1
|
Schumacher N, Vandenbosch R, Franzen R. Peripheral myelin: From development to maintenance. J Neurochem 2025; 169:e16268. [PMID: 39655795 DOI: 10.1111/jnc.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Peripheral myelin is synthesized by glial cells called Schwann cells (SCs). SC development and differentiation must be tightly regulated to avoid any pathological consequence affecting peripheral nerve function. Neuropathic symptoms can arise from developmental issues in SCs, as well as in adult life through processes affecting mature SCs. In this review we focus on SC differentiation from the immature towards the myelinating and non-myelinating SC stages, defining molecular mechanisms outlining radial sorting, a multi-stepped event essential for immature SC differentiation and myelination. We also describe mechanisms regulating myelin sheath maintenance and SC homeostasis during aging. Finally, we will conclude with some remaining questions in the field of SC biology.
Collapse
Affiliation(s)
- Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA Institute, University of Liège, Liège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Coy-Dibley J, Jayaraj ND, Ren D, Pacifico P, Belmadani A, Wang YZ, Gebis KK, Savas JN, Paller AS, Miller RJ, Menichella DM. Keratinocyte-derived extracellular vesicles in painful diabetic neuropathy. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2025; 17:100176. [PMID: 39811188 PMCID: PMC11731614 DOI: 10.1016/j.ynpai.2024.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin. Keratinocytes, the most abundant epidermal cell type, are closely positioned to cutaneous nerve terminals, suggesting the possibility of bi-directional communication. Extracellular vesicles are lipid-bilayer encapsulated nanovesicles released from many cell types that mediate cell to cell communication. The role of keratinocyte-derived extracellular vesicles (KDEVs) in influencing signaling between the skin and cutaneous nerve terminals and their contribution to the genesis of PDN has not been explored. In this study, we characterized KDEVs in a well-established high-fat diet mouse model of PDN using primary adult mouse keratinocyte cultures. We obtained highly enriched KDEVs through size-exclusion chromatography and then analyzed their molecular cargo using proteomic analysis and small RNA sequencing. We found significant differences in the protein and microRNA content of high-fat diet KDEVs compared to KDEVs obtained from control mice on a regular diet, including pathways involved in axon guidance and synaptic transmission. Additionally, using an in vivo conditional extracellular vesicle reporter mouse model, we demonstrated that epidermal-originating GFP-tagged KDEVs are retrogradely trafficked into the dorsal root ganglion (DRG) neuron cell bodies. This study presents the first comprehensive isolation and molecular characterization of the KDEV protein and microRNA cargo in RD and HFD mice. Our findings suggest a potential novel communication pathway between keratinocytes and DRG neurons in the skin, which could have implications for PDN.
Collapse
Affiliation(s)
- James Coy-Dibley
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nirupa D. Jayaraj
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dongjun Ren
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paola Pacifico
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Abdelhak Belmadani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yi-Zhi Wang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kamil K. Gebis
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeffrey N. Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amy S. Paller
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Richard J. Miller
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniela M. Menichella
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Salzer J, Feltri ML, Jacob C. Schwann Cell Development and Myelination. Cold Spring Harb Perspect Biol 2024; 16:a041360. [PMID: 38503507 PMCID: PMC11368196 DOI: 10.1101/cshperspect.a041360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Glial cells in the peripheral nervous system (PNS), which arise from the neural crest, include axon-associated Schwann cells (SCs) in nerves, synapse-associated SCs at the neuromuscular junction, enteric glia, perikaryon-associated satellite cells in ganglia, and boundary cap cells at the border between the central nervous system (CNS) and the PNS. Here, we focus on axon-associated SCs. These SCs progress through a series of formative stages, which culminate in the generation of myelinating SCs that wrap large-caliber axons and of nonmyelinating (Remak) SCs that enclose multiple, small-caliber axons. In this work, we describe SC development, extrinsic signals from the axon and extracellular matrix (ECM) and the intracellular signaling pathways they activate that regulate SC development, and the morphogenesis and organization of myelinating SCs and the myelin sheath. We review the impact of SCs on the biology and integrity of axons and their emerging role in regulating peripheral nerve architecture. Finally, we explain how transcription and epigenetic factors control and fine-tune SC development and myelination.
Collapse
Affiliation(s)
- James Salzer
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203, USA
- IRCCS Neurological Institute Carlo Besta, Milano 20133, Italy
- Department of Biotechnology and Translational Sciences, Universita' Degli Studi di Milano, Milano 20133, Italy
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| |
Collapse
|
4
|
Coy-Dibley J, Jayaraj ND, Ren D, Pacifico P, Belmadani A, Wang YZ, Gebis KK, Savas JN, Paller AS, Miller RJ, Menichella DM. Keratinocyte-Derived Exosomes in Painful Diabetic Neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608803. [PMID: 39229068 PMCID: PMC11370388 DOI: 10.1101/2024.08.21.608803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin. Keratinocytes, the most abundant epidermal cell type, are closely positioned to cutaneous nerve terminals, suggesting the possibility of bi-directional communication. Exosomes are small extracellular vesicles released from many cell types that mediate cell to cell communication. The role of keratinocyte-derived exosomes (KDEs) in influencing signaling between the skin and cutaneous nerve terminals and their contribution to the genesis of PDN has not been explored. In this study, we characterized KDEs in a well-established high-fat diet (HFD) mouse model of PDN using primary adult mouse keratinocyte cultures. We obtained highly enriched KDEs through size exclusion chromatography and then analyzed their molecular cargo using proteomic analysis and small RNA sequencing. We found significant differences in the protein and microRNA content of HFD KDEs compared to KDEs obtained from control mice on a regular diet (RD), including pathways involved in axon guidance and synaptic transmission. Additionally, using an in vivo conditional extracellular vesicle (EV) reporter mouse model, we demonstrated that epidermal-originating GFP-tagged KDEs are retrogradely trafficked into the DRG neuron cell body. Overall, our study presents a potential novel mode of communication between keratinocytes and DRG neurons in the skin, revealing a possible role for KDEs in contributing to the axonal degeneration that underlies neuropathic pain in PDN. Moreover, this study presents potential therapeutic targets in the skin for developing more effective, disease-modifying, and better-tolerated topical interventions for patients suffering from PDN, one of the most common and untreatable peripheral neuropathies.
Collapse
Affiliation(s)
- James Coy-Dibley
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nirupa D Jayaraj
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dongjun Ren
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paola Pacifico
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Abdelhak Belmadani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yi-Zhi Wang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kamil K Gebis
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amy S Paller
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Richard J Miller
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniela M Menichella
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
5
|
Chiasson-MacKenzie C, Vitte J, Liu CH, Wright EA, Flynn EA, Stott SL, Giovannini M, McClatchey AI. Cellular mechanisms of heterogeneity in NF2-mutant schwannoma. Nat Commun 2023; 14:1559. [PMID: 36944680 PMCID: PMC10030849 DOI: 10.1038/s41467-023-37226-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Schwannomas are common sporadic tumors and hallmarks of familial neurofibromatosis type 2 (NF2) that develop predominantly on cranial and spinal nerves. Virtually all schwannomas result from inactivation of the NF2 tumor suppressor gene with few, if any, cooperating mutations. Despite their genetic uniformity schwannomas exhibit remarkable clinical and therapeutic heterogeneity, which has impeded successful treatment. How heterogeneity develops in NF2-mutant schwannomas is unknown. We have found that loss of the membrane:cytoskeleton-associated NF2 tumor suppressor, merlin, yields unstable intrinsic polarity and enables Nf2-/- Schwann cells to adopt distinct programs of ErbB ligand production and polarized signaling, suggesting a self-generated model of schwannoma heterogeneity. We validated the heterogeneous distribution of biomarkers of these programs in human schwannoma and exploited the synchronous development of lesions in a mouse model to establish a quantitative pipeline for studying how schwannoma heterogeneity evolves. Our studies highlight the importance of intrinsic mechanisms of heterogeneity across human cancers.
Collapse
Affiliation(s)
- Christine Chiasson-MacKenzie
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jeremie Vitte
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ching-Hui Liu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Emily A Wright
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Elizabeth A Flynn
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Shannon L Stott
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrea I McClatchey
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
6
|
Veneri FA, Prada V, Mastrangelo R, Ferri C, Nobbio L, Passalacqua M, Milanesi M, Bianchi F, Del Carro U, Vallat JM, Duong P, Svaren J, Schenone A, Grandis M, D’Antonio M. A novel mouse model of CMT1B identifies hyperglycosylation as a new pathogenetic mechanism. Hum Mol Genet 2022; 31:4255-4274. [PMID: 35908287 PMCID: PMC9759335 DOI: 10.1093/hmg/ddac170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/21/2023] Open
Abstract
Mutations in the Myelin Protein Zero gene (MPZ), encoding P0, the major structural glycoprotein of peripheral nerve myelin, are the cause of Charcot-Marie-Tooth (CMT) type 1B neuropathy, and most P0 mutations appear to act through gain-of-function mechanisms. Here, we investigated how misglycosylation, a pathomechanism encompassing several genetic disorders, may affect P0 function. Using in vitro assays, we showed that gain of glycosylation is more damaging for P0 trafficking and functionality as compared with a loss of glycosylation. Hence, we generated, via CRISPR/Cas9, a mouse model carrying the MPZD61N mutation, predicted to generate a new N-glycosylation site in P0. In humans, MPZD61N causes a severe early-onset form of CMT1B, suggesting that hyperglycosylation may interfere with myelin formation, leading to pathology. We show here that MPZD61N/+ mice develop a tremor as early as P15 which worsens with age and correlates with a significant motor impairment, reduced muscular strength and substantial alterations in neurophysiology. The pathological analysis confirmed a dysmyelinating phenotype characterized by diffuse hypomyelination and focal hypermyelination. We find that the mutant P0D61N does not cause significant endoplasmic reticulum stress, a common pathomechanism in CMT1B, but is properly trafficked to myelin where it causes myelin uncompaction. Finally, we show that myelinating dorsal root ganglia cultures from MPZD61N mice replicate some of the abnormalities seen in vivo, suggesting that they may represent a valuable tool to investigate therapeutic approaches. Collectively, our data indicate that the MPZD61N/+ mouse represents an authentic model of severe CMT1B affirming gain-of-glycosylation in P0 as a novel pathomechanism of disease.
