1
|
Chizhikov VV, Iskusnykh IY. Cortical hem signaling center: functions, development, and potential implications for evolution and brain disorders. Neural Regen Res 2025; 20:1079-1080. [PMID: 38989940 PMCID: PMC11438340 DOI: 10.4103/nrr.nrr-d-23-01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Victor V. Chizhikov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Igor Y. Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
2
|
Nieto-Estevez V, Varma P, Mirsadeghi S, Caballero J, Gamero-Alameda S, Hosseini A, Silvosa MJ, Thodeson DM, Lybrand ZR, Giugliano M, Navara C, Hsieh J. Dual effects of ARX poly-alanine mutations in human cortical and interneuron development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577271. [PMID: 38328230 PMCID: PMC10849640 DOI: 10.1101/2024.01.25.577271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Infantile spasms, with an incidence of 1.6 to 4.5 per 10,000 live births, are a relentless and devastating childhood epilepsy marked by severe seizures but also leads to lifelong intellectual disability. Alarmingly, up to 5% of males with this condition carry a mutation in the Aristaless-related homeobox ( ARX ) gene. Our current lack of human-specific models for developmental epilepsy, coupled with discrepancies between animal studies and human data, underscores the gap in knowledge and urgent need for innovative human models, organoids being one of the best available. Here, we used human neural organoid models, cortical organoids (CO) and ganglionic eminences organoids (GEO) which mimic cortical and interneuron development respectively, to study the consequences of PAE mutations, one of the most prevalent mutation in ARX . ARX PAE produces a decrease expression of ARX in GEOs, and an enhancement in interneuron migration. That accelerated migration is cell autonomously driven, and it can be rescued by inhibiting CXCR4. We also found that PAE mutations result in an early increase in radial glia cells and intermediate progenitor cells, followed by a subsequent loss of cortical neurons at later timepoints. Moreover, ARX expression is upregulated in COs derived from patients at 30 DIV and is associated with alterations in the expression of CDKN1C . Furthermore, ARX PAE assembloids had hyperactivity which were evident at early stages of development. With effective treatments for infantile spasms and developmental epilepsies still elusive, delving into the role of ARX PAE mutations in human brain organoids represents a pivotal step toward uncovering groundbreaking therapeutic strategies.
Collapse
|
3
|
Ohyama K, Shinohara HM, Takayama N, Ogawa R, Omura S, Hayashida M, Takahashi T. Differentiation stage-specific expression of transcriptional regulators for epithelial mesenchymal transition in dentate granule progenitors. Front Neurosci 2024; 18:1425849. [PMID: 39268037 PMCID: PMC11390541 DOI: 10.3389/fnins.2024.1425849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
During the development of the mouse dentate gyrus (DG), granule neuronal progenitors (GNPs) arise from glial fibrillary acidic protein (GFAP)-expressing neural stem cells in the dentate notch. However, the transcriptional regulators that control their stepwise differentiation remain poorly defined. Since neurogenesis involves epithelial-to-mesenchymal transition (EMT)-like processes, we investigated the spatio-temporal expression profiles of the EMT transcription factors Zeb1, Scratch2 (Scrt2) and Nkx6-2 in relation to known GNP markers. Our results show that Zeb1 and Scrt2 exhibit sequential, but partially overlapping expression across embryonic and postnatal stages of GNP differentiation. Zeb1 is highly enriched in gfap-GFP+/Sox2+ neural stem/progenitor pools and subsets of Tbr2+/Prox1+/NeuroD+ intermediate GNPs, whereas Scrt2 predominates in Tbr2+/Prox1+/NeuroD+ GNPs. Strikingly, the neuronal EMT regulator Nkx6-2 shows selective expression in postnatal Tbr2+/Prox1+ GNPs, but it is excluded from embryonic counterparts. This temporally coordinated yet distinct expression of Zeb1, Scrt2 and Nkx6-2 reveals discrete transcriptional programs orchestrating GNP differentiation and neurogenic progression at embryonic versus postnatal stages of DG neurogenesis.
Collapse
Affiliation(s)
- Kyoji Ohyama
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi M Shinohara
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Natsumi Takayama
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Rina Ogawa
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Shoichiro Omura
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Mio Hayashida
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Tokiharu Takahashi
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Ma A, Mu Y, Wei Z, Sun M, Li J, Jiang H, Zhu C, Chen X. SRSF10 regulates migration of neural progenitor cells and granule cells and affects the formation of dentate gyrus during the development of mouse hippocampus. Neuroscience 2024; 552:142-151. [PMID: 38960088 DOI: 10.1016/j.neuroscience.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Hippocampus is a critical component of the central nervous system. SRSF10 is expressed in central nervous system and plays important roles in maintaining normal brain functions. However, its role in hippocampus development is unknown. In this study, using SRSF10 conditional knock-out mice in neural progenitor cells (NPCs), we found that dysfunction of SRSF10 leads to developmental defects in the dentate gyrus of hippocampus, which manifests as the reduced length and wider suprapyramidal blade and infrapyramidal blade.Furthermore, we proved that loss of SRSF10 in NPCs caused inhibition of the differentiation activity and the abnormal migration of NPCs and granule cells, resulting in reduced granule cells and more ectopic granule cells dispersed in the molecular layer and hilus. Finally, we found that the abnormal migration may be caused by the radial glia scaffold and the reduced DISC1 expression in NPCs. Together, our results indicate that SRSF10 is required for the cell migration and formation of dentate gyrus during the development of hippocampus.
Collapse
Affiliation(s)
- Ankangzhi Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yawei Mu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zixuan Wei
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Menghan Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Junjie Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hanyang Jiang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Cuiqing Zhu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xianhua Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Hegarty BE, Gruenhagen GW, Johnson ZV, Baker CM, Streelman JT. Spatially resolved cell atlas of the teleost telencephalon and deep homology of the vertebrate forebrain. Commun Biol 2024; 7:612. [PMID: 38773256 PMCID: PMC11109250 DOI: 10.1038/s42003-024-06315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
The telencephalon has undergone remarkable diversification and expansion throughout vertebrate evolution, exhibiting striking variations in structural and functional complexity. Nevertheless, fundamental features are shared across vertebrate taxa, such as the presence of distinct regions including the pallium, subpallium, and olfactory structures. Teleost fishes have a uniquely "everted" telencephalon, which has confounded comparisons of their brain regions to other vertebrates. Here we combine spatial transcriptomics and single nucleus RNA-sequencing to generate a spatially-resolved transcriptional atlas of the Mchenga conophorus cichlid fish telencephalon. We then compare cell-types and anatomical regions in the cichlid telencephalon with those in amphibians, reptiles, birds, and mammals. We uncover striking transcriptional similarities between cell-types in the fish telencephalon and subpallial, hippocampal, and cortical cell-types in tetrapods, and find support for partial eversion of the teleost telencephalon. Ultimately, our work lends new insights into the organization and evolution of conserved cell-types and regions in the vertebrate forebrain.
Collapse
Affiliation(s)
- Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30329, USA
| | - Cristina M Baker
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
6
|
Pastor-Alonso O, Syeda Zahra A, Kaske B, García-Moreno F, Tetzlaff F, Bockelmann E, Grunwald V, Martín-Suárez S, Riecken K, Witte OW, Encinas JM, Urbach A. Generation of adult hippocampal neural stem cells occurs in the early postnatal dentate gyrus and depends on cyclin D2. EMBO J 2024; 43:317-338. [PMID: 38177500 PMCID: PMC10897295 DOI: 10.1038/s44318-023-00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 11/03/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
Lifelong hippocampal neurogenesis is maintained by a pool of multipotent adult neural stem cells (aNSCs) residing in the subgranular zone of the dentate gyrus (DG). The mechanisms guiding transition of NSCs from the developmental to the adult state remain unclear. We show here, by using nestin-based reporter mice deficient for cyclin D2, that the aNSC pool is established through cyclin D2-dependent proliferation during the first two weeks of life. The absence of cyclin D2 does not affect normal development of the dentate gyrus until birth but prevents postnatal formation of radial glia-like aNSCs. Furthermore, retroviral fate mapping reveals that aNSCs are born on-site from precursors located in the dentate gyrus shortly after birth. Taken together, our data identify the critical time window and the spatial location of the precursor divisions that generate the persistent population of aNSCs and demonstrate the central role of cyclin D2 in this process.
Collapse
Affiliation(s)
- Oier Pastor-Alonso
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Scientific Park, 48940, Leioa, Bizkaia, Spain
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Anum Syeda Zahra
- Department of Neurology, Jena University Hospital, 07747, Jena, Germany
| | - Bente Kaske
- Department of Neurology, Jena University Hospital, 07747, Jena, Germany
| | - Fernando García-Moreno
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Scientific Park, 48940, Leioa, Bizkaia, Spain
- IKERBASQUE, The Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbo, Bizkaia, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Scientific Park, 48940, Leioa, Bizkaia, Spain
| | - Felix Tetzlaff
- Department of Neurology, Jena University Hospital, 07747, Jena, Germany
| | - Enno Bockelmann
- Department of Neurology, Jena University Hospital, 07747, Jena, Germany
| | - Vanessa Grunwald
- Department of Neurology, Jena University Hospital, 07747, Jena, Germany
| | - Soraya Martín-Suárez
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Scientific Park, 48940, Leioa, Bizkaia, Spain
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Otto Wilhelm Witte
- Department of Neurology, Jena University Hospital, 07747, Jena, Germany
- Jena Centre for Healthy Aging, Jena University Hospital, 07747, Jena, Germany
| | - Juan Manuel Encinas
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Scientific Park, 48940, Leioa, Bizkaia, Spain.
- IKERBASQUE, The Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbo, Bizkaia, Spain.
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Scientific Park, 48940, Leioa, Bizkaia, Spain.
| | - Anja Urbach
- Department of Neurology, Jena University Hospital, 07747, Jena, Germany.
- Jena Centre for Healthy Aging, Jena University Hospital, 07747, Jena, Germany.
| |
Collapse
|
7
|
Iskusnykh IY, Fattakhov N, Li Y, Bihannic L, Kirchner MK, Steshina EY, Northcott PA, Chizhikov VV. Lmx1a is a master regulator of the cortical hem. eLife 2023; 12:e84095. [PMID: 37725078 PMCID: PMC10508884 DOI: 10.7554/elife.84095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Abstract
Development of the nervous system depends on signaling centers - specialized cellular populations that produce secreted molecules to regulate neurogenesis in the neighboring neuroepithelium. In some cases, signaling center cells also differentiate to produce key types of neurons. The formation of a signaling center involves its induction, the maintenance of expression of its secreted molecules, and cell differentiation and migration events. How these distinct processes are coordinated during signaling center development remains unknown. By performing studies in mice, we show that Lmx1a acts as a master regulator to orchestrate the formation and function of the cortical hem (CH), a critical signaling center that controls hippocampus development. Lmx1a co-regulates CH induction, its Wnt signaling, and the differentiation and migration of CH-derived Cajal-Retzius neurons. Combining RNAseq, genetic, and rescue experiments, we identified major downstream genes that mediate distinct Lmx1a-dependent processes. Our work revealed that signaling centers in the mammalian brain employ master regulatory genes and established a framework for analyzing signaling center development.
