1
|
Yan J, Ton H, Yan J, Dong Y, Xie Z, Jiang H. Anesthetic Sevoflurane Induces Enlargement of Dendritic Spine Heads in Mouse Neurons via Tau-Dependent Mechanisms. Anesth Analg 2025; 140:697-709. [PMID: 38507523 DOI: 10.1213/ane.0000000000006941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND Sevoflurane induces neuronal dysfunction and cognitive impairment. However, the underlying mechanism remains largely to be determined. Tau, cyclophilin D, and dendritic spine contribute to cognitive function. But whether changes in dendritic spines are involved in the effects of sevoflurane and the potential association with tau and cyclophilin D is not clear. METHODS We harvested hippocampal neurons from wild-type mice, tau knockout mice, and cyclophilin D knockout mice. We treated these neurons with sevoflurane at day in vitro 7 and measured the diameter of dendritic spine head and the number of dendritic spines. Moreover, we determined the effects of sevoflurane on the expression of excitatory amino acid transporter 3 (EAAT3), extracellular glutamate levels, and miniature excitatory postsynaptic currents (mEPSCs). Finally, we used lithium, cyclosporine A, and overexpression of EAAT3 in the interaction studies. RESULTS Sevoflurane-induced tau phosphgorylation increased the diameter of dendritic spine head and decreased the number of dendritic spines in neurons harvested from wild-type and cyclophilin D knockout mice, but not tau knockout mice. Sevoflurane decreased the expression of EAAT3, increased extracellular glutamate levels, and decreased the frequency of mEPSCs in the neurons. Overexpression of EAAT3 mitigated the effects of sevoflurane on dendritic spines. Lithium, but not cyclosporine A, attenuated the effects of sevoflurane on dendritic spines. Lithium also inhibited the effects of sevoflurane on EAAT3 expression and mEPSCs. CONCLUSIONS These data suggest that sevoflurane induces a tau phosphorylation-dependent demtrimental effect on dendritic spine via decreasing EAAT3 expression and increasing extracellular glutamate levels, leading to neuronal dysfunction.
Collapse
Affiliation(s)
- Jia Yan
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Hoai Ton
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Jing Yan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanlin Dong
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Hong Jiang
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Le AA, Lauterborn JC, Jia Y, Cox CD, Lynch G, Gall CM. Metabotropic NMDAR Signaling Contributes to Sex Differences in Synaptic Plasticity and Episodic Memory. J Neurosci 2024; 44:e0438242024. [PMID: 39424366 PMCID: PMC11638816 DOI: 10.1523/jneurosci.0438-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
NMDA receptor (NMDAR)-mediated calcium influx triggers the induction and initial expression of long-term potentiation (LTP). Here we report that in male rodents, ion flux-independent (metabotropic) NMDAR signaling is critical for a third step in the production of enduring LTP, i.e., cytoskeletal changes that stabilize the activity-induced synaptic modifications. Surprisingly, females rely upon estrogen receptor alpha (ERα) for the metabotropic NMDAR operations used by males. Blocking NMDAR channels with MK-801 eliminated LTP expression in hippocampal field CA1 of both sexes but left intact theta burst stimulation (TBS)-induced actin polymerization within dendritic spines. A selective antagonist (Ro25-6981) of the NMDAR GluN2B subunit had minimal effects on synaptic responses but blocked actin polymerization and LTP consolidation in males only. Conversely, an ERα antagonist thoroughly disrupted TBS-induced actin polymerization and LTP in females while having no evident effect in males. In an episodic memory paradigm, Ro25-6981 prevented acquisition of spatial locations by males but not females, whereas an ERα antagonist blocked acquisition in females but not males. Sex differences in LTP consolidation were accompanied by pronounced differences in episodic memory in tasks involving minimal (for learning) cue sampling. Males did better on acquisition of spatial information whereas females had much higher scores than males on tests for acquisition of the identity of cues (episodic "what") and the order in which the cues were sampled (episodic "when"). We propose that sex differences in synaptic processes used to stabilize LTP result in differential encoding of the basic elements of episodic memory.
Collapse
Affiliation(s)
- Aliza A Le
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Julie C Lauterborn
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Yousheng Jia
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Conor D Cox
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Gary Lynch
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
- Psychiatry and Human Behavior, University of California, Irvine, California 92697
| | - Christine M Gall
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
- Neurobiology and Behavior, University of California, Irvine, California 92697
| |
Collapse
|
3
|
Stahl A, Tomchik SM. Modeling neurodegenerative and neurodevelopmental disorders in the Drosophila mushroom body. Learn Mem 2024; 31:a053816. [PMID: 38876485 PMCID: PMC11199955 DOI: 10.1101/lm.053816.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/01/2024] [Indexed: 06/16/2024]
Abstract
The common fruit fly Drosophila melanogaster provides a powerful platform to investigate the genetic, molecular, cellular, and neural circuit mechanisms of behavior. Research in this model system has shed light on multiple aspects of brain physiology and behavior, from fundamental neuronal function to complex behaviors. A major anatomical region that modulates complex behaviors is the mushroom body (MB). The MB integrates multimodal sensory information and is involved in behaviors ranging from sensory processing/responses to learning and memory. Many genes that underlie brain disorders are conserved, from flies to humans, and studies in Drosophila have contributed significantly to our understanding of the mechanisms of brain disorders. Genetic mutations that mimic human diseases-such as Fragile X syndrome, neurofibromatosis type 1, Parkinson's disease, and Alzheimer's disease-affect MB structure and function, altering behavior. Studies dissecting the effects of disease-causing mutations in the MB have identified key pathological mechanisms, and the development of a complete connectome promises to add a comprehensive anatomical framework for disease modeling. Here, we review Drosophila models of human neurodevelopmental and neurodegenerative disorders via the effects of their underlying mutations on MB structure, function, and the resulting behavioral alterations.
Collapse
Affiliation(s)
- Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Seth M Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
- Hawk-IDDRC, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
4
|
Le AA, Lauterborn JC, Jia Y, Cox CD, Lynch G, Gall CM. Metabotropic NMDA Receptor Signaling Contributes to Sex Differences in Synaptic Plasticity and Episodic Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577478. [PMID: 38328108 PMCID: PMC10849651 DOI: 10.1101/2024.01.26.577478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Men generally outperform women on encoding spatial components of episodic memory whereas the reverse holds for semantic elements. Here we show that female mice outperform males on tests for non-spatial aspects of episodic memory ("what", "when"), suggesting that the human findings are influenced by neurobiological factors common to mammals. Analysis of hippocampal synaptic plasticity mechanisms and encoding revealed unprecedented, sex-specific contributions of non-classical metabotropic NMDA receptor (NMDAR) functions. While both sexes used non-ionic NMDAR signaling to trigger actin polymerization needed to consolidate long-term potentiation (LTP), NMDAR GluN2B subunit antagonism blocked these effects in males only and had the corresponding sex-specific effect on episodic memory. Conversely, blocking estrogen receptor alpha eliminated metabotropic stabilization of LTP and episodic memory in females only. The results show that sex differences in metabotropic signaling critical for enduring synaptic plasticity in hippocampus have significant consequences for encoding episodic memories.
Collapse
Affiliation(s)
- Aliza A. Le
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
| | - Julie C. Lauterborn
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
| | - Yousheng Jia
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
| | - Conor D. Cox
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
| | - Gary Lynch
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
- Psychiatry and Human Behavior, University of California; Irvine, 92868, USA
| | - Christine M. Gall
- Departments of Anatomy and Neurobiology, University of California; Irvine, 92697, USA
- Neurobiology and Behavior, University of California; Irvine, 92697, USA
| |
Collapse
|
5
|
Gall CM, Le AA, Lynch G. Sex differences in synaptic plasticity underlying learning. J Neurosci Res 2023; 101:764-782. [PMID: 33847004 PMCID: PMC10337639 DOI: 10.1002/jnr.24844] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022]
Abstract
Although sex differences in learning behaviors are well documented, sexual dimorphism in the synaptic processes of encoding is only recently appreciated. Studies in male rodents have built upon the discovery of long-term potentiation (LTP), and acceptance of this activity-dependent increase in synaptic strength as a mechanism of encoding, to identify synaptic receptors and signaling activities that coordinate the activity-dependent remodeling of the subsynaptic actin cytoskeleton that is critical for enduring potentiation and memory. These molecular substrates together with other features of LTP, as characterized in males, have provided an explanation for a range of memory phenomena including multiple stages of consolidation, the efficacy of spaced training, and the location of engrams at the level of individual synapses. In the present report, we summarize these findings and describe more recent results from our laboratories showing that in females the same actin regulatory mechanisms are required for hippocampal LTP and memory but, in females only, the engagement of both modulatory receptors such as TrkB and synaptic signaling intermediaries including Src and ERK1/2 requires neuron-derived estrogen and signaling through membrane-associated estrogen receptor α (ERα). Moreover, in association with the additional ERα involvement, females exhibit a higher threshold for hippocampal LTP and spatial learning. We propose that the distinct LTP threshold in females contributes to as yet unappreciated sex differences in information processing and features of learning and memory.
Collapse
Affiliation(s)
- Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Aliza A. Le
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
6
|
Haile MT, Khoja S, de Carvalho G, Hunt RF, Chen LY. Conditional deletion of Neurexin-2 alters neuronal network activity in hippocampal circuitries and leads to spontaneous seizures. Transl Psychiatry 2023; 13:97. [PMID: 36941261 PMCID: PMC10027846 DOI: 10.1038/s41398-023-02394-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
Neurexins (Nrxns) have been extensively studied for their role in synapse organization and have been linked to many neuropsychiatric disorders, including autism spectrum disorder (ASD), and epilepsy. However, no studies have provided direct evidence that Nrxns may be the key regulator in the shared pathogenesis of these conditions largely due to complexities among Nrxns and their non-canonical functions in different synapses. Recent studies identified NRXN2 mutations in ASD and epilepsy, but little is known about Nrxn2's role in a circuit-specific manner. Here, we report that conditional deletion of Nrxn2 from the hippocampus and cortex (Nrxn2 cKO) results in behavioral abnormalities, including reduced social preference and increased nestlet shredding behavior. Electrophysiological recordings identified an overall increase in hippocampal CA3→CA1 network activity in Nrxn2 cKO mice. Using intracranial electroencephalogram recordings, we observed unprovoked spontaneous reoccurring electrographic and behavioral seizures in Nrxn2 cKO mice. This study provides the first evidence that conditional deletion of Nrxn2 induces increased network activity that manifests into spontaneous recurrent seizures and behavioral impairments.
