced a significant increase in a population of cells colocalizing SOX2 and GFAP 3 days after lesion in the deafferented MVN indicating the probable presence of multipotent cells in the vestibular nuclei. The concomitant increase in BrdU- and SOX2-Ir cells with the presence of SOX2 and GFAP colocalization 3 days after UVN in the deafferented MVN may support local mitotic activity of endemic quiescent neural stem cells in the parenchyma of vestibular nuclei.
Collapse
|
25
|
Astrocytic Ephrin-B1 Controls Excitatory-Inhibitory Balance in Developing Hippocampus. J Neurosci 2020; 40:6854-6871. [PMID: 32801156 DOI: 10.1523/jneurosci.0413-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Astrocytes are implicated in synapse formation and elimination, which are associated with developmental refinements of neuronal circuits. Astrocyte dysfunctions are also linked to synapse pathologies associated with neurodevelopmental disorders and neurodegenerative diseases. Although several astrocyte-derived secreted factors are implicated in synaptogenesis, the role of contact-mediated glial-neuronal interactions in synapse formation and elimination during development is still unknown. In this study, we examined whether the loss or overexpression of the membrane-bound ephrin-B1 in astrocytes during postnatal day (P) 14-28 period would affect synapse formation and maturation in the developing hippocampus. We found enhanced excitation of CA1 pyramidal neurons in astrocyte-specific ephrin-B1 KO male mice, which coincided with a greater vGlut1/PSD95 colocalization, higher dendritic spine density, and enhanced evoked AMPAR and NMDAR EPSCs. In contrast, EPSCs were reduced in CA1 neurons neighboring ephrin-B1-overexpressing astrocytes. Overexpression of ephrin-B1 in astrocytes during P14-28 developmental period also facilitated evoked IPSCs in CA1 neurons, while evoked IPSCs and miniature IPSC amplitude were reduced following astrocytic ephrin-B1 loss. Lower numbers of parvalbumin-expressing cells and a reduction in the inhibitory VGAT/gephyrin-positive synaptic sites on CA1 neurons in the stratum pyramidale and stratum oriens layers of KO hippocampus may contribute to reduced inhibition and higher excitation. Finally, dysregulation of excitatory/inhibitory balance in KO male mice is most likely responsible for impaired sociability observed in these mice. The ability of astrocytic ephrin-B1 to influence both excitatory and inhibitory synapses during development can potentially contribute to developmental refinement of neuronal circuits.SIGNIFICANCE STATEMENT This report establishes a link between astrocytes and the development of excitatory and inhibitory balance in the mouse hippocampus during early postnatal development. We provide new evidence that astrocytic ephrin-B1 differentially regulates development of excitatory and inhibitory circuits in the hippocampus during early postnatal development using a multidisciplinary approach. The ability of astrocytic ephrin-B1 to influence both excitatory and inhibitory synapses during development can potentially contribute to developmental refinement of neuronal circuits and associated behaviors. Given widespread and growing interest in the astrocyte-mediated mechanisms that regulate synapse development, and the role of EphB receptors in neurodevelopmental disorders, these findings establish a foundation for future studies of astrocytes in clinically relevant conditions.
Collapse
|
26
|
Ung K, Tepe B, Pekarek B, Arenkiel BR, Deneen B. Parallel astrocyte calcium signaling modulates olfactory bulb responses. J Neurosci Res 2020; 98:1605-1618. [PMID: 32426930 PMCID: PMC8147697 DOI: 10.1002/jnr.24634] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
Astrocytes are the most abundant glial cell in the central nervous system. They modulate synaptic function through a variety of mechanisms, and yet remain relatively understudied with respect to overall neuronal circuit function. Exploiting the tractability of the mouse olfactory system, we manipulated astrocyte activity and examined how astrocytes modulate olfactory bulb responses. Toward this, we genetically targeted both astrocytes and neurons for in vivo widefield imaging of Ca2+ responses to odor stimuli. We found that astrocytes exhibited odor response maps that overlap with excitatory neuronal activity. By manipulating Ca2+ activity in astrocytes using chemical genetics we found that odor-evoked neuronal activity was reciprocally affected, suggesting that astrocyte activation inhibits neuronal odor responses. Subsequently, behavioral experiments revealed that astrocyte manipulations affect both odor detection threshold and discrimination, suggesting that astrocytes play an active role in olfactory sensory processing circuits. Together, these studies show that astrocyte calcium signaling contributes to olfactory behavior through modulation of sensory circuits.
