1
|
McQuaid C, Solorzano A, Dickerson I, Deane R. Uptake of severe acute respiratory syndrome coronavirus 2 spike protein mediated by angiotensin converting enzyme 2 and ganglioside in human cerebrovascular cells. Front Neurosci 2023; 17:1117845. [PMID: 36875642 PMCID: PMC9980911 DOI: 10.3389/fnins.2023.1117845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction There is clinical evidence of neurological manifestations in coronavirus disease-19 (COVID-19). However, it is unclear whether differences in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/spike protein (SP) uptake by cells of the cerebrovasculature contribute to significant viral uptake to cause these symptoms. Methods Since the initial step in viral invasion is binding/uptake, we used fluorescently labeled wild type and mutant SARS-CoV-2/SP to study this process. Three cerebrovascular cell types were used (endothelial cells, pericytes, and vascular smooth muscle cells), in vitro. Results There was differential SARS-CoV-2/SP uptake by these cell types. Endothelial cells had the least uptake, which may limit SARS-CoV-2 uptake into brain from blood. Uptake was time and concentration dependent, and mediated by angiotensin converting enzyme 2 receptor (ACE2), and ganglioside (mono-sialotetrahexasylganglioside, GM1) that is predominantly expressed in the central nervous system and the cerebrovasculature. SARS-CoV-2/SPs with mutation sites, N501Y, E484K, and D614G, as seen in variants of interest, were also differentially taken up by these cell types. There was greater uptake compared to that of the wild type SARS-CoV-2/SP, but neutralization with anti-ACE2 or anti-GM1 antibodies was less effective. Conclusion The data suggested that in addition to ACE2, gangliosides are also an important entry point of SARS-CoV-2/SP into these cells. Since SARS-CoV-2/SP binding/uptake is the initial step in the viral penetration into cells, a longer exposure and higher titer are required for significant uptake into the normal brain. Gangliosides, including GM1, could be an additional potential SARS-CoV-2 and therapeutic target at the cerebrovasculature.
Collapse
Affiliation(s)
| | | | | | - Rashid Deane
- Department of Neuroscience, Del Monte Institute Neuroscience, University of Rochester, University of Rochester Medical Center (URMC), Rochester, NY, United States
| |
Collapse
|
2
|
Gangliosides in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2023; 29:391-418. [DOI: 10.1007/978-3-031-12390-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Itokazu Y, Yu RK. Ganglioside Microdomains on Cellular and Intracellular Membranes Regulate Neuronal Cell Fate Determination. ADVANCES IN NEUROBIOLOGY 2023; 29:281-304. [PMID: 36255679 PMCID: PMC9772537 DOI: 10.1007/978-3-031-12390-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gangliosides are sialylated glycosphingolipids (GSLs) with essential but enigmatic functions in brain activities and neural stem cell (NSC) maintenance. Our group has pioneered research on the importance of gangliosides for growth factor receptor signaling and epigenetic regulation of NSC activity and differentiation. The primary localization of gangliosides is on cell-surface microdomains and the drastic dose and composition changes during neural differentiation strongly suggest that they are not only important as biomarkers, but also are involved in modulating NSC fate determination. Ganglioside GD3 is the predominant species in NSCs and GD3-synthase knockout (GD3S-KO) revealed reduction of postnatal NSC pools with severe behavioral deficits. Exogenous administration of GD3 significantly restored the NSC pools and enhanced the stemness of NSCs with multipotency and self-renewal. Since morphological changes during neurogenesis require a huge amount of energy, mitochondrial functions are vital for neurogenesis. We discovered that a mitochondrial fission protein, the dynamin-related protein-1 (Drp1), as a novel GD3-binding protein, and GD3 regulates mitochondrial dynamics. Furthermore, we discovered that GM1 ganglioside promotes neuronal differentiation by an epigenetic regulatory mechanism. Nuclear GM1 binds with acetylated histones on the promoters of N-acetylgalactosaminyltransferase (GalNAcT; GM2 synthase) as well as on the NeuroD1 genes in differentiated neurons. In addition, epigenetic activation of the GalNAcT gene was detected as accompanied by an apparent induction of neuronal differentiation in NSCs responding to an exogenous supplement of GM1. GM1 is indeed localized in the nucleus where it can interact with transcriptionally active histones. Interestingly, GM1 could induce epigenetic activation of the tyrosine hydroxylase (TH) gene, with recruitment of nuclear receptor related 1 (Nurr1, also known as NR4A2), a dopaminergic neuron-associated transcription factor, to the TH promoter region. In this way, GM1 epigenetically regulates dopaminergic neuron specific gene expression. GM1 interacts with active chromatin via acetylated histones to recruit transcription factors at the nuclear periphery, resulting in changes in gene expression for neuronal differentiation. The significance is that multifunctional gangliosides modulate lipid microdomains to regulate functions of important molecules on multiple sites: the plasma membrane, mitochondrial membrane, and nuclear membrane. Versatile gangliosides could regulate functional neurons as well as sustain NSC functions via modulating protein and gene activities on ganglioside microdomains.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
4
|
Abad-Rodríguez J, Brocca ME, Higuero AM. Glycans and Carbohydrate-Binding/Transforming Proteins in Axon Physiology. ADVANCES IN NEUROBIOLOGY 2023; 29:185-217. [PMID: 36255676 DOI: 10.1007/978-3-031-12390-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mature nervous system relies on the polarized morphology of neurons for a directed flow of information. These highly polarized cells use their somatodendritic domain to receive and integrate input signals while the axon is responsible for the propagation and transmission of the output signal. However, the axon must perform different functions throughout development before being fully functional for the transmission of information in the form of electrical signals. During the development of the nervous system, axons perform environmental sensing functions, which allow them to navigate through other regions until a final target is reached. Some axons must also establish a regulated contact with other cells before reaching maturity, such as with myelinating glial cells in the case of myelinated axons. Mature axons must then acquire the structural and functional characteristics that allow them to perform their role as part of the information processing and transmitting unit that is the neuron. Finally, in the event of an injury to the nervous system, damaged axons must try to reacquire some of their immature characteristics in a regeneration attempt, which is mostly successful in the PNS but fails in the CNS. Throughout all these steps, glycans perform functions of the outermost importance. Glycans expressed by the axon, as well as by their surrounding environment and contacting cells, encode key information, which is fine-tuned by glycan modifying enzymes and decoded by glycan binding proteins so that the development, guidance, myelination, and electrical transmission functions can be reliably performed. In this chapter, we will provide illustrative examples of how glycans and their binding/transforming proteins code and decode instructive information necessary for fundamental processes in axon physiology.
Collapse
Affiliation(s)
- José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain.
| | - María Elvira Brocca
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Alonso Miguel Higuero
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| |
Collapse
|
5
|
Galvanetto N, Ye Z, Marchesi A, Mortal S, Maity S, Laio A, Torre VA. Unfolding and identification of membrane proteins in situ. eLife 2022; 11:77427. [PMID: 36094473 PMCID: PMC9531951 DOI: 10.7554/elife.77427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Single-molecule force spectroscopy (SMFS) uses the cantilever tip of an AFM to apply a force able to unfold a single protein. The obtained force-distance curve encodes the unfolding pathway, and from its analysis it is possible to characterize the folded domains. SMFS has been mostly used to study the unfolding of purified proteins, in solution or reconstituted in a lipid bilayer. Here, we describe a pipeline for analyzing membrane proteins based on SMFS, that involves the isolation of the plasma membrane of single cells and the harvesting of force-distance curves directly from it. We characterized and identified the embedded membrane proteins combining, within a Bayesian framework, the information of the shape of the obtained curves, with the information from Mass Spectrometry and proteomic databases. The pipeline was tested with purified/reconstituted proteins and applied to five cell types where we classified the unfolding of their most abundant membrane proteins. We validated our pipeline by overexpressing 4 constructs, and this allowed us to gather structural insights of the identified proteins, revealing variable elements in the loop regions. Our results set the basis for the investigation of the unfolding of membrane proteins in situ, and for performing proteomics from a membrane fragment.
Collapse
Affiliation(s)
| | - Zhongjie Ye
- International School for Advanced Studies, Trieste, Italy
| | - Arin Marchesi
- Nano Life Science Institute, Kanazawa Medical University, Kanazawa, Japan
| | - Simone Mortal
- International School for Advanced Studies, Trieste, Italy
| | - Sourav Maity
- Moleculaire Biofysica, University of Groningen, Groningen, Netherlands
| | | | | |
Collapse
|
6
|
Interactions between the Polysialylated Neural Cell Adhesion Molecule and the Transient Receptor Potential Canonical Channels 1, 4, and 5 Induce Entry of Ca 2+ into Neurons. Int J Mol Sci 2022; 23:ijms231710027. [PMID: 36077460 PMCID: PMC9456277 DOI: 10.3390/ijms231710027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) plays important functional roles in the developing and mature nervous systems. Here, we show that the transient receptor potential canonical (TRPC) ion channels TRPC1, -4, and -5 not only interact with the intracellular domains of the transmembrane isoforms NCAM140 and NCAM180, but also with the glycan polysialic acid (PSA) covalently attached to the NCAM protein backbone. NCAM antibody treatment leads to the opening of TRPC1, -4, and -5 hetero- or homomers at the plasma membrane and to the influx of Ca2+ into cultured cortical neurons and CHO cells expressing NCAM, PSA, and TRPC1 and -4 or TRPC1 and -5. NCAM-stimulated Ca2+ entry was blocked by the TRPC inhibitor Pico145 or the bacterial PSA homolog colominic acid. NCAM-stimulated Ca2+ influx was detectable neither in NCAM-deficient cortical neurons nor in TRPC1/4- or TRPC1/5-expressing CHO cells that express NCAM, but not PSA. NCAM-induced neurite outgrowth was reduced by TRPC inhibitors and a function-blocking TRPC1 antibody. A characteristic signaling feature was that extracellular signal-regulated kinase 1/2 phosphorylation was also reduced by TRPC inhibitors. Our findings indicate that the interaction of NCAM with TRPC1, -4, and -5 contributes to the NCAM-stimulated and PSA-dependent Ca2+ entry into neurons thereby influencing essential neural functions.
