1
|
Cao J, Zhang C, Lo CZ, Guo Q, Ding J, Luo X, Zhang Z, Chen F, the ZIB Consortium, Cheng T, Chen J, Zhao X, for the Alzheimer's Disease Neuroimaging Initiative. Integrating rare pathogenic variant prioritization with gene-based association analysis to identify novel genes and relevant multimodal traits for Alzheimer's disease. Alzheimers Dement 2025; 21:e14444. [PMID: 39713882 PMCID: PMC11851317 DOI: 10.1002/alz.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Increasing evidence has highlighted rare variants in Alzheimer's disease (AD). However, insufficient sample sizes, especially in underrepresented ethnic groups, hinder their investigation. Additionally, their impact on endophenotypes remains largely unexplored. METHODS We prioritized rare likely-deleterious variants based on whole-genome sequencing data from a Chinese AD cohort (n = 988). Gene-based optimal sequence kernel association tests were conducted between AD cases and normal controls to identify AD-related genes. Network clustering, endophenotype association, and cellular experiments were conducted to evaluate their functional consequences. RESULTS We identified 11 novel AD candidate genes, which captured AD-related pathways and enhanced AD risk prediction performance. Key genes (RABEP1, VIPR1, RPL3L, and CABIN1) were linked to cognitive decline and brain atrophy. Experiments showed RABEP1 p.R845W inducing endocytosis dysregulation and exacerbating toxic amyloid β accumulation, underscoring its therapeutic potential. DISCUSSION Our findings highlighted the contributions of rare variants to AD and provided novel insights into AD therapeutics. HIGHLIGHTS Identified 11 novel AD candidate genes in a Chinese AD cohort. Correlated candidate genes with AD-related cognitive and brain imaging traits. Indicated RABEP1 p.R845W as a critical AD contributor in the endocytic pathway.
Collapse
Affiliation(s)
- Jixin Cao
- Department of NeurologyZhongshan Hospital and Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Cheng Zhang
- Institute for Translational Brain ResearchFudan UniversityShanghaiChina
| | - Chun‐Yi Zac Lo
- Department of Biomedical EngineeringChung Yuan Christian UniversityTaoyuanTaiwan
| | - Qihao Guo
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jing Ding
- Department of NeurologyZhongshan Hospital and Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Xiaohui Luo
- Department of NeurologyZhongshan Hospital and Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Zi‐Chao Zhang
- Department of NeurologyZhongshan Hospital and Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Feng Chen
- Department of RadiologyHainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)HaikouHainanChina
| | | | - Tian‐Lin Cheng
- Institute for Translational Brain ResearchFudan UniversityShanghaiChina
- MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
- State Key Laboratory of Medical NeurobiologyInstitutes of Brain Science, Fudan UniversityShanghaiChina
- Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan UniversityShanghaiChina
| | - Jingqi Chen
- Department of NeurologyZhongshan Hospital and Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
- MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
- MOE Key Laboratory of Computational Neuroscience and Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Xing‐Ming Zhao
- Department of NeurologyZhongshan Hospital and Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
- MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
- State Key Laboratory of Medical NeurobiologyInstitutes of Brain Science, Fudan UniversityShanghaiChina
- MOE Key Laboratory of Computational Neuroscience and Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
- Lingang LaboratoryShanghaiChina
| | | |
Collapse
|
2
|
Gautier MK, Kelley CM, Lee SH, Mufson EJ, Ginsberg SD. Maternal choline supplementation rescues early endosome pathology in basal forebrain cholinergic neurons in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. Neurobiol Aging 2024; 144:30-42. [PMID: 39265450 PMCID: PMC11490376 DOI: 10.1016/j.neurobiolaging.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Individuals with DS develop Alzheimer's disease (AD) neuropathology, including endosomal-lysosomal system abnormalities and degeneration of basal forebrain cholinergic neurons (BFCNs). We investigated whether maternal choline supplementation (MCS) affects early endosome pathology within BFCNs using the Ts65Dn mouse model of DS/AD. Ts65Dn and disomic (2N) offspring from dams administered MCS were analyzed for endosomal pathology at 3-4 months or 10-12 months. Morphometric analysis of early endosome phenotype was performed on individual BFCNs using Imaris. The effects of MCS on the endosomal interactome were interrogated by relative co-expression (RCE) analysis. MCS effectively reduced age- and genotype-associated increases in early endosome number in Ts65Dn and 2N offspring, and prevented increases in early endosome size in Ts65Dn offspring. RCE revealed a loss of interactome cooperativity among endosome genes in Ts65Dn offspring that was restored by MCS. These findings demonstrate MCS rescues early endosome pathology, a driver of septohippocampal circuit dysfunction. The genotype-independent benefits of MCS on endosomal phenotype indicate translational applicability as an early-life therapy for DS as well as other neurodevelopmental/neurodegenerative disorders involving endosomal pathology.
Collapse
Affiliation(s)
- Megan K Gautier
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Pathobiology and Translational Medicine Program, New York University Grossman School of Medicine, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Christy M Kelley
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, AZ, USA; Institute for Future Health, Scottsdale, AZ, USA
| | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Elliott J Mufson
- Departments of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Vigier M, Uriot M, Djelti-Delbarba F, Claudepierre T, El Hajj A, Yen FT, Oster T, Malaplate C. Increasing the Survival of a Neuronal Model of Alzheimer's Disease Using Docosahexaenoic Acid, Restoring Endolysosomal Functioning by Modifying the Interactions between the Membrane Proteins C99 and Rab5. Int J Mol Sci 2024; 25:6816. [PMID: 38999927 PMCID: PMC11240902 DOI: 10.3390/ijms25136816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Docosahexaenoic acid (DHA, C22:6 ω3) may be involved in various neuroprotective mechanisms that could prevent Alzheimer's disease (AD). Its influence has still been little explored regarding the dysfunction of the endolysosomal pathway, known as an early key event in the physiopathological continuum triggering AD. This dysfunction could result from the accumulation of degradation products of the precursor protein of AD, in particular the C99 fragment, capable of interacting with endosomal proteins and thus contributing to altering this pathway from the early stages of AD. This study aims to evaluate whether neuroprotection mediated by DHA can also preserve the endolysosomal function. AD-typical endolysosomal abnormalities were recorded in differentiated human SH-SY5Y neuroblastoma cells expressing the Swedish form of human amyloid precursor protein. This altered phenotype included endosome enlargement, the reduced secretion of exosomes, and a higher level of apoptosis, which confirmed the relevance of the cellular model chosen for studying the associated deleterious mechanisms. Second, neuroprotection mediated by DHA was associated with a reduced interaction of C99 with the Rab5 GTPase, lower endosome size, restored exosome production, and reduced neuronal apoptosis. Our data reveal that DHA may influence protein localization and interactions in the neuronal membrane environment, thereby correcting the dysfunction of endocytosis and vesicular trafficking associated with AD.
Collapse
Affiliation(s)
- Maxime Vigier
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Magalie Uriot
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Fathia Djelti-Delbarba
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Thomas Claudepierre
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Aseel El Hajj
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Frances T. Yen
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Thierry Oster
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Catherine Malaplate
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
- Department of Biochemistry, Molecular Biology and Nutrition, Nancy University Hospital, 54000 Nancy, France
| |
Collapse
|
4
|
Zadka Ł, Sochocka M, Hachiya N, Chojdak-Łukasiewicz J, Dzięgiel P, Piasecki E, Leszek J. Endocytosis and Alzheimer's disease. GeroScience 2024; 46:71-85. [PMID: 37646904 PMCID: PMC10828383 DOI: 10.1007/s11357-023-00923-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common cause of dementia. The pathogenesis of AD still remains unclear, including two main hypotheses: amyloid cascade and tau hyperphosphorylation. The hallmark neuropathological changes of AD are extracellular deposits of amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). Endocytosis plays an important role in a number of cellular processes including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. Based on the results of genetic and biochemical studies, there is a link between neuronal endosomal function and AD pathology. Taking this into account, we can state that in the results of previous research, endolysosomal abnormality is an important cause of neuronal lesions in the brain. Endocytosis is a central pathway involved in the regulation of the degradation of amyloidogenic components. The results of the studies suggest that a correlation between alteration in the endocytosis process and associated protein expression progresses AD. In this article, we discuss the current knowledge about endosomal abnormalities in AD.