Collapse
Affiliation(s)
- Mulatwa T Haile
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Sheraz Khoja
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Gregory de Carvalho
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Robert F Hunt
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Lulu Y Chen
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
7
|
Li J, Wu Y, Xue T, He J, Zhang L, Liu Y, Zhao J, Chen Z, Xie M, Xiao B, Ye Y, Qin S, Tang Q, Huang M, Zhu H, Liu N, Guo F, Zhang L, Zhang L. Cdc42 signaling regulated by dopamine D2 receptor correlatively links specific brain regions of hippocampus to cocaine addiction. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166569. [PMID: 36243293 DOI: 10.1016/j.bbadis.2022.166569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/18/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hippocampus plays critical roles in drug addiction. Cocaine-induced modifications in dopamine receptor function and the downstream signaling are important regulation mechanisms in cocaine addiction. Rac regulates actin filament accumulation while Cdc42 stimulates the formation of filopodia and neurite outgrowth. Based on the region specific roles of small GTPases in brain, we focused on the hippocampal subregions to detect the regulation of Cdc42 signaling in long-term morphological and behavioral adaptations to cocaine. METHODS Genetically modified mouse models of Cdc42, dopamine receptor D1 (D1R) and D2 (D2R) and expressed Cdc42 point mutants that are defective in binding to and activation of its downstream effector molecules PAK and N-WASP were generated, respectively, in CA1 or dentate gyrus (DG) subregion. RESULTS Cocaine induced upregulation of Cdc42 signaling activity. Cdc42 knockout or mutants blocked cocaine-induced increase in spine plasticity in hippocampal CA1 pyramidal neurons, leading to a decreased conditional place preference (CPP)-associated memories and spatial learning and memory in water maze. Cdc42 knockout or mutants promoted cocaine-induced loss of neurogenesis in DG, leading to a decreased CPP-associated memories and spatial learning and memory in water maze. Furthermore, by using D1R knockout, D2R knockout, and D2R/Cdc42 double knockout mice, we found that D2R, but not D1R, regulated Cdc42 signaling in cocaine-induced neural plasticity and behavioral changes. CONCLUSIONS Cdc42 acts downstream of D2R in the hippocampus and plays an important role in cocaine-induced neural plasticity through N-WASP and PAK-LIMK-Cofilin, and Cdc42 signaling pathway correlatively links specific brain regions (CA1, dentate gyrus) to cocaine-induced CPP behavior.
Collapse
Affiliation(s)
- Juan Li
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Center for Orthopaedic Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue Wu
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tao Xue
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing He
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yutong Liu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Center for Orthopaedic Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinlan Zhao
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenzhong Chen
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Minjuan Xie
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Xiao
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingshan Ye
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sifei Qin
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qingqiu Tang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengfan Huang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hangfei Zhu
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - N Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Elderly Health Services Research Center, Southern Medical University, Guangzhou 510515, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Lin Zhang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Center for Orthopaedic Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
8
|
Avila J, Perry G. Memory, Sleep, and Tau Function. J Alzheimers Dis 2023; 94:491-495. [PMID: 37248906 DOI: 10.3233/jad-230230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Memory consolidation related to the hippocampal-cortex connection takes place during sleep. This connection may involve at least two steps- one in the NREM phase of sleep (transmission) and the other in the REM phase (consolidation). In this brief report, we comment on the role of tau protein in these two phases of sleep. The absence of tau decreases δ waves in NREM, whereas the overexpression of modified (phosphorylated and/or mutated) tau alters θ waves in REM.
Collapse
Affiliation(s)
- Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - George Perry
- Neurology, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
9
|
Lee KY, Zhu J, Cutia CA, Christian‐Hinman CA, Rhodes JS, Tsai N. Infantile spasms-linked Nedd4-2 mediates hippocampal plasticity and learning via cofilin signaling. EMBO Rep 2021; 22:e52645. [PMID: 34342389 PMCID: PMC8490988 DOI: 10.15252/embr.202152645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022] Open
Abstract
Individuals affected by infantile spasms (IS), such as those carrying mutations in an IS-linked gene, neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4-2), exhibit developmental delays and learning disabilities, but the underlying mechanism is unknown. Using conditional Nedd4-2 knockout mice, we uncover that Nedd4-2 functions to maintain the excitatory synapses in hippocampal neurons and allows for late-phase long-term synaptic potentiation (L-LTP) at Schaffer collateral synapses in the hippocampus. We also find that Nedd4-2 is required for multiple forms of hippocampus-dependent learning and memory. Mechanistically, we show that loss of Nedd4-2 leads to a decrease in actin polymerization caused by reduced phosphorylation of the actin depolymerizing protein cofilin. A cell-permeable peptide promoting phosphorylation of endogenous cofilin in Nedd4-2 knockout neurons restores the number of hippocampal excitatory synapses and hippocampal L-LTP and partially restores hippocampus-dependent learning in mice. Taken together, our results reveal a novel mechanism underlying IS-associated learning disabilities and may provide information for future therapeutic strategies for IS.
Collapse
Affiliation(s)
- Kwan Young Lee
- Department of Molecular and Integrative PhysiologySchool of Molecular and Cellular BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Jiuhe Zhu
- Department of Molecular and Integrative PhysiologySchool of Molecular and Cellular BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Cathryn A Cutia
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Catherine A Christian‐Hinman
- Department of Molecular and Integrative PhysiologySchool of Molecular and Cellular BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Justin S Rhodes
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Department of PsychologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - Nien‐Pei Tsai
- Department of Molecular and Integrative PhysiologySchool of Molecular and Cellular BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
10
|
Bi AL, Zhang YY, Lu ZY, Tang HY, Zhang XY, Zhang ZH, Li BQ, Guo DD, Gong S, Li Q, Wang XR, Lu XZ, Bi HS. Synaptosomal Actin Dynamics in the Developmental Visual Cortex Regulate Behavioral Visual Acuity in Rats. Invest Ophthalmol Vis Sci 2021; 62:20. [PMID: 34137807 PMCID: PMC8212442 DOI: 10.1167/iovs.62.7.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/15/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Synaptosomal actin dynamics are essential for synaptic structural stability. Whether actin dynamics are involved in structural and functional synaptic plasticity within the primary visual cortex (V1) or behavioral visual acuity in rats has still not been thoroughly investigated. Methods Synaptosome preparation and western blot analysis were used to analyze synaptosomal actin dynamics. Transmission electron microscopy was used to detect synaptic density and mitochondrial area alterations. A visual water maze task was applied to assess behavioral visual acuity. Microinjection of the actin polymerization inhibitor or stabilizer detected the effect of actin dynamics on visual function. Results Actin dynamics, the mitochondrial area, and synaptic density within the area of V1 are increased during the critical period for the development of binocularity. Microinjection of the actin polymerization inhibitor cytochalasin D into the V1 decreased the mitochondrial area, synaptic density, and behavioral visual acuity. Long-term monocular deprivation reduced actin dynamics, the mitochondrial area, and synaptic density within the V1 contralateral to the deprived eye compared with those ipsilateral to the deprived eye and impaired visual acuity in the amblyopic eye. In addition, the mitochondrial area, synaptic density, and behavioral visual acuity were improved by stabilization of actin polymerization by jasplakinolide microinjection. Conclusions During the critical period of visual development of binocularity, synaptosomal actin dynamics regulate synaptic structure and function and play roles in behavioral visual acuity in rats.
Collapse
Affiliation(s)
- Ai-Ling Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Jinan, Shandong Province, China
- Eye Institute of the Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yue-Ying Zhang
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Jinan, Shandong Province, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- School of Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong Province, China
| | - Zhi-Yuan Lu
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Jinan, Shandong Province, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Hong-Ying Tang
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Jinan, Shandong Province, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xiu-Yan Zhang
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Jinan, Shandong Province, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Zi-Han Zhang
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Jinan, Shandong Province, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Bo-Qin Li
- Ultrastructural Laboratory, Shandong WEI-YA Biotech Company, Jinan, Shandong Province, China
| | - Da-Dong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Jinan, Shandong Province, China
- Eye Institute of the Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Sheng Gong
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Jinan, Shandong Province, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Qian Li
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Jinan, Shandong Province, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xing-Rong Wang
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Jinan, Shandong Province, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xiu-Zhen Lu
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Jinan, Shandong Province, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Hong-Sheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Jinan, Shandong Province, China
- Eye Institute of the Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| |
Collapse
|
11
|
Arriagada-Diaz J, Prado-Vega L, Cárdenas Díaz AM, Ardiles AO, Gonzalez-Jamett AM. Dynamin Superfamily at Pre- and Postsynapses: Master Regulators of Synaptic Transmission and Plasticity in Health and Disease. Neuroscientist 2020; 28:41-58. [PMID: 33300419 DOI: 10.1177/1073858420974313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dynamin superfamily proteins (DSPs) comprise a large group of GTP-ases that orchestrate membrane fusion and fission, and cytoskeleton remodeling in different cell-types. At the central nervous system, they regulate synaptic vesicle recycling and signaling-receptor turnover, allowing the maintenance of synaptic transmission. In the presynapses, these GTP-ases control the recycling of synaptic vesicles influencing the size of the ready-releasable pool and the release of neurotransmitters from nerve terminals, whereas in the postsynapses, they are involved in AMPA-receptor trafficking to and from postsynaptic densities, supporting excitatory synaptic plasticity, and consequently learning and memory formation. In agreement with these relevant roles, an important number of neurological disorders are associated with mutations and/or dysfunction of these GTP-ases. Along the present review we discuss the importance of DSPs at synapses and their implication in different neuropathological contexts.
Collapse
Affiliation(s)
- Jorge Arriagada-Diaz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Magister en Ciencias, mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Prado-Vega
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Magister en Ciencias, mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Ana M Cárdenas Díaz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Alvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interdisciplinario de Estudios en Salud, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| | - Arlek M Gonzalez-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
12
|
Traceable stimulus-dependent rapid molecular changes in dendritic spines in the brain. Sci Rep 2020; 10:15266. [PMID: 32943708 PMCID: PMC7499203 DOI: 10.1038/s41598-020-72248-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/26/2020] [Indexed: 01/21/2023] Open
Abstract
Dendritic spines function as microcompartments that can modify the efficiency of their associated synapses. Here, we analyzed stimulus-dependent molecular changes in spines. The F-actin capping protein CapZ accumulates in parts of dendritic spines within regions where long-term potentiation has been induced. We produced a transgenic mouse line, AiCE-Tg, in which CapZ tagged with enhanced green fluorescence protein (EGFP-CapZ) is expressed. Twenty minutes after unilateral visual or somatosensory stimulation in AiCE-Tg mice, relative EGFP-CapZ signal intensification was seen in a subset of dendritic spines selectively in stimulated-side cortices; this right-left difference was abolished by NMDA receptor blockade. Immunolabeling of α-actinin, a PSD-95 binding protein that can recruit AMPA receptors, showed that the α-actinin signals colocalized more frequently in spines with the brightest EGFP-CapZ signals (top 100) than in spines with more typical EGFP-CapZ signal strength (top 1,000). This stimulus-dependent in vivo redistribution of EGFP-CapZ represents a novel molecular event with plasticity-like characteristics, and bright EGFP-CapZ in AiCE-Tg mice make high-CapZ spines traceable in vivo and ex vivo. This mouse line has the potential to be used to reveal sequential molecular events, including synaptic tagging, and to relate multiple types of plasticity in these spines, extending knowledge related to memory mechanisms.