Collapse
Affiliation(s)
- Francesca A Veneri
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, 16132 Genova, Italy
| | - Valeria Prada
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, 16132 Genova, Italy
| | - Rosa Mastrangelo
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Cinzia Ferri
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Lucilla Nobbio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, 16132 Genova, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Maria Milanesi
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Francesca Bianchi
- Movement Disorders Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Ubaldo Del Carro
- Movement Disorders Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Jean-Michel Vallat
- Department and Laboratory of Neurology, National Reference Center for ‘Rare Peripheral Neuropathies’, University Hospital of Limoges (CHU Limoges), Dupuytren Hospital, 87000 Limoges, France
| | - Phu Duong
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - John Svaren
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Angelo Schenone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, 16132 Genova, Italy
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Marina Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, 16132 Genova, Italy
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Maurizio D’Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
7
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
8
|
Transcriptome Analysis of Schwann Cells at Various Stages of Myelination Implicates Chromatin Regulator Sin3A in Control of Myelination Identity. Neurosci Bull 2022; 38:720-740. [DOI: 10.1007/s12264-022-00850-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 10/18/2022] Open
|
9
|
Previtali SC. Peripheral Nerve Development and the Pathogenesis of Peripheral Neuropathy: the Sorting Point. Neurotherapeutics 2021; 18:2156-2168. [PMID: 34244926 PMCID: PMC8804061 DOI: 10.1007/s13311-021-01080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Nerve development requires a coordinated sequence of events and steps to be accomplished for the generation of functional peripheral nerves to convey sensory and motor signals. Any abnormality during development may result in pathological structure and function of the nerve, which evolves in peripheral neuropathy. In this review, we will briefly describe different steps of nerve development while we will mostly focus on the molecular mechanisms involved in radial sorting of axons, one of these nerve developmental steps. We will summarize current knowledge of molecular pathways so far reported in radial sorting and their possible interactions. Finally, we will describe how disruption of these pathways may result in human neuropathies.
Collapse
Affiliation(s)
- Stefano C Previtali
- Neuromuscular Repair Unit, InSpe (Institute of Experimental Neurology) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
10
|
Muppirala AN, Limbach LE, Bradford EF, Petersen SC. Schwann cell development: From neural crest to myelin sheath. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e398. [PMID: 33145925 DOI: 10.1002/wdev.398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Vertebrate nervous system function requires glial cells, including myelinating glia that insulate axons and provide trophic support that allows for efficient signal propagation by neurons. In vertebrate peripheral nervous systems, neural crest-derived glial cells known as Schwann cells (SCs) generate myelin by encompassing and iteratively wrapping membrane around single axon segments. SC gliogenesis and neurogenesis are intimately linked and governed by a complex molecular environment that shapes their developmental trajectory. Changes in this external milieu drive developing SCs through a series of distinct morphological and transcriptional stages from the neural crest to a variety of glial derivatives, including the myelinating sublineage. Cues originate from the extracellular matrix, adjacent axons, and the developing SC basal lamina to trigger intracellular signaling cascades and gene expression changes that specify stages and transitions in SC development. Here, we integrate the findings from in vitro neuron-glia co-culture experiments with in vivo studies investigating SC development, particularly in zebrafish and mouse, to highlight critical factors that specify SC fate. Ultimately, we connect classic biochemical and mutant studies with modern genetic and visualization tools that have elucidated the dynamics of SC development. This article is categorized under: Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Anoohya N Muppirala
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neuroscience, Kenyon College, Gambier, Ohio, USA
| | | | | | - Sarah C Petersen
- Department of Neuroscience, Kenyon College, Gambier, Ohio, USA.,Department of Biology, Kenyon College, Gambier, Ohio, USA
| |
Collapse
|
11
|
Wilson ER, Della-Flora Nunes G, Weaver MR, Frick LR, Feltri ML. Schwann cell interactions during the development of the peripheral nervous system. Dev Neurobiol 2020; 81:464-489. [PMID: 32281247 DOI: 10.1002/dneu.22744] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
Schwann cells play a critical role in the development of the peripheral nervous system (PNS), establishing important relationships both with the extracellular milieu and other cell types, particularly neurons. In this review, we discuss various Schwann cell interactions integral to the proper establishment, spatial arrangement, and function of the PNS. We include signals that cascade onto Schwann cells from axons and from the extracellular matrix, bidirectional signals that help to establish the axo-glial relationship and how Schwann cells in turn support the axon. Further, we speculate on how Schwann cell interactions with other components of the developing PNS ultimately promote the complete construction of the peripheral nerve.
Collapse
Affiliation(s)
- Emma R Wilson
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Gustavo Della-Flora Nunes
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Michael R Weaver
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Luciana R Frick
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
12
|
Mehrotra P, Tseropoulos G, Bronner ME, Andreadis ST. Adult tissue-derived neural crest-like stem cells: Sources, regulatory networks, and translational potential. Stem Cells Transl Med 2019; 9:328-341. [PMID: 31738018 PMCID: PMC7031649 DOI: 10.1002/sctm.19-0173] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
Neural crest (NC) cells are a multipotent stem cell population that give rise to a diverse array of cell types in the body, including peripheral neurons, Schwann cells (SC), craniofacial cartilage and bone, smooth muscle cells, and melanocytes. NC formation and differentiation into specific lineages takes place in response to a set of highly regulated signaling and transcriptional events within the neural plate border. Premigratory NC cells initially are contained within the dorsal neural tube from which they subsequently emigrate, migrating to often distant sites in the periphery. Following their migration and differentiation, some NC‐like cells persist in adult tissues in a nascent multipotent state, making them potential candidates for autologous cell therapy. This review discusses the gene regulatory network responsible for NC development and maintenance of multipotency. We summarize the genes and signaling pathways that have been implicated in the differentiation of a postmigratory NC into mature myelinating SC. We elaborate on the signals and transcription factors involved in the acquisition of immature SC fate, axonal sorting of unmyelinated neuronal axons, and finally the path toward mature myelinating SC, which envelope axons within myelin sheaths, facilitating electrical signal propagation. The gene regulatory events guiding development of SC in vivo provides insights into means for differentiating NC‐like cells from adult human tissues into functional SC, which have the potential to provide autologous cell sources for the treatment of demyelinating and neurodegenerative disorders.
Collapse
Affiliation(s)
- Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York.,Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York.,Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| |
Collapse
|
13
|
Fledrich R, Kungl T, Nave KA, Stassart RM. Axo-glial interdependence in peripheral nerve development. Development 2019; 146:146/21/dev151704. [PMID: 31719044 DOI: 10.1242/dev.151704] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During the development of the peripheral nervous system, axons and myelinating Schwann cells form a unique symbiotic unit, which is realized by a finely tuned network of molecular signals and reciprocal interactions. The importance of this complex interplay becomes evident after injury or in diseases in which aspects of axo-glial interaction are perturbed. This Review focuses on the specific interdependence of axons and Schwann cells in peripheral nerve development that enables axonal outgrowth, Schwann cell lineage progression, radial sorting and, finally, formation and maintenance of the myelin sheath.
Collapse
Affiliation(s)
- Robert Fledrich
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany .,Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Theresa Kungl
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany.,Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Ruth M Stassart
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany .,Department of Neuropathology, University Clinic Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Harty BL, Coelho F, Pease-Raissi SE, Mogha A, Ackerman SD, Herbert AL, Gereau RW, Golden JP, Lyons DA, Chan JR, Monk KR. Myelinating Schwann cells ensheath multiple axons in the absence of E3 ligase component Fbxw7. Nat Commun 2019; 10:2976. [PMID: 31278268 PMCID: PMC6611888 DOI: 10.1038/s41467-019-10881-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/05/2019] [Indexed: 01/12/2023] Open
Abstract
In the central nervous system (CNS), oligodendrocytes myelinate multiple axons; in the peripheral nervous system (PNS), Schwann cells (SCs) myelinate a single axon. Why are the myelinating potentials of these glia so fundamentally different? Here, we find that loss of Fbxw7, an E3 ubiquitin ligase component, enhances the myelinating potential of SCs. Fbxw7 mutant SCs make thicker myelin sheaths and sometimes appear to myelinate multiple axons in a fashion reminiscent of oligodendrocytes. Several Fbxw7 mutant phenotypes are due to dysregulation of mTOR; however, the remarkable ability of mutant SCs to ensheathe multiple axons is independent of mTOR signaling. This indicates distinct roles for Fbxw7 in SC biology including modes of axon interactions previously thought to fundamentally distinguish myelinating SCs from oligodendrocytes. Our data reveal unexpected plasticity in the myelinating potential of SCs, which may have important implications for our understanding of both PNS and CNS myelination and myelin repair. The authors find that deletion from Schwann cells of an E3 ubiquitin ligase component called Fbxw7 leads to a phenotype reminiscent of myelination in the central nervous system where a single oligodendrocyte ensheaths multiple axons.