Collapse
Affiliation(s)
- Łukasz Zadka
- Division of Ultrastructural Research, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Marta Sochocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland.
| | - Naomi Hachiya
- Shonan Research Center, Central Glass Co., Ltd, Shonan Health Innovation Park 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | | | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, Chałubińskiego 6a, 50-368, Wroclaw, Poland
| | - Egbert Piasecki
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wybrzeże L. Pasteura 10, 50-367, Wroclaw, Poland
| |
Collapse
|
5
|
Alsaqati M, Thomas RS, Kidd EJ. Upregulation of endocytic protein expression in the Alzheimer's disease male human brain. AGING BRAIN 2023; 4:100084. [PMID: 37449017 PMCID: PMC10336166 DOI: 10.1016/j.nbas.2023.100084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Amyloid-beta (Aβ) is produced from amyloid precursor protein (APP) primarily after APP is internalised by endocytosis and clathrin-mediated endocytic processes are altered in Alzheimer's disease (AD). There is also evidence that cholesterol and flotillin affect APP endocytosis. We hypothesised that endocytic protein expression would be altered in the brains of people with AD compared to non-diseased subjects which could be linked to increased Aβ generation. We compared protein expression in frontal cortex samples from men with AD compared to age-matched, non-diseased controls. Soluble and insoluble Aβ40 and Aβ42, the soluble Aβ42/Aβ40 ratio, βCTF, BACE1, presenilin-1 and the ratio of phosphorylated:total GSK3β were significantly increased while the insoluble Aβ42:Aβ40 ratio was significantly decreased in AD brains. Total and phosphorylated tau were markedly increased in AD brains. Significant increases in clathrin, AP2, PICALM isoform 4, Rab-5 and caveolin-1 and 2 were seen in AD brains but BIN1 was decreased. However, using immunohistochemistry, caveolin-1 and 2 were decreased. The results obtained here suggest an overall increase in endocytosis in the AD brain, explaining, at least in part, the increased production of Aβ during AD.
Collapse
Affiliation(s)
| | | | - Emma J. Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, UK
| |
Collapse
|
6
|
López-Goerne T, Padilla-Godínez FJ. Catalytic Nanomedicine as a Therapeutic Approach to Brain Tumors: Main Hypotheses for Mechanisms of Action. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091541. [PMID: 37177086 PMCID: PMC10180296 DOI: 10.3390/nano13091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary malignant tumor of the brain. Although there are currently a wide variety of therapeutic approaches focused on tumor elimination, such as radiotherapy, chemotherapy, and tumor field therapy, among others, the main approach involves surgery to remove the GBM. However, since tumor growth occurs in normal brain tissue, complete removal is impossible, and patients end up requiring additional treatments after surgery. In this line, Catalytic Nanomedicine has achieved important advances in developing bionanocatalysts, brain-tissue-biocompatible catalytic nanostructures capable of destabilizing the genetic material of malignant cells, causing their apoptosis. Previous work has demonstrated the efficacy of bionanocatalysts and their selectivity for cancer cells without affecting surrounding healthy tissue cells. The present review provides a detailed description of these nanoparticles and their potential mechanisms of action as antineoplastic agents, covering the most recent research and hypotheses from their incorporation into the tumor bed, internalization via endocytosis, specific chemotaxis by mitochondrial and nuclear genetic material, and activation of programmed cell death. In addition, a case report of a patient with GBM treated with the bionanocatalysts following tumor removal surgery is described. Finally, the gaps in knowledge that must be bridged before the clinical translation of these compounds with such a promising future are detailed.
Collapse
Affiliation(s)
- Tessy López-Goerne
- Nanotechnology and Nanomedicine Laboratory, Department of Health Care, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico
| | - Francisco J Padilla-Godínez
- Nanotechnology and Nanomedicine Laboratory, Department of Health Care, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico
| |
Collapse
|
7
|
Jordan KL, Koss DJ, Outeiro TF, Giorgini F. Therapeutic Targeting of Rab GTPases: Relevance for Alzheimer's Disease. Biomedicines 2022; 10:1141. [PMID: 35625878 PMCID: PMC9138223 DOI: 10.3390/biomedicines10051141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Rab GTPases (Rabs) are small proteins that play crucial roles in vesicle transport and membrane trafficking. Owing to their widespread functions in several steps of vesicle trafficking, Rabs have been implicated in the pathogenesis of several disorders, including cancer, diabetes, and multiple neurodegenerative diseases. As treatments for neurodegenerative conditions are currently rather limited, the identification and validation of novel therapeutic targets, such as Rabs, is of great importance. This review summarises proof-of-concept studies, demonstrating that modulation of Rab GTPases in the context of Alzheimer's disease (AD) can ameliorate disease-related phenotypes, and provides an overview of the current state of the art for the pharmacological targeting of Rabs. Finally, we also discuss the barriers and challenges of therapeutically targeting these small proteins in humans, especially in the context of AD.
Collapse
Affiliation(s)
- Kate L. Jordan
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK;
| | - David J. Koss
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK; (D.J.K.); (T.F.O.)
| | - Tiago F. Outeiro
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK; (D.J.K.); (T.F.O.)
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
- Max Planck Institute for Natural Sciences, 37075 Göttingen, Germany
- Scientific Employee with a Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK;
| |
Collapse
|
8
|
Behl T, Kaur D, Sehgal A, Singh S, Makeen HA, Albratty M, Abdellatif AAH, Dachani SR, Bungau S. Exploring the potential role of rab5 protein in endo-lysosomal impairment in Alzheimer's disease. Biomed Pharmacother 2022; 148:112773. [PMID: 35245734 DOI: 10.1016/j.biopha.2022.112773] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 11/02/2022] Open
Abstract
Growing evidence suggests that neuronal dysfunction in the endo-lysosomal and autophagic processes contributes to the onset and progression of neurodegenerative diseases such as Alzheimer's disease (AD). Since they are the primary cellular systems involved in the production and clearance of aggregated amyloid plaques, endo-lysosomal or autophagic equilibrium must be maintained throughout life. As a result, variations in the autophagic and endo-lysosomal torrent, as a measure of degenerative function in these sections or pathways, may have a direct impact on disease-related processes, such as Aß clearance from the brain and interneuronal deposition of Aß and tau aggregates, thus disrupting synaptic plasticity. The discovery of several chromosomal factors for Alzheimer's disease that are clinically linked to regulation of the endocytic pathway, including protein aggregation and removal, supports the theory that the endo-lysosomal/autophagic torrent is more susceptible to impairment, especially as people age, thus catalysing the onset of disease. Although the role of endo-lysosomal/autophagic dysfunction in neurodegeneration has progressed in recent years, the field remains underdeveloped. Because of its possible therapeutic implications in Alzheimer's disease, further study is needed to explain the possibilities for effective autophagy regulation.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | - Dapinder Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy, Department, College of Pharmacy, Jazan University, P.O. Box-114, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Sudharshan Reddy Dachani
- Department of Pharmacy Practice & Pharmacology, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| |
Collapse
|
9
|
Shen R, Murphy CJ, Xu X, Hu M, Ding J, Wu C. Ras and Rab Interactor 3: From Cellular Mechanisms to Human Diseases. Front Cell Dev Biol 2022; 10:824961. [PMID: 35359443 PMCID: PMC8963869 DOI: 10.3389/fcell.2022.824961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Ras and Rab interactor 3 (RIN3) functions as a Guanine nucleotide Exchange Factor (GEF) for some members of the Rab family of small GTPase. By promoting the activation of Rab5, RIN3 plays an important role in regulating endocytosis and endocytic trafficking. In addition, RIN3 activates Ras, another small GTPase, that controls multiple signaling pathways to regulate cellular function. Increasing evidence suggests that dysregulation of RIN3 activity may contribute to the pathogenesis of several disease conditions ranging from Paget’s Disease of the Bone (PDB), Alzheimer’s Disease (AD), Chronic Obstructive Pulmonary Disease (COPD) and to obesity. Recent genome-wide association studies (GWAS) identified variants in the RIN3 gene to be linked with these disease conditions. Interestingly, some variants appear to be missense mutations in the functional domains of the RIN3 protein while most variants are located in the noncoding regions of the RIN3 gene, potentially altering its gene expression. However, neither the protein structure of RIN3 nor its exact function(s) (except for its GEF activity) has been fully defined. Furthermore, how the polymorphisms/variants contribute to disease pathogenesis remain to be understood. Herein, we examine, and review published studies in an attempt to provide a better understanding of the physiological function of RIN3; More importantly, we construct a framework linking the polymorphisms/variants of RIN3 to altered cell signaling and endocytic traffic, and to potential disease mechanism(s).