Collapse
|
7
|
Sphingolipid control of cognitive functions in health and disease. Prog Lipid Res 2022; 86:101162. [DOI: 10.1016/j.plipres.2022.101162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
8
|
Ledeen R, Chowdhury S, Lu ZH, Chakraborty M, Wu G. Systemic deficiency of GM1 ganglioside in Parkinson's disease tissues and its relation to the disease etiology. Glycoconj J 2022; 39:75-82. [PMID: 34973149 PMCID: PMC8979856 DOI: 10.1007/s10719-021-10025-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
Following our initial reports on subnormal levels of GM1 in the substantia nigra and occipital cortex of Parkinson's disease (PD) patients, we have examined additional tissues from such patients and found these are also deficient in the ganglioside. These include innervated tissues intimately involved in PD pathology such as colon, heart and others, somewhat less intimately involved, such as skin and fibroblasts. Finally, we have analyzed GM1 in peripheral blood mononuclear cells, a type of tissue apparently with no direct innervation, and found those too to be deficient in GM1. Those patients were all afflicted with the sporadic form of PD (sPD), and we therefore conclude that systemic deficiency of GM1 is a characteristic of this major type of PD. Age is one factor in GM1 decline but is not sufficient; additional GM1 suppressive factors are involved in producing sPD. We discuss these and why GM1 replacement offers promise as a disease-altering therapy.
Collapse
Affiliation(s)
- Robert Ledeen
- Department of Pharmacology, Physiology & Neuroscience, Rutgers The State University of New Jersey, Newark, NJ, 07103, USA.
| | - Suman Chowdhury
- Department of Pharmacology, Physiology & Neuroscience, Rutgers The State University of New Jersey, Newark, NJ, 07103, USA
| | - Zi-Hua Lu
- Department of Pharmacology, Physiology & Neuroscience, Rutgers The State University of New Jersey, Newark, NJ, 07103, USA
| | - Monami Chakraborty
- Department of Pharmacology, Physiology & Neuroscience, Rutgers The State University of New Jersey, Newark, NJ, 07103, USA
| | - Gusheng Wu
- Department of Pharmacology, Physiology & Neuroscience, Rutgers The State University of New Jersey, Newark, NJ, 07103, USA
| |
Collapse
|
9
|
Itokazu Y, Fuchigami T, Morgan JC, Yu RK. Intranasal infusion of GD3 and GM1 gangliosides downregulates alpha-synuclein and controls tyrosine hydroxylase gene in a PD model mouse. Mol Ther 2021; 29:3059-3071. [PMID: 34111562 DOI: 10.1016/j.ymthe.2021.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is characterized by Lewy bodies (composed predominantly of alpha-synuclein [aSyn]) and loss of pigmented midbrain dopaminergic neurons comprising the nigrostriatal pathway. Most PD patients show significant deficiency of gangliosides, including GM1, in the brain, and GM1 ganglioside appears to keep dopaminergic neurons functioning properly. Thus, supplementation of GM1 could potentially provide some rescuing effects. In this study, we demonstrate that intranasal infusion of GD3 and GM1 gangliosides reduces intracellular aSyn levels. GM1 also significantly enhances expression of tyrosine hydroxylase (TH) in the substantia nigra pars compacta of the A53T aSyn overexpressing mouse, following restored nuclear expression of nuclear receptor related 1 (Nurr1, also known as NR4A2), an essential transcription factor for differentiation, maturation, and maintenance of midbrain dopaminergic neurons. GM1 induces epigenetic activation of the TH gene, including augmentation of acetylated histones and recruitment of Nurr1 to the TH promoter region. Our data indicate that intranasal administration of gangliosides could reduce neurotoxic proteins and restore functional neurons via modulating chromatin status by nuclear gangliosides.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - John C Morgan
- Movement Disorders Program, Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
10
|
Turning the spotlight on the oligosaccharide chain of GM1 ganglioside. Glycoconj J 2021; 38:101-117. [PMID: 33620588 PMCID: PMC7917043 DOI: 10.1007/s10719-021-09974-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
It is well over a century that glycosphingolipids are matter of interest in different fields of research. The hydrophilic oligosaccharide and the lipid moiety, the ceramide, both or separately have been considered in different moments as the crucial portion of the molecule, responsible for the role played by the glycosphingolipids associated to the plasma-membranes or to any other subcellular fraction. Glycosphingolipids are a family of compounds characterized by thousands of structures differing in both the oligosaccharide and the ceramide moieties, but among them, the nervous system monosialylated glycosphingolipid GM1, belonging to the group of gangliosides, has gained particular attention by a multitude of Scientists. In recent years, a series of studies have been conducted on the functional roles played by the hydrophilic part of GM1, its oligosaccharide, that we have named “OligoGM1”. These studies allowed to shed new light on the mechanisms underlying the properties of GM1 defining the role of the OligoGM1 in determining precise interactions with membrane proteins instrumental for the neuronal functions, leaving to the ceramide the role of correctly positioning the GM1 in the membrane crucial for the oligosaccharide-protein interactions. In this review we aim to report the recent studies on the cascade of events modulated by OligoGM1, as the bioactive portion of GM1, to support neuronal differentiation and trophism together with preclinical studies on its potential to modify the progression of Parkinson’s disease.
Collapse
|
11
|
Modulation of calcium signaling depends on the oligosaccharide of GM1 in Neuro2a mouse neuroblastoma cells. Glycoconj J 2020; 37:713-727. [PMID: 33201378 PMCID: PMC7679337 DOI: 10.1007/s10719-020-09963-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
Recently, we demonstrated that the oligosaccharide portion of ganglioside GM1 is responsible, via direct interaction and activation of the TrkA pathway, for the ability of GM1 to promote neuritogenesis and to confer neuroprotection in Neuro2a mouse neuroblastoma cells. Recalling the knowledge that ganglioside GM1 modulates calcium channels activity, thus regulating the cytosolic calcium concentration necessary for neuronal functions, we investigated if the GM1-oligosaccharide would be able to overlap the GM1 properties in the regulation of calcium signaling, excluding a specific role played by the ceramide moiety inserted into the external layer of plasma membrane. We observed, by calcium imaging, that GM1-oligosaccharide administration to undifferentiated Neuro2a cells resulted in an increased calcium influx, which turned out to be mediated by the activation of TrkA receptor. The biochemical analysis demonstrated that PLCγ and PKC activation follows the TrkA stimulation by GM1-oligosaccharide, leading to the opening of calcium channels both on the plasma membrane and on intracellular storages, as confirmed by calcium imaging experiments performed with IP3 receptor inhibitor. Subsequently, we found that neurite elongation in Neuro2a cells was blocked by subtoxic administration of extracellular and intracellular calcium chelators, suggesting that the increase of intracellular calcium is responsible of GM1-oligosaccharide mediated differentiation. These results suggest that GM1-oligosaccharide is responsible for the regulation of calcium signaling and homeostasis at the base of the neuronal functions mediated by plasma membrane GM1.
Collapse
|
12
|
Maria-Ferreira D, de Oliveira NMT, da Silva LCM, Fernandes ES. Evidence of a Role for the TRPC Subfamily in Mediating Oxidative Stress in Parkinson's Disease. Front Physiol 2020; 11:332. [PMID: 32457638 PMCID: PMC7225354 DOI: 10.3389/fphys.2020.00332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) represents one of the most common multifactorial neurodegenerative disorders affecting the elderly population. It is associated with the aggregation of α-synuclein protein and the loss of dopaminergic neurons in the substantia nigra pars compacta of the brain. The disease is mainly represented by motor symptoms, such as resting tremors, postural instability, rigidity, and bradykinesia, that develop slowly over time. Parkinson's disease can also manifest as disturbances in non-motor functions. Although the pathology of PD has not yet been fully understood, it has been suggested that the disruption of the cellular redox status may contribute to cellular oxidative stress and, thus, to cell death. The generation of reactive oxygen species and reactive nitrogen intermediates, as well as the dysfunction of dopamine metabolism, play important roles in the degeneration of dopaminergic neurons. In this context, the transient receptor potential channel canonical (TRPC) sub-family plays an important role in neuronal degeneration. Additionally, PD gene products, including DJ-1, SNCA, UCH-L1, PINK-1, and Parkin, also interfere with mitochondrial function leading to reactive oxygen species production and dopaminergic neuronal vulnerability to oxidative stress. Herein, we discuss the interplay between these various biochemical and molecular events that ultimately lead to dopaminergic signaling disruption, highlighting the recently identified roles of TRPC in PD.