Collapse
Affiliation(s)
- Igor Y Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Nikolai Fattakhov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Laure Bihannic
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Matthew K Kirchner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Ekaterina Y Steshina
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| |
Collapse
|
8
|
Huilgol D, Levine JM, Galbavy W, Wang BS, He M, Suryanarayana SM, Huang ZJ. Direct and indirect neurogenesis generate a mosaic of distinct glutamatergic projection neuron types in cerebral cortex. Neuron 2023; 111:2557-2569.e4. [PMID: 37348506 PMCID: PMC10527425 DOI: 10.1016/j.neuron.2023.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/27/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Variations in size and complexity of the cerebral cortex result from differences in neuron number and composition, rooted in evolutionary changes in direct and indirect neurogenesis (dNG and iNG) that are mediated by radial glia and intermediate progenitors (IPs), respectively. How dNG and iNG differentially contribute to neuronal number, diversity, and connectivity are unknown. Establishing a genetic fate-mapping method to differentially visualize dNG and iNG in mice, we found that while both dNG and iNG contribute to all cortical structures, iNG contributes the largest relative proportions to the hippocampus and neocortex. Within the neocortex, whereas dNG generates all major glutamatergic projection neuron (PN) classes, iNG differentially amplifies and diversifies PNs within each class; the two pathways generate distinct PN types and assemble fine mosaics of lineage-based cortical subnetworks. Our results establish a ground-level lineage framework for understanding cortical development and evolution by linking foundational progenitor types and neurogenic pathways to PN types.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jesse M Levine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - William Galbavy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bor-Shuen Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Miao He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | - Z Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
9
|
Hegarty BE, Gruenhagen GW, Johnson ZV, Baker CM, Streelman JT. Spatially resolved cell atlas of the teleost telencephalon and deep homology of the vertebrate forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549873. [PMID: 37503039 PMCID: PMC10370212 DOI: 10.1101/2023.07.20.549873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The telencephalon has undergone remarkable diversification and expansion throughout vertebrate evolution, exhibiting striking differences in structural and functional complexity. Nevertheless, fundamental features are shared across vertebrate taxa, such as the presence of distinct regions including the pallium, subpallium, and olfactory structures. Teleost fishes have a uniquely 'everted' telencephalon, which has made it challenging to compare brain regions in fish to those in other vertebrates. Here we combine spatial transcriptomics and single-nucleus RNA-sequencing to generate a spatially-resolved transcriptional atlas of the cichlid fish telencephalon. We then compare cell-types and anatomical regions in the cichlid telencephalon with those in amphibians, reptiles, birds, and mammals. We uncover striking transcriptional similarities between cell populations in the fish telencephalon and subpallial, hippocampal, and cortical cell populations in tetrapods. Ultimately, our work lends new insights into the organization and evolution of conserved cell-types and regions in the vertebrate forebrain.
Collapse
Affiliation(s)
- Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30329
| | - Cristina M Baker
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
10
|
Jiménez S, Moreno N. Development of subdomains in the medial pallium of Xenopus laevis and Trachemys scripta: Insights into the anamniote-amniote transition. Front Neuroanat 2022; 16:1039081. [PMID: 36406242 PMCID: PMC9670315 DOI: 10.3389/fnana.2022.1039081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
In all vertebrates, the most dorsal region of the telencephalon gives rise to the pallium, which in turn, is formed by at least four evolutionarily conserved histogenetic domains. Particularly in mammals, the medial pallium generates the hippocampal formation. Although this region is structurally different among amniotes, its functions, attributed to spatial memory and social behavior, as well as the specification of the histogenetic domain, appears to be conserved. Thus, the aim of the present study was to analyze this region by comparative analysis of the expression patterns of conserved markers in two vertebrate models: one anamniote, the amphibian Xenopus laevis; and the other amniote, the turtle Trachemys scripta elegans, during development and in adulthood. Our results show that, the histogenetic specification of both models is comparable, despite significant cytoarchitectonic differences, in particular the layered cortical arrangement present in the turtle, not found in anurans. Two subdivisions were observed in the medial pallium of these species: a Prox1 + and another Er81/Lmo4 +, comparable to the dentate gyrus and the mammalian cornu ammonis region, respectively. The expression pattern of additional markers supports this subdivision, which together with its functional involvement in spatial memory tasks, provides evidence supporting the existence of a basic program in the specification and functionality of the medial pallium at the base of tetrapods. These results further suggest that the anatomical differences found in different vertebrates may be due to divergences and adaptations during evolution.
Collapse
Affiliation(s)
| | - Nerea Moreno
- *Correspondence: Nerea Moreno, , orcid.org/0000-0002-5578-192X
| |
Collapse
|
11
|
López-Mengual A, Segura-Feliu M, Sunyer R, Sanz-Fraile H, Otero J, Mesquida-Veny F, Gil V, Hervera A, Ferrer I, Soriano J, Trepat X, Farré R, Navajas D, Del Río JA. Involvement of Mechanical Cues in the Migration of Cajal-Retzius Cells in the Marginal Zone During Neocortical Development. Front Cell Dev Biol 2022; 10:886110. [PMID: 35652101 PMCID: PMC9150848 DOI: 10.3389/fcell.2022.886110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence points to coordinated action of chemical and mechanical cues during brain development. At early stages of neocortical development, angiogenic factors and chemokines such as CXCL12, ephrins, and semaphorins assume crucial roles in orchestrating neuronal migration and axon elongation of postmitotic neurons. Here we explore the intrinsic mechanical properties of the developing marginal zone of the pallium in the migratory pathways and brain distribution of the pioneer Cajal-Retzius cells. These neurons are generated in several proliferative regions in the developing brain (e.g., the cortical hem and the pallial subpallial boundary) and migrate tangentially in the preplate/marginal zone covering the upper portion of the developing cortex. These cells play crucial roles in correct neocortical layer formation by secreting several molecules such as Reelin. Our results indicate that the motogenic properties of Cajal-Retzius cells and their perinatal distribution in the marginal zone are modulated by both chemical and mechanical factors, by the specific mechanical properties of Cajal-Retzius cells, and by the differential stiffness of the migratory routes. Indeed, cells originating in the cortical hem display higher migratory capacities than those generated in the pallial subpallial boundary which may be involved in the differential distribution of these cells in the dorsal-lateral axis in the developing marginal zone.
Collapse
Affiliation(s)
- Ana López-Mengual
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Miriam Segura-Feliu
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Raimon Sunyer
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain
| | - Héctor Sanz-Fraile
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Otero
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain
| | - Francina Mesquida-Veny
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Arnau Hervera
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Isidre Ferrer
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Senior Consultant, Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de La Matèria Condensada, Universitat de Barcelona, Barcelona, Spain.,University of Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Xavier Trepat
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Integrative Cell and Tissue Dynamics, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Institució Catalana de Recerca I Estudis Avançats, University of Barcelona, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain.,Institut D'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain.,Cellular and Respiratory Biomechanics, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Mercurio S, Serra L, Pagin M, Nicolis SK. Deconstructing Sox2 Function in Brain Development and Disease. Cells 2022; 11:cells11101604. [PMID: 35626641 PMCID: PMC9139651 DOI: 10.3390/cells11101604] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
SOX2 is a transcription factor conserved throughout vertebrate evolution, whose expression marks the central nervous system from the earliest developmental stages. In humans, SOX2 mutation leads to a spectrum of CNS defects, including vision and hippocampus impairments, intellectual disability, and motor control problems. Here, we review how conditional Sox2 knockout (cKO) in mouse with different Cre recombinases leads to very diverse phenotypes in different regions of the developing and postnatal brain. Surprisingly, despite the widespread expression of Sox2 in neural stem/progenitor cells of the developing neural tube, some regions (hippocampus, ventral forebrain) appear much more vulnerable than others to Sox2 deletion. Furthermore, the stage of Sox2 deletion is also a critical determinant of the resulting defects, pointing to a stage-specificity of SOX2 function. Finally, cKOs illuminate the importance of SOX2 function in different cell types according to the different affected brain regions (neural precursors, GABAergic interneurons, glutamatergic projection neurons, Bergmann glia). We also review human genetics data regarding the brain defects identified in patients carrying mutations within human SOX2 and examine the parallels with mouse mutants. Functional genomics approaches have started to identify SOX2 molecular targets, and their relevance for SOX2 function in brain development and disease will be discussed.
Collapse
|
13
|
Lim J, Chu YC, Tai HH, Chien A, Huang SS, Chen CC, Wang JL. Auditory independent low-intensity ultrasound stimulation of mouse brain is associated with neuronal ERK phosphorylation and an increase of Tbr2 marked neuroprogenitors. Biochem Biophys Res Commun 2022; 613:113-119. [PMID: 35550197 DOI: 10.1016/j.bbrc.2022.04.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
Abstract
Transcranial ultrasound stimulation is an emerging technique for the development of a non-invasive neuromodulation device for the treatment of various types of neurodegenerations and brain damages. However, there are very few studies that have quantified the optimal ultrasound dosage and the long-term associated effects of transcranial ultrasound treatments of brain diseases. In this study, we used a simple ex vivo hippocampal tissues stimulated by different dosages of ultrasound in combination with different chemical treatments to quantify the required energy for a measurable effect. After determining the most desirable ex vivo stimulation conditions, it was then replicated for the in vivo mouse brains. It was discovered that transcranial ultrasound promoted the increase of Tbr2-expressing neural progenitors in an ASIC1a-dependent manner. Furthermore, such effect was observable at least a week after the initial ultrasound treatments and was not abolished by auditory toxicity.
Collapse
Affiliation(s)
- Jormay Lim
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taiwan
| | - Ya-Cherng Chu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taiwan
| | - Hsiao-Hsin Tai
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taiwan
| | - Andy Chien
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taiwan
| | - Shao-Shiang Huang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taiwan
| | - Chih-Cheng Chen
- Research Fellow and Deputy Director, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taiwan.
| |
Collapse
|
14
|
Early Life Events and Maturation of the Dentate Gyrus: Implications for Neurons and Glial Cells. Int J Mol Sci 2022; 23:ijms23084261. [PMID: 35457079 PMCID: PMC9031216 DOI: 10.3390/ijms23084261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
The dentate gyrus (DG), an important part of the hippocampus, plays a significant role in learning, memory, and emotional behavior. Factors potentially influencing normal development of neurons and glial cells in the DG during its maturation can exert long-lasting effects on brain functions. Early life stress may modify maturation of the DG and induce lifelong alterations in its structure and functioning, underlying brain pathologies in adults. In this paper, maturation of neurons and glial cells (microglia and astrocytes) and the effects of early life events on maturation processes in the DG have been comprehensively reviewed. Early postnatal interventions affecting the DG eventually result in an altered number of granule neurons in the DG, ectopic location of neurons and changes in adult neurogenesis. Adverse events in early life provoke proinflammatory changes in hippocampal glia at cellular and molecular levels immediately after stress exposure. Later, the cellular changes may disappear, though alterations in gene expression pattern persist. Additional stressful events later in life contribute to manifestation of glial changes and behavioral deficits. Alterations in the maturation of neuronal and glial cells induced by early life stress are interdependent and influence the development of neural nets, thus predisposing the brain to the development of cognitive and psychiatric disorders.