Collapse
Affiliation(s)
- Kevin Ung
- Program in Developmental Biology, Houston, TX 77030, USA
| | - Burak Tepe
- Program in Developmental Biology, Houston, TX 77030, USA
| | - Brandon Pekarek
- Department of Molecular and Human Genetics, Houston, TX 77030, USA
| | - Benjamin R. Arenkiel
- Program in Developmental Biology, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Benjamin Deneen
- Program in Developmental Biology, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
27
|
Carceles‐Cordon M, Mannara F, Aguilar E, Castellanos A, Planagumà J, Dalmau J. NMDAR
Antibodies Alter Dopamine Receptors and Cause Psychotic Behavior in Mice. Ann Neurol 2020; 88:603-613. [DOI: 10.1002/ana.25829] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Marc Carceles‐Cordon
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona Barcelona Spain
| | - Francesco Mannara
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona Barcelona Spain
| | - Esther Aguilar
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona Barcelona Spain
| | - Aida Castellanos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona Barcelona Spain
| | - Jesús Planagumà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona Barcelona Spain
| | - Josep Dalmau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona Barcelona Spain
- Department of NeurologyUniversity of Pennsylvania Philadelphia PA USA
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Barcelona Spain
| |
Collapse
|
28
|
Tang Y, Han Y, Yu H, Zhang B, Li G. Increased GABAergic development in iPSC-derived neurons from patients with sporadic Alzheimer's disease. Neurosci Lett 2020; 735:135208. [PMID: 32615251 DOI: 10.1016/j.neulet.2020.135208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/07/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, and the underlying molecular mechanisms of this neurodegenerative disorder are still unclear. γ-Aminobutyric acid (GABA) neurons play an essential role in the excitatory/inhibitory (E/I) balance in the brain, and the GABAergic system may contribute to the pathogenesis of AD. We used human induced pluripotent stem cells (iPSCs) generated from sporadic AD (SAD) patients to analyze the phenotype and transcriptional profiles of SAD iPSC-derived neural cells. We observed reduced neurogenesis and increased astrogenesis in SAD neural differentiation. We discovered elevated levels of GABA, glutamate decarboxylase 67 (GAD67), and vesicular GABA transporter (vGAT) in SAD neurons that indicated increased GABAergic development. Gene expression profiling of SAD neural cultures showed upregulation of the GABAergic signaling pathway and downregulation of the neurogenesis pathway. We presumed that the GABAergic transmission system might be enhanced in SAD neurons, as an early pathological change of SAD, which provides a novel target and new direction for the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Yueyu Tang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China
| | - Yingying Han
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China
| | - Hongxiang Yu
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China
| | - Bei Zhang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China.
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China.
| |
Collapse
|
29
|
Turko P, Groberman K, Browa F, Cobb S, Vida I. Differential Dependence of GABAergic and Glutamatergic Neurons on Glia for the Establishment of Synaptic Transmission. Cereb Cortex 2020; 29:1230-1243. [PMID: 29425353 DOI: 10.1093/cercor/bhy029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 01/17/2018] [Indexed: 11/14/2022] Open
Abstract
In the mammalian cortex, GABAergic and glutamatergic neurons represent 2 major neuronal classes, which establish inhibitory and excitatory synapses, respectively. Despite differences in their anatomy, physiology and developmental origin, both cell types require support from glial cells, particularly astrocytes, for their growth and survival. Recent experiments indicate that glutamatergic neurons also depend on astrocytes for synapse formation. However, it is not clear if the same holds true for GABAergic neurons. By studying highly pure GABAergic cell cultures, established through fluorescent activated cell sorting, we find that purified GABAergic neurons are smaller and have reduced survival, nevertheless they establish robust synaptic transmission in the absence of glia. Support from glial cells reverses morphological and survival deficits, but does little to alter synaptic transmission. In contrast, in cultures of purified glutamatergic neurons, morphological development, survival and synaptic transmission are collectively dependent on glial support. Thus, our results demonstrate a fundamental difference in the way GABAergic and glutamatergic neurons depend on glia for the establishment of synaptic transmission, a finding that has important implications for our understanding of how neuronal networks develop.
Collapse
Affiliation(s)
- Paul Turko
- Institute for Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Keenan Groberman
- Institute for Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ferdinand Browa
- Institute for Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stuart Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Imre Vida
- Institute for Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
30
|
Liu L, Koo Y, Russell T, Gay E, Li Y, Yun Y. Three-dimensional brain-on-chip model using human iPSC-derived GABAergic neurons and astrocytes: Butyrylcholinesterase post-treatment for acute malathion exposure. PLoS One 2020; 15:e0230335. [PMID: 32163499 PMCID: PMC7067464 DOI: 10.1371/journal.pone.0230335] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/26/2020] [Indexed: 12/24/2022] Open
Abstract
Organophosphates (OPs) induce acute and chronic neurotoxicity, primarily by inhibiting acetylcholinesterase (AChE) activity as well as by necrosis, and apoptosis. Butyrylcholinesterase (BuChE), an exogenous bioscavenger of OPs, can be used as a treatment for OP exposure. It is prerequisite to develop in vitro brain models that can study BuChE post-treatment for acute OP exposure. In this study, we developed a three-dimensional (3D) brain-on-chip platform with human induced pluripotent stem cell (iPSC)-derived neurons and astrocytes to simulate human brain behavior. The platform consists of two compartments: 1) a hydrogel embedded with human iPSC-derived GABAergic neurons and astrocytes and 2) a perfusion channel with dynamic medium flow. The brain tissue constructs were exposed to Malathion (MT) at various concentrations and then treated with BuChE after 20 minutes of MT exposure. Results show that the iPSC-derived neurons and astrocytes directly interacted and formed synapses in the 3D matrix, and that treatment with BuChE improved viability after MT exposure up to a concentration of 10−3 M. We conclude that the 3D brain-on-chip platform with human iPSC-derived brain cells is a suitable model to study the neurotoxicity of OP exposure and evaluate therapeutic compounds for treatment.