Collapse
Affiliation(s)
- Breanne L Harty
- Thaden School, 410 SE Staggerwing Lane, Bentonville, AR, 72712, USA.,Department of Developmental Biology, Washington University School of Medicine, 660S. Euclid Ave., St. Louis, MO, 63110, USA.,Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Fernanda Coelho
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Sarah E Pease-Raissi
- Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Amit Mogha
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Sarah D Ackerman
- Department of Developmental Biology, Washington University School of Medicine, 660S. Euclid Ave., St. Louis, MO, 63110, USA.,Institute of Neuroscience, University of Oregon, 1440 Franklin Blvd., Eugene, OR, 97403, USA
| | - Amy L Herbert
- Department of Developmental Biology, Washington University School of Medicine, 660S. Euclid Ave., St. Louis, MO, 63110, USA.,Department of Developmental Biology, Stanford University, 279W. Campus Dr., Stanford, CA, 94305, USA
| | - Robert W Gereau
- Department of Anesthesiology, Washington University Pain Center, 660S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Judith P Golden
- Department of Anesthesiology, Washington University Pain Center, 660S. Euclid Ave., St. Louis, MO, 63110, USA
| | - David A Lyons
- Centre for Brain Discovery Sciences, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Jonah R Chan
- Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, 660S. Euclid Ave., St. Louis, MO, 63110, USA. .,Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA.
| |
Collapse
|
15
|
Galino J, Cervellini I, Zhu N, Stöberl N, Hütte M, Fricker FR, Lee G, McDermott L, Lalli G, Bennett DLH. RalGTPases contribute to Schwann cell repair after nerve injury via regulation of process formation. J Cell Biol 2019; 218:2370-2387. [PMID: 31201266 PMCID: PMC6605803 DOI: 10.1083/jcb.201811002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/10/2019] [Accepted: 05/15/2019] [Indexed: 12/02/2022] Open
Abstract
RalA and RalB are involved in cell migration and membrane dynamics. This study finds that ablation of RalGTPases impairs nerve regeneration and alters Schwann cell process formation; conversely, activation of RalGTPases enhancea Schwann cell process formation, migration, and axon myelination. RalA and RalB are small GTPases that are involved in cell migration and membrane dynamics. We used transgenic mice in which one or both GTPases were genetically ablated to investigate the role of RalGTPases in the Schwann cell (SC) response to nerve injury and repair. RalGTPases were dispensable for SC function in the naive uninjured state. Ablation of both RalA and RalB (but not individually) in SCs resulted in impaired axon remyelination and target reinnervation following nerve injury, which resulted in slowed recovery of motor function. Ral GTPases were localized to the leading lamellipodia in SCs and were required for the formation and extension of both axial and radial processes of SCs. These effects were dependent on interaction with the exocyst complex and impacted on the rate of SC migration and myelination. Our results show that RalGTPases are required for efficient nerve repair by regulating SC process formation, migration, and myelination, therefore uncovering a novel role for these GTPases.
Collapse
Affiliation(s)
- Jorge Galino
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ilaria Cervellini
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ning Zhu
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nina Stöberl
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Meike Hütte
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Florence R Fricker
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Garrett Lee
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Lucy McDermott
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Giovanna Lalli
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - David L H Bennett
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
16
|
Meng X, Maurel P, Lam I, Heffernan C, Stiffler MA, McBeath G, Salzer JL. Necl-4/Cadm4 recruits Par-3 to the Schwann cell adaxonal membrane. Glia 2019; 67:884-895. [PMID: 30585357 PMCID: PMC7138615 DOI: 10.1002/glia.23578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/18/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
Interactions between axons and Schwann cells are essential for the acquisition of Schwann cell radial and longitudinal polarity and myelin sheath assembly. In the internode, the largest of these longitudinal domains, axon-Schwann cell interactions are mediated by the Nectin-like (Necl) cell adhesion proteins, also known as SynCAMs or Cadms. In particular, Necl-1/Cadm3 expressed on the axon surface binds to Necl-4/Cadm4 expressed along the adaxonal membrane of myelinating Schwann cells. Necl-4 promotes myelination in vitro and is required for the timely onset of myelination and the fidelity of the organization of the myelin sheath and the internode in vivo. A key question is the identity of the downstream effectors of Necl-4 that mediate its effects. The cytoplasmic terminal region (CTR) of Necl-4 contains a PDZ-domain binding motif. Accordingly, we used the CTR of Necl-4 in an unbiased proteomic screen of PDZ-domain proteins. We identify Par-3, a multi-PDZ domain containing protein of the Par-aPKC polarity complex previously implicated in myelination, as an interacting protein. Necl-4 and Par-3 are colocalized along the inner Schwann cell membrane and coprecipitate from Schwann cell lysates. The CTR of Necl-4 binds to the first PDZ domain of Par-3 thereby recruiting Par-3 to sites of Necl-4/Necl-1 interaction. Knockdown of Necl-4 perturbs Par-3 localization to the inner membrane of Schwann cells in myelinating co-cultures. These findings implicate interactions of Necl-1/Necl-4 in the recruitment of Par-3 to the Schwann cell adaxonal membrane and the establishment of Schwann cell radial polarity.
Collapse
Affiliation(s)
- Xiaosong Meng
- Departments of Neuroscience and Physiology and Neurology,
the Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016
| | - Patrice Maurel
- Department of Biological Sciences, Rutgers, Newark, NJ
07102
| | - Isabel Lam
- Dana-Faber Cancer Institute, Boston, MA 02215
| | - Corey Heffernan
- Department of Biological Sciences, Rutgers, Newark, NJ
07102
| | | | - Gavin McBeath
- Department of Systems Biology, Harvard Medical School,
Boston, MA 02115
| | - James L. Salzer
- Departments of Neuroscience and Physiology and Neurology,
the Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016
- Departments of Neuroscience and Physiology and Neurology,
the Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016
| |
Collapse
|
17
|
Modulation of cell-cell interactions for neural tissue engineering: Potential therapeutic applications of cell adhesion molecules in nerve regeneration. Biomaterials 2019; 197:327-344. [DOI: 10.1016/j.biomaterials.2019.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/08/2018] [Accepted: 01/20/2019] [Indexed: 12/21/2022]
|
18
|
Cen C, Luo LD, Li WQ, Li G, Tian NX, Zheng G, Yin DM, Zou Y, Wang Y. PKD1 Promotes Functional Synapse Formation Coordinated with N-Cadherin in Hippocampus. J Neurosci 2018; 38:183-199. [PMID: 29133434 PMCID: PMC6705812 DOI: 10.1523/jneurosci.1640-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/11/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022] Open
Abstract
Functional synapse formation is critical for the wiring of neural circuits in the developing brain. The cell adhesion molecule N-cadherin plays important roles in target recognition and synaptogenesis. However, the molecular mechanisms that regulate the localization of N-cadherin and the subsequent effects remain poorly understood. Here, we show that protein kinase D1 (PKD1) directly binds to N-cadherin at amino acid residues 836-871 and phosphorylates it at Ser 869, 871, and 872, thereby increasing the surface localization of N-cadherin and promoting functional synapse formation in primary cultured hippocampal neurons obtained from embryonic day 18 rat embryos of either sex. Intriguingly, neuronal activity enhances the interactions between N-cadherin and PKD1, which are critical for the activity-dependent growth of dendritic spines. Accordingly, either disruption the binding between N-cadherin and PKD1 or preventing the phosphorylation of N-cadherin by PKD1 in the hippocampal CA1 region of male rat leads to the reduction in synapse number and impairment of LTP. Together, this study demonstrates a novel mechanism of PKD1 regulating the surface localization of N-cadherin and suggests that the PKD1-N-cadherin interaction is critical for synapse formation and function.SIGNIFICANCE STATEMENT Defects in synapse formation and function lead to various neurological diseases, although the mechanisms underlying the regulation of synapse development are far from clear. Our results suggest that protein kinase D1 (PKD1) functions upstream of N-cadherin, a classical synaptic adhesion molecule, to promote functional synapse formation. Notably, we identified a crucial binding fragment to PKD1 at C terminus of N-cadherin, and this fragment also contains PKD1 phosphorylation sites. Through this interaction, PKD1 enhances the stability of N-cadherin on cell membrane and promotes synapse morphogenesis and synaptic plasticity in an activity-dependent manner. Our study reveals the role of PKD1 and the potential downstream mechanism in synapse development, and contributes to the research for neurodevelopment and the therapy for neurological diseases.
Collapse
Affiliation(s)
- Cheng Cen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Li-Da Luo
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Wen-Qi Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Gang Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Na-Xi Tian
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Ge Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Dong-Min Yin
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China, and
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, California 92093
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China,
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Yi S, Wang XH, Xing LY. Transcriptome analysis of adherens junction pathway-related genes after peripheral nerve injury. Neural Regen Res 2018; 13:1804-1810. [PMID: 30136696 PMCID: PMC6128067 DOI: 10.4103/1673-5374.237127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The neural regeneration process is driven by a wide range of molecules and pathways. Adherens junctions are critical cellular junctions for the integrity of peripheral nerves. However, few studies have systematically characterized the transcript changes in the adherens junction pathway following injury. In this study, a rat model of sciatic nerve crush injury was established by forceps. Deep sequencing data were analyzed using comprehensive transcriptome analysis at 0, 1, 4, 7, and 14 days after injury. Results showed that most individual molecules in the adherens junctions were either upregulated or downregulated after nerve injury. The mRNA expression of ARPC1B, ARPC3, TUBA8, TUBA1C, CTNNA2, ACTN3, MET, HGF, NME1 and ARF6, which are involved in the adherens junction pathway and in remodeling of adherens junctions, was analyzed using quantitative real-time polymerase chain reaction. Most of these genes were upregulated in the sciatic nerve stump following peripheral nerve injury, except for CTNNA2, which was downregulated. Our findings reveal the dynamic changes of key molecules in adherens junctions and in remodeling of adherens junctions. These key genes provide a reference for the selection of clinical therapeutic targets for peripheral nerve injury.