Collapse
Affiliation(s)
- Ruinan Shen
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Caitlin J Murphy
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Xiaowen Xu
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Mingzheng Hu
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Jianqing Ding
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
- *Correspondence: Chengbiao Wu,
| |
Collapse
|
10
|
Zhang N, Wang J, Bing T, Liu X, Shangguan D. Transferrin receptor-mediated internalization and intracellular fate of conjugates of a DNA aptamer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1249-1259. [PMID: 35282414 PMCID: PMC8899136 DOI: 10.1016/j.omtn.2022.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
Abstract
Aptamers have excellent specificity and affinity in targeting cell surface receptors, showing great potential in targeted delivery of drugs, siRNA, mRNA, and various nanomaterials with therapeutic function. A better insight of the receptor-mediated internalization process of aptameric conjugates could facilitate the design of new targeted drugs. In this paper, human transferrin receptor-targeted DNA aptamer (termed HG1-9)-fluorophore conjugates were synthesized to visualize the internalization, intracellular transport, and nano-environmental pH of aptameric conjugates. Unlike transferrin that showed high recycling rate and short duration time in cells, the synthetic aptameric conjugates continuously accumulated within cells at a relatively slower rate, besides recycling back to cell surface. After long incubation (≥2 h), only very small amounts of HG1-9 conjugates (approximately 5%) entered late endosomes or lysosomes, and more than 90% of internalized HG1-9 was retained in cellular vesicles (pH 6.0–6.8), escaping from degradation. And among the internalized HG1-9 conjugates, approximately 20% was dissociated from transferrin receptor. The lower recycling ratios of HG1-9 conjugates and their dissociation from receptors promote the accurate and efficient release of their loaded drugs. These results suggest that aptamer HG1-9 could be provided as a versatile tool for specific and effective delivery of diverse therapeutic payloads.
Collapse
Affiliation(s)
- Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junyan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
11
|
Desale SE, Chidambaram H, Chinnathambi S. G-protein coupled receptor, PI3K and Rho signaling pathways regulate the cascades of Tau and amyloid-β in Alzheimer's disease. MOLECULAR BIOMEDICINE 2021; 2:17. [PMID: 35006431 PMCID: PMC8607389 DOI: 10.1186/s43556-021-00036-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease characterized by the presence of amyloid-β plaques in the extracellular environment and aggregates of Tau protein that forms neurofibrillary tangles (NFTs) in neuronal cells. Along with these pathological proteins, the disease shows neuroinflammation, neuronal death, impairment in the immune function of microglia and synaptic loss, which are mediated by several important signaling pathways. The PI3K/Akt-mediated survival-signaling pathway is activated by many receptors such as G-protein coupled receptors (GPCRs), triggering receptor expressed on myeloid cells 2 (TREM2), and lysophosphatidic acid (LPA) receptor. The signaling pathway not only increases the survival of neurons but also regulates inflammation, phagocytosis, cellular protection, Tau phosphorylation and Aβ secretion as well. In this review, we focused on receptors, which activate PI3K/Akt pathway and its potential to treat Alzheimer's disease. Among several membrane receptors, GPCRs are the major drug targets for therapy, and GPCR signaling pathways are altered during Alzheimer's disease. Several GPCRs are involved in the pathogenic progression, phosphorylation of Tau protein by activation of various cellular kinases and are involved in the amyloidogenic pathway of amyloid-β synthesis. Apart from various GPCR signaling pathways, GPCR regulating/ interacting proteins are involved in the pathogenesis of Alzheimer's disease. These include several small GTPases, Ras homolog enriched in brain, GPCR associated sorting proteins, β-arrestins, etc., that play a critical role in disease progression and has been elaborated in this review.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
12
|
Small GTPases of the Rab and Arf Families: Key Regulators of Intracellular Trafficking in Neurodegeneration. Int J Mol Sci 2021; 22:ijms22094425. [PMID: 33922618 PMCID: PMC8122874 DOI: 10.3390/ijms22094425] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Small guanosine triphosphatases (GTPases) of the Rab and Arf families are key regulators of vesicle formation and membrane trafficking. Membrane transport plays an important role in the central nervous system. In this regard, neurons require a constant flow of membranes for the correct distribution of receptors, for the precise composition of proteins and organelles in dendrites and axons, for the continuous exocytosis/endocytosis of synaptic vesicles and for the elimination of dysfunctional proteins. Thus, it is not surprising that Rab and Arf GTPases have been associated with neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Both pathologies share characteristics such as the presence of protein aggregates and/or the fragmentation of the Golgi apparatus, hallmarks that have been related to both Rab and Arf GTPases functions. Despite their relationship with neurodegenerative disorders, very few studies have focused on the role of these GTPases in the pathogenesis of neurodegeneration. In this review, we summarize their importance in the onset and progression of Alzheimer’s and Parkinson’s diseases, as well as their emergence as potential therapeutical targets for neurodegeneration.
Collapse
|
13
|
da Rocha JF, Bastos L, Domingues SC, Bento AR, Konietzko U, da Cruz E Silva OAB, Vieira SI. APP Binds to the EGFR Ligands HB-EGF and EGF, Acting Synergistically with EGF to Promote ERK Signaling and Neuritogenesis. Mol Neurobiol 2021; 58:668-688. [PMID: 33009641 DOI: 10.1007/s12035-020-02139-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
The amyloid precursor protein (APP) is a transmembrane glycoprotein central to Alzheimer's disease (AD) with functions in brain development and plasticity, including in neurogenesis and neurite outgrowth. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) are well-described neurotrophic and neuromodulator EGFR ligands, both implicated in neurological disorders, including AD. Pro-HB-EGF arose as a putative novel APP interactor in a human brain cDNA library yeast two-hybrid screen. Based on their structural and functional similarities, we first aimed to verify if APP could bind to (HB-)EGF proforms. Here, we show that APP interacts with these two EGFR ligands, and further characterized the effects of APP-EGF interaction in ERK activation and neuritogenesis. Yeast co-transformation and co-immunoprecipitation assays confirmed APP interaction with HB-EGF. Co-immunoprecipitation also revealed that APP binds to cellular pro-EGF. Overexpression of HB-EGF in HeLa cells, or exposure of SH-SY5Y cells to EGF, both resulted in increased APP protein levels. EGF and APP were observed to synergistically activate the ERK pathway, crucial for neuronal differentiation. Immunofluorescence analysis of cellular neuritogenesis in APP overexpression and EGF exposure conditions confirmed a synergistic effect in promoting the number and the mean length of neurite-like processes. Synergistic ERK activation and neuritogenic effects were completely blocked by the EGFR inhibitor PD 168393, implying APP/EGF-induced activation of EGFR as part of the mechanism. This work shows novel APP protein interactors and provides a major insight into the APP/EGF-driven mechanisms underlying neurite outgrowth and neuronal differentiation, with potential relevance for AD and for adult neuroregeneration.