Collapse
|
15
|
Siskos N, Ververidis C, Skavdis G, Grigoriou ME. Genoarchitectonic Compartmentalization of the Embryonic Telencephalon: Insights From the Domestic Cat. Front Neuroanat 2022; 15:785541. [PMID: 34975420 PMCID: PMC8716433 DOI: 10.3389/fnana.2021.785541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The telencephalon develops from the alar plate of the secondary prosencephalon and is subdivided into two distinct divisions, the pallium, which derives solely from prosomere hp1, and the subpallium which derives from both hp1 and hp2 prosomeres. In this first systematic analysis of the feline telencephalon genoarchitecture, we apply the prosomeric model to compare the expression of a battery of genes, including Tbr1, Tbr2, Pax6, Mash1, Dlx2, Nkx2-1, Lhx6, Lhx7, Lhx2, and Emx1, the orthologs of which alone or in combination, demarcate molecularly distinct territories in other species. We characterize, within the pallium and the subpallium, domains and subdomains topologically equivalent to those previously described in other vertebrate species and we show that the overall genoarchitectural map of the E26/27 feline brain is highly similar to that of the E13.5/E14 mouse. In addition, using the same approach at the earlier (E22/23 and E24/25) or later (E28/29 and E34/35) stages we further analyze neurogenesis, define the timing and duration of several developmental events, and compare our data with those from similar mouse studies; our results point to a complex pattern of heterochronies and show that, compared with the mouse, developmental events in the feline telencephalon span over extended periods suggesting that cats may provide a useful animal model to study brain patterning in ontogenesis and evolution.
Collapse
Affiliation(s)
- Nikistratos Siskos
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Charalampos Ververidis
- Obstetrics and Surgery Unit, Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Skavdis
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria E Grigoriou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
16
|
Jiménez S, Moreno N. Analysis of the Expression Pattern of Cajal-Retzius Cell Markers in the Xenopus laevis Forebrain. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:263-282. [PMID: 34614492 DOI: 10.1159/000519025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/09/2021] [Indexed: 01/26/2023]
Abstract
Cajal-Retzius cells are essential for cortical development in mammals, and their involvement in the evolution of this structure has been widely postulated, but very little is known about their progenitor domains in non-mammalian vertebrates. Using in situhybridization and immunofluorescence techniques we analyzed the expression of some of the main Cajal-Retzius cell markers such as Dbx1, Ebf3, ER81, Lhx1, Lhx5, p73, Reelin, Wnt3a, Zic1, and Zic2 in the forebrain of the anuran Xenopus laevis, because amphibians are the only class of anamniote tetrapods and show a tetrapartite evaginated pallium, but no layered or nuclear organization. Our results suggested that the Cajal-Retzius cell progenitor domains were comparable to those previously described in amniotes. Thus, at dorsomedial telencephalic portions a region comparable to the cortical hem was defined in Xenopus based on the expression of Wnt3a, p73, Reelin, Zic1, and Zic2. In the septum, two different domains were observed: a periventricular dorsal septum, at the limit between the pallium and the subpallium, expressing Reelin, Zic1, and Zic2, and a related septal domain, expressing Ebf3, Zic1, and Zic2. In the lateral telencephalon, the ventral pallium next to the pallio-subpallial boundary, the lack of Dbx1 and the unique expression of Reelin during development defined this territory as the most divergent with respect to mammals. Finally, we also analyzed the expression of these markers at the prethalamic eminence region, suggested as Cajal-Retzius progenitor domain in amniotes, observing there Zic1, Zic2, ER81, and Lhx1 expression. Our data show that in anurans there are different subtypes and progenitor domains of Cajal-Retzius cells, which probably contribute to the cortical regional specification and territory-specific properties. This supports the notion that the basic organization of pallial derivatives in vertebrates follows a comparable fundamental arrangement, even in those that do not have a sophisticated stratified cortical structure like the mammalian cerebral cortex.
Collapse
Affiliation(s)
- Sara Jiménez
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| |
Collapse
|
17
|
Guy B, Zhang JS, Duncan LH, Johnston RJ. Human neural organoids: Models for developmental neurobiology and disease. Dev Biol 2021; 478:102-121. [PMID: 34181916 PMCID: PMC8364509 DOI: 10.1016/j.ydbio.2021.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Human organoids stand at the forefront of basic and translational research, providing experimentally tractable systems to study human development and disease. These stem cell-derived, in vitro cultures can generate a multitude of tissue and organ types, including distinct brain regions and sensory systems. Neural organoid systems have provided fundamental insights into molecular mechanisms governing cell fate specification and neural circuit assembly and serve as promising tools for drug discovery and understanding disease pathogenesis. In this review, we discuss several human neural organoid systems, how they are generated, advances in 3D imaging and bioengineering, and the impact of organoid studies on our understanding of the human nervous system.
Collapse
Affiliation(s)
- Brian Guy
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Jingliang Simon Zhang
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Leighton H Duncan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
18
|
Castanza AS, Ramirez S, Tripathi PP, Daza RAM, Kalume FK, Ramirez JM, Hevner RF. AUTS2 Regulates RNA Metabolism and Dentate Gyrus Development in Mice. Cereb Cortex 2021; 31:4808-4824. [PMID: 34013328 DOI: 10.1093/cercor/bhab124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Human AUTS2 mutations are linked to a syndrome of intellectual disability, autistic features, epilepsy, and other neurological and somatic disorders. Although it is known that this unique gene is highly expressed in developing cerebral cortex, the molecular and developmental functions of AUTS2 protein remain unclear. Using proteomics methods to identify AUTS2 binding partners in neonatal mouse cerebral cortex, we found that AUTS2 associates with multiple proteins that regulate RNA transcription, splicing, localization, and stability. Furthermore, AUTS2-containing protein complexes isolated from cortical tissue bound specific RNA transcripts in RNA immunoprecipitation and sequencing assays. Deletion of all major functional isoforms of AUTS2 (full-length and C-terminal) by conditional excision of exon 15 caused breathing abnormalities and neonatal lethality when Auts2 was inactivated throughout the developing brain. Mice with limited inactivation of Auts2 in cerebral cortex survived but displayed abnormalities of cerebral cortex structure and function, including dentate gyrus hypoplasia with agenesis of hilar mossy neurons, and abnormal spiking activity on EEG. Also, RNA transcripts that normally associate with AUTS2 were dysregulated in mutant mice. Together, these findings indicate that AUTS2 regulates RNA metabolism and is essential for development of cerebral cortex, as well as subcortical breathing centers.
Collapse
Affiliation(s)
- Anthony S Castanza
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanja Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Prem P Tripathi
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Ray A M Daza
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Franck K Kalume
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Neurological Surgery, University of Washington, Seattle, WA 98014, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Neurological Surgery, University of Washington, Seattle, WA 98014, USA
| | - Robert F Hevner
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.,Department of Neurological Surgery, University of Washington, Seattle, WA 98014, USA
| |
Collapse
|
19
|
Moore SA, Iulianella A. Development of the mammalian cortical hem and its derivatives: the choroid plexus, Cajal-Retzius cells and hippocampus. Open Biol 2021; 11:210042. [PMID: 33947245 PMCID: PMC8097212 DOI: 10.1098/rsob.210042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
The dorsal medial region of the developing mammalian telencephalon plays a central role in the patterning of the adjacent brain regions. This review describes the development of this specialized region of the vertebrate brain, called the cortical hem, and the formation of the various cells and structures it gives rise to, including the choroid plexus, Cajal-Retzius cells and the hippocampus. We highlight the ontogenic processes that create these different forebrain derivatives from their shared embryonic origin and discuss the key signalling pathways and molecules that influence the patterning of the cortical hem. These include BMP, Wnt, FGF and Shh signalling pathways acting with Homeobox factors to carve the medial telencephalon into district progenitor regions, which in turn give rise to the choroid plexus, dentate gyrus and hippocampus. We then link the formation of the lateral ventricle choroid plexus with embryonic and postnatal neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Samantha A. Moore
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia, Canada, B3H4R2
| | - Angelo Iulianella
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia, Canada, B3H4R2
| |
Collapse
|
20
|
Khuu MA, Nallamothu T, Castro-Rivera CI, Arias-Cavieres A, Szujewski CC, Garcia Iii AJ. Stage-dependent effects of intermittent hypoxia influence the outcome of hippocampal adult neurogenesis. Sci Rep 2021; 11:6005. [PMID: 33727588 PMCID: PMC7966401 DOI: 10.1038/s41598-021-85357-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Over one billion adults worldwide are estimated to suffer from sleep apnea, a condition with wide-reaching effects on brain health. Sleep apnea causes cognitive decline and is a risk factor for neurodegenerative conditions such as Alzheimer’s disease. Rodents exposed to intermittent hypoxia (IH), a hallmark of sleep apnea, exhibit spatial memory deficits associated with impaired hippocampal neurophysiology and dysregulated adult neurogenesis. We demonstrate that IH creates a pro-oxidant condition that reduces the Tbr2+ neural progenitor pool early in the process, while also suppressing terminal differentiation of adult born neurons during late adult neurogenesis. We further show that IH-dependent cell-autonomous hypoxia inducible factor 1-alpha (HIF1a) signaling is activated in early neuroprogenitors and enhances the generation of adult born neurons upon termination of IH. Our findings indicate that oscillations in oxygen homeostasis, such as those found in sleep apnea, have complex stage-dependent influence over hippocampal adult neurogenesis.
Collapse
Affiliation(s)
- Maggie A Khuu
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Thara Nallamothu
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Carolina I Castro-Rivera
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.,Committee On Neurobiology, The University of Chicago, Chicago, IL, 60307, USA.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| | - Alejandra Arias-Cavieres
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Caroline C Szujewski
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.,Committee On Neurobiology, The University of Chicago, Chicago, IL, 60307, USA.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| | - Alfredo J Garcia Iii
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA. .,Committee On Neurobiology, The University of Chicago, Chicago, IL, 60307, USA. .,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
21
|
Mercurio S, Alberti C, Serra L, Meneghini S, Berico P, Bertolini J, Becchetti A, Nicolis SK. An early Sox2-dependent gene expression programme required for hippocampal dentate gyrus development. Open Biol 2021; 11:200339. [PMID: 33622105 PMCID: PMC8061699 DOI: 10.1098/rsob.200339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The hippocampus is a brain area central for cognition. Mutations in the human SOX2 transcription factor cause neurodevelopmental defects, leading to intellectual disability and seizures, together with hippocampal dysplasia. We generated an allelic series of Sox2 conditional mutations in mouse, deleting Sox2 at different developmental stages. Late Sox2 deletion (from E11.5, via Nestin-Cre) affects only postnatal hippocampal development; earlier deletion (from E10.5, Emx1-Cre) significantly reduces the dentate gyrus (DG), and the earliest deletion (from E9.5, FoxG1-Cre) causes drastic abnormalities, with almost complete absence of the DG. We identify a set of functionally interconnected genes (Gli3, Wnt3a, Cxcr4, p73 and Tbr2), known to play essential roles in hippocampal embryogenesis, which are downregulated in early Sox2 mutants, and (Gli3 and Cxcr4) directly controlled by SOX2; their downregulation provides plausible molecular mechanisms contributing to the defect. Electrophysiological studies of the Emx1-Cre mouse model reveal altered excitatory transmission in CA1 and CA3 regions.