Collapse
Affiliation(s)
- Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xing-Hui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ling-Yan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
20
|
The Pseudopod System for Axon-Glia Interactions: Stimulation and Isolation of Schwann Cell Protrusions that Form in Response to Axonal Membranes. Methods Mol Biol 2018; 1739:233-253. [PMID: 29546711 PMCID: PMC7373153 DOI: 10.1007/978-1-4939-7649-2_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the peripheral nervous system, axons dictate the differentiation state of Schwann cells. Most of this axonal influence on Schwann cells is due to juxtacrine interactions between axonal transmembrane molecules (e.g., the neuregulin growth factor) and receptors on the Schwann cell (e.g., the ErbB2/ErbB3 receptor). The fleeting nature of this interaction together with the lack of synchronicity in the development of the Schwann cell population limits our capability to study this phenomenon in vivo. Here we present a simple Boyden Chamber-based method to study this important cell-cell interaction event. We isolate the early protrusions of Schwann cells that are generated in response to juxtacrine stimulation by sensory neuronal membranes. This method is compatible with a large array of current biochemical analyses and provides an effective approach to study biomolecules that are differentially localized in Schwann cell protrusions and cell bodies in response to axonal signals. A similar approach can be extended to different kinds of cell-cell interactions.
Collapse
|
21
|
Robinson DC, Mammel AE, Logan AM, Larson AA, Schmidt EJ, Condon AF, Robinson FL. An In Vitro Model of Charcot-Marie-Tooth Disease Type 4B2 Provides Insight Into the Roles of MTMR13 and MTMR2 in Schwann Cell Myelination. ASN Neuro 2018; 10:1759091418803282. [PMID: 30419760 PMCID: PMC6236487 DOI: 10.1177/1759091418803282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 01/16/2023] Open
Abstract
Charcot-Marie-Tooth Disorder Type 4B (CMT4B) is a demyelinating peripheral neuropathy caused by mutations in myotubularin-related (MTMR) proteins 2, 13, or 5 (CMT4B1/2/3), which regulate phosphoinositide turnover and endosomal trafficking. Although mouse models of CMT4B2 exist, an in vitro model would make possible pharmacological and reverse genetic experiments needed to clarify the role of MTMR13 in myelination. We have generated such a model using Schwann cell-dorsal root ganglion (SC-DRG) explants from Mtmr13-/- mice. Myelin sheaths in mutant cultures contain outfoldings highly reminiscent of those observed in the nerves of Mtmr13-/- mice and CMT4B2 patients. Mtmr13-/- SC-DRG explants also contain reduced Mtmr2, further supporting a role of Mtmr13 in stabilizing Mtmr2. Elevated PI(3,5)P2 has been implicated as a cause of myelin outfoldings in Mtmr2-/- models. In contrast, the role of elevated PI3P or PI(3,5)P2 in promoting outfoldings in Mtmr13-/- models is unclear. We found that over-expression of MTMR2 in Mtmr13-/- SC-DRGs moderately reduced the prevalence of myelin outfoldings. Thus, a manipulation predicted to lower PI3P and PI(3,5)P2 partially suppressed the phenotype caused by Mtmr13 deficiency. We also explored the relationship between CMT4B2-like myelin outfoldings and kinases that produce PI3P and PI(3,5)P2 by analyzing nerve pathology in mice lacking both Mtmr13 and one of two specific PI 3-kinases. Intriguingly, the loss of vacuolar protein sorting 34 or PI3K-C2β in Mtmr13-/- mice had no impact on the prevalence of myelin outfoldings. In aggregate, our findings suggest that the MTMR13 scaffold protein likely has critical functions other than stabilizing MTMR2 to achieve an adequate level of PI 3-phosphatase activity.
Collapse
Affiliation(s)
- Danielle C. Robinson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Anna E. Mammel
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Cell, Developmental & Cancer Biology Graduate
Program, Oregon Health & Science University, Portland, OR,
USA
| | - Anne M. Logan
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Aubree A. Larson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
| | - Eric J. Schmidt
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
| | - Alec F. Condon
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Fred L. Robinson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Vollum Institute, Oregon Health & Science
University, Portland, OR, USA
| |
Collapse
|
22
|
Roberts SL, Dun XP, Doddrell RDS, Mindos T, Drake LK, Onaitis MW, Florio F, Quattrini A, Lloyd AC, D'Antonio M, Parkinson DB. Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve. Development 2017; 144:3114-3125. [PMID: 28743796 PMCID: PMC5611958 DOI: 10.1242/dev.150656] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/13/2017] [Indexed: 12/25/2022]
Abstract
Correct myelination is crucial for the function of the peripheral nervous system. Both positive and negative regulators within the axon and Schwann cell function to ensure the correct onset and progression of myelination during both development and following peripheral nerve injury and repair. The Sox2 transcription factor is well known for its roles in the development and maintenance of progenitor and stem cell populations, but has also been proposed in vitro as a negative regulator of myelination in Schwann cells. We wished to test fully whether Sox2 regulates myelination in vivo and show here that, in mice, sustained Sox2 expression in vivo blocks myelination in the peripheral nerves and maintains Schwann cells in a proliferative non-differentiated state, which is also associated with increased inflammation within the nerve. The plasticity of Schwann cells allows them to re-myelinate regenerated axons following injury and we show that re-myelination is also blocked by Sox2 expression in Schwann cells. These findings identify Sox2 as a physiological regulator of Schwann cell myelination in vivo and its potential to play a role in disorders of myelination in the peripheral nervous system.
Collapse
Affiliation(s)
- Sheridan L Roberts
- Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Plymouth PL6 8BU, UK
| | - Xin-Peng Dun
- Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Plymouth PL6 8BU, UK
| | - Robin D S Doddrell
- Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Plymouth PL6 8BU, UK
| | - Thomas Mindos
- Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Plymouth PL6 8BU, UK
| | | | - Mark W Onaitis
- Department of Thoracic Surgery, University of California, San Diego, CA 92103, USA
| | - Francesca Florio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, 20132 Milan, Italy
| | - Angelo Quattrini
- Division of Neuroscience, San Raffaele Scientific Institute, DIBIT, 20132 Milan, Italy
| | - Alison C Lloyd
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Maurizio D'Antonio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, 20132 Milan, Italy
| | - David B Parkinson
- Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Plymouth PL6 8BU, UK
| |
Collapse
|
23
|
Luo LD, Li G, Wang Y. PLD1 promotes dendritic spine development by inhibiting ADAM10-mediated N-cadherin cleavage. Sci Rep 2017; 7:6035. [PMID: 28729535 PMCID: PMC5519554 DOI: 10.1038/s41598-017-06121-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
Abstract
Synapses are the basic units of information transmission, processing and integration in the nervous system. Dysfunction of the synaptic development has been recognized as one of the main reasons for mental dementia and psychiatric diseases such as Alzheimer’s disease and autism. However, the underlying mechanisms of the synapse formation are far from clear. Here we report that phospholipase D1 (PLD1) promotes the development of dendritic spines in hippocampal neurons. We found that overexpressing PLD1 increases both the density and the area of dendritic spines. On the contrary, loss of function of PLD1, including overexpression of the catalytically-inactive PLD1 (PLD1ci) or knocking down PLD1 by siRNAs, leads to reduction in the spine density and the spine area. Moreover, we found that PLD1 promotes the dendritic spine development via regulating the membrane level of N-cadherin. Further studies showed that the regulation of surface N-cadherin by PLD1 is related with the cleavage of N-cadherin by a member of the disintegrin and metalloprotease family-ADAM10. Taking together, our results indicate a positive role of PLD1 in synaptogenesis by inhibiting the ADAM10 mediated N-cadherin cleavage and provide new therapeutic clues for some neurological diseases.
Collapse
Affiliation(s)
- Li-Da Luo
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100191, China
| | - Gang Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100191, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100191, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
24
|
Chen YT, Tai CY. μ2-Dependent endocytosis of N-cadherin is regulated by β-catenin to facilitate neurite outgrowth. Traffic 2017; 18:287-303. [DOI: 10.1111/tra.12473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 02/10/2017] [Accepted: 02/17/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Yi-ting Chen
- Taiwan International Graduate Program, Molecular and Cellular Biology Program; Academia Sinica; Taiwan Republic of China
- Institute of Molecular Biology; Academia Sinica; Taiwan Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center; Taiwan Republic of China
| | - Chin-Yin Tai
- Taiwan International Graduate Program, Molecular and Cellular Biology Program; Academia Sinica; Taiwan Republic of China
- Institute of Molecular Biology; Academia Sinica; Taiwan Republic of China
- Development Center for Biotechnology; Institute of Pharmaceutics; Taiwan Republic of China
| |
Collapse
|
25
|
N-Cadherin is Involved in Neuronal Activity-Dependent Regulation of Myelinating Capacity of Zebrafish Individual Oligodendrocytes In Vivo. Mol Neurobiol 2016; 54:6917-6930. [PMID: 27771903 DOI: 10.1007/s12035-016-0233-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023]
Abstract
Stimulating neuronal activity increases myelin sheath formation by individual oligodendrocytes, but how myelination is regulated by neuronal activity in vivo is still not fully understood. While in vitro studies have revealed the important role of N-cadherin in myelination, our understanding in vivo remains quite limited. To obtain the role of N-cadherin during activity-dependent regulation of myelinating capacity of individual oligodendrocytes, we successfully built an in vivo dynamic imaging model of the Mauthner cell at the subcellular structure level in the zebrafish central nervous system. Enhanced green fluorescent protein (EGFP)-tagged N-cadherin was used to visualize the stable accumulations and mobile transports of N-cadherin by single-cell electroporation at the single-cell level. We found that pentylenetetrazol (PTZ) significantly enhanced the accumulation of N-cadherin in Mauthner axons, a response that was paralleled by enhanced sheath number per oligodendrocytes. By offsetting this phenotype using oligopeptide (AHAVD) which blocks the function of N-cadherin, we showed that PTZ regulates myelination in an N-cadherin-dependent manner. What is more, we further suggested that PTZ influences N-cadherin and myelination via a cAMP pathway. Consequently, our data indicated that N-cadherin is involved in neuronal activity-dependent regulation of myelinating capacity of zebrafish individual oligodendrocytes in vivo.