Collapse
Affiliation(s)
- Joana F da Rocha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Luísa Bastos
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
- Roche Sistemas de Diagnósticos, Lda, 2720-413, Amadora, Portugal
| | - Sara C Domingues
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Ana R Bento
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Uwe Konietzko
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Odete A B da Cruz E Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal.
| |
Collapse
|
14
|
Lipocalin-2 Deficiency Reduces Oxidative Stress and Neuroinflammation and Results in Attenuation of Kainic Acid-Induced Hippocampal Cell Death. Antioxidants (Basel) 2021; 10:antiox10010100. [PMID: 33445746 PMCID: PMC7828212 DOI: 10.3390/antiox10010100] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 01/03/2023] Open
Abstract
The hippocampal cell death that follows kainic acid (KA)-induced seizures is associated with blood–brain barrier (BBB) leakage and oxidative stress. Lipocalin-2 (LCN2) is an iron-trafficking protein which contributes to both oxidative stress and inflammation. However, LCN2′s role in KA-induced hippocampal cell death is not clear. Here, we examine the effect of blocking LCN2 genetically on neuroinflammation and oxidative stress in KA-induced neuronal death. LCN2 deficiency reduced neuronal cell death and BBB leakage in the KA-treated hippocampus. In addition to LCN2 upregulation in the KA-treated hippocampus, circulating LCN2 levels were significantly increased in KA-treated wild-type (WT) mice. In LCN2 knockout mice, we found that the expressions of neutrophil markers myeloperoxidase and neutrophil elastase were decreased compared to their expressions in WT mice following KA treatment. Furthermore, LCN2 deficiency also attenuated KA-induced iron overload and oxidative stress in the hippocampus. These findings indicate that LCN2 may play an important role in iron-related oxidative stress and neuroinflammation in KA-induced hippocampal cell death.
Collapse
|
15
|
Shen R, Zhao X, He L, Ding Y, Xu W, Lin S, Fang S, Yang W, Sung K, Spencer B, Rissman RA, Lei M, Ding J, Wu C. Upregulation of RIN3 induces endosomal dysfunction in Alzheimer's disease. Transl Neurodegener 2020; 9:26. [PMID: 32552912 PMCID: PMC7301499 DOI: 10.1186/s40035-020-00206-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In Alzheimer's Disease (AD), about one-third of the risk genes identified by GWAS encode proteins that function predominantly in the endocytic pathways. Among them, the Ras and Rab Interactor 3(RIN3) is a guanine nucleotide exchange factor (GEF) for the Rab5 small GTPase family and has been implicated to be a risk factor for both late onset AD (LOAD) and sporadic early onset AD (sEOAD). However, how RIN3 is linked to AD pathogenesis is currently undefined. METHODS Quantitative PCR and immunoblotting were used to measure the RIN3 expression level in mouse brain tissues and cultured basal forebrain cholinergic neuron (BFCNs). Immunostaining was used to define subcellular localization of RIN3 and to visualize endosomal changes in cultured primary BFCNs and PC12 cells. Recombinant flag-tagged RIN3 protein was purified from HEK293T cells and was used to define RIN3-interactomes by mass spectrometry. RIN3-interacting partners were validated by co-immunoprecipitation, immunofluorescence and yeast two hybrid assays. Live imaging of primary neurons was used to examine axonal transport of amyloid precursor protein (APP) and β-secretase 1 (BACE1). Immunoblotting was used to detect protein expression, processing of APP and phosphorylated forms of Tau. RESULTS We have shown that RIN3 mRNA level was significantly increased in the hippocampus and cortex of APP/PS1 mouse brain. Basal forebrain cholinergic neurons (BFCNs) cultured from E18 APP/PS1 mouse embryos also showed increased RIN3 expression accompanied by early endosome enlargement. In addition, via its proline rich domain, RIN3 recruited BIN1(bridging integrator 1) and CD2AP (CD2 associated protein), two other AD risk factors, to early endosomes. Interestingly, overexpression of RIN3 or CD2AP promoted APP cleavage to increase its carboxyl terminal fragments (CTFs) in PC12 cells. Upregulation of RIN3 or the neuronal isoform of BIN1 increased phosphorylated Tau level. Therefore, upregulation of RIN3 expression promoted accumulation of APP CTFs and increased phosphorylated Tau. These effects by RIN3 was rescued by the expression of a dominant negative Rab5 (Rab5S34N) construct. Our study has thus pointed to that RIN3 acts through Rab5 to impact endosomal trafficking and signaling. CONCLUSION RIN3 is significantly upregulated and correlated with endosomal dysfunction in APP/PS1 mouse. Through interacting with BIN1 and CD2AP, increased RIN3 expression alters axonal trafficking and procession of APP. Together with our previous studies, our current work has thus provided important insights into the role of RIN3 in regulating endosomal signaling and trafficking.
Collapse
Affiliation(s)
- Ruinan Shen
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, 197 Ruijin Er Rd., Shanghai, 200025, China.,Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Xiaobei Zhao
- Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Lu He
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, 197 Ruijin Er Rd., Shanghai, 200025, China
| | - Yongbo Ding
- Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Wei Xu
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, 197 Ruijin Er Rd., Shanghai, 200025, China.,Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Suzhen Lin
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, 197 Ruijin Er Rd., Shanghai, 200025, China.,Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Savannah Fang
- Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Wanlin Yang
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, 197 Ruijin Er Rd., Shanghai, 200025, China.,Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA.,Department of Neurology, Zhuijiang Hospital, Southern Medical University, Guangzhou, China
| | - Kijung Sung
- Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA.,San Diego VA Health System, San Diego, CA, USA
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Jianqing Ding
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, 197 Ruijin Er Rd., Shanghai, 200025, China.
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA.
| |
Collapse
|
16
|
Elmatboly AM, Sherif AM, Deeb DA, Benmelouka A, Bin-Jumah MN, Aleya L, Abdel-Daim MM. The impact of proteostasis dysfunction secondary to environmental and genetic causes on neurodegenerative diseases progression and potential therapeutic intervention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11461-11483. [PMID: 32072427 DOI: 10.1007/s11356-020-07914-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Aggregation of particular proteins in the form of inclusion bodies or plaques followed by neuronal death is a hallmark of neurodegenerative proteopathies such as primary Parkinsonism, Alzheimer's disease, Lou Gehrig's disease, and Huntington's chorea. Complex polygenic and environmental factors implicated in these proteopathies. Accumulation of proteins in these disorders indicates a substantial disruption in protein homeostasis (proteostasis). Proteostasis or cellular proteome homeostasis is attained by the synchronization of a group of cellular mechanisms called the proteostasis network (PN), which is responsible for the stability of the proteome and achieves the equilibrium between synthesis, folding, and degradation of proteins. In this review, we will discuss the different types of PN and the impact of PN component dysfunction on the four major neurodegenerative diseases mentioned earlier. Graphical abstract.
Collapse
Affiliation(s)
| | - Ahmed M Sherif
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Dalia A Deeb
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Amira Benmelouka
- Faculty of Medicine, University of Algiers, Sidi M'Hamed, Algeria
| | - May N Bin-Jumah
- Biology Department, College Of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
17
|
Dong YM, Qin LD, Tong YF, He QE, Wang L, Song K. Multiple genome pattern analysis and signature gene identification for the Caucasian lung adenocarcinoma patients with different tobacco exposure patterns. PeerJ 2020; 8:e8349. [PMID: 32030321 PMCID: PMC6995662 DOI: 10.7717/peerj.8349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022] Open
Abstract
Background When considering therapies for lung adenocarcinoma (LUAD) patients, the carcinogenic mechanisms of smokers are believed to differ from those who have never smoked. The rising trend in the proportion of nonsmokers in LUAD urgently requires the understanding of such differences at a molecular level for the development of precision medicine. Methods Three independent LUAD tumor sample sets—TCGA, SPORE and EDRN—were used. Genome patterns of expression (GE), copy number variation (CNV) and methylation (ME) were reviewed to discover the differences between them for both smokers and nonsmokers. Tobacco-related signature genes distinguishing these two groups of LUAD were identified using the GE, ME and CNV values of the whole genome. To do this, a novel iterative multi-step selection method based on the partial least squares (PLS) algorithm was proposed to overcome the high variable dimension and high noise inherent in the data. This method can thoroughly evaluate the importance of genes according to their statistical differences, biological functions and contributions to the tobacco exposure classification model. The kernel partial least squares (KPLS) method was used to further optimize the accuracies of the classification models. Results Forty-three, forty-eight and seventy-five genes were identified as GE, ME and CNV signatures, respectively, to distinguish smokers from nonsmokers. Using only the gene expression values of these 43 GE signature genes, ME values of the 48 ME signature genes or copy numbers of the 75 CNV signature genes, the accuracies of TCGA training and SPORE/EDRN independent validation datasets all exceed 76%. More importantly, the focal amplicon in Telomerase Reverse Transcriptase in nonsmokers, the broad deletion in ChrY in male nonsmokers and the greater amplification of MDM2 in female nonsmokers may explain why nonsmokers of both genders tend to suffer LUAD. These pattern analysis results may have clear biological interpretation in the molecular mechanism of tumorigenesis. Meanwhile, the identified signature genes may serve as potential drug targets for the precision medicine of LUAD.