Collapse
Affiliation(s)
- Daniele Maria-Ferreira
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Liziane Cristine Malaquias da Silva
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Elizabeth Soares Fernandes
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| |
Collapse
|
13
|
Formoso K, Susperreguy S, Freichel M, Birnbaumer L. RNA-seq analysis reveals TRPC genes to impact an unexpected number of metabolic and regulatory pathways. Sci Rep 2020; 10:7227. [PMID: 32350291 PMCID: PMC7190874 DOI: 10.1038/s41598-020-61177-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The seven-member transient receptor potential canonical genes (TRPC1-7) encode cation channels linked to several human diseases. There is little understanding of the participation of each TRPC in each pathology, considering functional redundancy. Also, most of the inhibitors available are not specific. Thus, we developed mice that lack all of the TRPCs and performed a transcriptome analysis in eight tissues. The aim of this research was to address the impact of the absence of all TRPC channels on gene expression. We obtained a total of 4305 differentially expressed genes (DEGs) in at least one tissue where spleen showed the highest number of DEGs (1371). Just 21 genes were modified in all the tissues. Performing a pathway enrichment analysis, we found that many important signaling pathways were modified in more than one tissue, including PI3K (phosphatidylinositol 3-kinase/protein kinase-B) signaling pathway, cytokine-cytokine receptor interaction, extracellular matrix (ECM)-receptor interaction and circadian rhythms. We describe for the first time the changes at the transcriptome level due to the lack of all TRPC proteins in a mouse model and provide a starting point to understand the function of TRPC channels and their possible roles in pathologies.
Collapse
Affiliation(s)
- Karina Formoso
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina
| | - Sebastian Susperreguy
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina
| | - Marc Freichel
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
| | - Lutz Birnbaumer
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina. .,Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
14
|
Ledeen RW, Kopitz J, Abad-Rodríguez J, Gabius HJ. Glycan Chains of Gangliosides: Functional Ligands for Tissue Lectins (Siglecs/Galectins). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:289-324. [PMID: 29747818 DOI: 10.1016/bs.pmbts.2017.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular signals on the cell surface are responsible for adhesion and communication. Of relevance in this respect, their chemical properties endow carbohydrates with the capacity to store a maximum of information in a minimum of space. One way to present glycans on the cell surface is their covalent conjugation to a ceramide anchor. Among the resulting glycosphingolipids, gangliosides are special due to the presence of at least one sialic acid in the glycan chains. Their spatial accessibility and the dynamic regulation of their profile are factors that argue in favor of a role of glycans of gangliosides as ligands (counterreceptors) for carbohydrate-binding proteins (lectins). Indeed, as discovered first for a bacterial toxin, tissue lectins bind gangliosides and mediate contact formation (trans) and signaling (cis). While siglecs have a preference for higher sialylated glycans, certain galectins also target the monosialylated pentasaccharide of ganglioside GM1. Enzymatic interconversion of ganglioside glycans by sialidase action, relevant for neuroblastoma cell differentiation and growth control in vitro, for axonogenesis and axon regeneration, as well as for proper communication between effector and regulatory T cells, changes lectin-binding affinity profoundly. The GD1a-to-GM1 "editing" is recognized by such lectins, for example, myelin-associated glycoprotein (siglec-4) losing affinity and galectin-1 gaining reactivity, and then translated into postbinding signaling. Orchestrations of loss/gain of affinity, of ganglioside/lectin expression, and of lectin presence in a network offer ample opportunities for fine-tuning. Thus glycans of gangliosides such as GD1a and GM1 are functional counterreceptors by a pairing with tissue lectins, an emerging aspect of ganglioside and lectin functionality.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States.
| | - Jürgen Kopitz
- Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
15
|
Gangliosides, α-Synuclein, and Parkinson's Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:435-454. [PMID: 29747823 DOI: 10.1016/bs.pmbts.2017.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review addresses the role of α-synuclein (αSyn) in the etiopathology of Parkinson's disease (PD), with emphasis on its interaction with GM1 ganglioside. We begin with a brief review of some of the milestone discoveries that helped to elucidate PD neuropathology, including the fibrous inclusions of Lewy that characterize the degenerating dopaminergic neurons of the substantia nigra and the presence of αSyn as a major constituent of these Lewy bodies and neurites. This enabled Braak et al. to define the progressive nature of PD in developing their staging hypothesis which described the topographically predictable sequence of neuropathological changes giving rise to prodromal nonmotor symptoms that precede the classical motor dysfunctions. We recount recent studies demonstrating strong, specific binding of αSyn to GM1 that serves to inhibit fibril formation and the key role of N-acetylation of αSyn in enhancing GM1 binding and specificity. The consequences of insufficient GM1 are illustrated in a newly presented mouse model of PD based on partial deletion of this ganglioside due to heterologous disruption of B4galnt1 (GM2/GD2 synthase), such mice presenting accurate recapitulation of the PD phenotype. A key feature of these mice was marked elevation of αSyn aggregates which accompanied motor impairment, both aggregates and motor dysfunction being corrected by GM1 replacement therapy. Such therapy was achieved with high dosage of GM1 and more effectively with lower doses of LIGA20, a membrane permeable analog of GM1. The accuracy of this mouse model was emphasized by the finding that various central nervous system and noncentral nervous system tissues from PD patients manifested similar GM1 deficiency as the B4galnt1+/- mouse. A mechanism is proposed whereby the GM1 deficiency detected in PD patients gives rise to αSyn aggregation and facilitation by the latter in blocking glial cell-derived neurotrophic factor neuroprotection.
Collapse
|
16
|
Lopez PH, Báez BB. Gangliosides in Axon Stability and Regeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:383-412. [DOI: 10.1016/bs.pmbts.2018.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Abstract
This review begins by attempting to recount some of the pioneering discoveries that first identified the presence of gangliosides in the nervous system, their structures and topography. This is presented as prelude to the current emphasis on physiological function, about which much has been learned but still remains to be elucidated. These areas include ganglioside roles in nervous system development including stem cell biology, membranes and organelles within neurons and glia, ion transport mechanisms, receptor modulation including neurotrophic factor receptors, and importantly the pathophysiological role of ganglioside aberrations in neurodegenerative disorders. This relates to their potential as therapeutic agents, especially in those conditions characterized by deficiency of one or more specific gangliosides. Finally we attempt to speculate on future directions ganglioside research is likely to take so as to capitalize on the impressive progress to date.
Collapse
Affiliation(s)
- Robert Ledeen
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Gusheng Wu
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
18
|
Sartiani L, Bucciantini M, Spinelli V, Leri M, Natalello A, Nosi D, Maria Doglia S, Relini A, Penco A, Giorgetti S, Gerace E, Mannaioni G, Bellotti V, Rigacci S, Cerbai E, Stefani M. Biochemical and Electrophysiological Modification of Amyloid Transthyretin on Cardiomyocytes. Biophys J 2017; 111:2024-2038. [PMID: 27806283 DOI: 10.1016/j.bpj.2016.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/26/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022] Open
Abstract
Transthyretin (TTR) amyloidoses are familial or sporadic degenerative conditions that often feature heavy cardiac involvement. Presently, no effective pharmacological therapy for TTR amyloidoses is available, mostly due to a substantial lack of knowledge about both the molecular mechanisms of TTR aggregation in tissue and the ensuing functional and viability modifications that occur in aggregate-exposed cells. TTR amyloidoses are of particular interest regarding the relation between functional and viability impairment in aggregate-exposed excitable cells such as peripheral neurons and cardiomyocytes. In particular, the latter cells provide an opportunity to investigate in parallel the electrophysiological and biochemical modifications that take place when the cells are exposed for various lengths of time to variously aggregated wild-type TTR, a condition that characterizes senile systemic amyloidosis. In this study, we investigated biochemical and electrophysiological modifications in cardiomyocytes exposed to amyloid oligomers or fibrils of wild-type TTR or to its T4-stabilized form, which resists tetramer disassembly, misfolding, and aggregation. Amyloid TTR cytotoxicity results in mitochondrial potential modification, oxidative stress, deregulation of cytoplasmic Ca2+ levels, and Ca2+ cycling. The altered intracellular Ca2+ cycling causes a prolongation of the action potential, as determined by whole-cell recordings of action potentials on isolated mouse ventricular myocytes, which may contribute to the development of cellular arrhythmias and conduction alterations often seen in patients with TTR amyloidosis. Our data add information about the biochemical, functional, and viability alterations that occur in cardiomyocytes exposed to aggregated TTR, and provide clues as to the molecular and physiological basis of heart dysfunction in sporadic senile systemic amyloidosis and familial amyloid cardiomyopathy forms of TTR amyloidoses.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Center of Molecular Medicine, University of Florence, Florence, Italy
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy.
| | - Valentina Spinelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Center of Molecular Medicine, University of Florence, Florence, Italy
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Amanda Penco
- Department of Physics, University of Genoa, Genoa, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Elisabetta Gerace
- Department of Health Science, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Vittorio Bellotti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, United Kingdom
| | - Stefania Rigacci
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy
| | - Elisabetta Cerbai
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Center of Molecular Medicine, University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
| |
Collapse
|
19
|
Beckmann H, Richter J, Hill K, Urban N, Lemoine H, Schaefer M. A benzothiadiazine derivative and methylprednisolone are novel and selective activators of transient receptor potential canonical 5 (TRPC5) channels. Cell Calcium 2017; 66:10-18. [PMID: 28807145 DOI: 10.1016/j.ceca.2017.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 01/11/2023]
Abstract
The transient receptor potential canonical channel 5 (TRPC5) is a Ca2+-permeable ion channel, which is predominantly expressed in the brain. TRPC5-deficient mice exhibit a reduced innate fear response and impaired motor control. In addition, outgrowth of hippocampal and cerebellar neurons is retarded by TRPC5. However, pharmacological evidence of TRPC5 function on cellular or organismic levels is sparse. Thus, there is still a need for identifying novel and efficient TRPC5 channel modulators. We, therefore, screened compound libraries and identified the glucocorticoid methylprednisolone and N-[3-(adamantan-2-yloxy)propyl]-3-(6-methyl-1,1-dioxo-2H-1λ6,2,4-benzothiadiazin-3-yl)propanamide (BTD) as novel TRPC5 activators. Comparisons with closely related chemical structures from the same libraries indicate important substructures for compound efficacy. Methylprednisolone activates TRPC5 heterologously expressed in HEK293 cells with an EC50 of 12μM, while BTD-induced half-maximal activation is achieved with 5-fold lower concentrations, both in Ca2+ assays (EC50=1.4μM) and in electrophysiological whole cell patch clamp recordings (EC50=1.3 μM). The activation resulting from both compounds is long lasting, reversible and sensitive to clemizole, a recently established TRPC5 inhibitor. No influence of BTD on homotetrameric members of the remaining TRPC family was observed. On the main sensory TRP channels (TRPA1, TRPV1, TRPM3, TRPM8) BTD exerts only minor activity. Furthermore, BTD can activate heteromeric channel complexes consisting of TRPC5 and its closest relatives TRPC1 or TRPC4, suggesting a high selectivity of BTD for channel complexes bearing at least one TRPC5 subunit.