Collapse
Affiliation(s)
- Lumei Liu
- FIT BEST Laboratory, Department of Chemical, Biological, and Bio Engineering, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
| | - Youngmi Koo
- FIT BEST Laboratory, Department of Chemical, Biological, and Bio Engineering, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
| | - Teal Russell
- FIT BEST Laboratory, Department of Chemical, Biological, and Bio Engineering, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
| | - Elaine Gay
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, North Carolina, United States of America
| | - Yan Li
- Chemical Engineering, Florida A&M University-Florida State University, Tallahassee, Florida, United States of America
| | - Yeoheung Yun
- FIT BEST Laboratory, Department of Chemical, Biological, and Bio Engineering, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
31
|
Kim BJ, Choi JY, Choi H, Han S, Seo J, Kim J, Joo S, Kim HM, Oh C, Hong S, Kim P, Choi IS. Astrocyte-Encapsulated Hydrogel Microfibers Enhance Neuronal Circuit Generation. Adv Healthc Mater 2020; 9:e1901072. [PMID: 31957248 DOI: 10.1002/adhm.201901072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Astrocytes, the most representative glial cells in the brain, play a multitude of crucial functions for proper neuronal development and synaptic-network formation, including neuroprotection as well as physical and chemical support. However, little attention has been paid, in the neuroregenerative medicine and related fields, to the cytoprotective incorporation of astrocytes into neuron-culture scaffolds and full-fledged functional utilization of encapsulated astrocytes for controlled neuronal development. In this article, a 3D neurosupportive culture system for enhanced induction of neuronal circuit generation is reported, where astrocytes are confined in hydrogel microfibers and protected from the outside. The astrocyte-encapsulated microfibers significantly accelerate the neurite outgrowth and guide its directionality, and enhance the synaptic formation, without any physical contact with the neurons. This astrocyte-laden system provides a pivotal culture scaffold for advanced development of cell-based therapeutics for neural injuries, such as spinal cord injury.
Collapse
Affiliation(s)
- Beom Jin Kim
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Ji Yu Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Hyunwoo Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Sol Han
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Jeongyeon Seo
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Jungnam Kim
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Sunghoon Joo
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Hyo Min Kim
- Department of Bio and Brain EngineeringKAIST Daejeon 34141 Korea
| | - Chungik Oh
- Department of Materials Science and EngineeringKAIST Daejeon 34141 Korea
| | - Seungbum Hong
- Department of Materials Science and EngineeringKAIST Daejeon 34141 Korea
| | - Pilnam Kim
- Department of Bio and Brain EngineeringKAIST Daejeon 34141 Korea
| | - Insung S. Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| |
Collapse
|
32
|
Pan Y, Monje M. Activity Shapes Neural Circuit Form and Function: A Historical Perspective. J Neurosci 2020; 40:944-954. [PMID: 31996470 PMCID: PMC6988998 DOI: 10.1523/jneurosci.0740-19.2019] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022] Open
Abstract
The brilliant and often prescient hypotheses of Ramon y Cajal have proven foundational for modern neuroscience, but his statement that "In adult centers the nerve paths are something fixed, ended, immutable … " is an exception that did not stand the test of empirical study. Mechanisms of cellular and circuit-level plasticity continue to shape and reshape many regions of the adult nervous system long after the neurodevelopmental period. Initially focused on neurons alone, the field has followed a meteoric trajectory in understanding of activity-regulated neurodevelopment and ongoing neuroplasticity with an arc toward appreciating neuron-glial interactions and the role that each neural cell type plays in shaping adaptable neural circuity. In this review, as part of a celebration of the 50th anniversary of Society for Neuroscience, we provide a historical perspective, following this arc of inquiry from neuronal to neuron-glial mechanisms by which activity and experience modulate circuit structure and function. The scope of this consideration is broad, and it will not be possible to cover the wealth of knowledge about all aspects of activity-dependent circuit development and plasticity in depth.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| |
Collapse
|
33
|
Effect of chronic methylphenidate treatment on hippocampal neurovascular unit and memory performance in late adolescent rats. Eur Neuropsychopharmacol 2019; 29:195-210. [PMID: 30554860 DOI: 10.1016/j.euroneuro.2018.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/13/2018] [Accepted: 12/01/2018] [Indexed: 12/21/2022]
Abstract
Methylphenidate (MPH) is the classic treatment for attention deficit hyperactivity disorder (ADHD) among children and adults. Despite its beneficial effects, non-medical use of MPH is nowadays a problem with high impact on society. Thus, our goal was to uncover the neurovascular and cognitive effects of MPH chronic use during a critical period of development in control conditions. For that, male Wistar Kyoto rats were treated with MPH (1.5 or 5 mg/kg/day at weekdays, per os) from P28 to P55. We concluded that the higher dose of MPH caused hippocampal blood-brain barrier (BBB) hyperpermeability by vesicular transport (transcytosis) concomitantly with the presence of peripheral immune cells in the brain parenchyma. These observations were confirmed by in vitro studies, in which the knockdown of caveolin-1 in human brain endothelial cells prevented the increased permeability and leukocytes transmigration triggered by MPH (100 µM, 24 h). Furthermore, MPH led to astrocytic atrophy and to a decrease in the levels of several synaptic proteins and impairment of AKT/CREB signaling, together with working memory deficit assessed in the Y-maze test. On the contrary, we verified that the lower dose of MPH (1.5 mg/kg/day) increased astrocytic processes and upregulated several neuronal proteins as well as signaling pathways involved in synaptic plasticity culminating in working memory improvement. In conclusion, the present study reveals that a lower dose of MPH in normal rats improves memory performance being associated with the modulation of astrocytic morphology and synaptic machinery. However, a higher dose of MPH leads to BBB dysfunction and memory impairment.