Collapse
|
13
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020. [DOI: 10.3389/fnsyn.2020.00036
expr 823669561 + 872784217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
14
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020; 12:36. [PMID: 32982715 PMCID: PMC7484486 DOI: 10.3389/fnsyn.2020.00036] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines are small protrusions studding neuronal dendrites, first described in 1888 by Ramón y Cajal using his famous Golgi stainings. Around 50 years later the advance of electron microscopy (EM) confirmed Cajal's intuition that spines constitute the postsynaptic site of most excitatory synapses in the mammalian brain. The finding that spine density decreases between young and adult ages in fixed tissues suggested that spines are dynamic. It is only a decade ago that two-photon microscopy (TPM) has unambiguously proven the dynamic nature of spines, through the repeated imaging of single spines in live animals. Spine dynamics comprise formation, disappearance, and stabilization of spines and are modulated by neuronal activity and developmental age. Here, we review several emerging concepts in the field that start to answer the following key questions: What are the external signals triggering spine dynamics and the molecular mechanisms involved? What is, in return, the role of spine dynamics in circuit-rewiring, learning, and neuropsychiatric disorders?
Collapse
Affiliation(s)
- Karen Runge
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Carlos Cardoso
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Antoine de Chevigny
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
15
|
Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ, Essa MM, Guillemin GJ, Chandra R, Sakharkar MK. Dendritic spines: Revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:161-193. [PMID: 30654089 DOI: 10.1016/j.pnpbp.2019.01.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/04/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Dendritic spines are small, thin, specialized protrusions from neuronal dendrites, primarily localized in the excitatory synapses. Sophisticated imaging techniques revealed that dendritic spines are complex structures consisting of a dense network of cytoskeletal, transmembrane and scaffolding molecules, and numerous surface receptors. Molecular signaling pathways, mainly Rho and Ras family small GTPases pathways that converge on actin cytoskeleton, regulate the spine morphology and dynamics bi-directionally during synaptic activity. During synaptic plasticity the number and shapes of dendritic spines undergo radical reorganizations. Long-term potentiation (LTP) induction promote spine head enlargement and the formation and stabilization of new spines. Long-term depression (LTD) results in their shrinkage and retraction. Reports indicate increased spine density in the pyramidal neurons of autism and Fragile X syndrome patients and reduced density in the temporal gyrus loci of schizophrenic patients. Post-mortem reports of Alzheimer's brains showed reduced spine number in the hippocampus and cortex. This review highlights the spine morphogenesis process, the activity-dependent structural plasticity and mechanisms by which synaptic activity sculpts the dendritic spines, the structural and functional changes in spines during learning and memory using LTP and LTD processes. It also discusses on spine status in neurodegenerative diseases and the impact of nootropics and neuroprotective agents on the functional restoration of dendritic spines.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Srinivasa Rao Bolla
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Damam, Saudi Arabia
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Arehally Marappa Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J Guillemin
- Neuropharmacology Group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, Sydney, NSW 2109, Australia
| | - Ramesh Chandra
- Department of Chemistry, Ambedkar Centre for BioMedical Research, Delhi University, Delhi 110007, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
16
|
Sears JC, Choi WJ, Broadie K. Fragile X Mental Retardation Protein positively regulates PKA anchor Rugose and PKA activity to control actin assembly in learning/memory circuitry. Neurobiol Dis 2019; 127:53-64. [PMID: 30771457 DOI: 10.1016/j.nbd.2019.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
Recent work shows Fragile X Mental Retardation Protein (FMRP) drives the translation of very large proteins (>2000 aa) mediating neurodevelopment. Loss of function results in Fragile X syndrome (FXS), the leading heritable cause of intellectual disability (ID) and autism spectrum disorder (ASD). Using the Drosophila FXS disease model, we discover FMRP positively regulates the translation of the very large A-Kinase Anchor Protein (AKAP) Rugose (>3000 aa), homolog of ASD-associated human Neurobeachin (NBEA). In the central brain Mushroom Body (MB) circuit, where Protein Kinase A (PKA) signaling is necessary for learning/memory, FMRP loss reduces Rugose levels and targeted FMRP overexpression elevates Rugose levels. Using a new in vivo transgenic PKA activity reporter (PKA-SPARK), we find FMRP loss reduces PKA activity in MB Kenyon cells whereas FMRP overexpression elevates PKA activity. Consistently, loss of Rugose reduces PKA activity, but Rugose overexpression has no independent effect. A well-established PKA output is regulation of F-actin cytoskeleton dynamics. In the FXS disease model, F-actin is aberrantly accumulated in MB lobes and single MB Kenyon cells. Consistently, Rugose loss results in similar F-actin accumulation. Moreover, targeted FMRP, Rugose and PKA overexpression all result in increased F-actin accumulation in the MB circuit. These findings uncover a FMRP-Rugose-PKA mechanism regulating actin cytoskeleton. This study reveals a novel FMRP mechanism controlling neuronal PKA activity, and demonstrates a shared mechanistic connection between FXS and NBEA associated ASD disease states, with a common link to PKA and F-actin misregulation in brain neural circuits. SIGNIFICANCE STATEMENT: Autism spectrum disorder (ASD) arises from a wide array of genetic lesions, and it is therefore critical to identify common underlying molecular mechanisms. Here, we link two ASD states; Neurobeachin (NBEA) associated ASD and Fragile X syndrome (FXS), the most common inherited ASD. Using established Drosophila disease models, we find Fragile X Mental Retardation Protein (FMRP) positively regulates translation of NBEA homolog Rugose, consistent with a recent advance showing FMRP promotes translation of very large proteins associated with ASD. FXS exhibits reduced cAMP induction, a potent activator of PKA, and Rugose/NBEA is a PKA anchor. Consistently, we find brain PKA activity strikingly reduced in both ASD models. We discover this pathway regulation controls actin cytoskeleton dynamics in brain neural circuits.
Collapse
Affiliation(s)
- James C Sears
- Vanderbilt Brain Institute, Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Woong Jae Choi
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Vanderbilt Brain Institute, Departments of Biological Sciences, Cell and Developmental Biology, and Pharmacology, Vanderbilt University and Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
17
|
Müller MK, Jacobi E, Sakimura K, Malinow R, von Engelhardt J. NMDA receptors mediate synaptic depression, but not spine loss in the dentate gyrus of adult amyloid Beta (Aβ) overexpressing mice. Acta Neuropathol Commun 2018; 6:110. [PMID: 30352630 PMCID: PMC6198500 DOI: 10.1186/s40478-018-0611-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 11/25/2022] Open
Abstract
Amyloid beta (Aβ)-mediated synapse dysfunction and spine loss are considered to be early events in Alzheimer’s disease (AD) pathogenesis. N-methyl-D-aspartate receptors (NMDARs) have previously been suggested to play a role for Amyloid beta (Aβ) toxicity. Pharmacological block of NMDAR subunits in cultured neurons and mice suggested that NMDARs containing the GluN2B subunit are necessary for Aβ-mediated changes in synapse number and function in hippocampal neurons. Interestingly, NMDARs undergo a developmental switch from GluN2B- to GluN2A-containing receptors. This indicates different functional roles of NMDARs in young mice compared to older animals. In addition, the lack of pharmacological tools to efficiently dissect the role of NMDARs containing the different subunits complicates the interpretation of their specific role. In order to address this problem and to investigate the specific role for Aβ toxicity of the distinct NMDAR subunits in dentate gyrus granule cells of adult mice, we used conditional knockout mouse lines for the subunits GluN1, GluN2A and GluN2B. Aβ-mediated changes in synaptic function and neuronal anatomy were investigated in several-months old mice with virus-mediated overproduction of Aβ and in 1-year old 5xFAD mice. We found that all three NMDAR subunits contribute to the Aβ-mediated decrease in the number of functional synapses. However, NMDARs are not required for the spine number reduction in dentate gyrus granule cells after chronic Aβ-overproduction in 5xFAD mice. Furthermore, the amplitude of synaptic and extrasynaptic NMDAR-mediated currents was reduced in dentate gyrus granule of 5xFAD mice without changes in current kinetics, suggesting that a redistribution or change in subunit composition of NMDARs does not play a role in mediating Amyloid beta (Aβ) toxicity. Our study indicates that NMDARs are involved in AD pathogenesis by compromising synapse function but not by affecting neuron morphology.
Collapse
|
18
|
Briggs SB, Hafenbreidel M, Young EJ, Rumbaugh G, Miller CA. The role of nonmuscle myosin II in polydrug memories and memory reconsolidation. ACTA ACUST UNITED AC 2018; 25:391-398. [PMID: 30115760 PMCID: PMC6097765 DOI: 10.1101/lm.046763.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022]
Abstract
Using pharmacologic and genetic approaches targeting actin or the actin-driving molecular motor, nonmuscle myosin II (NMII), we previously discovered an immediate, retrieval-independent, and long-lasting disruption of methamphetamine- (METH-) and amphetamine-associated memories. A single intrabasolateral amygdala complex infusion or systemic administration of the NMII inhibitor Blebbistatin (Blebb) is sufficient to produce this disruption, which is selective, having no retrieval-independent effect on memories for fear, food reward, cocaine, or morphine. However, it was unclear if Blebb treatment would disrupt memories of other stimulants and amphetamine class drugs, such as nicotine (NIC) or mephedrone (MEPH; bath salts). Moreover, many individuals abuse multiple drugs, but it was unknown if Blebb could disrupt polydrug memories, or if the inclusion of another substance would render Blebb no longer able to disrupt METH-associated memories. Therefore, the present study had two primary goals: (1) to determine the ability of Blebb to disrupt NIC- or MEPH-associated memories, and (2) to determine the ability of METH to modify other unconditioned stimulus (US) associations’ susceptibility to Blebb. To this end, using the conditional place preference model, mice were conditioned to NIC and MEPH alone or METH in combination with NIC, morphine, or foot shock. We report that, unlike METH, there was no retrieval-independent effect of Blebb on NIC- or MEPH-associated memories. However, similar to cocaine, reconsolidation of the memory for both drugs was disrupted. Further, when combined with METH administration, NIC- and morphine-, but not fear-, associated memories were rendered susceptible to disruption by Blebb. Given the high rate of polydrug use and the resurgence of METH use, these results have important implications for the treatment of substance use disorder.