Collapse
Affiliation(s)
- Sara Mercurio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Chiara Alberti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Linda Serra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Pietro Berico
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Jessica Bertolini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
22
|
Rattner A, Terrillion CE, Jou C, Kleven T, Hu SF, Williams J, Hou Z, Aggarwal M, Mori S, Shin G, Goff LA, Witter MP, Pletnikov M, Fenton AA, Nathans J. Developmental, cellular, and behavioral phenotypes in a mouse model of congenital hypoplasia of the dentate gyrus. eLife 2020; 9:e62766. [PMID: 33084572 PMCID: PMC7577738 DOI: 10.7554/elife.62766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
In the hippocampus, a widely accepted model posits that the dentate gyrus improves learning and memory by enhancing discrimination between inputs. To test this model, we studied conditional knockout mice in which the vast majority of dentate granule cells (DGCs) fail to develop - including nearly all DGCs in the dorsal hippocampus - secondary to eliminating Wntless (Wls) in a subset of cortical progenitors with Gfap-Cre. Other cells in the Wlsfl/-;Gfap-Cre hippocampus were minimally affected, as determined by single nucleus RNA sequencing. CA3 pyramidal cells, the targets of DGC-derived mossy fibers, exhibited normal morphologies with a small reduction in the numbers of synaptic spines. Wlsfl/-;Gfap-Cre mice have a modest performance decrement in several complex spatial tasks, including active place avoidance. They were also modestly impaired in one simpler spatial task, finding a visible platform in the Morris water maze. These experiments support a role for DGCs in enhancing spatial learning and memory.
Collapse
Affiliation(s)
- Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chantelle E Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Claudia Jou
- Department of Physiology and Pharmacology, Robert F. Furchgott Center for Behavioral Neuroscience, State University of New York, Downstate Medical CenterBrooklynUnited States
| | - Tina Kleven
- Kavli Institute for Systems Neuroscience and Center for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| | - Shun Felix Hu
- Department of Physiology and Pharmacology, Robert F. Furchgott Center for Behavioral Neuroscience, State University of New York, Downstate Medical CenterBrooklynUnited States
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Zhipeng Hou
- Department of Radiology and Radiological Science, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Manisha Aggarwal
- Department of Radiology and Radiological Science, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Susumu Mori
- Department of Radiology and Radiological Science, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gloria Shin
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Loyal A Goff
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Center for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| | - Mikhail Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - André A Fenton
- Department of Physiology and Pharmacology, Robert F. Furchgott Center for Behavioral Neuroscience, State University of New York, Downstate Medical CenterBrooklynUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
- Neuroscience Institute at the New York University Langone Medical Center, New York UniversityNew YorkUnited States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Ophthalmology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
23
|
Reelin Mediates Hippocampal Cajal-Retzius Cell Positioning and Infrapyramidal Blade Morphogenesis. J Dev Biol 2020; 8:jdb8030020. [PMID: 32962021 PMCID: PMC7558149 DOI: 10.3390/jdb8030020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/31/2022] Open
Abstract
We have previously described hypomorphic reelin (Reln) mutant mice, RelnCTRdel, in which the morphology of the dentate gyrus is distinct from that seen in reeler mice. In the RelnCTRdel mutant, the infrapyramidal blade of the dentate gyrus fails to extend, while the suprapyramidal blade forms with a relatively compact granule neuron layer. Underlying this defect, we now report several developmental anomalies in the RelnCTRdel dentate gyrus. Most strikingly, the distribution of Cajal-Retzius cells was aberrant; Cajal-Retzius neurons were increased in the suprapyramidal blade, but were greatly reduced along the subpial surface of the prospective infrapyramidal blade. We also observed multiple abnormalities of the fimbriodentate junction. Firstly, progenitor cells were distributed abnormally; the “neurogenic cluster” at the fimbriodentate junction was absent, lacking the normal accumulation of Tbr2-positive intermediate progenitors. However, the number of dividing cells in the dentate gyrus was not generally decreased. Secondly, a defect of secondary glial scaffold formation, limited to the infrapyramidal blade, was observed. The densely radiating glial fibers characteristic of the normal fimbriodentate junction were absent in mutants. These fibers might be required for migration of progenitors, which may account for the failure of neurogenic cluster formation. These findings suggest the importance of the secondary scaffold and neurogenic cluster of the fimbriodentate junction in morphogenesis of the mammalian dentate gyrus. Our study provides direct genetic evidence showing that normal RELN function is required for Cajal-Retzius cell positioning in the dentate gyrus, and for formation of the fimbriodentate junction to promote infrapyramidal blade extension.
Collapse
|
24
|
Nambot S, Faivre L, Mirzaa G, Thevenon J, Bruel AL, Mosca-Boidron AL, Masurel-Paulet A, Goldenberg A, Le Meur N, Charollais A, Mignot C, Petit F, Rossi M, Metreau J, Layet V, Amram D, Boute-Bénéjean O, Bhoj E, Cousin MA, Kruisselbrink TM, Lanpher BC, Klee EW, Fiala E, Grange DK, Meschino WS, Hiatt SM, Cooper GM, Olivié H, Smith WE, Dumas M, Lehman A, Inglese C, Nizon M, Guerrini R, Vetro A, Kaplan ES, Miramar D, Van Gils J, Fergelot P, Bodamer O, Herkert JC, Pajusalu S, Õunap K, Filiano JJ, Smol T, Piton A, Gérard B, Chantot-Bastaraud S, Bienvenu T, Li D, Juusola J, Devriendt K, Bilan F, Poé C, Chevarin M, Jouan T, Tisserant E, Rivière JB, Tran Mau-Them F, Philippe C, Duffourd Y, Dobyns WB, Hevner R, Thauvin-Robinet C. De novo TBR1 variants cause a neurocognitive phenotype with ID and autistic traits: report of 25 new individuals and review of the literature. Eur J Hum Genet 2020; 28:770-782. [PMID: 32005960 PMCID: PMC7253452 DOI: 10.1038/s41431-020-0571-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 11/26/2019] [Accepted: 12/24/2019] [Indexed: 11/08/2022] Open
Abstract
TBR1, a T-box transcription factor expressed in the cerebral cortex, regulates the expression of several candidate genes for autism spectrum disorders (ASD). Although TBR1 has been reported as a high-confidence risk gene for ASD and intellectual disability (ID) in functional and clinical reports since 2011, TBR1 has only recently been recorded as a human disease gene in the OMIM database. Currently, the neurodevelopmental disorders and structural brain anomalies associated with TBR1 variants are not well characterized. Through international data sharing, we collected data from 25 unreported individuals and compared them with data from the literature. We evaluated structural brain anomalies in seven individuals by analysis of MRI images, and compared these with anomalies observed in TBR1 mutant mice. The phenotype included ID in all individuals, associated to autistic traits in 76% of them. No recognizable facial phenotype could be identified. MRI analysis revealed a reduction of the anterior commissure and suggested new features including dysplastic hippocampus and subtle neocortical dysgenesis. This report supports the role of TBR1 in ID associated with autistic traits and suggests new structural brain malformations in humans. We hope this work will help geneticists to interpret TBR1 variants and diagnose ASD probands.
Collapse
Affiliation(s)
- Sophie Nambot
- Centre de Génétique et Centre de Référence Maladies Rares (Anomalies du Développement de l'Interrégion Est), Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
- Inserm UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Maladies Rares (Anomalies du Développement de l'Interrégion Est), Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
- Inserm UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Julien Thevenon
- Centre de Génétique et Centre de Référence Maladies Rares (Anomalies du Développement de l'Interrégion Est), Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
- Inserm UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Ange-Line Bruel
- Centre de Génétique et Centre de Référence Maladies Rares (Anomalies du Développement de l'Interrégion Est), Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
- Inserm UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Anne-Laure Mosca-Boidron
- Centre de Génétique et Centre de Référence Maladies Rares (Anomalies du Développement de l'Interrégion Est), Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
- Inserm UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Alice Masurel-Paulet
- Centre de Génétique et Centre de Référence Maladies Rares (Anomalies du Développement de l'Interrégion Est), Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Alice Goldenberg
- Service de génétique, CHU de Rouen, Centre Normand de Génomique Médicale et Médecine Personnalisée, Rouen, France
| | - Nathalie Le Meur
- Service de génétique, CHU de Rouen, Centre Normand de Génomique Médicale et Médecine Personnalisée, Rouen, France
| | | | - Cyril Mignot
- Service de Génétique et d'Embryologie Médicales, Hôpital Trousseau, Paris, France
| | - Florence Petit
- Clinique de Génétique Guy Fontaine, Pôle de Biologie Pathologie Génétique, Hôpital Jeanne de Flandre, CHU de Lille, F-59000, Lille, France
| | - Massimiliano Rossi
- Service de Génétique, Hospices Civils de Lyon, Centre de Recherche en Neurosciences Lyon, INSERM U1028, CNRS UMR5292, GENDEVTeam, Bron, France
| | - Julia Metreau
- Service de Neurologie Pédiatrique, Hôpital du Kremlin Bicêtre, Paris, France
| | - Valérie Layet
- Service de Génétique, Groupe Hospitalier du Havre, Le Havre, France
| | - Daniel Amram
- Unité de Génétique Médicale, CHIC de Créteil, Créteil, France
| | - Odile Boute-Bénéjean
- Clinique de Génétique Guy Fontaine, Pôle de Biologie Pathologie Génétique, Hôpital Jeanne de Flandre, CHU de Lille, F-59000, Lille, France
| | - Elizabeth Bhoj
- Department of Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margot A Cousin
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Teresa M Kruisselbrink
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Brendan C Lanpher
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Elise Fiala
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Wendy S Meschino
- Genetics Program, North York General Hospital, Toronto, ON, Canada
| | - Susan M Hiatt
- 601 Genome Way, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Gregory M Cooper
- 601 Genome Way, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Hilde Olivié
- Centre for Developmental Disorders, University Hospitals Leuven, Leuven, Belgium
| | - Wendy E Smith
- Department of Pediatrics, The Barbara Bush Children's Hospital, Maine Medical Center, Portland, OR, USA
| | - Meghan Dumas
- Department of Pediatrics, The Barbara Bush Children's Hospital, Maine Medical Center, Portland, OR, USA
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Cara Inglese
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Annalisa Vetro
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Eitan S Kaplan
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dolores Miramar
- Genetics Unit, Biochemistry Service, Hospital Miguel Servet, Zaragoza, Spain
| | - Julien Van Gils
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Patricia Fergelot
- Laboratoire de génétique moléculaire, CHU de Bordeaux, Bordeaux, France
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Johanna C Herkert
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Sander Pajusalu
- Department of Clinical Genetics, Tartu University Hospital and Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, Tartu University Hospital and Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - James J Filiano
- Departments of Pediatrics and Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Thomas Smol
- Institut de Génétique Médicale, CHRU de Lille, Lille, France
| | - Amélie Piton
- Laboratoire de diagnostic génétique, Hôpital Civil, CHRU Strasbourg, Strasbourg, France
| | - Bénédicte Gérard
- Laboratoire de diagnostic génétique, Hôpital Civil, CHRU Strasbourg, Strasbourg, France
| | - Sandra Chantot-Bastaraud
- Service de Génétique et d'Embryologie Médicales, Hôpital Trousseau, Paris, France
- Service de Génétique et d'Embryologie Médicales, INSERM U933, Paris, France
| | - Thierry Bienvenu
- Service de génétique et biologie moléculaire, Hôpital Cochin, CHU Paris Centre, Paris, France
| | - Dong Li
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Koen Devriendt
- Center for Human Genetics, University of Leuven, Leuven, Belgium
| | - Frederic Bilan
- Laboratoire de Génétique, Service de Génétique, CHU Poitiers, Poitiers, France
| | - Charlotte Poé
- Inserm UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
| | - Martin Chevarin
- Inserm UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
| | - Thibaud Jouan
- Inserm UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
| | - Emilie Tisserant
- Inserm UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
| | - Jean-Baptiste Rivière
- Inserm UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Frédéric Tran Mau-Them
- Inserm UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Christophe Philippe
- Inserm UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Yannis Duffourd
- Inserm UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Robert Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Christel Thauvin-Robinet
- Centre de Génétique et Centre de Référence Maladies Rares (Anomalies du Développement de l'Interrégion Est), Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France.