Collapse
|
34
|
Liang M, Zhong H, Rong J, Li Y, Zhu C, Zhou L, Zhou R. Postnatal Lipopolysaccharide Exposure Impairs Adult Neurogenesis and Causes Depression-like Behaviors Through Astrocytes Activation Triggering GABAA Receptor Downregulation. Neuroscience 2019; 422:21-31. [DOI: 10.1016/j.neuroscience.2019.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 01/20/2023]
|
35
|
Chronic Exposure to High Altitude: Synaptic, Astroglial and Memory Changes. Sci Rep 2019; 9:16406. [PMID: 31712561 PMCID: PMC6848138 DOI: 10.1038/s41598-019-52563-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/11/2019] [Indexed: 11/18/2022] Open
Abstract
Long-term operations carried out at high altitude (HA) by military personnel, pilots, and astronauts may trigger health complications. In particular, chronic exposure to high altitude (CEHA) has been associated with deficits in cognitive function. In this study, we found that mice exposed to chronic HA (5000 m for 12 weeks) exhibited deficits in learning and memory associated with hippocampal function and were linked with changes in the expression of synaptic proteins across various regions of the brain. Specifically, we found decreased levels of synaptophysin (SYP) (p < 0.05) and spinophilin (SPH) (p < 0.05) in the olfactory cortex, post synaptic density−95 (PSD-95) (p < 0.05), growth associated protein 43 (GAP43) (p < 0.05), glial fibrillary acidic protein (GFAP) (p < 0.05) in the cerebellum, and SYP (p < 0.05) and PSD-95 (p < 0.05) in the brainstem. Ultrastructural analyses of synaptic density and morphology in the hippocampus did not reveal any differences in CEHA mice compared to SL mice. Our data are novel and suggest that CEHA exposure leads to cognitive impairment in conjunction with neuroanatomically-based molecular changes in synaptic protein levels and astroglial cell marker in a region specific manner. We hypothesize that these new findings are part of highly complex molecular and neuroplasticity mechanisms underlying neuroadaptation response that occurs in brains when chronically exposed to HA.
Collapse
|
36
|
Qin L, Actor-Engel HS, Woo MS, Shakil F, Chen YW, Cho S, Aoki C. An Increase of Excitatory-to-Inhibitory Synaptic Balance in the Contralateral Cortico-Striatal Pathway Underlies Improved Stroke Recovery in BDNF Val66Met SNP Mice. Neurorehabil Neural Repair 2019; 33:989-1002. [PMID: 31524060 DOI: 10.1177/1545968319872997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite negative association in cognition and memory, mice harboring Val66Met BDNF SNP (BDNFM/M) exhibit enhanced motor recovery accompanied by elevated excitatory synaptic markers VGLUT1 and VGLUT2 in striatum contralateral to unilateral ischemic stroke. The cortico-striatal pathway is a critical gateway for plasticity of motor/gait function. We hypothesized that enhanced excitability of the cortico-striatal pathway, especially of the contralateral hemisphere, underlies improved motor recovery. To test this hypothesis, we examined the key molecules involving excitatory synaptogenesis: Thrombospondins (TSP1/2) and their neuronal receptor α2δ-1. In WT brains, stroke induced expressions of TSP1/2-mRNA. The contralateral hemisphere of BDNFM/M mice showed heightened TSP2 and α2δ-1 mRNA and protein specifically at 6 months post-stroke. Immunoreactivities of TSPs and α2δ-1 were increased in cortical layers 1/2 of stroked BDNFM/M animals compared with BDNFM/M sham brains at this time. Areal densities of excitatory synapses in cortical layer 1 and striatum were also increased in stroked BDNFM/M brains, relative to stroked WT brains. Notably, the frequency of GABAergic synapses was greatly reduced along distal dendrites in cortical layer 1 in BDNFM/M brains, whether or not stroked, compared with WT brains. There was no effect of genotype or treatment on the density of GABAergic synapses onto striatal medium spiny neurons. The study identified molecular and synaptic substrates in the contralateral hemisphere of BDNFM/M mice, especially in cortical layers 1/2, which indicates selective region-related synaptic plasticity. The study suggests that an increase in excitatory-to-inhibitory synaptic balance along the contralateral cortico-striatal pathway underlies the enhanced functional recovery of BDNFM/M mice.