Collapse
Affiliation(s)
- Holger Beckmann
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany.
| | - Julia Richter
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Kerstin Hill
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany.
| | - Nicole Urban
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany.
| | - Horst Lemoine
- Institute for Lasermedicine, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Michael Schaefer
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
20
|
Cebecauer M, Hof M, Amaro M. Impact of GM 1 on Membrane-Mediated Aggregation/Oligomerization of β-Amyloid: Unifying View. Biophys J 2017; 113:1194-1199. [PMID: 28410623 DOI: 10.1016/j.bpj.2017.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/02/2017] [Accepted: 03/13/2017] [Indexed: 11/18/2022] Open
Abstract
In this perspective we summarize current knowledge of the effect of monosialoganglioside GM1 on the membrane-mediated aggregation of the β-amyloid (Aβ) peptide. GM1 has been suggested to be actively involved in the development of Alzheimer's disease due to its ability to seed the aggregation of Aβ. However, GM1 is known to be neuroprotective against Aβ-induced toxicity. Here we suggest that the two scenarios are not mutually exclusive but rather complementary, and might depend on the organization of GM1 in membranes. Improving our understanding of the molecular details behind the role of gangliosides in neurodegenerative amyloidoses might help in developing disease-modifying treatments.
Collapse
Affiliation(s)
- Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic.
| | - Mariana Amaro
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic.
| |
Collapse
|
21
|
Jiao R, Cui D, Wang SC, Li D, Wang YF. Interactions of the Mechanosensitive Channels with Extracellular Matrix, Integrins, and Cytoskeletal Network in Osmosensation. Front Mol Neurosci 2017; 10:96. [PMID: 28424587 PMCID: PMC5380722 DOI: 10.3389/fnmol.2017.00096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/21/2017] [Indexed: 01/14/2023] Open
Abstract
Life is maintained in a sea water-like internal environment. The homeostasis of this environment is dependent on osmosensory system translation of hydromineral information into osmotic regulatory machinery at system, tissue and cell levels. In the osmosensation, hydromineral information can be converted into cellular reactions through osmoreceptors, which changes thirst and drinking, secretion of antidiuretic vasopressin (VP), reabsorption of water and salt in the kidneys at systemic level as well as cellular metabolic activity and survival status at tissue level. The key feature of osmosensation is the activation of mechanoreceptors or mechanosensors, particularly transient receptor potential vallinoid (TRPV) and canonical (TRPC) family channels, which increases cytosolic Ca2+ levels, activates osmosensory cells including VP neurons and triggers a series of secondary reactions. TRPV channels are sensitive to both hyperosmotic and hyposmotic stimuli while TRPC channels are more sensitive to hyposmotic challenge in neurons. The activation of TRP channels relies on changes in cell volume, membrane stretch and cytoskeletal reorganization as well as hydration status of extracellular matrix (ECM) and activity of integrins. Different families of TRP channels could be activated differently in response to hyperosmotic and hyposmotic stimuli in different spatiotemporal orders, leading to differential reactions of osmosensory cells. Together, they constitute the osmosensory machinery. The activation of this osmoreceptor complex is also associated with the activity of other osmolarity-regulating organelles, such as water channel protein aquaporins, Na-K-2Cl cotransporters, volume-sensitive anion channels, sodium pump and purinergic receptors in addition to intercellular interactions, typically astrocytic neuronal interactions. In this article, we review our current understandings of the composition of osmoreceptors and the processes of osmosensation.
Collapse
Affiliation(s)
- Runsheng Jiao
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| | - Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| | - Stephani C Wang
- Department of Internal Medicine, Albany Medical CollegeAlbany, NY, USA
| | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| |
Collapse
|
22
|
Kim JJ, El-Fiqi A, Kim HW. Synergetic Cues of Bioactive Nanoparticles and Nanofibrous Structure in Bone Scaffolds to Stimulate Osteogenesis and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2059-2073. [PMID: 28029246 DOI: 10.1021/acsami.6b12089] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Providing a nanotopological physical cue in concert with a bioactive chemical signal within 3D scaffolds, while it being considered a promising approach for bone regeneration, has yet to be explored. Here, we develop 3D porous scaffolds that are networked to be a nanofibrous structure and incorporated with bioactive glass nanoparticles (BGn) to tackle this issue. The presence of BGn and nanofibrous structure (BGn + nanofibrous) substantially increased the surface area, hydro-affinity and protein loading capacity of scaffolds. In particular, the BGn released Si and Ca ions to the levels known to be biologically effective, offering the bone scaffold an ability to deliver therapeutic ions. The mesenchymal stem cells (MSCs) from rats exhibited significantly accelerated adhesion events including cell anchorage, cytoskeletal extensions, and the expression of adhesion signaling molecules on the BGn/nanofibrous scaffolds. The cells gained a more rapid proliferation and migration (penetration) ability over 2 weeks within the BGn + nanofibrous scaffolds than within either nanofibrous or BGn scaffolds. The osteogenesis of MSCs, as confirmed by the expressions of bone-associated genes and proteins, as well as the cellular mineralization was significantly stimulated by the BGn and nanofibrous topology in a synergistic manner. The behaviors of endothelial cells (HUVECs) including cell migration and tubule networking were also enhanced when influenced by the BGn and nanofibrous scaffolds (but more by BGn than by nanofiber). A subcutaneous tissue implantation of the scaffolds further evidenced the in vivo stimulation of neo-blood vessel formation by the BGn + nanofibrous cues, suggesting the possible promising role in bone regeneration. Taken together, the therapeutic ions and nanofibrous topology implemented within 3D scaffolds are considered to play synergistic actions in osteogenesis and angiogenesis, implying the potential usefulness of the BGn + nanofibrous scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Jung-Ju Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, Republic of Korea
| | - Ahmed El-Fiqi
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University , Cheonan 330-714, Republic of Korea
| |
Collapse
|
23
|
Lipid glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2016; 147:175-198. [DOI: 10.1007/s00418-016-1518-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
|
24
|
Higuero AM, Díez-Revuelta N, Abad-Rodríguez J. The sugar code in neuronal physiology. Histochem Cell Biol 2016; 147:257-267. [PMID: 27999993 DOI: 10.1007/s00418-016-1519-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Carbohydrate-related interactions are necessary for the correct development and function of the nervous system. As we illustrate with several examples, those interactions are controlled by carbohydrate-modifying enzymes and by carbohydrate-binding proteins that regulate a plethora of complex axonal processes. Among others, glycan-related proteins as sialidase Neu3 or galectins-1, -3, and -4 play central roles in the determination of axonal fate, axon growth, guidance and regeneration, as well as in polarized axonal glycoprotein transport. In addition, myelination is also highly dependent on glycans, and the stabilization of myelin architecture requires the interaction of the myelin-associated glycoprotein (siglec-4) with gangliosides in the axonal membrane. The roles of glycans in neuroscience are far from being completely understood, though the cases presented here underscore the importance and potential of carbohydrates to establish with precision key molecular mechanisms of the physiology of the nervous system. New specific applications in diagnosis as well as the definition of new molecular targets to treat neurological diseases related to lectins and/or glycans are envisioned in the future.
Collapse
Affiliation(s)
- Alonso M Higuero
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
25
|
Cross-Linking Mast Cell Specific Gangliosides Stimulates the Release of Newly Formed Lipid Mediators and Newly Synthesized Cytokines. Mediators Inflamm 2016; 2016:9160540. [PMID: 27578923 PMCID: PMC4992799 DOI: 10.1155/2016/9160540] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/13/2016] [Indexed: 01/18/2023] Open
Abstract
Mast cells are immunoregulatory cells that participate in inflammatory processes. Cross-linking mast cell specific GD1b derived gangliosides by mAbAA4 results in partial activation of mast cells without the release of preformed mediators. The present study examines the release of newly formed and newly synthesized mediators following ganglioside cross-linking. Cross-linking the gangliosides with mAbAA4 released the newly formed lipid mediators, prostaglandins D2 and E2, without release of leukotrienes B4 and C4. The effect of cross-linking these gangliosides on the activation of enzymes in the arachidonate cascade was then investigated. Ganglioside cross-linking resulted in phosphorylation of cytosolic phospholipase A2 and increased expression of cyclooxygenase-2. Translocation of 5-lipoxygenase from the cytosol to the nucleus was not induced by ganglioside cross-linking. Cross-linking of GD1b derived gangliosides also resulted in the release of the newly synthesized mediators, interleukin-4, interleukin-6, and TNF-α. The effect of cross-linking the gangliosides on the MAP kinase pathway was then investigated. Cross-linking the gangliosides induced the phosphorylation of ERK1/2, JNK1/2, and p38 as well as activating both NFκB and NFAT in a Syk-dependent manner. Therefore, cross-linking the mast cell specific GD1b derived gangliosides results in the activation of signaling pathways that culminate with the release of newly formed and newly synthesized mediators.