- Inserm UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France.
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France.
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.
| |
Collapse
|
25
|
Nelson BR, Hodge RD, Daza RA, Tripathi PP, Arnold SJ, Millen KJ, Hevner RF. Intermediate progenitors support migration of neural stem cells into dentate gyrus outer neurogenic niches. eLife 2020; 9:53777. [PMID: 32238264 PMCID: PMC7159924 DOI: 10.7554/elife.53777] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
The hippocampal dentate gyrus (DG) is a unique brain region maintaining neural stem cells (NCSs) and neurogenesis into adulthood. We used multiphoton imaging to visualize genetically defined progenitor subpopulations in live slices across key stages of mouse DG development, testing decades old static models of DG formation with molecular identification, genetic-lineage tracing, and mutant analyses. We found novel progenitor migrations, timings, dynamic cell-cell interactions, signaling activities, and routes underlie mosaic DG formation. Intermediate progenitors (IPs, Tbr2+) pioneered migrations, supporting and guiding later emigrating NSCs (Sox9+) through multiple transient zones prior to converging at the nascent outer adult niche in a dynamic settling process, generating all prenatal and postnatal granule neurons in defined spatiotemporal order. IPs (Dll1+) extensively targeted contacts to mitotic NSCs (Notch active), revealing a substrate for cell-cell contact support during migrations, a developmental feature maintained in adults. Mouse DG formation shares conserved features of human neocortical expansion.
Collapse
Affiliation(s)
- Branden R Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Neurological Surgery, University of Washington, Seattle, United States
| | - Rebecca D Hodge
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Ray Am Daza
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Prem Prakash Tripathi
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Freiburg, Germany.,Signaling Research Centers BIOSS and CIBSS, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Pediatrics, University of Washington, Seattle, United States
| | - Robert F Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Neurological Surgery, University of Washington, Seattle, United States
| |
Collapse
|
26
|
Wang Y, Lu Z, Zhang Y, Cai Y, Yun D, Tang T, Cai Z, Wang C, Zhang Y, Fang F, Yang Z, Behnisch T, Xie Y. Transcription Factor 4 Safeguards Hippocampal Dentate Gyrus Development by Regulating Neural Progenitor Migration. Cereb Cortex 2019; 30:3102-3115. [PMID: 31845732 DOI: 10.1093/cercor/bhz297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dentate gyrus (DG) of the hippocampal formation plays essential roles in learning and memory. Defective DG development is associated with neurological disorders. Here, we show that transcription factor 4 (Tcf4) is essential for DG development. Tcf4 expression is elevated in neural progenitors of the dentate neuroepithelium in the developing mouse brain. We demonstrate that conditional disruption of Tcf4 in the dentate neuroepithelium leads to abnormal neural progenitor migration guided by disorganized radial glial fibers, which further leads to hypoplasia in the DG. Moreover, we reveal that Wnt7b is a key downstream effector of Tcf4 in regulating neural progenitor migration. Behavioral analysis shows that disruption of integrity of the DG impairs the social memory highlighting the importance of proper development of the DG. These results reveal a critical role for Tcf4 in regulating DG development. As mutations in TCF4 cause Pitt-Hopkins syndrome (PTHS) characterized by severe intellectual disability, our data also potentially provide insights into the basis of neurological defects linked to TCF4 mutations.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiheng Lu
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yilan Zhang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuqun Cai
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Di Yun
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tianxiang Tang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zheping Cai
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chunyang Wang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yandong Zhang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fang Fang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhengang Yang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Thomas Behnisch
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yunli Xie
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
27
|
Short AK, Baram TZ. Early-life adversity and neurological disease: age-old questions and novel answers. Nat Rev Neurol 2019; 15:657-669. [PMID: 31530940 PMCID: PMC7261498 DOI: 10.1038/s41582-019-0246-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
Neurological illnesses, including cognitive impairment, memory decline and dementia, affect over 50 million people worldwide, imposing a substantial burden on individuals and society. These disorders arise from a combination of genetic, environmental and experiential factors, with the latter two factors having the greatest impact during sensitive periods in development. In this Review, we focus on the contribution of adverse early-life experiences to aberrant brain maturation, which might underlie vulnerability to cognitive brain disorders. Specifically, we draw on recent robust discoveries from diverse disciplines, encompassing human studies and experimental models. These discoveries suggest that early-life adversity, especially in the perinatal period, influences the maturation of brain circuits involved in cognition. Importantly, new findings suggest that fragmented and unpredictable environmental and parental signals comprise a novel potent type of adversity, which contributes to subsequent vulnerabilities to cognitive illnesses via mechanisms involving disordered maturation of brain 'wiring'.
Collapse
Affiliation(s)
- Annabel K Short
- Departments of Anatomy and Neruobiology, University of California-Irvine, Irvine, CA, USA
- Departments of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Departments of Anatomy and Neruobiology, University of California-Irvine, Irvine, CA, USA.
- Departments of Pediatrics, University of California-Irvine, Irvine, CA, USA.
- Departments of Neurology, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
28
|
Cipriani S, Ferrer I, Aronica E, Kovacs GG, Verney C, Nardelli J, Khung S, Delezoide AL, Milenkovic I, Rasika S, Manivet P, Benifla JL, Deriot N, Gressens P, Adle-Biassette H. Hippocampal Radial Glial Subtypes and Their Neurogenic Potential in Human Fetuses and Healthy and Alzheimer's Disease Adults. Cereb Cortex 2019; 28:2458-2478. [PMID: 29722804 DOI: 10.1093/cercor/bhy096] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
Neuropathological conditions might affect adult granulogenesis in the adult human dentate gyrus. However, radial glial cells (RGCs) have not been well characterized during human development and aging. We have previously described progenitor and neuronal layer establishment in the hippocampal pyramidal layer and dentate gyrus from embryonic life until mid-gestation. Here, we describe RGC subtypes in the hippocampus from 13 gestational weeks (GW) to mid-gestation and characterize their evolution and the dynamics of neurogenesis from mid-gestation to adulthood in normal and Alzheimer's disease (AD) subjects. In the pyramidal ventricular zone (VZ), RGC density declined with neurogenesis from mid-gestation until the perinatal period. In the dentate area, morphologic and antigenic differences among RGCs were observed from early ages of development to adulthood. Density and proliferative capacity of dentate RGCs as well as neurogenesis were strongly reduced during childhood until 5 years, few DCX+ cells are seen in adults. The dentate gyrus of both control and AD individuals showed Nestin+ and/or GFAPδ+ cells displaying different morphologies. In conclusion, pools of morphologically, antigenically, and topographically diverse neural progenitor cells are present in the human hippocampus from early developmental stages until adulthood, including in AD patients, while their neurogenic potential seems negligible in the adult.
Collapse
Affiliation(s)
- Sara Cipriani
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Bellvitge Campus, L'Hospitalet de Llobregat, Spain; Centre for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Madrid, Spain
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Catherine Verney
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jeannette Nardelli
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Suonavy Khung
- APHP, Service de Biologie du Développement, Hôpital Robert-Debré, APHP, Paris, France
| | - Anne-Lise Delezoide
- APHP, Service de Biologie du Développement, Hôpital Robert-Debré, APHP, Paris, France
| | - Ivan Milenkovic
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Philippe Manivet
- APHP, Plateforme de Bio-Pathologie et de Technologies Innovantes en Santé, Centre de Ressources Biologiques BB-0033-00064, Hôpital Lariboisière, Paris, France
| | - Jean-Louis Benifla
- APHP, Service de Gynécologie-Obstétrique, Hôpital Lariboisère, Paris, France
| | - Nicolas Deriot
- APHP, Plateforme de Bio-Pathologie et de Technologies Innovantes en Santé, Centre de Ressources Biologiques BB-0033-00064, Hôpital Lariboisière, Paris, France.,Service d'Anatomie et de Cytologie Pathologiques, Hôpital Lariboisère, Paris, France
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Department of Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Homa Adle-Biassette
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,APHP, Plateforme de Bio-Pathologie et de Technologies Innovantes en Santé, Centre de Ressources Biologiques BB-0033-00064, Hôpital Lariboisière, Paris, France.,Service d'Anatomie et de Cytologie Pathologiques, Hôpital Lariboisère, Paris, France
| |
Collapse
|
29
|
Meyer G, González-Arnay E, Moll U, Nemajerova A, Tissir F, González-Gómez M. Cajal-Retzius neurons are required for the development of the human hippocampal fissure. J Anat 2019; 235:569-589. [PMID: 30861578 DOI: 10.1111/joa.12947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 01/14/2023] Open
Abstract
Cajal-Retzius neurons (CRN) are the main source of Reelin in the marginal zone of the developing neocortex and hippocampus (HC). They also express the transcription factor p73 and are complemented by later-appearing GABAergic Reelin+ interneurons. The human dorsal HC forms at gestational week 10 (GW10), when it develops a rudimentary Ammonic plate and incipient dentate migration, although the dorsal hippocampal fissure (HF) remains shallow and contains few CRN. The dorsal HC transforms into the indusium griseum (IG), concurrently with the rostro-caudal appearance of the corpus callosum, by GW14-17. Dorsal and ventral HC merge at the site of the former caudal hem, which is located at the level of the future atrium of the lateral ventricle and closely connected with the choroid plexus. The ventral HC forms at GW11 in the temporal lobe. The ventral HF is wide open at GW14-16 and densely populated by large numbers of CRNs. These are in intimate contact with the meninges and meningeal blood vessels, suggesting signalling through diverse pathways. At GW17, the fissure deepens and begins to fuse, although it is still marked by p73/Reelin+ CRNs. The p73KO mouse illustrates the importance of p73 in CRN for HF formation. In the mutant, Tbr1/Reelin+ CRNs are born in the hem but do not leave it and subsequently disappear, so that the mutant cortex and HC lack CRN from the onset of corticogenesis. The HF is absent, which leads to profound architectonic alterations of the HC. To determine which p73 isoform is important for HF formation, isoform-specific TAp73- and DeltaNp73-deficient embryonic and early postnatal mice were examined. In both mutants, the number of CRNs was reduced, but each of their phenotypes was much milder than in the global p73KO mutant missing both isoforms. In the TAp73KO mice, the HF of the dorsal HC failed to form, but was present in the ventral HC. In the DeltaNp73KO mice, the HC had a mild patterning defect along with a shorter HF. Complex interactions between both isoforms in CRNs may contribute to their crucial activity in the developing brain.
Collapse
Affiliation(s)
- Gundela Meyer
- Department of Basic Medical Sciences, University La Laguna, La Laguna, Spain
| | | | - Ute Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Alice Nemajerova
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Fadel Tissir
- Developmental Neurobiology Group, Institute of NeuroScience, UCL Louvain, Brussels, Belgium
| | | |
Collapse
|
30
|
Single-cell transcriptomic analysis of mouse neocortical development. Nat Commun 2019; 10:134. [PMID: 30635555 PMCID: PMC6329831 DOI: 10.1038/s41467-018-08079-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/14/2018] [Indexed: 01/28/2023] Open
Abstract
The development of the mammalian cerebral cortex depends on careful orchestration of proliferation, maturation, and migration events, ultimately giving rise to a wide variety of neuronal and non-neuronal cell types. To better understand cellular and molecular processes that unfold during late corticogenesis, we perform single-cell RNA-seq on the mouse cerebral cortex at a progenitor driven phase (embryonic day 14.5) and at birth-after neurons from all six cortical layers are born. We identify numerous classes of neurons, progenitors, and glia, their proliferative, migratory, and activation states, and their relatedness within and across age. Using the cell-type-specific expression patterns of genes mutated in neurological and psychiatric diseases, we identify putative disease subtypes that associate with clinical phenotypes. Our study reveals the cellular template of a complex neurodevelopmental process, and provides a window into the cellular origins of brain diseases.