Collapse
Affiliation(s)
- Luye Qin
- Burke Neurological Institute, White Plains, NY, USA.,State University of New York at Buffalo, Buffalo, NY, USA
| | | | | | | | | | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Chiye Aoki
- New York University, New York, NY, USA.,NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
37
|
Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of Neurotrophic Factors in Glial Cells in the Central Nervous System: Expression and Properties in Neurodegeneration and Injury. Front Physiol 2019; 10:486. [PMID: 31105589 PMCID: PMC6499070 DOI: 10.3389/fphys.2019.00486] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 04/08/2019] [Indexed: 12/28/2022] Open
Abstract
Astrocytes, oligodendrocytes, and microglia are abundant cell types found in the central nervous system and have been shown to play crucial roles in regulating both normal and disease states. An increasing amount of evidence points to the critical importance of glia in mediating neurodegeneration in Alzheimer’s and Parkinson’s diseases (AD, PD), and in ischemic stroke, where microglia are involved in initial tissue clearance, and astrocytes in the subsequent formation of a glial scar. The importance of these cells for neuronal survival has previously been studied in co-culture experiments and the search for neurotrophic factors (NTFs) initiated after finding that the addition of conditioned media from astrocyte cultures could support the survival of primary neurons in vitro. This led to the discovery of the potent dopamine neurotrophic factor, glial cell line-derived neurotrophic factor (GDNF). In this review, we focus on the relationship between glia and NTFs including neurotrophins, GDNF-family ligands, CNTF family, and CDNF/MANF-family proteins. We describe their expression in astrocytes, oligodendrocytes and their precursors (NG2-positive cells, OPCs), and microglia during development and in the adult brain. Furthermore, we review existing data on the glial phenotypes of NTF knockout mice and follow NTF expression patterns and their effects on glia in disease models such as AD, PD, stroke, and retinal degeneration.
Collapse
Affiliation(s)
- Suvi Pöyhönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Safak Er
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.,Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
The Astrocyte-Neuron Interface: An Overview on Molecular and Cellular Dynamics Controlling Formation and Maintenance of the Tripartite Synapse. Methods Mol Biol 2019; 1938:3-18. [PMID: 30617969 DOI: 10.1007/978-1-4939-9068-9_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes are known to provide trophic support to neurons and were originally thought to be passive space-filling cells in the brain. However, recent advances in astrocyte development and functions have highlighted their active roles in controlling brain functions by modulating synaptic transmission. A bidirectional cross talk between astrocytic processes and neuronal synapses define the concept of tripartite synapse. Any change in astrocytic structure/function influences neuronal activity which could lead to neurodevelopmental and neurodegenerative disorders. In this chapter, we briefly overview the methodologies used in deciphering the mechanisms of dynamic interplay between astrocytes and neurons.
Collapse
|
39
|
Kostović I, Išasegi IŽ, Krsnik Ž. Sublaminar organization of the human subplate: developmental changes in the distribution of neurons, glia, growing axons and extracellular matrix. J Anat 2018; 235:481-506. [PMID: 30549027 DOI: 10.1111/joa.12920] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
The objective of this paper was to collect normative data essential for analyzing the subplate (SP) role in pathogenesis of developmental disorders, characterized by abnormal circuitry, such as hypoxic-ischemic lesions, autism and schizophrenia. The main cytological features of the SP, such as low cell density, early differentiation of neurons and glia, plexiform arrangement of axons and dendrites, presence of synapses and a large amount of extracellular matrix (ECM) distinguish this compartment from the cell-dense cortical plate (CP; towards pia) and large fiber bundles of external axonal strata of fetal white matter (towards ventricle). For SP delineation from these adjacent layers based on combined cytological criteria, we analyzed the sublaminar distribution of different microstructural elements and the associated maturational gradients throughout development, using immunocytochemical and histological techniques on postmortem brain material (Zagreb Neuroembryological Collection). The analysis revealed that the SP compartment of the lateral neocortex shows changes in laminar organization throughout fetal development: the monolayer in the early fetal period (presubplate) undergoes dramatic bilaminar transformation between 13 and 15 postconceptional weeks (PCW), followed by subtle sublamination in three 'floors' (deep, intermediate, superficial) of midgestation (15-21 PCW). During the stationary phase (22-28 PCW), SP persists as a trilaminar compartment, gradually losing its sublaminar organization towards the end of gestation and remains as a single layer of SP remnant in the newborn brain. Based on these sublaminar transformations, we have documented developmental changes in the distribution, maturational gradients and expression of molecular markers in SP synapses, transitional forms of astroglia, neurons and ECM, which occur concomitantly with the ingrowth of thalamo-cortical, basal forebrain and cortico-cortical axons in a deep to superficial fashion. The deep SP is the zone of ingrowing axons - 'entrance (ingrowth) zone'. The process of axonal ingrowth begins with thalamo-cortical fibers and basal forebrain afferents, indicating an oblique geometry. During the later fetal period, deep SP receives long cortico-cortical axons exhibiting a tangential geometry. Intermediate SP ('proper') is the navigation and 'nexus' sublamina consisting of a plexiform arrangement of cellular elements providing guidance and substrate for axonal growth, and also containing transient connectivity of dendrites and axons in a tangential plane without radial boundaries immersed in an ECM-rich continuum. Superficial SP is the axonal accumulation ('waiting compartment') and target selection zone, indicating a dense distribution of synaptic markers, accumulation of thalamo-cortical axons (around 20 PCW), overlapping with dendrites from layer VI neurons. In the late preterm brain period, superficial SP contains a chondroitin sulfate non-immunoreactive band. The developmental dynamics for the distribution of neuronal, glial and ECM markers comply with sequential ingrowth of afferents in three levels of SP: ECM and synaptic markers shift from deep to superficial SP, with transient forms of glia following this arrangement, and calretinin neurons are concentrated in the SP during the formation phase. These results indicate developmental and morphogenetic roles in the SP cellular (transient glia, neurons and synapses) and ECM framework, enabling the spatial accommodation, navigation and establishment of numerous connections of cortical pathways in the expanded human brain. The original findings of early developmental dynamics of transitional subtypes of astroglia, calretinin neurons, ECM and synaptic markers presented in the SP are interesting in the light of recent concepts concerning its functional and morphogenetic role and an increasing interest in SP as a prospective substrate of abnormalities in cortical circuitry, leading to a cognitive deficit in different neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Iris Žunić Išasegi