Collapse
Affiliation(s)
- Yan-mei Dong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Li-da Qin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yi-fan Tong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qi-en He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ling Wang
- The First Affiliated Hospital Oncology, Dalian Medical University, Dalian, Liaoning, China
| | - Kai Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
18
|
Samanta D, Clemente TM, Schuler BE, Gilk SD. Coxiella burnetii Type 4B Secretion System-dependent manipulation of endolysosomal maturation is required for bacterial growth. PLoS Pathog 2019; 15:e1007855. [PMID: 31869379 PMCID: PMC6953889 DOI: 10.1371/journal.ppat.1007855] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/10/2020] [Accepted: 12/05/2019] [Indexed: 01/24/2023] Open
Abstract
Upon host cell infection, the obligate intracellular bacterium Coxiella burnetii resides and multiplies within the Coxiella–Containing Vacuole (CCV). The nascent CCV progresses through the endosomal maturation pathway into a phagolysosome, acquiring endosomal and lysosomal markers, as well as acidic pH and active proteases and hydrolases. Approximately 24–48 hours post infection, heterotypic fusion between the CCV and host endosomes/lysosomes leads to CCV expansion and bacterial replication in the mature CCV. Initial CCV acidification is required to activate C. burnetii metabolism and the Type 4B Secretion System (T4BSS), which secretes effector proteins required for CCV maturation. However, we found that the mature CCV is less acidic (pH~5.2) than lysosomes (pH~4.8). Further, inducing CCV acidification to pH~4.8 causes C. burnetii lysis, suggesting C. burnetii actively regulates pH of the mature CCV. Because heterotypic fusion with host endosomes/lysosomes may influence CCV pH, we investigated endosomal maturation in cells infected with wildtype (WT) or T4BSS mutant (ΔdotA) C. burnetii. In WT-infected cells, we observed a significant decrease in proteolytically active, LAMP1-positive endolysosomal vesicles, compared to mock or ΔdotA-infected cells. Using a ratiometric assay to measure endosomal pH, we determined that the average pH of terminal endosomes in WT-infected cells was pH~5.8, compared to pH~4.75 in mock and ΔdotA-infected cells. While endosomes progressively acidified from the periphery (pH~5.5) to the perinuclear area (pH~4.7) in both mock and ΔdotA-infected cells, endosomes did not acidify beyond pH~5.2 in WT-infected cells. Finally, increasing lysosomal biogenesis by overexpressing the transcription factor EB resulted in smaller, more proteolytically active CCVs and a significant decrease in C. burnetii growth, indicating host lysosomes are detrimental to C. burnetii. Overall, our data suggest that C. burnetii inhibits endosomal maturation to reduce the number of proteolytically active lysosomes available for heterotypic fusion with the CCV, possibly as a mechanism to regulate CCV pH. The obligate intracellular bacterium Coxiella burnetii causes human Q fever, which manifests as a flu-like illness but can develop into a life-threatening and difficult to treat endocarditis. C. burnetii, in contrast to many other intracellular bacteria, thrives within a lysosome-like vacuole in host cells. However, we previously found that the C. burnetii vacuole is not as acidic as lysosomes and increased acidification kills the bacteria, suggesting that C. burnetii regulates the pH of its vacuole. Here, we discovered that C. burnetii blocks endolysosomal maturation and acidification during host cell infection, resulting in fewer lysosomes in the host cell. Moreover, increasing lysosomes in the host cells inhibited C. burnetii growth. Together, our study suggests that C. burnetii regulates vacuole acidity and blocks endosomal maturation in order to produce a permissive intracellular niche.
Collapse
Affiliation(s)
- Dhritiman Samanta
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Tatiana M. Clemente
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Baleigh E. Schuler
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stacey D. Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
19
|
Brooks LRK, Mias GI. Data-Driven Analysis of Age, Sex, and Tissue Effects on Gene Expression Variability in Alzheimer's Disease. Front Neurosci 2019. [DOI: 10.3389/fnins.2019.00392
expr 953166181 + 832251875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
20
|
Brooks LRK, Mias GI. Data-Driven Analysis of Age, Sex, and Tissue Effects on Gene Expression Variability in Alzheimer's Disease. Front Neurosci 2019; 13:392. [PMID: 31068785 PMCID: PMC6491842 DOI: 10.3389/fnins.2019.00392] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/05/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) has been categorized by the Centers for Disease Control and Prevention (CDC) as the 6th leading cause of death in the United States. AD is a significant health-care burden because of its increased occurrence (specifically in the elderly population), and the lack of effective treatments and preventive methods. With an increase in life expectancy, the CDC expects AD cases to rise to 15 million by 2060. Aging has been previously associated with susceptibility to AD, and there are ongoing efforts to effectively differentiate between normal and AD age-related brain degeneration and memory loss. AD targets neuronal function and can cause neuronal loss due to the buildup of amyloid-beta plaques and intracellular neurofibrillary tangles. Our study aims to identify temporal changes within gene expression profiles of healthy controls and AD subjects. We conducted a meta-analysis using publicly available microarray expression data from AD and healthy cohorts. For our meta-analysis, we selected datasets that reported donor age and gender, and used Affymetrix and Illumina microarray platforms (8 datasets, 2,088 samples). Raw microarray expression data were re-analyzed, and normalized across arrays. We then performed an analysis of variance, using a linear model that incorporated age, tissue type, sex, and disease state as effects, as well as study to account for batch effects, and included binary interactions between factors. Our results identified 3,735 statistically significant (Bonferroni adjusted p < 0.05) gene expression differences between AD and healthy controls, which we filtered for biological effect (10% two-tailed quantiles of mean differences between groups) to obtain 352 genes. Interesting pathways identified as enriched comprised of neurodegenerative diseases pathways (including AD), and also mitochondrial translation and dysfunction, synaptic vesicle cycle and GABAergic synapse, and gene ontology terms enrichment in neuronal system, transmission across chemical synapses and mitochondrial translation. Overall our approach allowed us to effectively combine multiple available microarray datasets and identify gene expression differences between AD and healthy individuals including full age and tissue type considerations. Our findings provide potential gene and pathway associations that can be targeted to improve AD diagnostics and potentially treatment or prevention.