Collapse
|
26
|
Harschnitz O, van den Berg LH, Johansen LE, Jansen MD, Kling S, Vieira de Sá R, Vlam L, van Rheenen W, Karst H, Wierenga CJ, Pasterkamp RJ, van der Pol WL. Autoantibody pathogenicity in a multifocal motor neuropathy induced pluripotent stem cell-derived model. Ann Neurol 2016; 80:71-88. [DOI: 10.1002/ana.24680] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Oliver Harschnitz
- Department of Neurology and Neurosurgery; University Medical Center Utrecht; Brain Center Rudolf Magnus Utrecht the Netherlands
- Department of Translational Neuroscience; University Medical Center Utrecht; Brain Center Rudolf Magnus Utrecht the Netherlands
| | - Leonard H. van den Berg
- Department of Neurology and Neurosurgery; University Medical Center Utrecht; Brain Center Rudolf Magnus Utrecht the Netherlands
| | - Lill Eva Johansen
- Department of Translational Neuroscience; University Medical Center Utrecht; Brain Center Rudolf Magnus Utrecht the Netherlands
| | - Marc D. Jansen
- Department of Neurology and Neurosurgery; University Medical Center Utrecht; Brain Center Rudolf Magnus Utrecht the Netherlands
| | - Sandra Kling
- Department of Neurology and Neurosurgery; University Medical Center Utrecht; Brain Center Rudolf Magnus Utrecht the Netherlands
| | - Renata Vieira de Sá
- Department of Translational Neuroscience; University Medical Center Utrecht; Brain Center Rudolf Magnus Utrecht the Netherlands
| | - Lotte Vlam
- Department of Translational Neuroscience; University Medical Center Utrecht; Brain Center Rudolf Magnus Utrecht the Netherlands
| | - Wouter van Rheenen
- Department of Neurology and Neurosurgery; University Medical Center Utrecht; Brain Center Rudolf Magnus Utrecht the Netherlands
- Department of Translational Neuroscience; University Medical Center Utrecht; Brain Center Rudolf Magnus Utrecht the Netherlands
| | - Henk Karst
- Department of Translational Neuroscience; University Medical Center Utrecht; Brain Center Rudolf Magnus Utrecht the Netherlands
| | - Corette J. Wierenga
- Division of Cell Biology, Department of Biology, Faculty of Science; Utrecht University; Utrecht the Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational Neuroscience; University Medical Center Utrecht; Brain Center Rudolf Magnus Utrecht the Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and Neurosurgery; University Medical Center Utrecht; Brain Center Rudolf Magnus Utrecht the Netherlands
| |
Collapse
|
27
|
Villarroel-Campos D, Bronfman FC, Gonzalez-Billault C. Rab GTPase signaling in neurite outgrowth and axon specification. Cytoskeleton (Hoboken) 2016; 73:498-507. [PMID: 27124121 DOI: 10.1002/cm.21303] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 12/30/2022]
Abstract
Neurons are highly polarized cells that contain specialized subcellular domains involved in information transmission in the nervous system. Specifically, the somatodendritic compartment receives neuronal inputs while the axons convey information through the synapse. The establishment of asymmetric domains requires a specific delivery of components, including organelles, proteins, and membrane. The Rab family of small GTPases plays an essential role in membrane trafficking. Signaling cascades triggered by extrinsic and intrinsic factors tightly regulate Rab functions in cells, with Rab protein activation depending on GDP/GTP binding to establish a binary mode of action. This review summarizes the contributions of several Rab family members involved in trans-Golgi, early/late endosomes, and recycling endosomes during neurite development and axonal outgrowth. The regulation of some Rabs by guanine exchanging factors and GTPase activating proteins will also be addressed. Finally, discussion will be provided on how specific effector-mediated Rab activation modifies several molecules essential to neuronal differentiation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad De Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Francisca C Bronfman
- MINREB And Center for Ageing and Regeneration (CARE), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad De Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| |
Collapse
|
28
|
Mickiewicz B, Shin SY, Pozzi A, Vogel HJ, Clark AL. Serum Metabolite Profiles Are Altered by Erlotinib Treatment and the Integrin α1-Null Genotype but Not by Post-Traumatic Osteoarthritis. J Proteome Res 2016; 15:815-25. [PMID: 26784366 DOI: 10.1021/acs.jproteome.5b00719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The risk of developing post-traumatic osteoarthritis (PTOA) following joint injury is high. Furthering our understanding of the molecular mechanisms underlying PTOA and/or identifying novel biomarkers for early detection may help to improve treatment outcomes. Increased expression of integrin α1β1 and inhibition of epidermal growth factor receptor (EGFR) signaling protect the knee from spontaneous OA; however, the impact of the integrin α1β1/EGFR axis on PTOA is currently unknown. We sought to determine metabolic changes in serum samples collected from wild-type and integrin α1-null mice that underwent surgery to destabilize the medial meniscus and were treated with the EGFR inhibitor erlotinib. Following (1)H nuclear magnetic resonance spectroscopy, we generated multivariate statistical models that distinguished between the metabolic profiles of erlotinib- versus vehicle-treated mice and the integrin α1-null versus wild-type mouse genotype. Our results show the sex-dependent effects of erlotinib treatment and highlight glutamine as a metabolite that counteracts this treatment. Furthermore, we identified a set of metabolites associated with increased reactive oxygen species production, susceptibility to OA, and regulation of TRP channels in α1-null mice. Our study indicates that systemic pharmacological and genetic factors have a greater effect on serum metabolic profiles than site-specific factors such as surgery.
Collapse
Affiliation(s)
| | | | - Ambra Pozzi
- Department of Medicine, Vanderbilt University , Nashville, Tennessee 37232, United States.,Department of Medicine, Veterans Affairs Hospital , Nashville, Tennessee 37232, United States
| | | | - Andrea L Clark
- Department of Surgery, Cumming School of Medicine, University of Calgary , Calgary T2N 4N1, AB, Canada
| |
Collapse
|
29
|
Wu G, Lu ZH, André S, Gabius HJ, Ledeen RW. Functional interplay between ganglioside GM1 and cross-linking galectin-1 induces axon-like neuritogenesis via integrin-based signaling and TRPC5-dependent Ca²⁺ influx. J Neurochem 2015; 136:550-63. [PMID: 26526326 PMCID: PMC4720552 DOI: 10.1111/jnc.13418] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/24/2015] [Accepted: 10/08/2015] [Indexed: 12/04/2022]
Abstract
Axon‐like neuritogenesis in neuroblastoma (NG108‐15) cells and primary cerebellar granular neurons is furthered by the presence of ganglioside GM1. We describe here that galectin‐1 (Gal‐1), a homobivalent endogenous lectin, is an effector by cross‐linking the ganglioside and its associated glycoprotein α5β1‐integrin. The thereby triggered signaling cascade involves autophosphorylation of focal adhesion kinase and activation of phospholipase Cγ and phosphoinositide‐3 kinase. This leads to a transient increase in the intracellular Ca2+ concentration by opening of TRPC5 channels, which belong to the signal transduction‐gated cation channels. Controls with GM1‐defective cells (NG‐CR72 and neurons from ganglio‐series KO mice) were retarded in axonal growth, underscoring the relevance of GM1 as functional counterreceptor for Gal‐1. The lectin's presence was detected in the NG108‐15 cells, suggesting an autocrine mechanism of action, and in astrocytes in situ. Gal‐1, as cross‐linking lectin, can thus translate metabolic conversion of ganglioside GD1a to GM1 by neuraminidase action into axon growth.
Galectin‐1 (Gal‐1) was shown an effector of axonogenesis in cerebellar granule neurons (CGNs) and NG108‐15 cells by cross‐linking GM1 ganglioside and its associated glycoprotein α5β1‐integrin. The resulting signaling led to a transient increase in intracellular Ca2+ by opening TRPC5 channels. CGNs deficient in GM1 showed retarded axonogenesis, underscoring the relevance of GM1 as functional counterreceptor for Gal‐1 in this process. This Gal‐1/GM1‐induced signaling was manifest only at the earliest, initiating stage of axon development.
Collapse
Affiliation(s)
- Gusheng Wu
- Department of Pharmacology, Physiology & Neurosciences, Rutgers-The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Zi-Hua Lu
- Department of Pharmacology, Physiology & Neurosciences, Rutgers-The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Germany
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Germany
| | - Robert W Ledeen
- Department of Pharmacology, Physiology & Neurosciences, Rutgers-The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
30
|
Abstract
Neuronal growth cones are exquisite sensory-motor machines capable of transducing features contacted in their local extracellular environment into guided process extension during development. Extensive research has shown that chemical ligands activate cell surface receptors on growth cones leading to intracellular signals that direct cytoskeletal changes. However, the environment also provides mechanical support for growth cone adhesion and traction forces that stabilize leading edge protrusions. Interestingly, recent work suggests that both the mechanical properties of the environment and mechanical forces generated within growth cones influence axon guidance. In this review we discuss novel molecular mechanisms involved in growth cone force production and detection, and speculate how these processes may be necessary for the development of proper neuronal morphogenesis.