Collapse
Affiliation(s)
- Sherri B Briggs
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Madalyn Hafenbreidel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Erica J Young
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
19
|
Sun J, Liu Y, Jia Y, Hao X, Lin WJ, Tran J, Lynch G, Baudry M, Bi X. UBE3A-mediated p18/LAMTOR1 ubiquitination and degradation regulate mTORC1 activity and synaptic plasticity. eLife 2018; 7:37993. [PMID: 30020076 PMCID: PMC6063731 DOI: 10.7554/elife.37993] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/17/2018] [Indexed: 01/04/2023] Open
Abstract
Accumulating evidence indicates that the lysosomal Ragulator complex is essential for full activation of the mechanistic target of rapamycin complex 1 (mTORC1). Abnormal mTORC1 activation has been implicated in several developmental neurological disorders, including Angelman syndrome (AS), which is caused by maternal deficiency of the ubiquitin E3 ligase UBE3A. Here we report that Ube3a regulates mTORC1 signaling by targeting p18, a subunit of the Ragulator. Ube3a ubiquinates p18, resulting in its proteasomal degradation, and Ube3a deficiency in the hippocampus of AS mice induces increased lysosomal localization of p18 and other members of the Ragulator-Rag complex, and increased mTORC1 activity. p18 knockdown in hippocampal CA1 neurons of AS mice reduces elevated mTORC1 activity and improves dendritic spine maturation, long-term potentiation (LTP), as well as learning performance. Our results indicate that Ube3a-mediated regulation of p18 and subsequent mTORC1 signaling is critical for typical synaptic plasticity, dendritic spine development, and learning and memory.
Collapse
Affiliation(s)
- Jiandong Sun
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, United States
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, United States
| | - Yousheng Jia
- Department of Psychiatry, University of California, Irvine, United States
| | - Xiaoning Hao
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, United States
| | - Wei Ju Lin
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, United States
| | - Jennifer Tran
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, United States
| | - Gary Lynch
- Department of Psychiatry, University of California, Irvine, United States
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, United States
| | - Xiaoning Bi
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, United States
| |
Collapse
|
20
|
Abstract
The formation of correct synaptic structures and neuronal connections is paramount for normal brain development and a functioning adult brain. The integrin family of cell adhesion receptors and their ligands play essential roles in the control of several processes regulating neuronal connectivity - including neurite outgrowth, the formation and maintenance of synapses, and synaptic plasticity - that are affected in neurodevelopmental disorders, such as autism spectrum disorders (ASDs) and schizophrenia. Many ASD- and schizophrenia-associated genes are linked to alterations in the genetic code of integrins and associated signalling pathways. In non-neuronal cells, crosstalk between integrin-mediated adhesions and the actin cytoskeleton, and the regulation of integrin activity (affinity for extracellular ligands) are widely studied in healthy and pathological settings. In contrast, the roles of integrin-linked pathways in the central nervous system remains less well defined. In this Review, we will provide an overview of the known pathways that are regulated by integrin-ECM interaction in developing neurons and in adult brain. We will also describe recent advances in the identification of mechanisms that regulate integrin activity in neurons, and highlight the interesting emerging links between integrins and neurodevelopment.
Collapse
Affiliation(s)
- Johanna Lilja
- Turku Centre for Biotechnology, University of Turku, FIN-20520 Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, FIN-20520 Turku, Finland .,Department of Biochemistry, University of Turku, FIN-20500 Turku, Finland
| |
Collapse
|
21
|
Quadalti C, Brunetti D, Lagutina I, Duchi R, Perota A, Lazzari G, Cerutti R, Di Meo I, Johnson M, Bottani E, Crociara P, Corona C, Grifoni S, Tiranti V, Fernandez-Vizarra E, Robinson AJ, Viscomi C, Casalone C, Zeviani M, Galli C. SURF1 knockout cloned pigs: Early onset of a severe lethal phenotype. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2131-2142. [PMID: 29601977 PMCID: PMC6018622 DOI: 10.1016/j.bbadis.2018.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/28/2018] [Accepted: 03/22/2018] [Indexed: 12/15/2022]
Abstract
Leigh syndrome (LS) associated with cytochrome c oxidase (COX) deficiency is an early onset, fatal mitochondrial encephalopathy, leading to multiple neurological failure and eventually death, usually in the first decade of life. Mutations in SURF1, a nuclear gene encoding a mitochondrial protein involved in COX assembly, are among the most common causes of LS. LSSURF1 patients display severe, isolated COX deficiency in all tissues, including cultured fibroblasts and skeletal muscle. Recombinant, constitutive SURF1-/- mice show diffuse COX deficiency, but fail to recapitulate the severity of the human clinical phenotype. Pigs are an attractive alternative model for human diseases, because of their size, as well as metabolic, physiological and genetic similarity to humans. Here, we determined the complete sequence of the swine SURF1 gene, disrupted it in pig primary fibroblast cell lines using both TALENs and CRISPR/Cas9 genome editing systems, before finally generating SURF1-/- and SURF1-/+ pigs by Somatic Cell Nuclear Transfer (SCNT). SURF1-/- pigs were characterized by failure to thrive, muscle weakness and highly reduced life span with elevated perinatal mortality, compared to heterozygous SURF1-/+ and wild type littermates. Surprisingly, no obvious COX deficiency was detected in SURF1-/- tissues, although histochemical analysis revealed the presence of COX deficiency in jejunum villi and total mRNA sequencing (RNAseq) showed that several COX subunit-encoding genes were significantly down-regulated in SURF1-/- skeletal muscles. In addition, neuropathological findings, indicated a delay in central nervous system development of newborn SURF1-/- piglets. Our results suggest a broader role of sSURF1 in mitochondrial bioenergetics.
Collapse
Affiliation(s)
- C Quadalti
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy; Dept. of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - D Brunetti
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - I Lagutina
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy
| | - R Duchi
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy
| | - A Perota
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy
| | - G Lazzari
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy; Fondazione Avantea, Cremona, Italy
| | - R Cerutti
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - I Di Meo
- Neurologic Institute Carlo Besta, Via G. Celoria 11, 20133 Milan, Italy
| | - M Johnson
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - E Bottani
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - P Crociara
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via Bologna 148, Torino 10154, Italy
| | - C Corona
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via Bologna 148, Torino 10154, Italy
| | - S Grifoni
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via Bologna 148, Torino 10154, Italy
| | - V Tiranti
- Neurologic Institute Carlo Besta, Via G. Celoria 11, 20133 Milan, Italy
| | - E Fernandez-Vizarra
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - A J Robinson
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - C Viscomi
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - C Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via Bologna 148, Torino 10154, Italy
| | - M Zeviani
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK.
| | - C Galli
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy; Dept. of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy.
| |
Collapse
|
22
|
Stradecki-Cohan HM, Cohan CH, Raval AP, Dave KR, Reginensi D, Gittens RA, Youbi M, Perez-Pinzon MA. Cognitive Deficits after Cerebral Ischemia and Underlying Dysfunctional Plasticity: Potential Targets for Recovery of Cognition. J Alzheimers Dis 2018; 60:S87-S105. [PMID: 28453486 DOI: 10.3233/jad-170057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebral ischemia affects millions of people worldwide and survivors suffer from long-term functional and cognitive deficits. While stroke and cardiac arrest are typically considered when discussing ischemic brain injuries, there is much evidence that smaller ischemic insults underlie neurodegenerative diseases, including Alzheimer's disease. The "regenerative" capacity of the brain relies on several aspects of plasticity that are crucial for normal functioning; less affected brain areas may take over function previously performed by irreversibly damaged tissue. To harness the endogenous plasticity mechanisms of the brain to provide recovery of cognitive function, we must first understand how these mechanisms are altered after damage, such as cerebral ischemia. In this review, we discuss the long-term cognitive changes that result after cerebral ischemia and how ischemia alters several plasticity processes. We conclude with a discussion of how current and prospective therapies may restore brain plasticity and allow for recovery of cognitive function, which may be applicable to several disorders that have a disruption of cognitive processing, including traumatic brain injury and Alzheimer's disease.
Collapse
Affiliation(s)
- Holly M Stradecki-Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Charles H Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Ami P Raval
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Kunjan R Dave
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Diego Reginensi
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Rolando A Gittens
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Mehdi Youbi
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
23
|
Ding Y, Lu L, Xuan C, Han J, Ye S, Cao T, Chen W, Li A, Zhang X. Di- n -butyl phthalate exposure negatively influences structural and functional neuroplasticity via Rho-GTPase signaling pathways. Food Chem Toxicol 2017; 105:34-43. [DOI: 10.1016/j.fct.2017.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/15/2023]
|
24
|
Lauterborn JC, Kramár EA, Rice JD, Babayan AH, Cox CD, Karsten CA, Gall CM, Lynch G. Cofilin Activation Is Temporally Associated with the Cessation of Growth in the Developing Hippocampus. Cereb Cortex 2017; 27:2640-2651. [PMID: 27073215 PMCID: PMC5964364 DOI: 10.1093/cercor/bhw088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dendritic extension and synaptogenesis proceed at high rates in rat hippocampus during early postnatal life but markedly slow during the third week of development. The reasons for the latter, fundamental event are poorly understood. Here, we report that levels of phosphorylated (inactive) cofilin, an actin depolymerizing factor, decrease by 90% from postnatal days (pnds) 10 to 21. During the same period, levels of total and phosphorylated Arp2, which nucleates actin branches, increase. A search for elements that could explain the switch from inactive to active cofilin identified reductions in β1 integrin, TrkB, and LIM domain kinase 2b, upstream proteins that promote cofilin phosphorylation. Moreover, levels of slingshot 3, which dephosphorylates cofilin, increase during the period in which growth slows. Consistent with the cofilin results, in situ phalloidin labeling of F-actin demonstrated that spines and dendrites contained high levels of dynamic actin filaments during Week 2, but these fell dramatically by pnd 21. The results suggest that the change from inactive to constitutively active cofilin leads to a loss of dynamic actin filaments needed for process extension and thus the termination of spine formation and synaptogenesis. The relevance of these events to the emergence of memory-related synaptic plasticity is described.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christine M. Gall
- Department of Anatomy and Neurobiology
- Department of Neurobiology and Behavior
| | - Gary Lynch
- Department of Anatomy and Neurobiology
- Department of Psychiatry and Human Behavior, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
25
|
Briggs SB, Blouin AM, Young EJ, Rumbaugh G, Miller CA. Memory disrupting effects of nonmuscle myosin II inhibition depend on the class of abused drug and brain region. ACTA ACUST UNITED AC 2017; 24:70-75. [PMID: 28096495 PMCID: PMC5238718 DOI: 10.1101/lm.043976.116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022]
Abstract
Depolymerizing actin in the amygdala through nonmuscle myosin II inhibition (NMIIi) produces a selective, lasting, and retrieval-independent disruption of the storage of methamphetamine-associated memories. Here we report a similar disruption of memories associated with amphetamine, but not cocaine or morphine, by NMIIi. Reconsolidation appeared to be disrupted with cocaine. Unlike in the amygdala, methamphetamine-associated memory storage was not disrupted by NMIIi in the hippocampus, nucleus accumbens, or orbitofrontal cortex. NMIIi in the hippocampus did appear to disrupt reconsolidation. Identification of the unique mechanisms responsible for NMII-mediated, amygdala-dependent disruption of memory storage associated with the amphetamine class may enable induction of retrieval-independent vulnerability to other pathological memories.