Collapse
Affiliation(s)
- Lavida R K Brooks
- Microbiology and Molecular Genetics, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - George I Mias
- Biochemistry and Molecular Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
21
|
Kurtishi A, Rosen B, Patil KS, Alves GW, Møller SG. Cellular Proteostasis in Neurodegeneration. Mol Neurobiol 2018; 56:3676-3689. [PMID: 30182337 DOI: 10.1007/s12035-018-1334-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
The term proteostasis reflects the fine-tuned balance of cellular protein levels, mediated through a vast network of biochemical pathways. This requires the regulated control of protein folding, post-translational modification, and protein degradation. Due to the complex interactions and intersection of proteostasis pathways, exposure to stress conditions may lead to a disruption of the entire network. Incorrect protein folding and/or modifications during protein synthesis results in inactive or toxic proteins, which may overload degradation mechanisms. Further, a disruption of autophagy and the endoplasmic reticulum degradation pathway may result in additional cellular stress which could ultimately lead to cell death. Neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis all share common risk factors such as oxidative stress, aging, environmental stress, and protein dysfunction; all of which alter cellular proteostasis. The differing pathologies observed in neurodegenerative diseases are determined by factors such as location-specific neuronal death, source of protein dysfunction, and the cell's ability to counter proteotoxicity. In this review, we discuss how the disruption in cellular proteostasis contributes to the onset and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alberim Kurtishi
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, New York, 11439, USA
| | - Benjamin Rosen
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, New York, 11439, USA
| | - Ketan S Patil
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, New York, 11439, USA
| | - Guido W Alves
- Norwegian Center for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Simon G Møller
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, New York, 11439, USA. .,Norwegian Center for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
22
|
Xu W, Fang F, Ding J, Wu C. Dysregulation of Rab5-mediated endocytic pathways in Alzheimer's disease. Traffic 2018; 19:253-262. [PMID: 29314494 PMCID: PMC5869093 DOI: 10.1111/tra.12547] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022]
Abstract
Increasing evidence has pointed to that dysregulation of the endo-lysosomal system is an early cellular phenotype of pathogenesis for Alzheimer's disease (AD). Rab5, a small GTPase, plays a critical role in mediating these processes. Abnormal overactivation of Rab5 has been observed in post-mortem brain samples of Alzheimer's patients as well as brain samples of mouse models of AD. Recent genome-wide association studies of AD have identified RIN3 (Ras and Rab interactor 3) as a novel risk factor for the disease. RIN3 that functions as a guanine nucleotide exchange factor for Rab5 may serve as an important activator for Rab5 in AD pathogenesis. In this review, we present recent research highlights on the possible roles of dysregulation of Rab5-mediated endocytic pathways in contributing to early pathogenesis of AD.
Collapse
Affiliation(s)
- Wei Xu
- Institute of Neurology and Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Fang Fang
- Institute of Neurology and Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Jianqing Ding
- Institute of Neurology and Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
23
|
Chen XQ, Sawa M, Mobley WC. Dysregulation of neurotrophin signaling in the pathogenesis of Alzheimer disease and of Alzheimer disease in Down syndrome. Free Radic Biol Med 2018; 114:52-61. [PMID: 29031834 PMCID: PMC5748266 DOI: 10.1016/j.freeradbiomed.2017.10.341] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022]
Abstract
Neurotrophic factors, including the members of the neurotrophin family, play important roles in the development and maintenance of the nervous system. Trophic factor signals must be transmitted over long distances from axons and dendrites to the cell bodies of neurons. A mode of signaling well suited to the challenge of robust long distance signaling is the signaling endosome. We review the biology of signaling endosomes and the "signaling endosome hypothesis". Evidence for disruption of signaling endosome function in disorders of the nervous system is also reviewed. Changes in endosome structure in Alzheimer disease (AD) and Down syndrome (DS) are present early in these disorders. Data for the APP products responsible are reviewed and the consequent changes in signaling from endosomes discussed. We conclude by pointing to the need for additional studies to explore the biology of signaling endosomes in normal neurons and to elucidate their role in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- University of California, San Diego, La Jolla, CA 92093, United States.
| | - Mariko Sawa
- University of California, San Diego, La Jolla, CA 92093, United States
| | - William C Mobley
- University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
24
|
Colacurcio DJ, Pensalfini A, Jiang Y, Nixon RA. Dysfunction of autophagy and endosomal-lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer's Disease. Free Radic Biol Med 2018; 114:40-51. [PMID: 28988799 PMCID: PMC5748263 DOI: 10.1016/j.freeradbiomed.2017.10.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Individuals with Down syndrome (DS) have an increased risk of early-onset Alzheimer's Disease (AD), largely owing to a triplication of the APP gene, located on chromosome 21. In DS and AD, defects in endocytosis and lysosomal function appear at the earliest stages of disease development and progress to widespread failure of intraneuronal waste clearance, neuritic dystrophy and neuronal cell death. The same genetic factors that cause or increase AD risk are also direct causes of endosomal-lysosomal dysfunction, underscoring the essential partnership between this dysfunction and APP metabolites in AD pathogenesis. The appearance of APP-dependent endosome anomalies in DS beginning in infancy and evolving into the full range of AD-related endosomal-lysosomal deficits provides a unique opportunity to characterize the earliest pathobiology of AD preceding the classical neuropathological hallmarks. Facilitating this characterization is the authentic recapitulation of this endosomal pathobiology in peripheral cells from people with DS and in trisomy mouse models. Here, we review current research on endocytic-lysosomal dysfunction in DS and AD, the emerging importance of APP/βCTF in initiating this dysfunction, and the potential roles of additional trisomy 21 genes in accelerating endosomal-lysosomal impairment in DS. Collectively, these studies underscore the growing value of investigating DS to probe the biological origins of AD as well as to understand and ameliorate the developmental disability of DS.
Collapse
Affiliation(s)
- Daniel J Colacurcio
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anna Pensalfini
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Cell Biology, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
25
|
Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. FASEB J 2017; 31:2729-2743. [PMID: 28663518 DOI: 10.1096/fj.201700359] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA; .,Department of Psychiatry and Department of Cell Biology, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|
26
|
Abstract
Neurons are highly polarized cells that exhibit one of the more complex morphology and function. Neuronal intracellular trafficking plays a key role in dictating the directionality and specificity of vesicle formation, transport and fusion, allowing the transmission of information in sophisticate cellular network. Thus, the integrity of protein trafficking and spatial organization is especially important in neuronal cells. RAB proteins, small monomeric GTPases belonging to the RAS superfamily, spatially and temporally orchestrate specific vesicular trafficking steps. In this review we summarise the known roles of RAB GTPases involved in the maintenance of neuronal vesicular trafficking in the central nervous system. In particular, we discriminate the axonal pre-synaptic trafficking and dendritic post-synaptic trafficking, to better underlie how a correct orchestration of vesicle movement is necessary to maintain neuronal polarity and then, to permit an accurate architecture and functionality of synaptic activity.
Collapse
Affiliation(s)
- Maria Lidia Mignogna
- a Molecular Genetics of Intellectual Disabilities Unit, Division of Neuroscience at IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Patrizia D'Adamo
- a Molecular Genetics of Intellectual Disabilities Unit, Division of Neuroscience at IRCCS San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
27
|
Demirsoy S, Martin S, Maes H, Agostinis P. Adapt, Recycle, and Move on: Proteostasis and Trafficking Mechanisms in Melanoma. Front Oncol 2016; 6:240. [PMID: 27896217 PMCID: PMC5108812 DOI: 10.3389/fonc.2016.00240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Melanoma has emerged as a paradigm of a highly aggressive and plastic cancer, capable to co-opt the tumor stroma in order to adapt to the hostile microenvironment, suppress immunosurveillance mechanisms, and disseminate. In particular, oncogene- and aneuploidy-driven dysregulations of proteostasis in melanoma cells impose a rewiring of central proteostatic processes, such as the heat shock and unfolded protein responses, autophagy, and the endo-lysosomal system, to avoid proteotoxicity. Research over the past decade has indicated that alterations in key nodes of these proteostasis pathways act in conjunction with crucial oncogenic drivers to increase intrinsic adaptations of melanoma cells against proteotoxic stress, modulate the high metabolic demand of these cancer cells and the interface with other stromal cells, through the heightened release of soluble factors or exosomes. Here, we overview and discuss how key proteostasis pathways and vesicular trafficking mechanisms are turned into vital conduits of melanoma progression, by supporting cancer cell's adaptation to the microenvironment, limiting or modulating the ability to respond to therapy and fueling melanoma dissemination.