Collapse
Affiliation(s)
- Patrick C Kerstein
- Neuroscience Training Program, Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison Madison, WI, USA
| | - Robert H Nichol
- Neuroscience Training Program, Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison Madison, WI, USA
| | - Timothy M Gomez
- Neuroscience Training Program, Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
31
|
Schengrund CL. Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem Sci 2015; 40:397-406. [DOI: 10.1016/j.tibs.2015.03.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/25/2022]
|
32
|
Ledeen RW, Wu G. The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 2015; 40:407-18. [PMID: 26024958 DOI: 10.1016/j.tibs.2015.04.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 11/19/2022]
Abstract
GM1 ganglioside occurs widely in vertebrate tissues, where it exhibits many essential functions, both in the plasma membrane and intracellular loci. Its essentiality is revealed in the dire consequences resulting from genetic deletion. This derives from its key roles in several signalosome systems, characteristically located in membrane rafts, where it associates with specific proteins that have glycolipid-binding domains. Thus, GM1 interacts with proteins that modulate mechanisms such as ion transport, neuronal differentiation, G protein-coupled receptors (GPCRs), immune system reactivities, and neuroprotective signaling. The latter occurs through intimate association with neurotrophin receptors, which has relevance to the etiopathogenesis of neurodegenerative diseases and potential therapies. Here, we review the current state of knowledge of these GM1-associated mechanisms.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA.
| | - Gusheng Wu
- Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
33
|
Zeng C, Tian F, Xiao B. TRPC Channels: Prominent Candidates of Underlying Mechanism in Neuropsychiatric Diseases. Mol Neurobiol 2014; 53:631-647. [DOI: 10.1007/s12035-014-9004-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
|
34
|
Hatzifilippou E, Koutsouraki E, Costa VG, Baloyannis SJ. Antibodies against gangliosides in patients with dementia. Am J Alzheimers Dis Other Demen 2014; 29:660-6. [PMID: 24838532 PMCID: PMC10852599 DOI: 10.1177/1533317514534953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Increasing evidence suggests that gangliosides act as important mediators in both de- and remyelination. The scope of the present research was to investigate the presence of immunoglobulin (Ig) M antibodies against GM1, GD1b, and GQ1b gangliosides in the sera of patients with dementia and the possible connection with clinical parameters of the disease. METHOD This research topic demonstrates the investigation of 103 patients with dementia and 60 healthy individuals using enzyme-linked immunosorbent assay for the presence of 3 antiganglioside antibodies in their sera. RESULTS The authors report a positive connection between IgM anti-GM1 and the age (P = .005) and the severity of dementia (P = .005). Most of the patients who revealed increased IgM anti-GD1b levels had Alzheimer's disease (AD; P = .002). CONCLUSION This study indicates that elevated IgM anti-GM1 may be connected with the neurodegeneration in older patients with severe dementia and that AD may also be associated with increased IgM anti-GD1b levels.
Collapse
Affiliation(s)
- E Hatzifilippou
- First Department of Neurology, Laboratory of Neuroimmunology, Aristotle University, AHEPA Hospital, Thessaloniki, Greece
| | - E Koutsouraki
- First Department of Neurology, Laboratory of Neuroimmunology, Aristotle University, AHEPA Hospital, Thessaloniki, Greece
| | - V G Costa
- First Department of Neurology, Memory Clinic, Aristotle University, AHEPA Hospital, Thessaloniki, Greece
| | - S J Baloyannis
- First Department of Neurology, Laboratory of Neuroimmunology, Aristotle University, AHEPA Hospital, Thessaloniki, Greece First Department of Neurology, Memory Clinic, Aristotle University, AHEPA Hospital, Thessaloniki, Greece
| |
Collapse
|
35
|
Axotomy-induced ganglioside processing: a mediator of axon regeneration restricted to the PNS. J Neurosci 2014; 34:8659-61. [PMID: 24966366 DOI: 10.1523/jneurosci.1479-14.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
36
|
Richter JM, Schaefer M, Hill K. Riluzole activates TRPC5 channels independently of PLC activity. Br J Pharmacol 2014; 171:158-70. [PMID: 24117252 DOI: 10.1111/bph.12436] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/05/2013] [Accepted: 09/15/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The transient receptor potential channel C5 (TRPC5) is a Ca(2+)-permeable cation channel, which is predominantly expressed in the brain. TRPC5 is activated in a PLC-dependent manner by, as yet, unidentified endogenous messengers. Recently, modulators of TRPC5, like Ca(2+), pH and phospholipids, have been identified. However, the role of TRPC5 in vivo is only poorly understood. Novel specific modulators of TRPC5 might help to elucidate its function. EXPERIMENTAL APPROACH Novel modulators of TRPC5 were identified in a compound screening of approved drugs and natural compounds. The potency and selectivity of TRPC5-activating compounds were determined by fluorometric calcium imaging. The biophysical properties of channel activation by these compounds were analysed using electrophysiological measurements. KEY RESULTS Riluzole was identified as a novel activator of TRPC5 (EC₅₀ 9.2 ± 0.5 μM) and its mechanism of action was shown to be independent of G protein signalling and PLC activity. Riluzole-induced TRPC5 currents were potentiated by La(3+) and, utilizing TRPC5 mutants that lack La(3+) binding sites, it was confirmed that riluzole and La(3+) activate TRPC5 by different mechanisms. Recordings of excised inside-out patches revealed a relatively direct effect of riluzole on TRPC5. CONCLUSIONS AND IMPLICATIONS Riluzole can activate TRPC5 heterologously expressed in HEK293 cells as well as those endogenously expressed in the U-87 glioblastoma cell line. Riluzole does not activate any other member of the TRPC family and could, therefore, despite its action on other ion channels, be a useful pharmacological tool for identifying TRPC5-specific currents in immortalized cell lines or in acutely isolated primary cells.
Collapse
Affiliation(s)
- Julia M Richter
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
37
|
Šachl R, Amaro M, Aydogan G, Koukalová A, Mikhalyov II, Boldyrev IA, Humpolíčková J, Hof M. On multivalent receptor activity of GM1 in cholesterol containing membranes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:850-7. [PMID: 25101973 DOI: 10.1016/j.bbamcr.2014.07.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/17/2014] [Accepted: 07/25/2014] [Indexed: 11/29/2022]
Abstract
Gangliosides located at the outer leaflet of plasma membrane are molecules that either participate in recognizing of exogenous ligand molecules or exhibit their own receptor activity, which are both essential phenomena for cell communication and signaling as well as for virus and toxin entry. Regulatory mechanisms of lipid-mediated recognition are primarily subjected to the physical status of the membrane in close vicinity of the receptor. Concerning the multivalent receptor activity of the ganglioside GM1, several regulatory strategies dealing with GM1 clustering and cholesterol involvement have been proposed. So far however, merely the isolated issues were addressed and no interplay between them investigated. In this work, several advanced fluorescence techniques such as Z-scan fluorescence correlation spectroscopy, Förster resonance energy transfer combined with Monte Carlo simulations, and a newly developed fluorescence antibunching assay were employed to give a more complex portrait of clustering and cholesterol involvement in multivalent ligand recognition of GM1. Our results indicate that membrane properties have an impact on a fraction of GM1 molecules that is not available for the ligand binding. While at low GM1 densities (~1 %) it is the cholesterol that turns GM1 headgroups invisible, at higher GM1 level (~4 %) it is purely the local density of GM1 molecules that inhibits the recognition. At medium GM1 content, cooperation of the two phenomena occurs. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Radek Šachl
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Dolejškova 2155/3, Prague 8, Cz-182 23, Czech Republic.
| | - Mariana Amaro
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Dolejškova 2155/3, Prague 8, Cz-182 23, Czech Republic.
| | - Gokcan Aydogan
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Dolejškova 2155/3, Prague 8, Cz-182 23, Czech Republic.
| | - Alena Koukalová
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Dolejškova 2155/3, Prague 8, Cz-182 23, Czech Republic; Faculty of Science, Charles University in Prague, Albertov 6, 128 43, Prague 2, Czech Republic.
| | - Ilya I Mikhalyov
- Shemyakin- Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, GSP-7, Russian Federation.
| | - Ivan A Boldyrev
- Shemyakin- Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, GSP-7, Russian Federation.
| | - Jana Humpolíčková
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Dolejškova 2155/3, Prague 8, Cz-182 23, Czech Republic.