Collapse
|
26
|
Abstract
Myelinated axons are divided into polarized subdomains including axon initial segments and nodes of Ranvier. These domains initiate and propagate action potentials and regulate the trafficking and localization of somatodendritic and axonal proteins. Formation of axon initial segments and nodes of Ranvier depends on intrinsic (neuronal) and extrinsic (glial) interactions. Several levels of redundancy in both mechanisms and molecules also exist to ensure efficient node formation. Furthermore, the establishment of polarized domains at and near nodes of Ranvier reflects the intrinsic polarity of the myelinating glia responsible for node assembly. Here, we discuss the various polarized domains of myelinated axons, how they are established by both intrinsic and extrinsic interactions, and the polarity of myelinating glia.
Collapse
Affiliation(s)
- Daniel R Zollinger
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030;
| | - Kelli L Baalman
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030;
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030;
| |
Collapse
|
27
|
Rao SNR, Pearse DD. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Front Mol Neurosci 2016; 9:33. [PMID: 27375427 PMCID: PMC4896923 DOI: 10.3389/fnmol.2016.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI.
Collapse
Affiliation(s)
- Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA; The Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA; The Neuroscience Program, University of Miami Miller School of MedicineMiami, FL, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|
28
|
Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature 2016; 534:494-9. [PMID: 27281198 PMCID: PMC4919188 DOI: 10.1038/nature17976] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/06/2016] [Indexed: 01/19/2023]
Abstract
Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibres of the pain pathway. Local anaesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes of these channels and their contributions to chemical, mechanical, or thermal pain. Here we identify and characterize spider (Heteroscodra maculata) toxins that selectively activate the Nav1.1 subtype, the role of which in nociception and pain has not been elucidated. We use these probes to show that Nav1.1-expressing fibres are modality-specific nociceptors: their activation elicits robust pain behaviours without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibres also express Nav1.1 and show enhanced toxin sensitivity in a mouse model of irritable bowel syndrome. Together, these findings establish an unexpected role for Nav1.1 channels in regulating the excitability of sensory nerve fibres that mediate mechanical pain.
Collapse
|
29
|
von Büdingen HC, Mei F, Greenfield A, Jahn S, Shen YAA, Reid HH, McKemy DD, Chan JR. The myelin oligodendrocyte glycoprotein directly binds nerve growth factor to modulate central axon circuitry. J Cell Biol 2015; 210:891-8. [PMID: 26347141 PMCID: PMC4576870 DOI: 10.1083/jcb.201504106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Myelin oligodendrocyte glycoprotein, expressed on the outermost lamellae of the
myelin sheath, is a novel and specific binding partner for NGF that may modulate
local concentrations of the neurotrophin in the spinal cord microenvironment. Myelin oligodendrocyte glycoprotein (MOG) is a central nervous system myelin-specific
molecule expressed on the outer lamellae of myelin. To date, the exact function of
MOG has remained unknown, with MOG knockout mice displaying normal myelin
ultrastructure and no apparent specific phenotype. In this paper, we identify nerve
growth factor (NGF) as a binding partner for MOG and demonstrate that this
interaction is capable of sequestering NGF from TrkA-expressing neurons to modulate
axon growth and survival. Deletion of MOG results in aberrant sprouting of
nociceptive neurons in the spinal cord. Binding of NGF to MOG may offer widespread
implications into mechanisms that underlie pain pathways.
Collapse
|
30
|
Dynamic Trk and G Protein Signalings Regulate Dopaminergic Neurodifferentiation in Human Trophoblast Stem Cells. PLoS One 2015; 10:e0143852. [PMID: 26606046 PMCID: PMC4659658 DOI: 10.1371/journal.pone.0143852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022] Open
Abstract
Understanding the mechanisms in the generation of neural stem cells from pluripotent stem cells is a fundamental step towards successful management of neurodegenerative diseases in translational medicine. Albeit all-trans retinoic acid (RA) has been associated with axon outgrowth and nerve regeneration, the maintenance of differentiated neurons, the association with degenerative disease like Parkinson's disease, and its regulatory molecular mechanism from pluripotent stem cells to neural stem cells remain fragmented. We have previously reported that RA is capable of differentiation of human trophoblast stem cells to dopamine (DA) committed progenitor cells. Intracranial implantation of such neural progenitor cells into the 6-OHDA-lesioned substantia nigra pars compacta successfully regenerates dopaminergic neurons and integrity of the nigrostriatal pathway, ameliorating the behavioral deficits in the Parkinson’s disease rat model. Here, we demonstrated a dynamic molecular network in systematic analysis by addressing spatiotemporal molecular expression, intracellular protein-protein interaction and inhibition, imaging study, and genetic expression to explore the regulatory mechanisms of RA induction in the differentiation of human trophoblast stem cells to DA committed progenitor cells. We focused on the tyrosine receptor kinase (Trk), G proteins, canonical Wnt2B/β-catenin, genomic and non-genomic RA signaling transductions with Tyrosine hydroxylase (TH) gene expression as the differentiation endpoint. We found that at the early stage, integration of TrkA and G protein signalings aims for axonogenesis and morphogenesis, involving the novel RXRα/Gαq/11 and RARβ/Gβ signaling pathways. While at the later stage, five distinct signaling pathways together with epigenetic histone modifications emerged to regulate expression of TH, a precursor of dopamine. RA induction generated DA committed progenitor cells in one day. Our results provided substantial mechanistic evidence that human trophoblast stem cell-derived neural stem cells can potentially be used for neurobiological study, drug discovery, and as an alternative source of cell-based therapy in neurodegenerative diseases like Parkinson’s disease.
Collapse
|
31
|
Poitelon Y, Bogni S, Matafora V, Della-Flora Nunes G, Hurley E, Ghidinelli M, Katzenellenbogen BS, Taveggia C, Silvestri N, Bachi A, Sannino A, Wrabetz L, Feltri ML. Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Nat Commun 2015; 6:8303. [PMID: 26383514 PMCID: PMC4576721 DOI: 10.1038/ncomms9303] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/07/2015] [Indexed: 12/13/2022] Open
Abstract
Cell–cell interactions promote juxtacrine signals in specific subcellular domains, which are difficult to capture in the complexity of the nervous system. For example, contact between axons and Schwann cells triggers signals required for radial sorting and myelination. Failure in this interaction causes dysmyelination and axonal degeneration. Despite its importance, few molecules at the axo-glial surface are known. To identify novel molecules in axo-glial interactions, we modified the ‘pseudopodia' sub-fractionation system and isolated the projections that glia extend when they receive juxtacrine signals from axons. By proteomics we identified the signalling networks present at the glial-leading edge, and novel proteins, including members of the Prohibitin family. Glial-specific deletion of Prohibitin-2 in mice impairs axo-glial interactions and myelination. We thus validate a novel method to model morphogenesis and juxtacrine signalling, provide insights into the molecular organization of the axo-glial contact, and identify a novel class of molecules in myelination. Neuron–glia interactions are critical in the nervous system, where they result in the extension of glial pseudopodia. Poitelon et al. isolate these protrusions using an in vitro assay, and, by characterising their proteomes, identify Prohibitin-2 as a regulator of myelination.
Collapse
Affiliation(s)
- Y Poitelon
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - S Bogni
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - V Matafora
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - G Della-Flora Nunes
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA
| | - E Hurley
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA
| | - M Ghidinelli
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - B S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois and College of Medicine, Urbana Illinois 61801, USA
| | - C Taveggia
- Division of Neuroscience, San Raffaele Hospital, Milano 20132, Italy
| | - N Silvestri
- Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - A Bachi
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - A Sannino
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| | - L Wrabetz
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy.,Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - M L Feltri
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy.,Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| |
Collapse
|
32
|
Tonazzini I, Jacchetti E, Meucci S, Beltram F, Cecchini M. Schwann Cell Contact Guidance versus Boundary -Interaction in Functional Wound Healing along Nano and Microstructured Membranes. Adv Healthc Mater 2015; 4:1849-60. [PMID: 26097140 DOI: 10.1002/adhm.201500268] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/27/2015] [Indexed: 01/09/2023]
Abstract
Peripheral nerve transection is often encountered after trauma and can lead to long-term/permanent loss of sensor/motor functionality. Here, the effect of pure contact interaction of nano/microgrooved substrates on Schwann cells (SCs) is studied in view of their possible use for nerve-repair applications. Elastomeric gratings (GRs; i.e., alternating lines of ridges and grooves) are developed with different lateral periods (1-20 μm) and depths (0.3-2.5 μm), leading to two distinct cell-material interaction regimes: contact guidance (grating period < cell body diameter) and boundary guidance (grating period ≥ cell body diameter). Here, it is shown that boundary guidance leads to the best single-cell polarization, actin organization, and single-cell directional migration. Remarkably, contact guidance is instead more effective in driving collective SC migration and improves functional wound healing. It is also demonstrated that this behavior is linked to the properties of the SC monolayers on different GRs. SCs on large-period GRs are characterized by N-Cadherin downregulation and enhanced single-cell scattering into the wound with respect to SCs on small-period GRs, indicating a less compact monolayer characterized by looser cell-cell junctions in the boundary guidance regime. The present results provide information on the impact of specific sub-micrometer topographical elements on SC functional response, which can be exploited for nerve-regeneration applications.