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
40
|
Chiacchiaretta M, Bramini M, Rocchi A, Armirotti A, Giordano E, Vázquez E, Bandiera T, Ferroni S, Cesca F, Benfenati F. Graphene Oxide Upregulates the Homeostatic Functions of Primary Astrocytes and Modulates Astrocyte-to-Neuron Communication. NANO LETTERS 2018; 18:5827-5838. [PMID: 30088941 DOI: 10.1021/acs.nanolett.8b02487] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Graphene-based materials are the focus of intense research efforts to devise novel theranostic strategies for targeting the central nervous system. In this work, we have investigated the consequences of long-term exposure of primary rat astrocytes to pristine graphene (GR) and graphene oxide (GO) flakes. We demonstrate that GR/GO interfere with a variety of intracellular processes as a result of their internalization through the endolysosomal pathway. Graphene-exposed astrocytes acquire a more differentiated morphological phenotype associated with extensive cytoskeletal rearrangements. Profound functional alterations are induced by GO internalization, including the upregulation of inward-rectifying K+ channels and of Na+-dependent glutamate uptake, which are linked to the astrocyte capacity to control the extracellular homeostasis. Interestingly, GO-pretreated astrocytes promote the functional maturation of cocultured primary neurons by inducing an increase in intrinsic excitability and in the density of GABAergic synapses. The results indicate that graphene nanomaterials profoundly affect astrocyte physiology in vitro with consequences for neuronal network activity. This work supports the view that GO-based materials could be of great interest to address pathologies of the central nervous system associated with astrocyte dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | | | - Ester Vázquez
- Departamento de Química Orgánica , Universidad de Castilla La-Mancha , 13071 Ciudad Real , Spain
| | | | - Stefano Ferroni
- Department of Pharmacy and Biotechnology , University of Bologna , 40126 Bologna , Italy
| | - Fabrizia Cesca
- IRCCS Ospedale Policlinico , San Martino, Genova , Italy
| | | |
Collapse
|
41
|
Wellbourne-Wood J, Chatton JY. From Cultured Rodent Neurons to Human Brain Tissue: Model Systems for Pharmacological and Translational Neuroscience. ACS Chem Neurosci 2018; 9:1975-1985. [PMID: 29847093 DOI: 10.1021/acschemneuro.8b00098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To investigate the enormous complexity of the functional and pathological brain there are a number of possible experimental model systems to choose from. Depending on the research question choosing the appropriate model may not be a trivial task, and given the dynamic and intricate nature of an intact living brain several models might be needed to properly address certain questions. In this review, we aim to provide an overview of neural cell and tissue culture, reflecting on historic methodological milestones and providing a brief overview of the state-of-the-art. We additionally present an example of an effective model system pipeline, composed of dissociated mouse cultures, organotypics, acute mouse brain slices, and acute human brain slices, in that order. The sequential use of these four model systems allows a balance and progression from experimental control to human applicability, and provides a meta-model that can help validate basic research findings in a translational setting. We then conclude with a few remarks regarding the necessity of an integrated approach when performing translational and neuropharmacological studies.
Collapse
Affiliation(s)
- Joel Wellbourne-Wood
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Jean-Yves Chatton
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
42
|
Specific deletion connexin43 in astrocyte ameliorates cognitive dysfunction in APP/PS1 mice. Life Sci 2018; 208:175-191. [PMID: 30031059 DOI: 10.1016/j.lfs.2018.07.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/15/2018] [Accepted: 07/18/2018] [Indexed: 11/22/2022]
Abstract
Emerging data indicate an important role for connexin43 (Cx43) in cognitive function, but there is a lack of direct evidence of the role of astroglial Cx43 in cognitive dysfunction in Alzheimer's disease (AD). Here we evaluated the expression pattern of Cx43 in AD and found progressive upregulation of the mRNA and protein levels of Cx43. Subsequently, we generated an astroglial Cx43 knockout (KO) AD mouse model by crossbreeding Gfap (glial fibrillary acidic protein)-Cx43 KO mice with APP/PS1 mice. Then we assessed the cognitive function of 12-month-old APP (amyloid precursor protein)/PS1 (presenilin 1)/Gfap-Cx43 KO mice, which demonstrated that the deletion of astroglial Cx43 significantly ameliorated cognitive dysfunction. To further investigate the underlying mechanisms, we evaluated amyloid plaque formation, astrogliosis, and synaptic function. The number and area of amyloid plaques were not altered, but GFAP expression was significantly decreased and the number of synapses was markedly upregulated. These results suggest that deletion of astroglial Cx43 in APP/PS1 mice did not affect the formation of amyloid plaques but depressed astrogliosis and upregulated synaptic function. Moreover, levels of critical modulators of astroglial activation were also notably reduced, but those of pro- and anti-inflammatory cytokines were not altered. Furthermore, Cx43 regulation of postsynaptic elements targets mainly NMDAR (N-methyl-d-aspartate). In addition, the prevention of AD pathology was reversed by Cx43 re-expression. In sum, specific deletion of astroglial Cx43 in APP/PS1 mice improved cognitive dysfunction by decreasing astrogliosis and increasing synaptic function without affecting amyloid plaque formation or the inflammatory response.