Collapse
Affiliation(s)
- Seyma Demirsoy
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Shaun Martin
- Laboratory for Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Hannelore Maes
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Patrizia Agostinis
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| |
Collapse
|
28
|
Xu W, Weissmiller AM, White JA, Fang F, Wang X, Wu Y, Pearn ML, Zhao X, Sawa M, Chen S, Gunawardena S, Ding J, Mobley WC, Wu C. Amyloid precursor protein-mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration. J Clin Invest 2016; 126:1815-33. [PMID: 27064279 PMCID: PMC4855914 DOI: 10.1172/jci82409] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 02/24/2016] [Indexed: 12/17/2022] Open
Abstract
The endosome/lysosome pathway is disrupted early in the course of both Alzheimer's disease (AD) and Down syndrome (DS); however, it is not clear how dysfunction in this pathway influences the development of these diseases. Herein, we explored the cellular and molecular mechanisms by which endosomal dysfunction contributes to the pathogenesis of AD and DS. We determined that full-length amyloid precursor protein (APP) and its β-C-terminal fragment (β-CTF) act though increased activation of Rab5 to cause enlargement of early endosomes and to disrupt retrograde axonal trafficking of nerve growth factor (NGF) signals. The functional impacts of APP and its various products were investigated in PC12 cells, cultured rat basal forebrain cholinergic neurons (BFCNs), and BFCNs from a mouse model of DS. We found that the full-length wild-type APP (APPWT) and β-CTF both induced endosomal enlargement and disrupted NGF signaling and axonal trafficking. β-CTF alone induced atrophy of BFCNs that was rescued by the dominant-negative Rab5 mutant, Rab5S34N. Moreover, expression of a dominant-negative Rab5 construct markedly reduced APP-induced axonal blockage in Drosophila. Therefore, increased APP and/or β-CTF impact the endocytic pathway to disrupt NGF trafficking and signaling, resulting in trophic deficits in BFCNs. Our data strongly support the emerging concept that dysregulation of Rab5 activity contributes importantly to early pathogenesis of AD and DS.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosciences, UCSD, La Jolla, California, USA
| | | | - Joseph A. White
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Fang Fang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosciences, UCSD, La Jolla, California, USA
| | - Xinyi Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Matthew L. Pearn
- Department of Anesthesiology, UCSD, La Jolla, California, USA
- VA San Diego Healthcare System, San Diego, California, USA
| | - Xiaobei Zhao
- Department of Neurosciences, UCSD, La Jolla, California, USA
| | - Mariko Sawa
- Department of Neurosciences, UCSD, La Jolla, California, USA
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Chengbiao Wu
- Department of Neurosciences, UCSD, La Jolla, California, USA
| |
Collapse
|
29
|
Kim S, Sato Y, Mohan PS, Peterhoff C, Pensalfini A, Rigoglioso A, Jiang Y, Nixon RA. Evidence that the rab5 effector APPL1 mediates APP-βCTF-induced dysfunction of endosomes in Down syndrome and Alzheimer's disease. Mol Psychiatry 2016; 21:707-16. [PMID: 26194181 PMCID: PMC4721948 DOI: 10.1038/mp.2015.97] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022]
Abstract
β-Amyloid precursor protein (APP) and its cleaved products are strongly implicated in Alzheimer's disease (AD). Endosomes are highly active APP processing sites, and endosome anomalies associated with upregulated expression of early endosomal regulator, rab5, are the earliest known disease-specific neuronal response in AD. Here, we show that the rab5 effector APPL1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif) mediates rab5 overactivation in Down syndrome (DS) and AD, which is caused by elevated levels of the β-cleaved carboxy-terminal fragment of APP (βCTF). βCTF recruits APPL1 to rab5 endosomes, where it stabilizes active GTP-rab5, leading to pathologically accelerated endocytosis, endosome swelling and selectively impaired axonal transport of rab5 endosomes. In DS fibroblasts, APPL1 knockdown corrects these endosomal anomalies. βCTF levels are also elevated in AD brain, which is accompanied by abnormally high recruitment of APPL1 to rab5 endosomes as seen in DS fibroblasts. These studies indicate that persistent rab5 overactivation through βCTF-APPL1 interactions constitutes a novel APP-dependent pathogenic pathway in AD.
Collapse
Affiliation(s)
- S Kim
- Cellular and Molecular Biology Training Program, New York University School of Medicine, New York, NY, USA
| | - Y Sato
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - P S Mohan
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA,Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - C Peterhoff
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - A Pensalfini
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - A Rigoglioso
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Y Jiang
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA,Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - R A Nixon
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA,Department of Psychiatry, New York University School of Medicine, New York, NY, USA,Department of Cell Biology, New York University School of Medicine, New York, NY, USA,Center for Dementia Research, Nathan S Kline Institute, New York University School of Medicine, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA. E-mail:
| |
Collapse
|
30
|
Jiang Y, Rigoglioso A, Peterhoff CM, Pawlik M, Sato Y, Bleiwas C, Stavrides P, Smiley JF, Ginsberg SD, Mathews PM, Levy E, Nixon RA. Partial BACE1 reduction in a Down syndrome mouse model blocks Alzheimer-related endosomal anomalies and cholinergic neurodegeneration: role of APP-CTF. Neurobiol Aging 2015; 39:90-8. [PMID: 26923405 DOI: 10.1016/j.neurobiolaging.2015.11.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 11/30/2022]
Abstract
β-amyloid precursor protein (APP) and amyloid beta peptide (Aβ) are strongly implicated in Alzheimer's disease (AD) pathogenesis, although recent evidence has linked APP-βCTF generated by BACE1 (β-APP cleaving enzyme 1) to the development of endocytic abnormalities and cholinergic neurodegeneration in early AD. We show that partial BACE1 genetic reduction prevents these AD-related pathological features in the Ts2 mouse model of Down syndrome. Partially reducing BACE1 by deleting one BACE1 allele blocked development of age-related endosome enlargement in the medial septal nucleus, cerebral cortex, and hippocampus and loss of choline acetyltransferase (ChAT)-positive medial septal nucleus neurons. BACE1 reduction normalized APP-βCTF elevation but did not alter Aβ40 and Aβ42 peptide levels in brain, supporting a critical role in vivo for APP-βCTF in the development of these abnormalities. Although ameliorative effects of BACE1 inhibition on β-amyloidosis and synaptic proteins levels have been previously noted in AD mouse models, our results highlight the additional potential value of BACE1 modulation in therapeutic targeting of endocytic dysfunction and cholinergic neurodegeneration in Down syndrome and AD.
Collapse
Affiliation(s)
- Ying Jiang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Andrew Rigoglioso
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | | | - Monika Pawlik
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Yutaka Sato
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Cynthia Bleiwas
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Philip Stavrides
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - John F Smiley
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA; Department of Neuroscience & Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Paul M Mathews
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA; Department of Cell Biology, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
31
|
Hu YB, Dammer EB, Ren RJ, Wang G. The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl Neurodegener 2015; 4:18. [PMID: 26448863 PMCID: PMC4596472 DOI: 10.1186/s40035-015-0041-1] [Citation(s) in RCA: 443] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
The endosomal-lysosomal system is made up of a set of intracellular membranous compartments that dynamically interconvert, which is comprised of early endosomes, recycling endosomes, late endosomes, and the lysosome. In addition, autophagosomes execute autophagy, which delivers intracellular contents to the lysosome. Maturation of endosomes and/or autophagosomes into a lysosome creates an unique acidic environment within the cell for proteolysis and recycling of unneeded cellular components into usable amino acids and other biomolecular building blocks. In the endocytic pathway, gradual maturation of endosomes into a lysosome and acidification of the late endosome are accompanied by vesicle trafficking, protein sorting and targeted degradation of some sorted cargo. Two opposing sorting systems are operating in these processes: the endosomal sorting complex required for transport (ESCRT) supports targeted degradation and the retromer supports retrograde retrieval of certain cargo. The endosomal-lysosomal system is emerging as a central player in a host of neurodegenerative diseases, demonstrating potential roles which are likely to be revealed in pathogenesis and for viable therapeutic strategies. Here we focus on the physiological process of endosomal-lysosomal maturation, acidification and sorting systems along the endocytic pathway, and further discuss relationships between abnormalities in the endosomal-lysosomal system and neurodegenerative diseases, especially Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Yong-Bo Hu
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Eric B Dammer
- Department of Biochemistry, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Ru-Jing Ren
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Gang Wang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
32
|
Hippocampal endosomal, lysosomal, and autophagic dysregulation in mild cognitive impairment: correlation with aβ and tau pathology. J Neuropathol Exp Neurol 2015; 74:345-58. [PMID: 25756588 DOI: 10.1097/nen.0000000000000179] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Endosomal-lysosomal and autophagic dysregulation occurs in the hippocampus in prodromal Alzheimer disease (AD), but its relationship with β-amyloid (Aβ) and tau pathology remains unclear. To investigate this issue, we performed immunoblot analysis of hippocampal homogenates from cases with an antemortem clinical diagnosis of no cognitive impairment, mild cognitive impairment (MCI), and AD. Western blot analysis revealed significant increases in the acid hydrolase cathepsin D and early endosome marker rabaptin5 in the MCI group compared with AD, whereas levels of phosphorylated mammalian target of rapamycin proteins (pmTOR), total mammalian target of rapamycin (mTOR), p62, traf6, and LilrB2 were comparable across clinical groups. Hippocampal Aβ1-40 and Aβ1-42 concentrations and AT8-immunopositive neurofibrillary tangle density were not significantly different across the clinical groups. Greater cathepsin D expression was associated with global cognitive score and episodic memory score but not with mini mental state examination or advanced neuropathology criteria. These results indicate that alterations in hippocampal endosomal-lysosomal proteins in MCI are independent of tau or Aβ pathology.