Collapse
|
31
|
Hatami M, Conrad S, Naghsh P, Alvarez-Bolado G, Skutella T. Cell-Biological Requirements for the Generation of Dentate Gyrus Granule Neurons. Front Cell Neurosci 2018; 12:402. [PMID: 30483057 PMCID: PMC6240695 DOI: 10.3389/fncel.2018.00402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022] Open
Abstract
The dentate gyrus (DG) receives highly processed information from the associative cortices functionally integrated in the trisynaptic hippocampal circuit, which contributes to the formation of new episodic memories and the spontaneous exploration of novel environments. Remarkably, the DG is the only brain region currently known to have high rates of neurogenesis in adults (Andersen et al., 1966, 1971). The DG is involved in several neurodegenerative disorders, including clinical dementia, schizophrenia, depression, bipolar disorder and temporal lobe epilepsy. The principal neurons of the DG are the granule cells. DG granule cells generated in culture would be an ideal model to investigate their normal development and the causes of the pathologies in which they are involved and as well as possible therapies. Essential to establish such in vitro models is the precise definition of the most important cell-biological requirements for the differentiation of DG granule cells. This requires a deeper understanding of the precise molecular and functional attributes of the DG granule cells in vivo as well as the DG cells derived in vitro. In this review we outline the neuroanatomical, molecular and cell-biological components of the granule cell differentiation pathway, including some growth- and transcription factors essential for their development. We summarize the functional characteristics of DG granule neurons, including the electrophysiological features of immature and mature granule cells and the axonal pathfinding characteristics of DG neurons. Additionally, we discuss landmark studies on the generation of dorsal telencephalic precursors from pluripotent stem cells (PSCs) as well as DG neuron differentiation in culture. Finally, we provide an outlook and comment critical aspects.
Collapse
Affiliation(s)
- Maryam Hatami
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | - Pooyan Naghsh
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | | | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
32
|
Liver X receptor β regulates the development of the dentate gyrus and autistic-like behavior in the mouse. Proc Natl Acad Sci U S A 2018; 115:E2725-E2733. [PMID: 29507213 DOI: 10.1073/pnas.1800184115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The dentate gyrus (DG) of the hippocampus is a laminated brain region in which neurogenesis begins during early embryonic development and continues until adulthood. Recent studies have implicated that defects in the neurogenesis of the DG seem to be involved in the genesis of autism spectrum disorders (ASD)-like behaviors. Liver X receptor β (LXRβ) has recently emerged as an important transcription factor involved in the development of laminated CNS structures, but little is known about its role in the development of the DG. Here, we show that deletion of the LXRβ in mice causes hypoplasia in the DG, including abnormalities in the formation of progenitor cells and granule cell differentiation. We also found that expression of Notch1, a central mediator of progenitor cell self-renewal, is reduced in LXRβ-null mice. In addition, LXRβ deletion in mice results in autistic-like behaviors, including abnormal social interaction and repetitive behavior. These data reveal a central role for LXRβ in orchestrating the timely differentiation of neural progenitor cells within the DG, thereby providing a likely explanation for its association with the genesis of autism-related behaviors in LXRβ-deficient mice.
Collapse
|
33
|
Adams Waldorf KM, Nelson BR, Stencel-Baerenwald JE, Studholme C, Kapur RP, Armistead B, Walker CL, Merillat S, Vornhagen J, Tisoncik-Go J, Baldessari A, Coleman M, Dighe MK, Shaw DW, Roby JA, Santana-Ufret V, Boldenow E, Li J, Gao X, Davis MA, Swanstrom JA, Jensen K, Widman DG, Baric RS, Medwid JT, Hanley KA, Ogle J, Gough GM, Lee W, English C, Durning WM, Thiel J, Gatenby C, Dewey EC, Fairgrieve MR, Hodge RD, Grant RF, Kuller L, Dobyns WB, Hevner RF, Gale M, Rajagopal L. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat Med 2018; 24:368-374. [PMID: 29400709 PMCID: PMC5839998 DOI: 10.1038/nm.4485] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) is a flavivirus with teratogenic effects on fetal brain, but the spectrum of ZIKV-induced brain injury is unknown, particularly when ultrasound imaging is normal. In a pregnant pigtail macaque (Macaca nemestrina) model of ZIKV infection, we demonstrate that ZIKV-induced injury to fetal brain is substantial, even in the absence of microcephaly, and may be challenging to detect in a clinical setting. A common and subtle injury pattern was identified, including (i) periventricular T2-hyperintense foci and loss of fetal noncortical brain volume, (ii) injury to the ependymal epithelium with underlying gliosis and (iii) loss of late fetal neuronal progenitor cells in the subventricular zone (temporal cortex) and subgranular zone (dentate gyrus, hippocampus) with dysmorphic granule neuron patterning. Attenuation of fetal neurogenic output demonstrates potentially considerable teratogenic effects of congenital ZIKV infection even without microcephaly. Our findings suggest that all children exposed to ZIKV in utero should receive long-term monitoring for neurocognitive deficits, regardless of head size at birth.
Collapse
Affiliation(s)
- Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Sahlgrenska Academy, Gothenburg University, Sweden
| | - Branden R. Nelson
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jennifer E. Stencel-Baerenwald
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Colin Studholme
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Raj P. Kapur
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Pathology, Seattle Children’s Hospital, Seattle, Washington, United States of America
| | - Blair Armistead
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Christie L. Walker
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Sean Merillat
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jay Vornhagen
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Audrey Baldessari
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Michelle Coleman
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Manjiri K. Dighe
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Dennis W.W. Shaw
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
- Department of Radiology, Seattle Children’s Hospital, Seattle, Washington, United States of America
| | - Justin A. Roby
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Veronica Santana-Ufret
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Erica Boldenow
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Junwei Li
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Michael A. Davis
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Jesica A. Swanstrom
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kara Jensen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Douglas G. Widman
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph T. Medwid
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Jason Ogle
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - G. Michael Gough
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Wonsok Lee
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Chris English
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - W. McIntyre Durning
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Jeff Thiel
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Chris Gatenby
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Elyse C. Dewey
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Marian R. Fairgrieve
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | | | - Richard F. Grant
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - LaRene Kuller
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - William B. Dobyns
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Robert F. Hevner
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Lakshmi Rajagopal
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
34
|
Artegiani B, Lyubimova A, Muraro M, van Es JH, van Oudenaarden A, Clevers H. A Single-Cell RNA Sequencing Study Reveals Cellular and Molecular Dynamics of the Hippocampal Neurogenic Niche. Cell Rep 2017; 21:3271-3284. [DOI: 10.1016/j.celrep.2017.11.050] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/09/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
|
35
|
Radic T, Frieß L, Vijikumar A, Jungenitz T, Deller T, Schwarzacher SW. Differential Postnatal Expression of Neuronal Maturation Markers in the Dentate Gyrus of Mice and Rats. Front Neuroanat 2017; 11:104. [PMID: 29184486 PMCID: PMC5694555 DOI: 10.3389/fnana.2017.00104] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/30/2017] [Indexed: 11/13/2022] Open
Abstract
The dentate gyrus (DG) is a unique structure of the hippocampus that is distinguished by ongoing neurogenesis throughout the lifetime of an organism. The development of the DG, which begins during late gestation and continues during the postnatal period, comprises the structural formation of the DG as well as the establishment of the adult neurogenic niche in the subgranular zone (SGZ). We investigated the time course of postnatal maturation of the DG in male C57BL/6J mice and male Sprague-Dawley rats based on the distribution patterns of the immature neuronal marker doublecortin (DCX) and a marker for mature neurons, calbindin (CB). Our findings demonstrate that the postnatal DG is marked by a substantial maturation with a high number of DCX-positive granule cells (GCs) during the first two postnatal weeks followed by a progression toward more mature patterns and increasing numbers of CB-positive GCs within the subsequent 2 weeks. The most substantial shift in maturation of the GC population took place between P7 and P14 in both mice and rats, when young, immature DCX-positive GCs became confined to the innermost part of the GC layer (GCL), indicative of the formation of the SGZ. These results suggest that the first month of postnatal development represents an important transition phase during which DG neurogenesis and the maturation course of the GC population becomes analogous to the process of adult neurogenesis. Therefore, the postnatal DG could serve as an attractive model for studying a growing and functionally maturing neural network. Direct comparisons between mice and rats revealed that the transition from immature DCX-positive to mature CB-positive GCs occurs more rapidly in the rat by approximately 4–6 days. The remarkable species difference in the speed of maturation on the GC population level may have important implications for developmental and neurogenesis research in different rodent species and strains.
Collapse
Affiliation(s)
- Tijana Radic
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany
| | - Lara Frieß
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany
| | - Aruvi Vijikumar
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany
| | - Tassilo Jungenitz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany
| | - Stephan W Schwarzacher
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
36
|
Nectin-3 modulates the structural plasticity of dentate granule cells and long-term memory. Transl Psychiatry 2017; 7:e1228. [PMID: 28872640 PMCID: PMC5639241 DOI: 10.1038/tp.2017.196] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 11/29/2022] Open
Abstract
Nectin-3, a cell adhesion molecule enriched in hippocampal neurons, has been implicated in stress-related cognitive disorders. Nectin-3 is expressed by granule cells in the dentate gyrus (DG), but it remains unclear whether nectin-3 in DG modulates the structural plasticity of dentate granule cells and hippocampus-dependent memory. In this study, we found that DG nectin-3 expression levels were developmentally regulated and reduced by early postnatal stress exposure in adult mice. Most importantly, knockdown of nectin-3 levels in all DG neuron populations by adeno-associated virus (AAV) mimicked the cognitive effects of early-life stress, and impaired long-term spatial memory and temporal order memory. Moreover, AAV-mediated DG nectin-3 knockdown increased the density of doublecortin-immunoreactive differentiating cells under proliferation and calretinin-immunoreactive immature neurons, but markedly decreased calbindin immunoreactivity, indicating that nectin-3 modulates the differentiation and maturation of adult-born DG granule cells. Using retrovirus to target newly generated DG neurons, we found that selective nectin-3 knockdown in new DG neurons also impaired long-term spatial memory. In addition, suppressing nectin-3 expression in new DG neurons evoked a reduction of dendritic spines, especially thin spines. Our data indicate that nectin-3 expressed in DG neurons may modulate adult neurogenesis, dendritic spine plasticity and the cognitive effects of early-life stress.