Collapse
|
43
|
Farhy-Tselnicker I, Allen NJ. Astrocytes, neurons, synapses: a tripartite view on cortical circuit development. Neural Dev 2018; 13:7. [PMID: 29712572 PMCID: PMC5928581 DOI: 10.1186/s13064-018-0104-y] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/17/2018] [Indexed: 01/09/2023] Open
Abstract
In the mammalian cerebral cortex neurons are arranged in specific layers and form connections both within the cortex and with other brain regions, thus forming a complex mesh of specialized synaptic connections comprising distinct circuits. The correct establishment of these connections during development is crucial for the proper function of the brain. Astrocytes, a major type of glial cell, are important regulators of synapse formation and function during development. While neurogenesis precedes astrogenesis in the cortex, neuronal synapses only begin to form after astrocytes have been generated, concurrent with neuronal branching and process elaboration. Here we provide a combined overview of the developmental processes of synapse and circuit formation in the rodent cortex, emphasizing the timeline of both neuronal and astrocytic development and maturation. We further discuss the role of astrocytes at the synapse, focusing on astrocyte-synapse contact and the role of synapse-related proteins in promoting formation of distinct cortical circuits.
Collapse
Affiliation(s)
- Isabella Farhy-Tselnicker
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
44
|
Quarta E, Fulgenzi G, Bravi R, Cohen EJ, Yanpallewar S, Tessarollo L, Minciacchi D. Deletion of the endogenous TrkB.T1 receptor isoform restores the number of hippocampal CA1 parvalbumin-positive neurons and rescues long-term potentiation in pre-symptomatic mSOD1(G93A) ALS mice. Mol Cell Neurosci 2018; 89:33-41. [PMID: 29580900 DOI: 10.1016/j.mcn.2018.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/13/2018] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) causes rapidly progressive paralysis and death within 5 years from diagnosis due to degeneration of the motor circuits. However, a significant population of ALS patients also shows cognitive impairments and progressive hippocampal pathology. Likewise, the mutant SOD1(G93A) mouse model of ALS (mSOD1), in addition to loss of spinal motor neurons, displays altered spatial behavior and hippocampal abnormalities including loss of parvalbumin-positive interneurons (PVi) and enhanced long-term potentiation (LTP). However, the cellular and molecular mechanisms underlying these morpho-functional features are not well understood. Since removal of TrkB.T1, a receptor isoform of the brain-derived neurotrophic factor, can partially rescue the phenotype of the mSOD1 mice, here we tested whether removal of TrkB.T1 can normalize the number of PVi and the LTP in this model. Stereological analysis of hippocampal PVi in control, TrkB.T1-/-, mSOD1, and mSOD1 mice deficient for TrkB.T1 (mSOD1/T1-/-) showed that deletion of TrkB.T1 restored the number of PVi to physiological level in the mSOD1 hippocampus. The rescue of PVi neuron number is paralleled by a normalization of high-frequency stimulation-induced LTP in the pre-symptomatic mSOD1/T1-/- mice. Our experiments identified TrkB.T1 as a cellular player involved in the homeostasis of parvalbumin expressing interneurons and, in the context of murine ALS, show that TrkB.T1 is involved in the mechanism underlying structural and functional hippocampal degeneration. These findings have potential implications for hippocampal degeneration and cognitive impairments reported in ALS patients at early stages of the disease.
Collapse
Affiliation(s)
- Eros Quarta
- Physiological Science Section, Department of Experimental and Clinical Medicine, University of Florence, Italy; Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, Frederick, MD, USA
| | - Gianluca Fulgenzi
- Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, Frederick, MD, USA; Department of Molecular and Clinical Sciences, Marche Polytechnic University, Ancona, Italy
| | - Riccardo Bravi
- Physiological Science Section, Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Erez James Cohen
- Physiological Science Section, Department of Experimental and Clinical Medicine, University of Florence, Italy
| | | | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, Frederick, MD, USA
| | - Diego Minciacchi
- Physiological Science Section, Department of Experimental and Clinical Medicine, University of Florence, Italy.
| |
Collapse
|
45
|
Rosskothen-Kuhl N, Hildebrandt H, Birkenhäger R, Illing RB. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation. Front Cell Neurosci 2018. [PMID: 29520220 PMCID: PMC5827675 DOI: 10.3389/fncel.2018.00043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Neuron–glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron–glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation.