Collapse
Affiliation(s)
- Ilaria Tonazzini
- NEST, Scuola Normale Superiore; Piazza San Silvestro 12 Pisa 56127 Italy
- NEST, Istituto Nanoscienze-CNR; Piazza San Silvestro 12 Pisa 56127 Italy
- Fondazione Umberto Veronesi; Piazza Velasca 5 Milano 20122 Italy
| | - Emanuela Jacchetti
- NEST, Scuola Normale Superiore; Piazza San Silvestro 12 Pisa 56127 Italy
- NEST, Istituto Nanoscienze-CNR; Piazza San Silvestro 12 Pisa 56127 Italy
| | - Sandro Meucci
- NEST, Scuola Normale Superiore; Piazza San Silvestro 12 Pisa 56127 Italy
- NEST, Istituto Nanoscienze-CNR; Piazza San Silvestro 12 Pisa 56127 Italy
| | - Fabio Beltram
- NEST, Scuola Normale Superiore; Piazza San Silvestro 12 Pisa 56127 Italy
- NEST, Istituto Nanoscienze-CNR; Piazza San Silvestro 12 Pisa 56127 Italy
| | - Marco Cecchini
- NEST, Scuola Normale Superiore; Piazza San Silvestro 12 Pisa 56127 Italy
- NEST, Istituto Nanoscienze-CNR; Piazza San Silvestro 12 Pisa 56127 Italy
| |
Collapse
|
33
|
Monk KR, Feltri ML, Taveggia C. New insights on Schwann cell development. Glia 2015; 63:1376-93. [PMID: 25921593 PMCID: PMC4470834 DOI: 10.1002/glia.22852] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - M Laura Feltri
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
34
|
Basak S, Desai DJ, Rho EH, Ramos R, Maurel P, Kim HA. E-cadherin enhances neuregulin signaling and promotes Schwann cell myelination. Glia 2015; 63:1522-36. [PMID: 25988855 DOI: 10.1002/glia.22822] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022]
Abstract
In myelinating Schwann cells, E-cadherin is a component of the adherens junctions that stabilize the architecture of the noncompact myelin region. In other cell types, E-cadherin has been considered as a signaling receptor that modulates intracellular signal transduction and cellular responses. To determine whether E-cadherin plays a regulatory role during Schwann cell myelination, we investigated the effects of E-cadherin deletion and over-expression in Schwann cells. In vivo, Schwann cell-specific E-cadherin ablation results in an early myelination delay. In Schwann cell-dorsal root ganglia neuron co-cultures, E-cadherin deletion attenuates myelin formation and shortens the myelin segment length. When over-expressed in Schwann cells, E-cadherin improves myelination on Nrg1 type III(+/-) neurons and induces myelination on normally non-myelinated axons of sympathetic neurons. The pro-myelinating effect of E-cadherin is associated with an enhanced Nrg1-erbB receptor signaling, including activation of the downstream Akt and Rac. Accordingly, in the absence of E-cadherin, Nrg1-signaling is diminished in Schwann cells. Our data also show that E-cadherin expression in Schwann cell is induced by axonal Nrg1 type III, indicating a reciprocal interaction between E-cadherin and the Nrg1 signaling. Altogether, our data suggest a regulatory function of E-cadherin that modulates Nrg1 signaling and promotes Schwann cell myelin formation.
Collapse
Affiliation(s)
- Sayantani Basak
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Darshan J Desai
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Esther H Rho
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Roselle Ramos
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Patrice Maurel
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Haesun A Kim
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| |
Collapse
|
35
|
Guo F, Lang J, Sohn J, Hammond E, Chang M, Pleasure D. Canonical Wnt signaling in the oligodendroglial lineage-puzzles remain. Glia 2015; 63:1671-93. [DOI: 10.1002/glia.22813] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/17/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Fuzheng Guo
- Neurology Department; School of Medicine at UC Davis Medical Center; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, Northern California; Sacramento California
| | - Jordan Lang
- Neurology Department; School of Medicine at UC Davis Medical Center; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, Northern California; Sacramento California
| | - Jiho Sohn
- Neurology Department; School of Medicine at UC Davis Medical Center; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, Northern California; Sacramento California
| | - Elizabeth Hammond
- Neurology Department; School of Medicine at UC Davis Medical Center; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, Northern California; Sacramento California
| | - Marcello Chang
- Neurology Department; School of Medicine at UC Davis Medical Center; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, Northern California; Sacramento California
| | - David Pleasure
- Neurology Department; School of Medicine at UC Davis Medical Center; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, Northern California; Sacramento California
| |
Collapse
|
36
|
de Luca AC, Faroni A, Reid AJ. Dorsal root ganglia neurons and differentiated adipose-derived stem cells: an in vitro co-culture model to study peripheral nerve regeneration. J Vis Exp 2015. [PMID: 25742570 PMCID: PMC4354675 DOI: 10.3791/52543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dorsal root ganglia (DRG) neurons, located in the intervertebral foramina of the spinal column, can be used to create an in vitro system facilitating the study of nerve regeneration and myelination. The glial cells of the peripheral nervous system, Schwann cells (SC), are key facilitators of these processes; it is therefore crucial that the interactions of these cellular components are studied together. Direct contact between DRG neurons and glial cells provides additional stimuli sensed by specific membrane receptors, further improving the neuronal response. SC release growth factors and proteins in the culture medium, which enhance neuron survival and stimulate neurite sprouting and extension. However, SC require long proliferation time to be used for tissue engineering applications and the sacrifice of an healthy nerve for their sourcing. Adipose-derived stem cells (ASC) differentiated into SC phenotype are a valid alternative to SC for the set-up of a co-culture model with DRG neurons to study nerve regeneration. The present work presents a detailed and reproducible step-by-step protocol to harvest both DRG neurons and ASC from adult rats; to differentiate ASC towards a SC phenotype; and combines the two cell types in a direct co-culture system to investigate the interplay between neurons and SC in the peripheral nervous system. This tool has great potential in the optimization of tissue-engineered constructs for peripheral nerve repair.
Collapse
Affiliation(s)
| | - Alessandro Faroni
- Blond McIndoe Research Laboratories, Institute of Inflammation & Repair, The University of Manchester
| | - Adam J Reid
- Blond McIndoe Research Laboratories, Institute of Inflammation & Repair, The University of Manchester; University Hospital of South Manchester
| |
Collapse
|
37
|
Abstract
Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons.
Collapse
Affiliation(s)
- M Laura Feltri
- Hunter James Kelly Research Institute, Departments of Biochemistry & Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yannick Poitelon
- Hunter James Kelly Research Institute, Departments of Biochemistry & Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Stefano Carlo Previtali
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
38
|
Zhang L, Yang X, Yue Y, Ye J, Yao Y, Fu Y, Li G, Yao Q, Lin Y, Gong P. Cyclic mechanical stress modulates neurotrophic and myelinating gene expression of Schwann cells. Cell Prolif 2014; 48:59-66. [PMID: 25418681 DOI: 10.1111/cpr.12151] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/12/2014] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the response of Schwann cells to cyclic compressive and tensile stresses of different durations of stimulation. MATERIALS AND METHODS RSC96 cells were subjected to cyclic tensile stress or compressive stress; for either, cells in five groups were treated for 0, 1, 2, 24 and 48 h respectively. Enzyme-linked immunosorbent assay was conducted to detect secretion of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 and neurotrophin-4 in the culture medium. Real-time PCR was conducted to quantify mRNA expression of neurotrophins including NGF, BDNF, neurotrophin-3 and neurotrophin-4, and myelin-related genes including Sox10, Krox20, neuregulin 1, NCAM, N-cadherin, P0, MAG and MBP. Immunofluorescent staining was performed to visualize Krox20 and F-actin in the tensile groups. RESULTS Within 24 h, cells treated with cyclic tensile stress expressed and secreted significantly more BDNF, while cyclic compression down-regulated BDNF expression. Cells treated with both tensile and compressive stress down-regulated expression of NRG1, NCAM, Krox20 and Sox10 at all time points. Expression of N-cadherin was not affected by either stretch or compression. F-actin was down-regulated by tensile stress. CONCLUSIONS Both tensile and compressive loading down-regulated expression of several important myelin-related Schwann cells genes and thus facilitated demyelination. Tensile stress meanwhile promoted secretion of BDNF by Schwann cells within 24 h, which may contribute to maintenance and repair of damaged axons. These effects of mechanical stress might have been mediated by the actin cytoskeleton.