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Dolejškova 2155/3, Prague 8, Cz-182 23, Czech Republic.
| |
Collapse
|
38
|
Ali-Rahmani F, Schengrund CL, Connor JR. HFE gene variants, iron, and lipids: a novel connection in Alzheimer's disease. Front Pharmacol 2014; 5:165. [PMID: 25071582 PMCID: PMC4086322 DOI: 10.3389/fphar.2014.00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022] Open
Abstract
Iron accumulation and associated oxidative stress in the brain have been consistently found in several neurodegenerative diseases. Multiple genetic studies have been undertaken to try to identify a cause of neurodegenerative diseases but direct connections have been rare. In the iron field, variants in the HFE gene that give rise to a protein involved in cellular iron regulation, are associated with iron accumulation in multiple organs including the brain. There is also substantial epidemiological, genetic, and molecular evidence of disruption of cholesterol homeostasis in several neurodegenerative diseases, in particular Alzheimer's disease (AD). Despite the efforts that have been made to identify factors that can trigger the pathological events associated with neurodegenerative diseases they remain mostly unknown. Because molecular phenotypes such as oxidative stress, synaptic failure, neuronal loss, and cognitive decline, characteristics associated with AD, have been shown to result from disruption of a number of pathways, one can easily argue that the phenotype seen may not arise from a linear sequence of events. Therefore, a multi-targeted approach is needed to understand a complex disorder like AD. This can be achieved only when knowledge about interactions between the different pathways and the potential influence of environmental factors on them becomes available. Toward this end, this review discusses what is known about the roles and interactions of iron and cholesterol in neurodegenerative diseases. It highlights the effects of gene variants of HFE (H63D- and C282Y-HFE) on iron and cholesterol metabolism and how they may contribute to understanding the etiology of complex neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatima Ali-Rahmani
- Departments of Neurosurgery, Neural and Behavioral Sciences and Pediatrics, Center for Aging and Neurodegenerative Diseases, Penn State Hershey Medical CenterHershey, PA, USA
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - Cara-Lynne Schengrund
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - James R. Connor
- Departments of Neurosurgery, Neural and Behavioral Sciences and Pediatrics, Center for Aging and Neurodegenerative Diseases, Penn State Hershey Medical CenterHershey, PA, USA
| |
Collapse
|
39
|
Ariga T. Pathogenic role of ganglioside metabolism in neurodegenerative diseases. J Neurosci Res 2014; 92:1227-42. [PMID: 24903509 DOI: 10.1002/jnr.23411] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022]
Abstract
Ganglioside metabolism is altered in several neurodegenerative diseases, and this may participate in several events related to the pathogenesis of these diseases. Most changes occur in specific areas of the brain and their distinct membrane microdomains or lipid rafts. Antiganglioside antibodies may be involved in dysfunction of the blood-brain barrier and disease progression in these diseases. In lipid rafts, interactions of glycosphingolipids, including ganglioside, with proteins may be responsible for the misfolding events that cause the fibril and/or aggregate processing of disease-specific proteins, such as α-synuclein, in Parkinson's disease, huntingtin protein in Huntington's disease, and copper-zinc superoxide dismutase in amyotrophic lateral sclerosis. Targeting ganglioside metabolism may represent an underexploited opportunity to design novel therapeutic strategies for neurodegeneration in these diseases.
Collapse
Affiliation(s)
- Toshio Ariga
- Institute of Molecular Medicine and Genetics, Institute of Neuroscience, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
40
|
Physiological Function and Characterization of TRPCs in Neurons. Cells 2014; 3:455-75. [PMID: 24852263 PMCID: PMC4092863 DOI: 10.3390/cells3020455] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/22/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022] Open
Abstract
Ca2+ entry is essential for regulating vital physiological functions in all neuronal cells. Although neurons are engaged in multiple modes of Ca2+ entry that regulates variety of neuronal functions, we will only discuss a subset of specialized Ca2+-permeable non-selective Transient Receptor Potential Canonical (TRPC) channels and summarize their physiological and pathological role in these excitable cells. Depletion of endoplasmic reticulum (ER) Ca2+ stores, due to G-protein coupled receptor activation, has been shown to activate TRPC channels in both excitable and non-excitable cells. While all seven members of TRPC channels are predominately expressed in neuronal cells, the ion channel properties, mode of activation, and their physiological responses are quite distinct. Moreover, many of these TRPC channels have also been suggested to be associated with neuronal development, proliferation and differentiation. In addition, TRPCs also regulate neurosecretion, long-term potentiation and synaptic plasticity. Similarly, perturbations in Ca2+ entry via the TRPC channels have been also suggested in a spectrum of neuropathological conditions. Hence, understanding the precise involvement of TRPCs in neuronal function and in neurodegenerative conditions would presumably unveil avenues for plausible therapeutic interventions for these devastating neuronal diseases.
Collapse
|
41
|
Neu3 sialidase-mediated ganglioside conversion is necessary for axon regeneration and is blocked in CNS axons. J Neurosci 2014; 34:2477-92. [PMID: 24523539 DOI: 10.1523/jneurosci.4432-13.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PNS axons have a high intrinsic regenerative ability, whereas most CNS axons show little regenerative response. We show that activation of Neu3 sialidase, also known as Neuraminidase-3, causing conversion of GD1a and GT1b to GM1 ganglioside, is an essential step in regeneration occurring in PNS (sensory) but not CNS (retinal) axons in adult rat. In PNS axons, axotomy activates Neu3 sialidase, increasing the ratio of GM1/GD1a and GM1/GT1b gangliosides immediately after injury in vitro and in vivo. No change in the GM1/GD1a ratio after axotomy was observed in retinal axons (in vitro and in vivo), despite the presence of Neu3 sialidase. Externally applied sialidase converted GD1a ganglioside to GM1 and rescued axon regeneration in CNS axons and in PNS axons after Neu3 sialidase blockade. Neu3 sialidase activation in DRGs is initiated by an influx of extracellular calcium, activating P38MAPK and then Neu3 sialidase. Ganglioside conversion by Neu3 sialidase further activates the ERK pathway. In CNS axons, P38MAPK and Neu3 sialidase were not activated by axotomy.
Collapse
|
42
|
Jiang L, Bechtel MD, Bean JL, Winefield R, Williams TD, Zaidi A, Michaelis EK, Michaelis ML. Effects of gangliosides on the activity of the plasma membrane Ca2+-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1255-65. [PMID: 24434060 DOI: 10.1016/j.bbamem.2014.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/04/2014] [Accepted: 01/06/2014] [Indexed: 02/03/2023]
Abstract
Control of intracellular calcium concentrations ([Ca(2+)]i) is essential for neuronal function, and the plasma membrane Ca(2+)-ATPase (PMCA) is crucial for the maintenance of low [Ca(2+)]i. We previously reported on loss of PMCA activity in brain synaptic membranes during aging. Gangliosides are known to modulate Ca(2+) homeostasis and signal transduction in neurons. In the present study, we observed age-related changes in the ganglioside composition of synaptic plasma membranes. This led us to hypothesize that alterations in ganglioside species might contribute to the age-associated loss of PMCA activity. To probe the relationship between changes in endogenous ganglioside content or composition and PMCA activity in membranes of cortical neurons, we induced depletion of gangliosides by treating neurons with d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (d-PDMP). This caused a marked decrease in the activity of PMCA, which suggested a direct correlation between ganglioside content and PMCA activity. Neurons treated with neuraminidase exhibited an increase in GM1 content, a loss in poly-sialoganglioside content, and a decrease in PMCA activity that was greater than that produced by d-PDMP treatment. Thus, it appeared that poly-sialogangliosides had a stimulatory effect whereas mono-sialogangliosides had the opposite effect. Our observations add support to previous reports of PMCA regulation by gangliosides by demonstrating that manipulations of endogenous ganglioside content and species affect the activity of PMCA in neuronal membranes. Furthermore, our studies suggest that age-associated loss in PMCA activity may result in part from changes in the lipid environment of this Ca(2+) transporter.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA.
| | - Misty D Bechtel
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
| | - Jennifer L Bean
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA; Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robert Winefield
- Structural Biology Center, University of Kansas, Lawrence, KS, USA
| | - Todd D Williams
- Structural Biology Center, University of Kansas, Lawrence, KS, USA
| | - Asma Zaidi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA; Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| | - Elias K Michaelis
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
| | - Mary L Michaelis
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
43
|
Nowycky MC, Wu G, Ledeen RW. Glycobiology of ion transport in the nervous system. ADVANCES IN NEUROBIOLOGY 2014; 9:321-42. [PMID: 25151386 DOI: 10.1007/978-1-4939-1154-7_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nervous system is richly endowed with large transmembrane proteins that mediate ion transport, including gated ion channels as well as energy-consuming pumps and transporters. Transport proteins undergo N-linked glycosylation which can affect expression, location, stability, and function. The N-linked glycans of ion channels are large, contributing between 5 and 50 % of their molecular weight. Many contain a high density of negatively charged sialic acid residues which modulate voltage-dependent gating of ion channels. Changes in the size and chemical composition of glycans are responsible for developmental and cell-specific variability in the biophysical and functional properties of many ion channels. Glycolipids, principally gangliosides, exert considerable influence on some forms of ion transport, either through direct association with ion transport proteins or indirectly through association with proteins that activate transport through appropriate signaling. Examples of both pumps and ion channels have been revealed which depend on ganglioside regulation. While some of these processes are localized in the plasma membrane, ganglioside-regulated ion transport can also occur at various loci within the cell including the nucleus. This chapter will describe ion channel and ion pump structures with a focus on the functional effects of glycosylation on ion channel availability and function, and effects of alterations in glycosylation on nervous system function. It will also summarize highlights of the research on glycolipid/ganglioside-mediated regulation of ion transport.
Collapse
Affiliation(s)
- Martha C Nowycky
- Department of Pharmacology and Physiology, RBHS, New Jersey Medical School, The State University of New Jersey, 185 South Orange Ave., Newark, NJ, 07103, USA,
| | | | | |
Collapse
|
44
|
Sheng L, Leshchyns'ka I, Sytnyk V. Cell adhesion and intracellular calcium signaling in neurons. Cell Commun Signal 2013; 11:94. [PMID: 24330678 PMCID: PMC3878801 DOI: 10.1186/1478-811x-11-94] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/05/2013] [Indexed: 01/10/2023] Open
Abstract
Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed.