Collapse
Affiliation(s)
- Nicole Rosskothen-Kuhl
- Neurobiological Research Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg, Germany
| | - Heika Hildebrandt
- Neurobiological Research Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg, Germany
| | - Ralf Birkenhäger
- Molecular Biological Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg, Germany
| | - Robert-Benjamin Illing
- Neurobiological Research Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
46
|
Hillen AEJ, Burbach JPH, Hol EM. Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol 2018; 165-167:66-86. [PMID: 29444459 DOI: 10.1016/j.pneurobio.2018.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Astrocytes contribute to the formation, function, and plasticity of synapses. Their processes enwrap the neuronal components of the tripartite synapse, and due to this close interaction they are perfectly positioned to modulate neuronal communication. The interaction between astrocytes and synapses is facilitated by cell adhesion molecules and matricellular proteins, which have been implicated in the formation and functioning of tripartite synapses. The importance of such neuron-astrocyte integration at the synapse is underscored by the emerging role of astrocyte dysfunction in synaptic pathologies such as autism and schizophrenia. Here we review astrocyte-expressed cell adhesion molecules and matricellular molecules that play a role in integration of neurons and astrocytes within the tripartite synapse.
Collapse
Affiliation(s)
- Anne E J Hillen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Department of Pediatrics/Child Neurology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Ding S, Zhuge W, Hu J, Yang J, Wang X, Wen F, Wang C, Zhuge Q. Baicalin reverses the impairment of synaptogenesis induced by dopamine burden via the stimulation of GABA AR-TrkB interaction in minimal hepatic encephalopathy. Psychopharmacology (Berl) 2018; 235:1163-1178. [PMID: 29404643 PMCID: PMC5869945 DOI: 10.1007/s00213-018-4833-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 01/08/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND It has been reported that D1 receptor (D1R) activation reduces GABAA receptor (GABAAR) current, and baicalin (BAI) displays therapeutic efficacy in diseases involving cognitive impairment. METHODS We investigated the mechanisms by which BAI could improve DA-induced minimal hepatic encephalopathy (MHE) using immunoblotting, immunofluorescence, and co-immunoprecipitation. RESULTS BAI did not induce toxicity on the primary cultured neurons. And no obvious toxicity of BAI to the brain was found in rats. DA activated D1R/dopamine and adenosine 3'5'-monophosphate-regulated phospho-protein (DARPP32) to reduce the GABAAR current; BAI treatment did not change the D1R/DARPP32 levels but blocked DA-induced reduction of GABAAR levels in primary cultured neurons. DA decreased the interaction of GABAAR with TrkB and the expression of downstream AKT, which was blocked by BAI treatment. Moreover, BAI reversed the decrease in the expression of GABAAR/TrkB/AKT and prevented the impairment of synaptogenesis and memory deficits in MHE rats. CONCLUSIONS These results suggest that BAI has neuroprotective and synaptoprotective effects on MHE which are not related to upstream D1R/DARPP32 signaling, but to the targeting of downstream GABAAR signaling to TrkB.
Collapse
Affiliation(s)
- Saidan Ding
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Weishan Zhuge
- Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Jiangnan Hu
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107 USA
| | - Jianjing Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Xuebao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Fangfang Wen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Chengde Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China.
| |
Collapse
|
48
|
Sild M, Ruthazer ES, Booij L. Major depressive disorder and anxiety disorders from the glial perspective: Etiological mechanisms, intervention and monitoring. Neurosci Biobehav Rev 2017; 83:474-488. [DOI: 10.1016/j.neubiorev.2017.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
|
49
|
Um JW. Roles of Glial Cells in Sculpting Inhibitory Synapses and Neural Circuits. Front Mol Neurosci 2017; 10:381. [PMID: 29180953 PMCID: PMC5694142 DOI: 10.3389/fnmol.2017.00381] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023] Open
Abstract
Glial cells are essential for every aspect of normal neuronal development, synapse formation, and function in the central nervous system (CNS). Astrocytes secrete a variety of factors that regulate synaptic connectivity and circuit formation. Microglia also modulate synapse development through phagocytic activity. Most of the known actions of CNS glial cells are limited to roles at excitatory synapses. Nevertheless, studies have indicated that both astrocytes and microglia shape inhibitory synaptic connections through various mechanisms, including release of regulatory molecules, direct contact with synaptic terminals, and utilization of mediators in the extracellular matrix. This review summarizes recent investigations into the mechanisms underlying CNS glial cell-mediated inhibitory synapse development.
Collapse
Affiliation(s)
- Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
50
|
Cell Biology of Astrocyte-Synapse Interactions. Neuron 2017; 96:697-708. [PMID: 29096081 DOI: 10.1016/j.neuron.2017.09.056] [Citation(s) in RCA: 679] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022]
Abstract
Astrocytes, the most abundant glial cells in the mammalian brain, are critical regulators of brain development and physiology through dynamic and often bidirectional interactions with neuronal synapses. Despite the clear importance of astrocytes for the establishment and maintenance of proper synaptic connectivity, our understanding of their role in brain function is still in its infancy. We propose that this is at least in part due to large gaps in our knowledge of the cell biology of astrocytes and the mechanisms they use to interact with synapses. In this review, we summarize some of the seminal findings that yield important insight into the cellular and molecular basis of astrocyte-neuron communication, focusing on the role of astrocytes in the development and remodeling of synapses. Furthermore, we pose some pressing questions that need to be addressed to advance our mechanistic understanding of the role of astrocytes in regulating synaptic development.
Collapse
|