Collapse
Affiliation(s)
- Sherri B Briggs
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida 33458, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Ashley M Blouin
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida 33458, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Erica J Young
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida 33458, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Courtney A Miller
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida 33458, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
26
|
Subbanna S, Nagre NN, Shivakumar M, Basavarajappa BS. A single day of 5-azacytidine exposure during development induces neurodegeneration in neonatal mice and neurobehavioral deficits in adult mice. Physiol Behav 2016; 167:16-27. [PMID: 27594097 DOI: 10.1016/j.physbeh.2016.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
Abstract
The present study was undertaken to evaluate the immediate and long-term effects of a single-day exposure to 5-Azacytidine (5-AzaC), a DNA methyltransferase inhibitor, on neurobehavioral abnormalities in mice. Our findings suggest that the 5-AzaC treatment significantly inhibited DNA methylation, impaired extracellular signal-regulated kinase (ERK1/2) activation and reduced expression of the activity-regulated cytoskeleton-associated protein (Arc). These events lead to the activation of caspase-3 (a marker for neurodegeneration) in several brain regions, including the hippocampus and cortex, two brain areas that are essential for memory formation and memory storage, respectively. 5-AzaC treatment of P7 mice induced significant deficits in spatial memory, social recognition, and object memory in adult mice and deficits in long-term potentiation (LTP) in adult hippocampal slices. Together, these data demonstrate that the inhibition of DNA methylation by 5-AzaC treatment in P7 mice causes neurodegeneration and impairs ERK1/2 activation and Arc protein expression in neonatal mice and induces behavioral abnormalities in adult mice. DNA methylation-mediated mechanisms appear to be necessary for the proper maturation of synaptic circuits during development, and disruption of this process by 5-AzaC could lead to abnormal cognitive function.
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Nagaraja N Nagre
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Madhu Shivakumar
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
27
|
Liu Y, Sun J, Wang Y, Lopez D, Tran J, Bi X, Baudry M. Deleting both PHLPP1 and CANP1 rescues impairments in long-term potentiation and learning in both single knockout mice. ACTA ACUST UNITED AC 2016; 23:399-404. [PMID: 27421891 PMCID: PMC4947237 DOI: 10.1101/lm.042721.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/18/2016] [Indexed: 11/25/2022]
Abstract
Calpain-1 (CANP1) has been shown to play a critical role in synaptic plasticity and learning and memory, as its deletion in mice results in impairment in theta-burst stimulation- (TBS) induced LTP and various forms of learning and memory. Likewise, PHLPP1 (aka SCOP) has also been found to participate in learning and memory, as PHLPP1 overexpression impairs hippocampus-dependent learning. We previously showed that TBS-induced LTP was associated with calpain-1 mediated truncation of PHLPP1.To better understand the roles of these 2 genes in synaptic plasticity and learning and memory, we generated a double knockout (DKO) mouse by crossing the parent strains. Surprisingly, DKO mice exhibit normal TBS-induced LTP, and the learning impairments in fear conditioning and novel object or novel location recognition were absent in the DKO mice. Moreover, TBS-induced ERK activation in field CA1 of hippocampal slices, which is impaired in both single deletion mice, was restored in the DKO mice. These results further strengthen the roles of both CANP1 and PHLPP1 in synaptic plasticity and learning and memory, and illustrate the complexities of the interactions between multiple pathways participating in synaptic plasticity.
Collapse
Affiliation(s)
- Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA
| | - Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA
| | - Dulce Lopez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA
| | - Jennifer Tran
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
28
|
Korte M, Schmitz D. Cellular and System Biology of Memory: Timing, Molecules, and Beyond. Physiol Rev 2016; 96:647-93. [PMID: 26960344 DOI: 10.1152/physrev.00010.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The storage of information in the mammalian nervous systems is dependent on a delicate balance between change and stability of neuronal networks. The induction and maintenance of processes that lead to changes in synaptic strength to a multistep process which can lead to long-lasting changes, which starts and ends with a highly choreographed and perfectly timed dance of molecules in different cell types of the central nervous system. This is accompanied by synchronization of specific networks, resulting in the generation of characteristic "macroscopic" rhythmic electrical fields, whose characteristic frequencies correspond to certain activity and information-processing states of the brain. Molecular events and macroscopic fields influence each other reciprocally. We review here cellular processes of synaptic plasticity, particularly functional and structural changes, and focus on timing events that are important for the initial memory acquisition, as well as mechanisms of short- and long-term memory storage. Then, we cover the importance of epigenetic events on the long-time range. Furthermore, we consider how brain rhythms at the network level participate in processes of information storage and by what means they participating in it. Finally, we examine memory consolidation at the system level during processes of sleep.
Collapse
Affiliation(s)
- Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
29
|
Pirbhoy PS, Farris S, Steward O. Synaptic activation of ribosomal protein S6 phosphorylation occurs locally in activated dendritic domains. ACTA ACUST UNITED AC 2016; 23:255-69. [PMID: 27194793 PMCID: PMC4880148 DOI: 10.1101/lm.041947.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023]
Abstract
Previous studies have shown that induction of long-term potentiation (LTP) induces phosphorylation of ribosomal protein S6 (rpS6) in postsynaptic neurons, but the functional significance of rpS6 phosphorylation is poorly understood. Here, we show that synaptic stimulation that induces perforant path LTP triggers phosphorylation of rpS6 (p-rpS6) locally near active synapses. Using antibodies specific for phosphorylation at different sites (ser235/236 versus ser240/244), we show that strong synaptic activation led to dramatic increases in immunostaining throughout postsynaptic neurons with selectively higher staining for p-ser235/236 in the activated dendritic lamina. Following LTP induction, phosphorylation at ser235/236 was detectable by 5 min, peaked at 30 min, and was maintained for hours. Phosphorylation at both sites was completely blocked by local infusion of the NMDA receptor antagonist, APV. Despite robust induction of p-rpS6 following high frequency stimulation, assessment of protein synthesis by autoradiography revealed no detectable increases. Exploration of a novel environment led to increases in the number of p-rpS6-positive neurons throughout the forebrain in a pattern reminiscent of immediate early gene induction and many individual neurons that were p-rpS6-positive coexpressed Arc protein. Our results constrain hypotheses about the possible role of rpS6 phosphorylation in regulating postsynaptic protein synthesis during induction of synaptic plasticity.
Collapse
Affiliation(s)
- Patricia Salgado Pirbhoy
- Reeve-Irvine Research Center, Center for the Neurobiology of Learning and Memory Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory
| | - Shannon Farris
- Reeve-Irvine Research Center, Center for the Neurobiology of Learning and Memory Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA
| | - Oswald Steward
- Reeve-Irvine Research Center, Center for the Neurobiology of Learning and Memory Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA Department of Neurosurgery, University of California, Irvine, California 92697, USA
| |
Collapse
|
30
|
Young EJ, Blouin AM, Briggs SB, Daws SE, Lin L, Cameron MD, Rumbaugh G, Miller CA. Nonmuscle myosin IIB as a therapeutic target for the prevention of relapse to methamphetamine use. Mol Psychiatry 2016; 21:615-23. [PMID: 26239291 PMCID: PMC4740255 DOI: 10.1038/mp.2015.103] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/18/2015] [Accepted: 06/22/2015] [Indexed: 01/15/2023]
Abstract
Memories associated with drug use increase vulnerability to relapse in substance use disorder (SUD), and there are no pharmacotherapies for the prevention of relapse. Previously, we reported a promising finding that storage of memories associated with methamphetamine (METH), but not memories for fear or food reward, is vulnerable to disruption by actin depolymerization in the basolateral amygdala complex (BLC). However, actin is not a viable therapeutic target because of its numerous functions throughout the body. Here we report the discovery of a viable therapeutic target, nonmuscle myosin IIB (NMIIB), a molecular motor that supports memory by directly driving synaptic actin polymerization. A single intra-BLC treatment with Blebbistatin (Blebb), a small-molecule inhibitor of class II myosin isoforms, including NMIIB, produced a long-lasting disruption of context-induced drug seeking (at least 30 days). Further, postconsolidation genetic knockdown of Myh10, the heavy chain of the most highly expressed NMII in the BLC, was sufficient to produce METH-associated memory loss. Blebb was found to be highly brain penetrant. A single systemic injection of the compound selectively disrupted the storage of METH-associated memory and reversed the accompanying increase in BLC spine density. This effect was specific to METH-associated memory, as it had no effect on an auditory fear memory. The effect was also independent of retrieval, as METH-associated memory was disrupted 24 h after a single systemic injection of Blebb delivered in the home cage. Together, these results argue for the further development of small-molecule inhibitors of NMII as potential therapeutics for the prevention of SUD relapse triggered by drug associations.
Collapse
Affiliation(s)
- Erica J. Young
- Department of Metabolism & Aging
- Department of Neuroscience
| | | | | | | | - Li Lin
- Drug Metabolism and Pharmacokinetics, Translational Research
Institute
- Department of Molecular Therapeutics, The Scripps Research
Institute, Jupiter, FL USA
| | - Michael D. Cameron
- Drug Metabolism and Pharmacokinetics, Translational Research
Institute
- Department of Molecular Therapeutics, The Scripps Research
Institute, Jupiter, FL USA
| | | | | |
Collapse
|
31
|
Guo D, Zeng L, Zou J, Chen L, Rensing N, Wong M. Rapamycin prevents acute dendritic injury following seizures. Ann Clin Transl Neurol 2016; 3:180-90. [PMID: 27042678 PMCID: PMC4774262 DOI: 10.1002/acn3.284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/18/2015] [Indexed: 12/29/2022] Open
Abstract
Objective Seizures cause acute structural changes in dendrites, which may contribute to cognitive deficits that occur in epilepsy patients. Disruption of the actin cytoskeleton of dendrites likely mediates the structural changes following seizures, but the upstream signaling mechanisms activated by synchronized physiological activity to cause seizure‐induced dendritic injury are not known. In this study, we test the hypothesis that the mechanistic target of rapamycin complex 1 (mTORC1) pathway triggers structural changes in dendrites in response to seizures. Methods In vivo multiphoton imaging was performed in transgenic mice expressing green fluorescent protein in cortical neurons. The effect of rapamycin pre‐ and posttreatment was tested on kainate‐induced dendritic injury and cofilin‐mediated actin depolymerization. Results Kainate‐induced seizures caused acute activation of mTORC1 activity, which was prevented by the mTORC1 inhibitor, rapamycin. Rapamycin pretreatment, and to a lesser degree, posttreatment attenuated acute seizure‐induced dendritic injury and correspondingly decreased LIM kinase and cofilin‐mediated depolymerization of actin. Interpretation The mTORC1 pathway mediates seizure‐induced dendritic injury via depolymerization of actin. These findings have important mechanistic and translational applications for management of seizure‐induced brain injury.