Collapse
|
37
|
Nelson LH, Warden S, Lenz KM. Sex differences in microglial phagocytosis in the neonatal hippocampus. Brain Behav Immun 2017; 64:11-22. [PMID: 28341582 PMCID: PMC5512447 DOI: 10.1016/j.bbi.2017.03.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Microglia regulate brain development through many processes, such as promoting neurogenesis, supporting cell survival, and phagocytizing progenitor, newly-born, and dying cells. Many of these same developmental processes show robust sex differences, yet very few studies have assessed sex differences in microglia function during development. Hormonally-induced sexual differentiation of the brain occurs during the perinatal period, thus we examined sex differences in microglial morphology, phagocytosis, and proliferation in the hippocampus during the early postnatal period. We found that the neonatal female hippocampus had significantly more microglia with phagocytic cups than the male hippocampus. We subsequently found that female microglia phagocytized more neural progenitor cells and healthy cells compared to males, but there were no sex differences in the number of newly-born or dying cells targeted by microglial phagocytosis. We found that the number of phagocytic microglia in females was reduced to male-typical levels by treatment with estradiol, the hormone responsible for masculinizing the rodent brain. Females also had higher expression of several phagocytic pathway genes in the hippocampus compared to males. In contrast to robust sex differences in phagocytic microglia, we found no sex differences in the number of microglia with amoeboid, transitioning, or ramified morphologies or differences in three-dimensional reconstructions of microglial morphology. While we did not find a baseline sex difference in microglial proliferation during or following the prenatal gonadal hormone surge in males, we found that estradiol treatment increased microglia proliferation in females. Overall, these data show that there are important sex differences in microglia function in the hippocampus during the early neonatal period.
Collapse
Affiliation(s)
- Lars H Nelson
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave., Columbus, OH 43210, USA; Group in Behavioral Neuroendocrinology, The Ohio State University, Columbus OH, USA.
| | - Spencer Warden
- Department of Psychology, The Ohio State University, 1835 Neil Ave, Columbus, OH 43210,Group in Behavioral Neuroendocrinology, The Ohio State University, Columbus OH
| | - Kathryn M Lenz
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave., Columbus, OH 43210, USA; Department of Psychology, The Ohio State University, 1835 Neil Ave, Columbus, OH 43210, USA; Group in Behavioral Neuroendocrinology, The Ohio State University, Columbus OH, USA.
| |
Collapse
|
38
|
Dynamics and function of CXCR4 in formation of the granule cell layer during hippocampal development. Sci Rep 2017; 7:5647. [PMID: 28717168 PMCID: PMC5514042 DOI: 10.1038/s41598-017-05738-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/02/2017] [Indexed: 01/03/2023] Open
Abstract
In the developing hippocampus, granule cell progenitors (GCPs) arising in the ventricular zone (VZ) migrate to the subpial region, and form the granule cell layer (GCL) of the dentate gyrus (DG). To understand the mechanism of GCL formation, we investigated the dynamics and function of CXCR4 which is expressed by the GCPs and is a receptor of the CXCL12 chemokine secreted by cells surrounding the DG. In the VZ, CXCR4 was expressed on the plasma membrane of the GCPs. During their migration and in the DG, CXCR4 was internalized and accumulated as puncta close to the centrosomes, Golgi apparatus, and lysosomes. Phosphatase analysis suggested that both phosphorylated and dephosphorylated CXCR4 exist on the plasma membrane, whereas CXCR4 in intracellular puncta was mainly dephosphorylated. Intraventricular administration of the CXCR4 antagonist AMD3100 resulted in the disappearance of CXCR4 expression from the intracellular puncta, and its appearance on the plasma membranes. Furthermore, AMD3100 treatment resulted in precocious differentiation, delayed migration, and ectopic GCPs. Taken together, these results suggest that during the development and migration of GCPs, CXCR4 on the plasma membrane is phosphorylated, internalized, sorted to the centrosomes, Golgi apparatus, and lysosomes, and functionally regulates GCP differentiation, migration and positioning.
Collapse
|
39
|
Probst S, Daza RA, Bader N, Hummel JF, Weiß M, Tanriver Y, Hevner RF, Arnold SJ. A dual-fluorescence reporter in the Eomes locus for live imaging and medium-term lineage tracing. Genesis 2017. [PMID: 28646547 DOI: 10.1002/dvg.23043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The T-box transcription factor Eomes (also known as Tbr2) shows short-lived expression in various localized domains of the embryo, including epiblast cells during gastrulation and intermediate progenitor cells in the cerebral cortex. In these tissues Eomes fulfills crucial roles for lineage specification of progenitors. To directly observe Eomes-dependent cell lineages in the living embryo, we generated a novel dual-fluorescence reporter allele that expresses a membrane-bound tdTomato protein for investigation of cell morphology and a nuclear GFP for cell tracing. This allele recapitulates endogenous EOMES protein expression and is suitable for live imaging. We found that the allele can also be used as a short-to-medium-term lineage tracer, as GFP persists in cells longer than EOMES protein and marks Eomes-dependent lineages with a timeframe of days to weeks depending on the proliferation rate. In summary, we present a novel genetic tool for investigation of Eomes-dependent cell types by live imaging and lineage tracing.
Collapse
Affiliation(s)
- Simone Probst
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ray A Daza
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, 98101
| | - Natalie Bader
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas F Hummel
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University Medical Center, Freiburg, Germany
| | - Matthias Weiß
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yakup Tanriver
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University Medical Center, Freiburg, Germany.,Department of Internal Medicine IV, Faculty of Medicine, University Medical Center, Freiburg, Germany
| | - Robert F Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, 98101
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
40
|
Hou H, Fan Q, He W, Suh H, Hu X, Yan R. BACE1 Deficiency Causes Abnormal Neuronal Clustering in the Dentate Gyrus. Stem Cell Reports 2017; 9:217-230. [PMID: 28669600 PMCID: PMC5511112 DOI: 10.1016/j.stemcr.2017.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 12/04/2022] Open
Abstract
BACE1 is validated as Alzheimer's β-secretase and a therapeutic target for Alzheimer's disease. In examining BACE1-null mice, we discovered that BACE1 deficiency develops abnormal clusters of immature neurons, forming doublecortin-positive neuroblasts, in the developing dentate gyrus, mainly in the subpial zone (SPZ). Such clusters were rarely observed in wild-type SPZ and not reported in other mouse models. To understand their origins and fates, we examined how neuroblasts in BACE1-null SPZ mature and migrate during early postnatal development. We show that such neuroblasts are destined to form Prox1-positive granule cells in the dentate granule cell layer, and mainly mature to form excitatory neurons, but not inhibitory neurons. Mechanistically, higher levels of reelin potentially contribute to abnormal neurogenesis and timely migration in BACE1-null SPZ. Altogether, we demonstrate that BACE1 is a critical regulator in forming the dentate granule cell layer through timely maturation and migration of SPZ neuroblasts. BACE1 deficiency causes abnormal neuronal clusters retained in the mouse SPZ Mis-migrated neural progenitor cells in the SPZ are destined to form granule cells Such neural progenitor cells form excitatory neurons but not inhibitor neurons Elevated levels of reelin contribute to abnormal neuronal maturation and migration
Collapse
Affiliation(s)
- Hailong Hou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| | - Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| | - Hoonkyo Suh
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA.
| |
Collapse
|
41
|
Parisot J, Flore G, Bertacchi M, Studer M. COUP-TFI mitotically regulates production and migration of dentate granule cells and modulates hippocampal Cxcr4 expression. Development 2017; 144:2045-2058. [PMID: 28506990 DOI: 10.1242/dev.139949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 04/24/2017] [Indexed: 12/22/2022]
Abstract
Development of the dentate gyrus (DG), the primary gateway for hippocampal inputs, spans embryonic and postnatal stages, and involves complex morphogenetic events. We have previously identified the nuclear receptor COUP-TFI as a novel transcriptional regulator in the postnatal organization and function of the hippocampus. Here, we dissect its role in DG morphogenesis by inactivating it in either granule cell progenitors or granule neurons. Loss of COUP-TFI function in progenitors leads to decreased granule cell proliferative activity, precocious differentiation and increased apoptosis, resulting in a severe DG growth defect in adult mice. COUP-TFI-deficient cells express high levels of the chemokine receptor Cxcr4 and migrate abnormally, forming heterotopic clusters of differentiated granule cells along their paths. Conversely, high COUP-TFI expression levels downregulate Cxcr4 expression, whereas increased Cxcr4 expression in wild-type hippocampal cells affects cell migration. Finally, loss of COUP-TFI in postmitotic cells leads to only minor and transient abnormalities, and to normal Cxcr4 expression. Together, our results indicate that COUP-TFI is required predominantly in DG progenitors for modulating expression of the Cxcr4 receptor during granule cell neurogenesis and migration.
Collapse
Affiliation(s)
| | - Gemma Flore
- Institute of Genetics and Biophysics, CNR, Naples 80131 Italy
| | | | - Michèle Studer
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice 06100, France
| |
Collapse
|
42
|
Cipriani S, Journiac N, Nardelli J, Verney C, Delezoide AL, Guimiot F, Gressens P, Adle-Biassette H. Dynamic Expression Patterns of Progenitor and Neuron Layer Markers in the Developing Human Dentate Gyrus and Fimbria. Cereb Cortex 2017; 27:358-372. [PMID: 26443441 PMCID: PMC5894254 DOI: 10.1093/cercor/bhv223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The molecular mechanisms that orchestrate the development of the human dentate gyrus are not known. In this study, we characterized the formation of human dentate and fimbrial progenitors and postmitotic neurons from 9 gestational weeks (GW9) to GW25. PAX6+ progenitor cells remained proliferative until GW16 in the dentate ventricular zone. By GW11, the secondary dentate matrix had developed in the intermediate zone, surrounding the dentate anlage and streaming toward the subpial layer. This secondary matrix contained proliferating PAX6+ and/or TBR2+ progenitors. In parallel, SOX2+ and PAX6+ fimbrial cells were detected approaching the dentate anlage, representing a possible source of extra-dentate progenitors. By GW16, when the granule cell layer could be delineated, a hilar matrix containing PAX6+ and some TBR2+ progenitors had become identifiable. By GW25, when the 2 limbs of the granule cell layer had formed, the secondary dentate matrix was reduced to a pool of progenitors at the fimbrio-dentate junction. Although human dentate development recapitulates key steps previously described in rodents, differences seemed to emerge in neuron layer markers expression. Further studies are necessary to better elucidate their role in dentate formation and connectivity.
Collapse
Affiliation(s)
- Sara Cipriani
- INSERM UMR 1141, Hôpital Robert-Debré, Paris, France
- Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France
| | - Nathalie Journiac
- INSERM UMR 1141, Hôpital Robert-Debré, Paris, France
- Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France
| | - Jeannette Nardelli
- INSERM UMR 1141, Hôpital Robert-Debré, Paris, France
- Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France
| | - Catherine Verney
- INSERM UMR 1141, Hôpital Robert-Debré, Paris, France
- Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France
| | - Anne-Lise Delezoide
- INSERM UMR 1141, Hôpital Robert-Debré, Paris, France
- Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France
- Service de Biologie du Développement, Hôpital Robert-Debré, APHP, Paris, France
| | - Fabien Guimiot
- INSERM UMR 1141, Hôpital Robert-Debré, Paris, France
- Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France
- Service de Biologie du Développement, Hôpital Robert-Debré, APHP, Paris, France
| | - Pierre Gressens
- INSERM UMR 1141, Hôpital Robert-Debré, Paris, France
- Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France
| | - Homa Adle-Biassette
- INSERM UMR 1141, Hôpital Robert-Debré, Paris, France
- Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France
- Service d'Anatomie et de Cytologie Pathologiques, Hôpital Lariboisère, APHP, Paris, France
| |
Collapse
|
43
|
Abstract
T-box transcription factors play key roles in the regulation of developmental processes such as cell differentiation and migration. Mammals have 17 T-box genes, of which several regulate brain development. The Tbr1 subfamily of T-box genes is particularly important in development of the cerebral cortex, olfactory bulbs (OBs), and cerebellum. This subfamily is comprised of Tbr1, Tbr2 (also known as Eomes), and Tbx21. In developing cerebral cortex, Tbr2 and Tbr1 are expressed during successive stages of differentiation in the pyramidal neuron lineage, from Tbr2+ intermediate progenitors to Tbr1+ postmitotic glutamatergic neurons. At each stage, Tbr2 and Tbr1 regulate laminar and regional identity of cortical projection neurons, cell migration, and axon guidance. In the OB, Tbr1 subfamily genes regulate neurogenesis of mitral and tufted cells, and glutamatergic juxtaglomerular interneurons. Tbr2 is also prominent in the development of retinal ganglion cells in nonimage-forming pathways. Other regions that require Tbr2 or Tbr1 in development or adulthood include the cerebellum and adult dentate gyrus. In humans, de novo mutations in TBR1 are important causes of sporadic autism and intellectual disability. Further studies of T-box transcription factors will enhance our understanding of neurodevelopmental disorders and inform approaches to new therapies.