Collapse
Affiliation(s)
- L Zhang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Blasky AJ, Pan L, Moens CB, Appel B. Pard3 regulates contact between neural crest cells and the timing of Schwann cell differentiation but is not essential for neural crest migration or myelination. Dev Dyn 2014; 243:1511-23. [PMID: 25130183 DOI: 10.1002/dvdy.24172] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Schwann cells, which arise from the neural crest, are the myelinating glia of the peripheral nervous system. During development neural crest and their Schwann cell derivatives engage in a sequence of events that comprise delamination from the neuroepithelium, directed migration, axon ensheathment, and myelin membrane synthesis. At each step neural crest and Schwann cells are polarized, suggesting important roles for molecules that create cellular asymmetries. In this work we investigated the possibility that one polarity protein, Pard3, contributes to the polarized features of neural crest and Schwann cells that are associated with directed migration and myelination. RESULTS We analyzed mutant zebrafish embryos deficient for maternal and zygotic pard3 function. Time-lapse imaging revealed that neural crest delamination was normal but that migrating cells were disorganized with substantial amounts of overlapping membrane. Nevertheless, neural crest cells migrated to appropriate peripheral targets. Schwann cells wrapped motor axons and, although myelin gene expression was delayed, myelination proceeded to completion. CONCLUSIONS Pard3 mediates contact inhibition between neural crest cells and promotes timely myelin gene expression but is not essential for neural crest migration or myelination.
Collapse
Affiliation(s)
- Alex J Blasky
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | |
Collapse
|
40
|
Shen YAA, Chen Y, Dao DQ, Mayoral SR, Wu L, Meijer D, Ullian EM, Chan JR, Lu QR. Phosphorylation of LKB1/Par-4 establishes Schwann cell polarity to initiate and control myelin extent. Nat Commun 2014; 5:4991. [PMID: 25255972 PMCID: PMC4334370 DOI: 10.1038/ncomms5991] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/14/2014] [Indexed: 12/31/2022] Open
Abstract
The Schwann cell (SC)-axon interface represents a membrane specialization that integrates axonal signals to coordinate cytoskeletal dynamics resulting in myelination. Here we show that LKB1/Par-4 is asymmetrically localized to the SC-axon interface and colocalizes with the polarity protein Par-3. Using purified SCs and myelinating cocultures, we demonstrate that localization is dependent on the phosphorylation of LKB1 at serine-431. SC-specific deletion of LKB1 significantly attenuates developmental myelination, delaying the initiation and altering the myelin extent into adulthood, resulting in a 30% reduction in the conduction velocity along adult sciatic nerves. Phosphorylation of LKB1 by protein kinase A is essential to establish the asymmetric localization of LKB1 and Par-3 and rescues the delay in myelination observed in the SC-specific knockout of LKB1. Our findings suggest that SC polarity may coordinate multiple signaling complexes that couple SC-axon contact to the redistribution of specific membrane components necessary to initiate and control myelin extent.
Collapse
Affiliation(s)
- Yun-An A Shen
- Department of Neurology and Program in Neurosciences, University of California, San Francisco, California 94158, USA
| | - Yan Chen
- 1] Department of Pediatrics, Brain Cancer Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 [2] Department of Pediatrics and Obstetrics/Gynecology, State Key Laboratory of Biotherapy, Cancer Center, West China Second Hospital, Sichuan University, Chengdu 61004, China
| | - Dang Q Dao
- Department of Ophthalmology and Physiology and Programs in Neurosciences, University of California, San Francisco, California 94143, USA
| | - Sonia R Mayoral
- Department of Neurology and Program in Neurosciences, University of California, San Francisco, California 94158, USA
| | - Laiman Wu
- Department of Pediatrics, Brain Cancer Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Dies Meijer
- Department of Cellular Neurobiology, Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Erik M Ullian
- Department of Ophthalmology and Physiology and Programs in Neurosciences, University of California, San Francisco, California 94143, USA
| | - Jonah R Chan
- Department of Neurology and Program in Neurosciences, University of California, San Francisco, California 94158, USA
| | - Q Richard Lu
- Department of Pediatrics, Brain Cancer Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
41
|
Mitew S, Hay C, Peckham H, Xiao J, Koenning M, Emery B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 2014; 276:29-47. [DOI: 10.1016/j.neuroscience.2013.11.029] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/29/2022]
|
42
|
The Beneficial Effect of Chitooligosaccharides on Cell Behavior and Function of Primary Schwann Cells is Accompanied by Up-Regulation of Adhesion Proteins and Neurotrophins. Neurochem Res 2014; 39:2047-57. [DOI: 10.1007/s11064-014-1387-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/30/2014] [Accepted: 07/11/2014] [Indexed: 01/12/2023]
|
43
|
Dutta DJ, Zameer A, Mariani JN, Zhang J, Asp L, Huynh J, Mahase S, Laitman BM, Argaw AT, Mitiku N, Urbanski M, Melendez-Vasquez CV, Casaccia P, Hayot F, Bottinger EP, Brown CW, John GR. Combinatorial actions of Tgfβ and Activin ligands promote oligodendrocyte development and CNS myelination. Development 2014; 141:2414-28. [PMID: 24917498 DOI: 10.1242/dev.106492] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the embryonic CNS, development of myelin-forming oligodendrocytes is limited by bone morphogenetic proteins, which constitute one arm of the transforming growth factor-β (Tgfβ) family and signal canonically via Smads 1/5/8. Tgfβ ligands and Activins comprise the other arm and signal via Smads 2/3, but their roles in oligodendrocyte development are incompletely characterized. Here, we report that Tgfβ ligands and activin B (ActB) act in concert in the mammalian spinal cord to promote oligodendrocyte generation and myelination. In mouse neural tube, newly specified oligodendrocyte progenitors (OLPs) are first exposed to Tgfβ ligands in isolation, then later in combination with ActB during maturation. In primary OLP cultures, Tgfβ1 and ActB differentially activate canonical Smad3 and non-canonical MAP kinase signaling. Both ligands enhance viability, and Tgfβ1 promotes proliferation while ActB supports maturation. Importantly, co-treatment strongly activates both signaling pathways, producing an additive effect on viability and enhancing both proliferation and differentiation such that mature oligodendrocyte numbers are substantially increased. Co-treatment promotes myelination in OLP-neuron co-cultures, and maturing oligodendrocytes in spinal cord white matter display strong Smad3 and MAP kinase activation. In spinal cords of ActB-deficient Inhbb(-/-) embryos, apoptosis in the oligodendrocyte lineage is increased and OLP numbers transiently reduced, but numbers, maturation and myelination recover during the first postnatal week. Smad3(-/-) mice display a more severe phenotype, including diminished viability and proliferation, persistently reduced mature and immature cell numbers, and delayed myelination. Collectively, these findings suggest that, in mammalian spinal cord, Tgfβ ligands and ActB together support oligodendrocyte development and myelin formation.
Collapse
Affiliation(s)
- Dipankar J Dutta
- Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA Corinne Goldsmith Dickinson Center for MS, Mount Sinai School of Medicine, New York, NY 10029, USA Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Andleeb Zameer
- Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA Corinne Goldsmith Dickinson Center for MS, Mount Sinai School of Medicine, New York, NY 10029, USA Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - John N Mariani
- Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA Corinne Goldsmith Dickinson Center for MS, Mount Sinai School of Medicine, New York, NY 10029, USA Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Jingya Zhang
- Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA Corinne Goldsmith Dickinson Center for MS, Mount Sinai School of Medicine, New York, NY 10029, USA Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Linnea Asp
- Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA Corinne Goldsmith Dickinson Center for MS, Mount Sinai School of Medicine, New York, NY 10029, USA Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Jimmy Huynh
- Corinne Goldsmith Dickinson Center for MS, Mount Sinai School of Medicine, New York, NY 10029, USA Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Sean Mahase
- Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA Corinne Goldsmith Dickinson Center for MS, Mount Sinai School of Medicine, New York, NY 10029, USA Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Benjamin M Laitman
- Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA Corinne Goldsmith Dickinson Center for MS, Mount Sinai School of Medicine, New York, NY 10029, USA Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Azeb Tadesse Argaw
- Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA Corinne Goldsmith Dickinson Center for MS, Mount Sinai School of Medicine, New York, NY 10029, USA Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Nesanet Mitiku
- Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA Corinne Goldsmith Dickinson Center for MS, Mount Sinai School of Medicine, New York, NY 10029, USA Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | - Patrizia Casaccia
- Corinne Goldsmith Dickinson Center for MS, Mount Sinai School of Medicine, New York, NY 10029, USA Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Fernand Hayot
- Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA Systems Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Erwin P Bottinger
- Nephrology, Mount Sinai School of Medicine, New York, NY 10029, USA Charles Bronfman Institute for Personalized Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Chester W Brown
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gareth R John
- Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA Corinne Goldsmith Dickinson Center for MS, Mount Sinai School of Medicine, New York, NY 10029, USA Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
44
|
Wnt/Rspondin/β-catenin signals control axonal sorting and lineage progression in Schwann cell development. Proc Natl Acad Sci U S A 2013; 110:18174-9. [PMID: 24151333 DOI: 10.1073/pnas.1310490110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
During late Schwann cell development, immature Schwann cells segregate large axons from bundles, a process called "axonal radial sorting." Here we demonstrate that canonical Wnt signals play a critical role in radial sorting and assign a role to Wnt and Rspondin ligands in this process. Mice carrying β-catenin loss-of-function mutations show a delay in axonal sorting; conversely, gain-of-function mutations result in accelerated sorting. Sorting deficits are accompanied by abnormal process extension, differentiation, and aberrant cell cycle exit of the Schwann cells. Using primary cultured Schwann cells, we analyze the upstream effectors, Wnt and Rspondin ligands that initiate signaling, and downstream genetic programs that mediate the Wnt response. Our analysis contributes to a better understanding of the mechanisms of Schwann cell development and fate decisions.