Collapse
Affiliation(s)
- Dongjun Guo
- Department of Neurology and the Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri 63110
| | - Linghui Zeng
- Department of Pharmacy School of Medicine Zhejiang University City College Hangzhou Zhejiang 310015 China
| | - Jia Zou
- Department of Neurology and the Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri 63110
| | - Linglin Chen
- Department of Pharmacy School of Medicine Zhejiang University City College Hangzhou Zhejiang 310015 China
| | - Nicholas Rensing
- Department of Neurology and the Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri 63110
| | - Michael Wong
- Department of Neurology and the Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri 63110
| |
Collapse
|
32
|
Abstract
INTRODUCTION Angelman syndrome (AS) is a neurodevelopmental disorder caused by deficiency of maternally inherited UBE3A, an ubiquitin E3 ligase. Despite recent progress in understanding the mechanism underlying UBE3A imprinting, there is no effective treatment. Further investigation of the roles played by UBE3A in the central nervous system (CNS) is needed for developing effective therapies. AREA COVERED This review covers the literature related to genetic classifications of AS, recent discoveries regarding the regulation of UBE3A imprinting, alterations in cell signaling in various brain regions and potential therapeutic approaches. Since a large proportion of AS patients exhibit comorbid autism spectrum disorder (ASD), potential common molecular bases are discussed. EXPERT OPINION Advances in understanding UBE3A imprinting provide a unique opportunity to induce paternal UBE3A expression, thus targeting the syndrome at its 'root.' However, such efforts have yielded less-than-expected rescue effects in AS mouse models, raising the concern that activation of paternal UBE3A after a critical period cannot correct all the CNS defects that developed in a UBE3A-deficient environment. On the other hand, targeting abnormal downstream cell signaling pathways has provided promising rescue effects in preclinical research. Thus, combined reinstatement of paternal UBE3A expression with targeting abnormal signaling pathways should provide better therapeutic effects.
Collapse
Affiliation(s)
- Xiaoning Bi
- a Department of Basic Medical Sciences, COMP , Western University of Health Sciences , Pomona , CA , USA
| | - Jiandong Sun
- a Department of Basic Medical Sciences, COMP , Western University of Health Sciences , Pomona , CA , USA
| | - Angela X Ji
- a Department of Basic Medical Sciences, COMP , Western University of Health Sciences , Pomona , CA , USA
| | - Michel Baudry
- b Graduate College of Biomedical Sciences , Western University of Health Sciences , Pomona , CA , USA
| |
Collapse
|
33
|
Bu Y, Wang N, Wang S, Sheng T, Tian T, Chen L, Pan W, Zhu M, Luo J, Lu W. Myosin IIb-dependent Regulation of Actin Dynamics Is Required for N-Methyl-D-aspartate Receptor Trafficking during Synaptic Plasticity. J Biol Chem 2015; 290:25395-410. [PMID: 26330558 DOI: 10.1074/jbc.m115.644229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 12/21/2022] Open
Abstract
N-Methyl-d-aspartate receptor (NMDAR) synaptic incorporation changes the number of NMDARs at synapses and is thus critical to various NMDAR-dependent brain functions. To date, the molecules involved in NMDAR trafficking and the underlying mechanisms are poorly understood. Here, we report that myosin IIb is an essential molecule in NMDAR synaptic incorporation during PKC- or θ burst stimulation-induced synaptic plasticity. Moreover, we demonstrate that myosin light chain kinase (MLCK)-dependent actin reorganization contributes to NMDAR trafficking. The findings from additional mutual occlusion experiments demonstrate that PKC and MLCK share a common signaling pathway in NMDAR-mediated synaptic regulation. Because myosin IIb is the primary substrate of MLCK and can regulate actin dynamics during synaptic plasticity, we propose that the MLCK- and myosin IIb-dependent regulation of actin dynamics is required for NMDAR trafficking during synaptic plasticity. This study provides important insights into a mechanical framework for understanding NMDAR trafficking associated with synaptic plasticity.
Collapse
Affiliation(s)
- Yunfei Bu
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Ning Wang
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China, the Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China
| | - Shaoli Wang
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China, the Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China
| | - Tao Sheng
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China, the Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China
| | - Tian Tian
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Linlin Chen
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Weiwei Pan
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Minsheng Zhu
- the Key Laboratory of Model Animal for Disease Study of the Ministry of Education of China, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu Province 210063, China, and
| | - Jianhong Luo
- the Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Wei Lu
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China, the Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China, the Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China,
| |
Collapse
|
34
|
Colciago A, Casati L, Negri-Cesi P, Celotti F. Learning and memory: Steroids and epigenetics. J Steroid Biochem Mol Biol 2015; 150:64-85. [PMID: 25766520 DOI: 10.1016/j.jsbmb.2015.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/19/2022]
Abstract
Memory formation and utilization is a complex process involving several brain structures in conjunction as the hippocampus, the amygdala and the adjacent cortical areas, usually defined as medial temporal lobe structures (MTL). The memory processes depend on the formation and modulation of synaptic connectivity affecting synaptic strength, synaptic plasticity and synaptic consolidation. The basic neurocognitive mechanisms of learning and memory are shortly recalled in the initial section of this paper. The effect of sex hormones (estrogens, androgens and progesterone) and of adrenocortical steroids on several aspects of memory processes are then analyzed on the basis of animal and human studies. A specific attention has been devoted to the different types of steroid receptors (membrane or nuclear) involved and on local metabolic transformations when required. The review is concluded by a short excursus on the steroid activated epigenetic mechanisms involved in memory formation.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
| | - Paola Negri-Cesi
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Fabio Celotti
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
35
|
Different patterns of electrical activity lead to long-term potentiation by activating different intracellular pathways. J Neurosci 2015; 35:621-33. [PMID: 25589756 DOI: 10.1523/jneurosci.2193-14.2015] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Deciphering and storing information coded in different firing patterns are important properties of neuronal networks, as they allow organisms to respond and adapt to external and internal events. Here we report that hippocampal CA1 pyramidal neurons respond to brief bursts of high-frequency stimulation (HFS) and θ burst stimulation (TBS) with long-lasting enhanced responses (long-term potentiation [LTP]), albeit by engaging different signaling pathways. TBS induces LTP through calpain-1-mediated suprachiasmatic nucleus circadian oscillatory protein degradation, ERK activation, and actin polymerization, whereas HFS requires adenosine A2 receptors, PKA, and actin polymerization. TBS- but not HFS-induced LTP is impaired in calpain-1 knock-out mice. However, TBS-induced LTP and learning impairment in knock-out mice are restored by activating the HFS pathway. Thus, different patterns of rhythmic activities trigger potentiation by activating different pathways, and cross talks between these can be used to restore LTP and learning when elements of the pathways are impaired.
Collapse
|
36
|
Li J, Zhang L, Chen Z, Xie M, Huang L, Xue J, Liu Y, Liu N, Guo F, Zheng Y, Kong J, Zhang L, Zhang L. Cocaine activates Rac1 to control structural and behavioral plasticity in caudate putamen. Neurobiol Dis 2015; 75:159-76. [PMID: 25595128 DOI: 10.1016/j.nbd.2014.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 11/19/2014] [Accepted: 12/18/2014] [Indexed: 12/24/2022] Open
Abstract
Repeated exposure to cocaine was previously found to cause sensitized behavioral responses and structural remodeling on medium spiny neurons of the nucleus accumbens (NAc) and caudate putamen (CPu). Rac1 has emerged as a key integrator of environmental cues that regulates dendritic cytoskeletons. In this study, we investigated the role of Rac1 in cocaine-induced dendritic and behavioral plasticity in the CPu. We found that Rac1 activation was reduced in the NAc but increased in the CPu following repeated cocaine treatment. Inhibition of Rac1 activity by a Rac1-specific inhibitor NSC23766, overexpression of a dominant negative mutant of Rac1 (T17N-Rac1) or local knockout of Rac1 attenuated the cocaine-induced increase in dendrites and spine density in the CPu, whereas overexpression of a constitutively active Rac1 exert the opposite effect. Moreover, NSC23766 reversed the increased number of asymmetric spine synapses in the CPu following chronic cocaine exposure. Downregulation of Rac1 activity likewise attenuates behavioral reward responses to cocaine exposure, with activation of Rac1 producing the opposite effect. Thus, Rac1 signaling is differentially regulated in the NAc and CPu after repeated cocaine treatment, and induction of Rac1 activation in the CPu is important for cocaine exposure-induced dendritic remodeling and behavioral plasticity.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Lei Zhang
- Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Zhenzhong Chen
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Minjuan Xie
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Lu Huang
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Jinhua Xue
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Yutong Liu
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Nuyun Liu
- Elderly Health Services Research Center, Southern Medical University, Guangzhou 510515, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Jiming Kong
- Southern Medical University-University of Manitoba Geriatric Medicine Joint Laboratory, Guangzhou 510515, China
| | - Lin Zhang
- Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China.
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China; Elderly Health Services Research Center, Southern Medical University, Guangzhou 510515, China; Southern Medical University-University of Manitoba Geriatric Medicine Joint Laboratory, Guangzhou 510515, China.
| |
Collapse
|
37
|
Rudy JW. Actin dynamics and the evolution of the memory trace. Brain Res 2014; 1621:17-28. [PMID: 25498985 DOI: 10.1016/j.brainres.2014.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/24/2022]
Abstract
The goal of this essay is to link the regulation of actin dynamics to the idea that the synaptic changes that support long-term potentiation and memory evolve in temporally overlapping stages-generation, stabilization, and consolidation. Different cellular/molecular processes operate at each stage to change the spine cytoarchitecture and, in doing so, alter its function. Calcium-dependent processes that degrade the actin cytoskeleton network promote a rapid insertion of AMPA receptors into the post synaptic density, which increases a spine's capacity to express a potentiated response to glutamate. Other post-translation events then begin to stabilize and expand the actin cytoskeleton by increasing the filament actin content of the spine and reorganizing it to be resistant to depolymerizing events. Disrupting actin polymerization during this stabilization period is a terminal event-the actin cytoskeleton shrinks and potentiated synapses de-potentiate and memories are lost. Late-arriving, new proteins may consolidate changes in the actin cytoskeleton. However, to do so requires a stabilized actin cytoskeleton. The now enlarged spine has properties that enable it to capture other newly transcribed mRNAs or their protein products and thus enable the synaptic changes that support LTP and memory to be consolidated and maintained. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Jerry W Rudy
- Department of Psychology and Neuroscience, University of Colorado, 345 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
38
|
Lynch G, Kramár EA, Gall CM. Protein synthesis and consolidation of memory-related synaptic changes. Brain Res 2014; 1621:62-72. [PMID: 25485773 DOI: 10.1016/j.brainres.2014.11.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Although sometimes disputed, it has been assumed for several decades that new proteins synthesized following a learning event are required for consolidation of subsequent memory. Published findings and new results described here challenge this idea. Protein synthesis inhibitors did not prevent Theta Bust Stimulation (TBS) from producing extremely stable long-term potentiation (LTP) in experiments using standard hippocampal slice protocols. However, the inhibitors were effective under conditions that likely depleted protein levels prior to attempts to induce the potentiation effect. Experiments showed that induction of LTP at one input, and thus a prior episode of protein synthesis, eliminated the effects of inhibitors on potentiation of a second input even in depleted slices. These observations suggest that a primary role of translation and transcription processes initiated by learning events is to prepare neurons to support future learning. Other work has provided support for an alternative theory of consolidation. Specifically, if the synaptic changes that support memory are to endure, learning events/TBS must engage a complex set of signaling processes that reorganize and re-stabilize the spine actin cytoskeleton. This is accomplished in fast (10 min) and slow (50 min) stages with the first requiring integrin activation and the second a recovery of integrin functioning. These results align with, and provide mechanisms for, the long-held view that memories are established and consolidated over a set of temporally distinct phases. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA; Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA.