Collapse
Affiliation(s)
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
45
|
Zamburlin P, Ruffinatti FA, Gilardino A, Farcito S, Parrini M, Lovisolo D. Calcium signals and FGF-2 induced neurite growth in cultured parasympathetic neurons: spatial localization and mechanisms of activation. Pflugers Arch 2013; 465:1355-70. [PMID: 23529843 DOI: 10.1007/s00424-013-1257-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 11/28/2022]
Abstract
The growth of neuritic processes in developing neurons is tightly controlled by a wide set of extracellular cues that act by initiating downstream signaling cascades, where calcium signals play a major role. Here we analyze the calcium dependence of the neurite growth promoted by basic fibroblast growth factor (bFGF or FGF-2) in chick embryonic ciliary ganglion neurons, taking advantage of dissociated, organotypic, and compartmentalized cultures. We report that signals at both the growth cone and the soma are involved in the promotion of neurite growth by the factor. Blocking calcium influx through L- and N-type voltage-dependent calcium channels and transient receptor potential canonical (TRPC) channels reduces, while release from intracellular stores does not significantly affect, the growth of neuritic processes. Simultaneous recordings of calcium signals elicited by FGF-2 at the soma and at the growth cone show that the factor activates different patterns of responses in the two compartments: steady and sustained responses at the former, oscillations at the latter. At the soma, both voltage-dependent channel and TRPC blockers strongly affect steady-state levels. At the growth cone, the changes in the oscillatory pattern are more complex; therefore, we used a tool based on wavelet analysis to obtain a quantitative evaluation of the effects of the two classes of blockers. We report that the oscillatory behavior at the growth cone is dramatically affected by all the blockers, pointing to a role for calcium influx through the two classes of channels in the generation of signals at the leading edge of the elongating neurites.
Collapse
Affiliation(s)
- P Zamburlin
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Wu G, Lu ZH, Kulkarni N, Ledeen RW. Deficiency of ganglioside GM1 correlates with Parkinson's disease in mice and humans. J Neurosci Res 2012; 90:1997-2008. [PMID: 22714832 DOI: 10.1002/jnr.23090] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/26/2012] [Accepted: 05/01/2012] [Indexed: 01/28/2023]
Abstract
Several studies have successfully employed GM1 ganglioside to treat animal models of Parkinson's disease (PD), suggesting involvement of this ganglioside in PD etiology. We recently demonstrated that genetically engineered mice (B4galnt1(-/-) ) devoid of GM1 acquire characteristic symptoms of this disorder, including motor impairment, depletion of striatal dopamine, selective loss of tyrosine hydroxylase-expressing neurons, and aggregation of α-synuclein. The present study demonstrates similar symptoms in heterozygous mice (HTs) that express only partial GM1 deficiency. Symptoms were alleviated by administration of L-dopa or LIGA-20, a membrane-permeable analog of GM1 that penetrates the blood-brain barrier and accesses intracellular compartments. Immunohistochemical analysis of paraffin sections from PD patients revealed significant GM1 deficiency in nigral dopaminergic neurons compared with age-matched controls. This was comparable to the GM1 deficiency of HT mice and suggests that GM1 deficiency may be a contributing factor to idiopathic PD. We propose that HT mice with partial GM1 deficiency constitute an especially useful model for PD, reflecting the actual pathophysiology of this disorder. The results point to membrane-permeable analogs of GM1 as holding promise as a form of GM1 replacement therapy.
Collapse
Affiliation(s)
- Gusheng Wu
- Department of Neurology and Neurosciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | |
Collapse
|
47
|
Calpain cleaves and activates the TRPC5 channel to participate in semaphorin 3A-induced neuronal growth cone collapse. Proc Natl Acad Sci U S A 2012; 109:7888-92. [PMID: 22547824 DOI: 10.1073/pnas.1205869109] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nonselective cation channel transient receptor potential canonical (TRPC)5 is found predominantly in the brain and has been proposed to regulate neuronal processes and growth cones. Here, we demonstrate that semaphorin 3A-mediated growth cone collapse is reduced in hippocampal neurons from TRPC5 null mice. This reduction is reproduced by inhibition of the calcium-sensitive protease calpain in wild-type neurons but not in TRPC5(-/-) neurons. We show that calpain-1 and calpain-2 cleave and functionally activate TRPC5. Mutation of a critical threonine at position 857 inhibits calpain-2 cleavage of the channel. Finally, we show that the truncated TRPC5 predicted to result from calpain cleavage is functionally active. These results indicate that semaphorin 3A initiates growth cone collapse via activation of calpain that in turn potentiates TRPC5 activity. Thus, TRPC5 acts downstream of semaphorin signaling to cause changes in neuronal growth cone morphology and nervous system development.
Collapse
|
48
|
Ledeen RW, Wu G, André S, Bleich D, Huet G, Kaltner H, Kopitz J, Gabius HJ. Beyond glycoproteins as galectin counterreceptors: tumor-effector T cell growth control via ganglioside GM1. Ann N Y Acad Sci 2012; 1253:206-21. [DOI: 10.1111/j.1749-6632.2012.06479.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Monet M, Francoeur N, Boulay G. Involvement of phosphoinositide 3-kinase and PTEN protein in mechanism of activation of TRPC6 protein in vascular smooth muscle cells. J Biol Chem 2012; 287:17672-17681. [PMID: 22493444 DOI: 10.1074/jbc.m112.341354] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPC6 is a cation channel in the plasma membrane that plays a role in Ca(2+) entry after the stimulation of a G(q)-protein-coupled or tyrosine-kinase receptor. TRPC6 translocates to the plasma membrane upon stimulation and remains there as long as the stimulus is present. However, the mechanism that regulates the trafficking and activation of TRPC6 are unclear. In this study we showed phosphoinositide 3-kinase and its antagonistic phosphatase, PTEN, are involved in the activation of TRPC6. The inhibition of PI3K by PIK-93, LY294002, or wortmannin decreased carbachol-induced translocation of TRPC6 to the plasma membrane and carbachol-induced net Ca(2+) entry into T6.11 cells. Conversely, a reduction of PTEN expression did not affect carbachol-induced externalization of TRPC6 but increased Ca(2+) entry through TRPC6 in T6.11 cells. We also showed that the PI3K/PTEN pathway regulates vasopressin-induced translocation of TRPC6 to the plasma membrane and vasopressin-induced Ca(2+) entry into A7r5 cells, which endogenously express TRPC6. In summary, we provided evidence that the PI3K/PTEN pathway plays an important role in the translocation of TRPC6 to the plasma membrane and may thus have a significant impact on Ca(2+) signaling in cells that endogenously express TRPC6.
Collapse
Affiliation(s)
- Michaël Monet
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Nancy Francoeur
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Guylain Boulay
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
50
|
Xu Y, Li M, Liu Z, Xi A, Zhao C, Zhang J. Scientific literature addressing detection of monosialoganglioside: A 10-year bibliometric analysis. Neural Regen Res 2012; 7:792-9. [PMID: 25737704 PMCID: PMC4345664 DOI: 10.3969/j.issn.1673-5374.2012.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/28/2012] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The study was undertaken to explore a bibliometric approach to quantitatively assess the research on detection of monosialoganglioside from 2002 to 2011. DATA RETRIEVAL A bibliometric analysis based on the publications on Web of Science was performed using key words such as "monosialoganglioside", "colloidal gold", "high performance liquid chromatography" and "detection". SELECTION CRITERIA (1) Research articles on the detection of monosialoganglioside; (2) researches on human and animal fundamentals, clinical trials and case reports; (3) article types: article, review, proceedings paper, note, letter, editorial material, discussion, book chapter; (4) Publication year: 2002-2011. EXCLUSION CRITERIA (1) unrelated articles; (2) type of articles: correction; (3) articles from following databases: all databases related to social science and arts & humanities in Web of Science were excluded. MAIN OUTCOME MEASURES (1) distribution of subject areas; (2) number of publications annually; (3) document type and language of publications; (4) distribution of institutions; (5) distribution of output in journals; (6) the number of countries in which the article is published; (7) top cited paper. RESULTS Overall population stands at 1 880 research articles addressing detection of monosialoganglioside in Web of Science during the study period. Articles (1 599) were the most frequently used document type comprising 85.05%, followed by meeting abstracts, reviews and proceedings papers. The distribution of subject categories showed that monosialoganglioside research covered both clinical and basic science research. The USA, Japan, and Italy were the three most productive countries, and the publication numbers in the USA were highest with 559 papers. The University of Milan, Nagoya University, and Kinki University are the most productive institutions regarding detection of monosialoganglioside. In 559 articles published by Americans, Medical College of Georgia ranked the first with 30 articles, followed by University of Medicine and Dentistry of New Jersey (28 articles), Cornell University (24 articles) and Johns Hopkins University (24 articles). In 442 articles published by Japanese, Nagoya University ranked the first with 40 articles, followed by Kinki University (36 articles), and Dokkyo University (31 articles). Though the total number of publications by Japanese is smaller than Americans, the top three institutions published more publications than American institutions. There is a markedly increase in the number of publications on the subject detection of monosialoganglioside in 2004, which the peak in the past 10 years. The valley bottom of the subject appeared in 2005. In total, the research is increased with time prolonged. Journal of Neurochemistry, Journal of Biological Chemistry and Journal of Neuroimmunology were core subject journals in monosialoganglioside studies. CONCLUSION This study highlights the topics in detection of monosialoganglioside research that are being published around the world.
Collapse
Affiliation(s)
- Yanli Xu
- Medical College of Hebei University of Engineering, Handan 056009, Hebei Province, China
| | - Miaojing Li
- School of Public Health, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
| | - Zhijun Liu
- Medical College of Hebei University of Engineering, Handan 056009, Hebei Province, China
| | - Aiping Xi
- Medical College of Hebei University of Engineering, Handan 056009, Hebei Province, China
| | - Chaoxian Zhao
- Medical College of Hebei University of Engineering, Handan 056009, Hebei Province, China
| | - Jianzhong Zhang
- State Key Laboratory for Infectious Disease Prevention and Control; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|