Collapse
|
45
|
The housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT) regulates multiple developmental and metabolic pathways of murine embryonic stem cell neuronal differentiation. PLoS One 2013; 8:e74967. [PMID: 24130677 PMCID: PMC3794013 DOI: 10.1371/journal.pone.0074967] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/09/2013] [Indexed: 11/19/2022] Open
Abstract
The mechanisms by which mutations of the purinergic housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT) cause the severe neurodevelopmental Lesch Nyhan Disease (LND) are poorly understood. The best recognized neural consequences of HPRT deficiency are defective basal ganglia expression of the neurotransmitter dopamine (DA) and aberrant DA neuronal function. We have reported that HPRT deficiency leads to dysregulated expression of multiple DA-related developmental functions and cellular signaling defects in a variety of HPRT-deficient cells, including human induced pluripotent stem (iPS) cells. We now describe results of gene expression studies during neuronal differentiation of HPRT-deficient murine ESD3 embryonic stem cells and report that HPRT knockdown causes a marked switch from neuronal to glial gene expression and dysregulates expression of Sox2 and its regulator, genes vital for stem cell pluripotency and for the neuronal/glial cell fate decision. In addition, HPRT deficiency dysregulates many cellular functions controlling cell cycle and proliferation mechanisms, RNA metabolism, DNA replication and repair, replication stress, lysosome function, membrane trafficking, signaling pathway for platelet activation (SPPA) multiple neurotransmission systems and sphingolipid, sulfur and glycan metabolism. We propose that the neural aberrations of HPRT deficiency result from combinatorial effects of these multi-system metabolic errors. Since some of these aberrations are also found in forms of Alzheimer's and Huntington's disease, we predict that some of these systems defects play similar neuropathogenic roles in diverse neurodevelopmental and neurodegenerative diseases in common and may therefore provide new experimental opportunities for clarifying pathogenesis and for devising new potential therapeutic targets in developmental and genetic disease.
Collapse
|
46
|
Guo L, Moon C, Zheng Y, Ratner N. Cdc42 regulates Schwann cell radial sorting and myelin sheath folding through NF2/merlin-dependent and independent signaling. Glia 2013; 61:1906-21. [PMID: 24014231 DOI: 10.1002/glia.22567] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/02/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022]
Abstract
The Rho family GTPase Cdc42 has been implicated in developmental Schwann cell (SC) proliferation, providing sufficient SCs for radial sorting of axons preceding SC differentiation in the peripheral nervous system. We generated Cdc42 conditional knockout (Cdc42-CKO) mice and confirmed aberrant axon sorting in Cdc42-CKO nerves. In adult Cdc42-CKO nerves, blood vessels were enlarged, and mature Remak bundles containing small axons were absent. Abnormal infoldings and outfoldings of myelin sheaths developed in Cdc42-CKO nerves, mimicking pathological features of Charcot-Marie-Tooth (CMT) disease. The NF2/merlin tumor suppressor has been implicated up- and down-stream of Cdc42. In Cdc42-CKO;NF2-del double mutant mice, radial sorting defects seen in Cdc42-CKO nerves were rescued, while changes in myelin sheaths in Cdc42-CKO nerves were not. Phosphorylation of Focal adhesion kinase (FAK) and P-GSK3β, as well as expression of β-catenin were decreased in Cdc42-CKO nerves, and these changes were rescued by NF2/merlin mutation in Cdc42-CKO;NF2-del double mutant mice. Thus, Cdc42 regulates SC radial sorting in vivo through NF2/merlin dependent signaling pathways, while Cdc42 modulation of myelin sheath folding is NF2/merlin independent.
Collapse
Affiliation(s)
- Li Guo
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital University of Cincinnati, Cincinnati, Ohio
| | | | | | | |
Collapse
|
47
|
Liu R, Lin G, Xu H. An efficient method for dorsal root ganglia neurons purification with a one-time anti-mitotic reagent treatment. PLoS One 2013; 8:e60558. [PMID: 23565257 PMCID: PMC3614500 DOI: 10.1371/journal.pone.0060558] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/27/2013] [Indexed: 11/18/2022] Open
Abstract
Background The dorsal root ganglia (DRG) neuron is an invaluable tool in axon growth, growth factor regulation, myelin formation and myelin-relevant researches. The purification of DRG neurons is a key step in these studies. Traditionally, purified DRG neurons were obtained in two weeks after exposure to several rounds of anti-mitotic reagent. Methods and Results In this report, a novel, simple and efficient method for DRG purification is presented. DRG cultures were treated once with a high-dose anti-mitotic reagent cocktail for 72 hours. Using this new method, DRG neurons were obtained with 99% purification within 1 week. We confirmed that the neurite growth and the viability of the purified DRG neurons have no difference from the DRG neurons purified by traditional method. Furthermore, P0 and MBP expression was observed in myelin by immunocytochemistry in the DRG/SC co-culture system. The formation of mature node of Ranvier in DRG-Schwann cell co-culture system was observed using anti-Nav 1.6 and anti-caspr antibody. Conclusion and Significance The results indicate that this high dose single treatment did not compromise the capacity of DRG neurons for myelin formation in the DRG/SC co-culture system. In conclusion, a convenient approach for purifying DRG neurons was developed which is time-saving and high-efficiency.
Collapse
Affiliation(s)
- Rui Liu
- The Geriatric Department, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
- * E-mail: (HX); (RL)
| | - Gou Lin
- LONI, Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hanpeng Xu
- The Basic Medical School, The Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
- * E-mail: (HX); (RL)
| |
Collapse
|
48
|
Abstract
WNT/β-catenin signaling is critical to the development of many cancer types. A paper by Mo and colleagues in a recent issue of Cell shows that autocrine CXCL12/CXCR4 chemokine signaling activates β-catenin signaling in a rare peripheral nerve sarcoma. Together with the availability of small molecules targeting CXCR4, this finding suggests new avenues for cancer therapy.
Collapse
Affiliation(s)
- David Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
49
|
Masaki T. Polarization and myelination in myelinating glia. ISRN NEUROLOGY 2012; 2012:769412. [PMID: 23326681 PMCID: PMC3544266 DOI: 10.5402/2012/769412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/13/2012] [Indexed: 01/13/2023]
Abstract
Myelinating glia, oligodendrocytes in central nervous system and Schwann cells in peripheral nervous system, form myelin sheath, a multilayered membrane system around axons enabling salutatory nerve impulse conduction and maintaining axonal integrity. Myelin sheath is a polarized structure localized in the axonal side and therefore is supposed to be formed based on the preceding polarization of myelinating glia. Thus, myelination process is closely associated with polarization of myelinating glia. However, cell polarization has been less extensively studied in myelinating glia than other cell types such as epithelial cells. The ultimate goal of this paper is to provide insights for the field of myelination research by applying the information obtained in polarity study in other cell types, especially epithelial cells, to cell polarization of myelinating glia. Thus, in this paper, the main aspects of cell polarization study in general are summarized. Then, they will be compared with polarization in oligodendrocytes. Finally, the achievements obtained in polarization study for epithelial cells, oligodendrocytes, and other types of cells will be translated into polarization/myelination process by Schwann cells. Then, based on this model, the perspectives in the study of Schwann cell polarization/myelination will be discussed.
Collapse
Affiliation(s)
- Toshihiro Masaki
- Department of Medical Science, Teikyo University of Science, 2-2-1 Senju-Sakuragi, Adachi-ku, Tokyo 120-0045, Japan
| |
Collapse
|
50
|
Martiáñez T, Lamarca A, Casals N, Gella A. N-cadherin expression is regulated by UTP in schwannoma cells. Purinergic Signal 2012; 9:259-70. [PMID: 23271561 DOI: 10.1007/s11302-012-9348-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 12/12/2012] [Indexed: 12/21/2022] Open
Abstract
Schwann cells (SCs) are peripheral myelinating glial cells that express the neuronal Ca(2+)-dependent cell adhesion molecule, neural cadherin (N-cadherin). N-cadherin is involved in glia-glia and axon-glia interactions and participates in many key events, which range from the control of axonal growth and guidance to synapse formation and plasticity. Extracellular UTP activates P2Y purinergic receptors and exerts short- and long-term effects on several tissues to promote wound healing. Nevertheless, the contribution of P2Y receptors in peripheral nervous system functions is not completely understood. The current study demonstrated that UTP induced a dose- and time-dependent increase in N-cadherin expression in SCs. Furthermore, N-cadherin expression was blocked by the P2 purinoceptor antagonist suramin. The increased N-cadherin expression induced by UTP was mediated by phosphorylation of mitogen-activated protein kinases (MAPKs), such as Jun N-terminal kinase, extracellular-regulated kinase and p38 kinase. Moreover, the Rho kinase inhibitor Y27632, the phospholipase C inhibitor U73122 and the protein kinase C inhibitor calphostin C attenuated the UTP-induced activation of MAPKs significantly. Extracellular UTP also modulated increased in the expression of the early transcription factors c-Fos and c-Jun. We also demonstrated that the region of the N-cadherin promoter between nucleotide positions -3698 and -2620, which contained one activator protein-1-binding site, was necessary for UTP-induced gene expression. These results suggest a novel role for P2Y purinergic receptors in the regulation of N-cadherin expression in SCs.
Collapse
Affiliation(s)
- Tania Martiáñez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat International de Catalunya, Sant Cugat del Vallès, Spain
| | | | | | | |
Collapse
|