| | - Enikö A Kramár
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
39
|
Furgerson M, Clark JK, Crystal JD, Wagner JJ, Fechheimer M, Furukawa R. Hirano body expression impairs spatial working memory in a novel mouse model. Acta Neuropathol Commun 2014; 2:131. [PMID: 25178488 PMCID: PMC4160558 DOI: 10.1186/s40478-014-0131-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/15/2014] [Indexed: 11/29/2022] Open
Abstract
Introduction Hirano bodies are actin-rich intracellular inclusions found in the brains of patients with neurodegenerative conditions such as Alzheimer's disease or frontotemporal lobar degeneration-tau. While Hirano body ultrastructure and protein composition have been well studied, little is known about the physiological function of Hirano bodies in an animal model system. Results Utilizing a Cre/Lox system, we have generated a new mouse model which develops an age-dependent increase in the number of model Hirano bodies present in both the CA1 region of the hippocampus and frontal cortex. These mice develop normally and experience no overt neuron loss. Mice presenting model Hirano bodies have no abnormal anxiety or locomotor activity as measured by the open field test. However, mice with model Hirano bodies develop age-dependent impairments in spatial working memory performance assessed using a delayed win-shift task in an 8-arm radial maze. Synaptic transmission, short-term plasticity, and long-term plasticity was measured in the CA1 region from slices obtained from both the ventral and dorsal hippocampus in the same mice whose spatial working memory was assessed. Baseline synaptic responses, paired pulse stimulation and long-term potentiation measurements in the ventral hippocampus were indistinguishable from control mice. In contrast, in the dorsal hippocampus, synaptic transmission at higher stimulus intensities were suppressed in 3 month old mice with Hirano bodies as compared with control mice. In addition, long-term potentiation was enhanced in the dorsal hippocampus of 8 month old mice with Hirano bodies, concurrent with observed impairment of spatial working memory. Finally, an inflammatory response was observed at 8 months of age in mice with Hirano bodies as assessed by the presence of reactive astrocytes. Conclusion This study shows that the presence of model Hirano bodies initiates an inflammatory response, alters hippocampal synaptic responses, and impairs spatial working memory in an age-dependent manner. This suggests that Hirano bodies may promote disease progression. This new model mouse provides a tool to investigate how Hirano bodies interact with other pathologies associated with Alzheimer's disease. Hirano bodies likely play a complex and region specific role in the brain during neurodegenerative disease progression. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0131-9) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Lynch G, Cox CD, Gall CM. Pharmacological enhancement of memory or cognition in normal subjects. Front Syst Neurosci 2014; 8:90. [PMID: 24904313 PMCID: PMC4033242 DOI: 10.3389/fnsys.2014.00090] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/30/2014] [Indexed: 12/14/2022] Open
Abstract
The possibility of expanding memory or cognitive capabilities above the levels in high functioning individuals is a topic of intense discussion among scientists and in society at large. The majority of animal studies use behavioral endpoint measures; this has produced valuable information but limited predictability for human outcomes. Accordingly, several groups are pursuing a complementary strategy with treatments targeting synaptic events associated with memory encoding or forebrain network operations. Transcription and translation figure prominently in substrate work directed at enhancement. Notably, the question of why new proteins would be needed for a now-forming memory given that learning-driven synthesis presumably occurred throughout the immediate past has been largely ignored. Despite this conceptual problem, and some controversy, recent studies have reinvigorated the idea that selective gene manipulation is a plausible route to enhancement. Efforts to improve memory by facilitating synaptic encoding of information have also progressed, in part due of breakthroughs on mechanisms that stabilize learning-related, long-term potentiation (LTP). These advances point to a reductionistic hypothesis for a diversity of experimental results on enhancement, and identify under-explored possibilities. Cognitive enhancement remains an elusive goal, in part due to the difficulty of defining the target. The popular view of cognition as a collection of definable computations seems to miss the fluid, integrative process experienced by high functioning individuals. The neurobiological approach obviates these psychological issues to directly test the consequences of improving throughput in networks underlying higher order behaviors. The few relevant studies testing drugs that selectively promote excitatory transmission indicate that it is possible to expand cortical networks engaged by complex tasks and that this is accompanied by capabilities not found in normal animals.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California Irvine, CA, USA ; Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| |
Collapse
|
41
|
Calabrese B, Saffin JM, Halpain S. Activity-dependent dendritic spine shrinkage and growth involve downregulation of cofilin via distinct mechanisms. PLoS One 2014; 9:e94787. [PMID: 24740405 PMCID: PMC3989342 DOI: 10.1371/journal.pone.0094787] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/19/2014] [Indexed: 01/09/2023] Open
Abstract
A current model posits that cofilin-dependent actin severing negatively impacts dendritic spine volume. Studies suggested that increased cofilin activity underlies activity-dependent spine shrinkage, and that reduced cofilin activity induces activity-dependent spine growth. We suggest instead that both types of structural plasticity correlate with decreased cofilin activity. However, the mechanism of inhibition determines the outcome for spine morphology. RNAi in rat hippocampal cultures demonstrates that cofilin is essential for normal spine maintenance. Cofilin-F-actin binding and filament barbed-end production decrease during the early phase of activity-dependent spine shrinkage; cofilin concentration also decreases. Inhibition of the cathepsin B/L family of proteases prevents both cofilin loss and spine shrinkage. Conversely, during activity-dependent spine growth, LIM kinase stimulates cofilin phosphorylation, which activates phospholipase D-1 to promote actin polymerization. These results implicate novel molecular mechanisms and prompt a revision of the current model for how cofilin functions in activity-dependent structural plasticity.
Collapse
Affiliation(s)
- Barbara Calabrese
- Division of Biological Sciences, and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jean-Michel Saffin
- Division of Biological Sciences, and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Shelley Halpain
- Division of Biological Sciences, and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Young EJ, Aceti M, Griggs EM, Fuchs RA, Zigmond Z, Rumbaugh G, Miller CA. Selective, retrieval-independent disruption of methamphetamine-associated memory by actin depolymerization. Biol Psychiatry 2014; 75:96-104. [PMID: 24012327 PMCID: PMC4023488 DOI: 10.1016/j.biopsych.2013.07.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/01/2013] [Accepted: 07/25/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Memories associated with drugs of abuse, such as methamphetamine (METH), increase relapse vulnerability to substance use disorder. There is a growing consensus that memory is supported by structural and functional plasticity driven by F-actin polymerization in postsynaptic dendritic spines at excitatory synapses. However, the mechanisms responsible for the long-term maintenance of memories, after consolidation has occurred, are largely unknown. METHODS Conditioned place preference (n = 112) and context-induced reinstatement of self-administration (n = 19) were used to assess the role of F-actin polymerization and myosin II, a molecular motor that drives memory-promoting dendritic spine actin polymerization, in the maintenance of METH-associated memories and related structural plasticity. RESULTS Memories formed through association with METH but not associations with foot shock or food reward were disrupted by a highly-specific actin cycling inhibitor when infused into the amygdala during the postconsolidation maintenance phase. This selective effect of depolymerization on METH-associated memory was immediate, persistent, and did not depend upon retrieval or strength of the association. Inhibition of non-muscle myosin II also resulted in a disruption of METH-associated memory. CONCLUSIONS Thus, drug-associated memories seem to be actively maintained by a unique form of cycling F-actin driven by myosin II. This finding provides a potential therapeutic approach for the selective treatment of unwanted memories associated with psychiatric disorders that is both selective and does not rely on retrieval of the memory. The results further suggest that memory maintenance depends upon the preservation of polymerized actin.
Collapse
Affiliation(s)
- Erica J. Young
- Department of Metabolism & Aging, The Scripps Research Institute, Florida.,Department of Neuroscience, The Scripps Research Institute, Florida
| | | | - Erica M. Griggs
- Department of Metabolism & Aging, The Scripps Research Institute, Florida.,Department of Neuroscience, The Scripps Research Institute, Florida
| | - Rita A. Fuchs
- Department of Psychology, University of North Carolina, Chapel Hill
| | - Zachary Zigmond
- Department of Metabolism & Aging, The Scripps Research Institute, Florida.,Department of Neuroscience, The Scripps Research Institute, Florida
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Florida
| | - Courtney A. Miller
- Department of Metabolism & Aging, The Scripps Research Institute, Florida.,Department of Neuroscience, The Scripps Research Institute, Florida.,Correspondence to:
| |
Collapse
|
43
|
Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology 2014; 76 Pt C:628-38. [DOI: 10.1016/j.neuropharm.2013.05.029] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 12/31/2022]
|
44
|
NMDA receptor activation and calpain contribute to disruption of dendritic spines by the stress neuropeptide CRH. J Neurosci 2013; 33:16945-60. [PMID: 24155300 DOI: 10.1523/jneurosci.1445-13.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The complex effects of stress on learning and memory are mediated, in part, by stress-induced changes in the composition and structure of excitatory synapses. In the hippocampus, the effects of stress involve several factors including glucocorticoids and the stress-released neuropeptide corticotropin-releasing hormone (CRH), which influence the integrity of dendritic spines and the structure and function of the excitatory synapses they carry. CRH, at nanomolar, presumed-stress levels, rapidly abolishes short-term synaptic plasticity and destroys dendritic spines, yet the mechanisms for these effects are not fully understood. Here we tested the hypothesis that glutamate receptor-mediated processes, which shape synaptic structure and function, are engaged by CRH and contribute to spine destabilization. In cultured rat hippocampal neurons, CRH application reduced dendritic spine density in a time- and dose-dependent manner, and this action depended on the CRH receptor type 1. CRH-mediated spine loss required network activity and the activation of NMDA, but not of AMPA receptors; indeed GluR1-containing dendritic spines were resistant to CRH. Downstream of NMDA receptors, the calcium-dependent enzyme, calpain, was recruited, resulting in the breakdown of spine actin-interacting proteins including spectrin. Pharmacological approaches demonstrated that calpain recruitment contributed critically to CRH-induced spine loss. In conclusion, the stress hormone CRH co-opts mechanisms that contribute to the plasticity and integrity of excitatory synapses, leading to selective loss of dendritic spines. This spine loss might function as an adaptive mechanism preventing the consequences of adverse memories associated with severe stress.