Collapse
|
44
|
Intermediate Progenitor Cohorts Differentially Generate Cortical Layers and Require Tbr2 for Timely Acquisition of Neuronal Subtype Identity. Cell Rep 2016; 16:92-105. [PMID: 27320921 DOI: 10.1016/j.celrep.2016.05.072] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/28/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
Intermediate progenitors (IPs) amplify the production of pyramidal neurons, but their role in selective genesis of cortical layers or neuronal subtypes remains unclear. Using genetic lineage tracing in mice, we find that IPs destined to produce upper cortical layers first appear early in corticogenesis, by embryonic day 11.5. During later corticogenesis, IP laminar fates are progressively limited to upper layers. We examined the role of Tbr2, an IP-specific transcription factor, in laminar fate regulation using Tbr2 conditional mutant mice. Upon Tbr2 inactivation, fewer neurons were produced by immediate differentiation and laminar fates were shifted upward. Genesis of subventricular mitoses was, however, not reduced in the context of a Tbr2-null cortex. Instead, neuronal and laminar differentiation were disrupted and delayed. Our findings indicate that upper-layer genesis depends on IPs from many stages of corticogenesis and that Tbr2 regulates the tempo of laminar fate implementation for all cortical layers.
Collapse
|
45
|
Caronia-Brown G, Anderegg A, Awatramani R. Expression and functional analysis of the Wnt/beta-catenin induced mir-135a-2 locus in embryonic forebrain development. Neural Dev 2016; 11:9. [PMID: 27048518 PMCID: PMC4822265 DOI: 10.1186/s13064-016-0065-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/01/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Brain size and patterning are dependent on dosage-sensitive morphogen signaling pathways - yet how these pathways are calibrated remains enigmatic. Recent studies point to a new role for microRNAs in tempering the spatio-temporal range of morphogen functions during development. Here, we investigated the role of miR-135a, derived from the mir-135a-2 locus, in embryonic forebrain development. METHOD 1. We characterized the expression of miR-135a, and its host gene Rmst, by in situ hybridization (ish). 2. We conditionally ablated, or activated, beta-catenin in the dorsal forebrain to determine if this pathway was necessary and/or sufficient for Rmst/miR-135a expression. 3. We performed bioinformatics analysis to unveil the most predicted pathways targeted by miR-135a. 4. We performed gain and loss of function experiments on mir-135a-2 and analyzed by ish the expression of key markers of cortical hem, choroid plexus, neocortex and hippocampus. RESULTS 1. miR-135a, embedded in the host long non-coding transcript Rmst, is robustly expressed, and functional, in the medial wall of the embryonic dorsal forebrain, a Wnt and TGFβ/BMP-rich domain. 2. Canonical Wnt/beta-catenin signaling is critical for the expression of Rmst and miR-135a, and the cortical hem determinant Lmx1a. 3. Bioinformatics analyses reveal that the Wnt and TGFβ/BMP cascades are among the top predicted pathways targeted by miR-135a. 4. Analysis of mir-135a-2 null embryos showed that dorsal forebrain development appeared normal. In contrast, modest mir-135a-2 overexpression, in the early dorsal forebrain, resulted in a phenotype resembling that of mutants with Wnt and TGFβ/BMP deficits - a smaller cortical hem and hippocampus primordium associated with a shorter neocortex as well as a less convoluted choroid plexus. Interestingly, late overexpression of mir-135a-2 revealed no change. CONCLUSIONS All together, our data suggests the existence of a Wnt/miR-135a auto-regulatory loop, which could serve to limit the extent, the duration and/or intensity of the Wnt and, possibly, the TGFβ/BMP pathways.
Collapse
Affiliation(s)
- Giuliana Caronia-Brown
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 7-113 Lurie Bldg., 303 E. Superior Street, Chicago, IL, 60611, USA.
| | - Angela Anderegg
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 7-113 Lurie Bldg., 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Rajeshwar Awatramani
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 7-113 Lurie Bldg., 303 E. Superior Street, Chicago, IL, 60611, USA
| |
Collapse
|
46
|
Estudillo E, Zavala P, Pérez-Sánchez G, Ayala-Sarmiento AE, Segovia J. Gas1 is present in germinal niches of developing dentate gyrus and cortex. Cell Tissue Res 2015; 364:369-84. [DOI: 10.1007/s00441-015-2338-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/26/2015] [Indexed: 01/27/2023]
|
47
|
Hevner RF. Evolution of the mammalian dentate gyrus. J Comp Neurol 2015; 524:578-94. [PMID: 26179319 DOI: 10.1002/cne.23851] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/02/2015] [Accepted: 07/06/2015] [Indexed: 01/08/2023]
Abstract
The dentate gyrus (DG), a part of the hippocampal formation, has important functions in learning, memory, and adult neurogenesis. Compared with homologous areas in sauropsids (birds and reptiles), the mammalian DG is larger and exhibits qualitatively different phenotypes: 1) folded (C- or V-shaped) granule neuron layer, concave toward the hilus and delimited by a hippocampal fissure; 2) nonperiventricular adult neurogenesis; and 3) prolonged ontogeny, involving extensive abventricular (basal) migration and proliferation of neural stem and progenitor cells (NSPCs). Although gaps remain, available data indicate that these DG traits are present in all orders of mammals, including monotremes and marsupials. The exception is Cetacea (whales, dolphins, and porpoises), in which DG size, convolution, and adult neurogenesis have undergone evolutionary regression. Parsimony suggests that increased growth and convolution of the DG arose in stem mammals concurrently with nonperiventricular adult hippocampal neurogenesis and basal migration of NSPCs during development. These traits could all result from an evolutionary change that enhanced radial migration of NSPCs out of the periventricular zones, possibly by epithelial-mesenchymal transition, to colonize and maintain nonperiventricular proliferative niches. In turn, increased NSPC migration and clonal expansion might be a consequence of growth in the cortical hem (medial patterning center), which produces morphogens such as Wnt3a, generates Cajal-Retzius neurons, and is regulated by Lhx2. Finally, correlations between DG convolution and neocortical gyrification (or capacity for gyrification) suggest that enhanced abventricular migration and proliferation of NSPCs played a transformative role in growth and folding of neocortex as well as archicortex.
Collapse
Affiliation(s)
- Robert F Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, 98101
- Department of Neurological Surgery, University of Washington, Seattle, Washington, 98104
| |
Collapse
|
48
|
Dentate Gyrus Development Requires ERK Activity to Maintain Progenitor Population and MAPK Pathway Feedback Regulation. J Neurosci 2015; 35:6836-48. [PMID: 25926459 DOI: 10.1523/jneurosci.4196-14.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ERK/MAPK pathway is an important developmental signaling pathway. Mutations in upstream elements of this pathway result in neuro-cardio-facial cutaneous (NCFC) syndromes, which are typified by impaired neurocognitive abilities that are reliant upon hippocampal function. The role of ERK signaling during hippocampal development has not been examined and may provide critical insight into the cause of hippocampal dysfunction in NCFC syndromes. In this study, we have generated ERK1 and conditional ERK2 compound knock-out mice to determine the role of ERK signaling during development of the hippocampal dentate gyrus. We found that loss of both ERK1 and ERK2 resulted in 60% fewer granule cells and near complete absence of neural progenitor pools in the postnatal dentate gyrus. Loss of ERK1/2 impaired maintenance of neural progenitors as they migrate from the dentate ventricular zone to the dentate gyrus proper, resulting in premature depletion of neural progenitor cells beginning at E16.5, which prevented generation of granule cells later in development. Finally, loss of ERK2 alone does not impair development of the dentate gyrus as animals expressing only ERK1 developed a normal hippocampus. These findings establish that ERK signaling regulates maintenance of progenitor cells required for development of the dentate gyrus.
Collapse
|
49
|
Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11515-015-1364-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
Nicola Z, Fabel K, Kempermann G. Development of the adult neurogenic niche in the hippocampus of mice. Front Neuroanat 2015; 9:53. [PMID: 25999820 PMCID: PMC4423450 DOI: 10.3389/fnana.2015.00053] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/16/2015] [Indexed: 11/13/2022] Open
Abstract
When does adult hippocampal neurogenesis begin? We describe the development of the neurogenic niche in the subgranular zone (SGZ) of the hippocampal dentate gyrus. We did so from the perspective of the situation in the adult. Ontogeny of the dentate gyrus is complex and results in an ectopic neurogenic niche that lifelong generates new granule cells. Neurogenesis during the fetal and early postnatal periods builds the dentate gyrus and gives way to activity-dependent "adult" neurogenesis. We used markers most relevant to adult neurogenesis research to describe this transition: Nestin, Sox2, BLBP, GFAP, Tbr2, Doublecortin (DCX), NeuroD1 and Prox1. We found that massive changes and a local condensation of proliferating precursor cells occurs between postnatal day 7 (P7), near the peak in proliferation, and P14. Before and around P7, the spatial distribution of cells and the co-localization of markers were distinct from the situation in the adult. Unlike the adult SGZ, the marker pair Nestin/Sox2 and the radial glial marker BLBP were not overlapping during embryonic development, presumably indicating different types of radial glia-like cells. Before P7 GFAP-positive cells in the hilus lacked the radial orientation that is characteristic of the adult type-1 cells. DCX, which is concentrated in type-2b and type-3 progenitor cells and early postmitotic neurons in the adult, showed diffuse expression before P7. Intermediate progenitor cell marker Tbr2 became restricted to the SGZ but was found in the granule cell layer (GCL) and hilus before. Lineage markers NeuroD1 and Prox1 confirmed this pattern. We conclude that the neurogenic niche of adult neurogenesis is in place well before true adulthood. This might indicate that consistent with the hypothesized function of adult neurogenesis in activity-dependent plasticity, the early transition from postnatal neurogenesis to adult neurogenesis coincides with the time, when the young mice start to become active themselves.
Collapse
Affiliation(s)
- Zeina Nicola
- Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) Dresden, and CRTD DFG Research Center for Regenerative Therapy, Technische Universität Dresden Dresden, Germany
| | - Klaus Fabel
- Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) Dresden, and CRTD DFG Research Center for Regenerative Therapy, Technische Universität Dresden Dresden, Germany
| | - Gerd Kempermann
- Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) Dresden, and CRTD DFG Research Center for Regenerative Therapy, Technische Universität Dresden Dresden, Germany
| |
Collapse
|