Collapse
|
45
|
Bi AL, Wang Y, Zhang S, Li BQ, Sun ZP, Bi HS, Chen ZY. Myosin II regulates actin rearrangement-related structural synaptic plasticity during conditioned taste aversion memory extinction. Brain Struct Funct 2013; 220:813-25. [PMID: 24337340 DOI: 10.1007/s00429-013-0685-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 12/02/2013] [Indexed: 01/18/2023]
Abstract
Similar to memory formation, memory extinction is also a new learning process that requires synaptic plasticity. Actin rearrangement is fundamental for synaptic plasticity, however, whether actin rearrangement in the infralimbic cortex (IL) plays a role in memory extinction, as well as the mechanisms underlying it, remains unclear. Here, using a conditioned taste aversion (CTA) paradigm, we demonstrated increased synaptic density and actin rearrangement in the IL during the extinction of CTA. Targeted infusion of an actin rearrangement inhibitor, cytochalasin D, into the IL impaired memory extinction and de novo synapse formation. Notably, we also found increased myosin II phosphorylation in the IL during the extinction of CTA. Microinfusion of a specific inhibitor of the myosin II ATPase, blebbistatin (Blebb), into the IL impaired memory extinction as well as the related actin rearrangement and changes in synaptic density. Moreover, the extinction deficit and the reduction of synaptic density induced by Blebb could be rescued by the actin polymerization stabilizer jasplakinolide (Jasp), suggesting that myosin II acts via actin filament polymerization to stabilize synaptic plasticity during the extinction of CTA. Taken together, we conclude that myosin II may regulate the plasticity of actin-related synaptic structure during memory extinction. Our studies provide a molecular mechanism for understanding the plasticity of actin rearrangement-associated synaptic structure during memory extinction.
Collapse
Affiliation(s)
- Ai-Ling Bi
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Babayan AH, Kramár EA. Rapid effects of oestrogen on synaptic plasticity: interactions with actin and its signalling proteins. J Neuroendocrinol 2013; 25:1163-72. [PMID: 24112361 PMCID: PMC3989941 DOI: 10.1111/jne.12108] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/09/2013] [Accepted: 09/16/2013] [Indexed: 01/02/2023]
Abstract
Oestrogen rapidly enhances fast excitatory postsynaptic potentials, facilitates long-term potentiation (LTP) and increases spine numbers. Each effect likely contributes to the influence of the steroid on cognition and memory. In the present review, we first describe a model for the substrates of LTP that includes an outline of the synaptic events occurring during induction, expression and consolidation. Briefly, critical signalling pathways involving the small GTPases RhoA and Rac/Cdc42 are activated by theta burst-induced calcium influx and initiate actin filament assembly via phosphorylation (inactivation) of cofilin. Reorganisation of the actin cytoskeleton changes spine and synapse morphology, resulting in increased concentrations of AMPA receptors at stimulated contacts. We then use the synaptic model to develop a specific hypothesis about how oestrogen affects both baseline transmission and plasticity. Brief infusions of 17β-oestradiol (E2 ) reversibly stimulate the RhoA, cofilin phosphorylation and actin polymerisation cascade of the LTP machinery; blocking this eliminates the effects of the steroid on transmission. We accordingly propose that E2 induces a weak form of LTP and thereby increases synaptic responses, a hypothesis that also accounts for how it markedly enhances theta burst induced potentiation. Although the effects of E2 on the cytoskeleton could be a result of the direct activation of small GTPases by oestrogen receptors on the synaptic membrane, the hormone also activates tropomyosin-related kinase B receptors for brain-derived neurotrophic factor, a neurotrophin that engages the RhoA-cofilin sequence and promotes LTP. The latter observations raise the possibility that E2 produces its effects on synaptic physiology via transactivation of neighbouring receptors that have prominent roles in the management of spine actin, synaptic physiology and plasticity.
Collapse
Affiliation(s)
- A H Babayan
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | | |
Collapse
|
47
|
Casanova JR, Nishimura M, Swann JW. The effects of early-life seizures on hippocampal dendrite development and later-life learning and memory. Brain Res Bull 2013; 103:39-48. [PMID: 24140049 DOI: 10.1016/j.brainresbull.2013.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 01/08/2023]
Abstract
Severe childhood epilepsy is commonly associated with intellectual developmental disabilities. The reasons for these cognitive deficits are likely multifactorial and will vary between epilepsy syndromes and even among children with the same syndrome. However, one factor these children have in common is the recurring seizures they experience - sometimes on a daily basis. Supporting the idea that the seizures themselves can contribute to intellectual disabilities are laboratory results demonstrating spatial learning and memory deficits in normal mice and rats that have experienced recurrent seizures in infancy. Studies reviewed here have shown that seizures in vivo and electrographic seizure activity in vitro both suppress the growth of hippocampal pyramidal cell dendrites. A simplification of dendritic arborization and a resulting decrease in the number and/or properties of the excitatory synapses on them could help explain the observed cognitive disabilities. There are a wide variety of candidate mechanisms that could be involved in seizure-induced growth suppression. The challenge is designing experiments that will help focus research on a limited number of potential molecular events. Thus far, results suggest that growth suppression is NMDA receptor-dependent and associated with a decrease in activation of the transcription factor CREB. The latter result is intriguing since CREB is known to play an important role in dendrite growth. Seizure-induced dendrite growth suppression may not occur as a single process in which pyramidal cells dendrites simply stop growing or grow slower compared to normal neurons. Instead, recent results suggest that after only a few hours of synchronized epileptiform activity in vitro dendrites appear to partially retract. This acute response is also NMDA receptor dependent and appears to be mediated by the Ca(+2)/calmodulin-dependent phosphatase, calcineurin. An understanding of the staging of seizure-induced growth suppression and the underlying molecular mechanisms will likely prove crucial for developing therapeutic strategies aimed at ameliorating the intellectual developmental disabilities associated with intractable childhood epilepsy.
Collapse
Affiliation(s)
- J R Casanova
- The Department of Neuroscience, Baylor College of Medicine, USA; The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, USA
| | - Masataka Nishimura
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, USA; Department of Pediatrics, Baylor College of Medicine, USA
| | - John W Swann
- The Department of Neuroscience, Baylor College of Medicine, USA; The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, USA; Department of Pediatrics, Baylor College of Medicine, USA.
| |
Collapse
|
48
|
Lynch G, Gall CM. Mechanism based approaches for rescuing and enhancing cognition. Front Neurosci 2013; 7:143. [PMID: 23966908 PMCID: PMC3744010 DOI: 10.3389/fnins.2013.00143] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/23/2013] [Indexed: 01/24/2023] Open
Abstract
Progress toward pharmacological means for enhancing memory and cognition has been retarded by the widely discussed failure of behavioral studies in animals to predict human outcomes. As a result, a number of groups have targeted cognition-related neurobiological mechanisms in animal models, with the assumption that these basic processes are highly conserved across mammals. Here we survey one such approach that begins with a form of synaptic plasticity intimately related to memory encoding in animals and likely operative in humans. An initial section will describe a detailed hypothesis concerning the signaling and structural events (a “substrate map”) that convert learning associated patterns of afferent activity into extremely stable increases in fast, excitatory transmission. We next describe results suggesting that all instances of intellectual impairment so far tested in rodent models involve a common endpoint failure in the substrate map. This will be followed by a clinically plausible proposal for obviating the ultimate defect in these models. We then take up the question of whether it is reasonable to expect, from either general principles or a very limited set of experimental results, that enhancing memory will expand the cognitive capabilities of high functioning brains. The final section makes several suggestions about how to improve translation of behavioral results from animals to humans. Collectively, the material covered here points to the following: (1) enhancement, in the sense of rescue, is not an unrealistic possibility for a broad array of neuropsychiatric disorders; (2) serendipity aside, developing means for improving memory in normals will likely require integration of information about mechanisms with new behavioral testing strategies; (3) a shift in emphasis from synapses to networks is a next, logical step in the evolution of the cognition enhancement field.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California Irvine, CA, USA ; Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| | | |
Collapse
|
49
|
Baudry M, Bi X. Learning and memory: an emergent property of cell motility. Neurobiol Learn Mem 2013; 104:64-72. [PMID: 23707799 DOI: 10.1016/j.nlm.2013.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 01/24/2023]
Abstract
In this review, we develop the argument that the molecular/cellular mechanisms underlying learning and memory are an adaptation of the mechanisms used by all cells to regulate cell motility. Neuronal plasticity and more specifically synaptic plasticity are widely recognized as the processes by which information is stored in neuronal networks engaged during the acquisition of information. Evidence accumulated over the last 25 years regarding the molecular events underlying synaptic plasticity at excitatory synapses has shown the remarkable convergence between those events and those taking place in cells undergoing migration in response to extracellular signals. We further develop the thesis that the calcium-dependent protease, calpain, which we postulated over 25 years ago to play a critical role in learning and memory, plays a central role in the regulation of both cell motility and synaptic plasticity. The findings discussed in this review illustrate the general principle that fundamental cell biological processes are used for a wide range of functions at the level of organisms.
Collapse
Affiliation(s)
- Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| | | |
Collapse
|
50
|
Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. J Neurosci 2013; 32:17714-24. [PMID: 23223292 DOI: 10.1523/jneurosci.1253-12.2012] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evolving evidence suggests that brain inflammation and the buildup of proinflammatory cytokine increases the risk for cognitive decline and cognitive dysfunction. Interleukin-1β (IL-1β), acting via poorly understood mechanisms, appears to be a key cytokine in causing these deleterious effects along with a presumably related loss of long-term potentiation (LTP)-type synaptic plasticity. We hypothesized that IL-1β disrupts brain-derived neurotrophic factor (BDNF) signaling cascades and thereby impairs the formation of filamentous actin (F-actin) in dendritic spines, an event that is essential for the stabilization of LTP. Actin polymerization in spines requires phosphorylation of the filament severing protein cofilin and is modulated by expression of the immediate early gene product Arc. Using rat organotypic hippocampal cultures, we found that IL-1β suppressed BDNF-dependent regulation of Arc and phosphorylation of cofilin and cAMP response element-binding protein (CREB), a transcription factor regulating Arc expression. IL-1β appears to act on BDNF signal transduction by impairing the phosphorylation of insulin receptor substrate 1, a protein that couples activation of the BDNF receptor TrkB to downstream signaling pathways regulating CREB, Arc, and cofilin. IL-1β upregulated p38 mitogen-activated protein kinase (MAPK), and inhibiting p38 MAPK prevented IL-1β from disrupting BDNF signaling. IL-1β also prevented the formation of F-actin in spines and impaired the consolidation, but not the induction, of BDNF-dependent LTP in acute hippocampal slices. The suppressive effect of IL-1β on F-actin and LTP was prevented by inhibiting p38 MAPK. These findings define a new mechanism for the action of IL-1β on LTP and point to a potential therapeutic target to restore synaptic plasticity.
Collapse
|