Collapse
|
33
|
Abstract
Ubiquitin-dependent proteolysis is a major mechanism that downregulates misfolded proteins or those that have finished a programmed task. In the last two decades, neddylation has emerged as a major regulatory pathway for ubiquitination. Central to the neddylation pathway is the amyloid precursor protein (APP)-binding protein APP-BP1, which together with Uba3, plays an analogous role to the ubiquitin-activating enzyme E1 in nedd8 activation. Activated nedd8 covalently modifies and activates a major class of ubiquitin ligases called Cullin-RING ligases (CRLs). New evidence suggests that neddylation also modifies Type-1 transmembrane receptors such as APP. Here we review the functions of neddylation and summarize evidence suggesting that dysfunction of neddylation is involved in Alzheimer's disease.
Collapse
Affiliation(s)
- Yuzhi Chen
- Department of Geriatrics and Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
34
|
Ihara Y, Morishima-Kawashima M, Nixon R. The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2:a006361. [PMID: 22908190 PMCID: PMC3405832 DOI: 10.1101/cshperspect.a006361] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As neurons age, their survival depends on eliminating a growing burden of damaged, potentially toxic proteins and organelles-a capability that declines owing to aging and disease factors. Here, we review the two proteolytic systems principally responsible for protein quality control in neurons and their important contributions to Alzheimer disease pathogenesis. In the first section, the discovery of paired helical filament ubiquitination is described as a backdrop for discussing the importance of the ubiquitin-proteasome system in Alzheimer disease. In the second section, we review the prominent involvement of the lysosomal system beginning with pathological endosomal-lysosomal activation and signaling at the very earliest stages of Alzheimer disease followed by the progressive failure of autophagy. These abnormalities, which result in part from Alzheimer-related genes acting directly on these lysosomal pathways, contribute to the development of each of the Alzheimer neuropathological hallmarks and represent a promising therapeutic target.
Collapse
Affiliation(s)
- Yasuo Ihara
- Department of Neuropathology, Faculty of Life and Medical Science, Doshisha University, Kyoto, Japan.
| | | | | |
Collapse
|
35
|
Sann SB, Crane MM, Lu H, Jin Y. Rabx-5 regulates RAB-5 early endosomal compartments and synaptic vesicles in C. elegans. PLoS One 2012; 7:e37930. [PMID: 22675499 PMCID: PMC3366993 DOI: 10.1371/journal.pone.0037930] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/30/2012] [Indexed: 01/25/2023] Open
Abstract
Early endosomal membrane compartments are required for the formation and recycling of synaptic vesicles, but how these compartments are regulated is incompletely understood. We performed a forward genetic screen in C. elegans for mutations that affect RAB-5 labeled early endosomal compartments in GABAergic motoneurons. Here we report the isolation and characterization of one mutation, rabx-5. The rabx-5 mutation leads to decreased intensity of YFP::RAB-5 in the cell soma but increased intensity in the synaptic and intersynaptic regions of the axon. This effect is due to the bias of the cycling state of RAB-5, and results from a change in the organization of the early endosomal compartment as well as the membrane binding state of RAB-5. Synaptic vesicle accumulation is altered in rabx-5 mutants, and synaptic transmission from cholinergic neurons is decreased. Early endosomal membrane compartments show disorganization with ageing and rabx-5 mutant animals age faster. These results suggest that rabx-5 regulation of RAB-5 compartments is important for maintaining proper synaptic function throughout the lifetime.
Collapse
Affiliation(s)
- Sharon B. Sann
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (SS); (YJ)
| | - Matthew M. Crane
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Hang Lu
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- Howard Hughes Medical Institute University of California San Diego, La Jolla, California, United States of America
- * E-mail: (SS); (YJ)
| |
Collapse
|
36
|
Cholesterol-depletion corrects APP and BACE1 misstrafficking in NPC1-deficient cells. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1270-83. [PMID: 22551668 DOI: 10.1016/j.bbadis.2012.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 12/25/2022]
Abstract
Cholesterol accumulation in Niemann-Pick type C disease (NPC) causes increased levels of the amyloid-precursor-protein C-terminal fragments (APP-CTFs) and intracellular amyloid-β peptide (Aβ), the two central molecules in Alzheimer's disease (AD) pathogenesis. We previously reported that cholesterol accumulation in NPC-cells leads to cholesterol-dependent increased APP processing by β-secretase (BACE1) and decreased APP expression at the cell surface (Malnar et al. Biochim Biophys Acta. 1802 (2010) 682-691.). We hypothesized that increased formation of APP-CTFs and Aβ in NPC disease is due to cholesterol-mediated altered endocytic trafficking of APP and/or BACE1. Here, we show that APP endocytosis is prerequisite for enhanced Aβ levels in NPC-cells. Moreover, we observed that NPC cells show cholesterol dependent sequestration and colocalization of APP and BACE1 within enlarged early/recycling endosomes which can lead to increased β-secretase processing of APP. We demonstrated that increased endocytic localization of APP in NPC-cells is likely due to both its increased internalization and its decreased recycling to the cell surface. Our findings suggest that increased cholesterol levels, such as in NPC disease and sporadic AD, may be the upstream effector that drives amyloidogenic APP processing characteristic for Alzheimer's disease by altering endocytic trafficking of APP and BACE1.
Collapse
|
37
|
Kleschevnikov AM, Belichenko PV, Salehi A, Wu C. Discoveries in Down syndrome: moving basic science to clinical care. PROGRESS IN BRAIN RESEARCH 2012; 197:199-221. [PMID: 22541294 DOI: 10.1016/b978-0-444-54299-1.00010-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review describes recent discoveries in neurobiology of Down syndrome (DS) achieved with use of mouse genetic models and provides an overview of experimental approaches aimed at development of pharmacological restoration of cognitive function in people with this developmental disorder. Changes in structure and function of synaptic connections within the hippocampal formation of DS model mice, as well as alterations in innervations of the hippocampus by noradrenergic and cholinergic neuromodulatory systems, provided important clues for potential pharmacological treatments of cognitive disabilities in DS. Possible molecular and cellular mechanisms underlying this genetic disorder have been addressed. We discuss novel mechanisms engaging misprocessing of amyloid precursor protein (App) and other proteins, through their affect on axonal transport and endosomal dysfunction, to "Alzheimer-type" neurodegenerative processes that affect cognition later in life. In conclusion, a number of therapeutic strategies have been defined that may restore cognitive function in mouse models of DS. In the juvenile and young animals, these strategists focus on restoration of synaptic plasticity, rate of adult neurogenesis, and functions of the neuromodulatory subcortical systems. Later in life, the major focus is on recuperation of misprocessed App and related proteins. It is hoped that the identification of an increasing number of potential targets for pharmacotherapy of cognitive deficits in DS will add to the momentum for creating and completing clinical trials.
Collapse
Affiliation(s)
- A M Kleschevnikov
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
| | | | | | | |
Collapse
|
38
|
Gulappa T, Clouser CL, Menon KMJ. The role of Rab5a GTPase in endocytosis and post-endocytic trafficking of the hCG-human luteinizing hormone receptor complex. Cell Mol Life Sci 2011; 68:2785-95. [PMID: 21104291 PMCID: PMC4479136 DOI: 10.1007/s00018-010-0594-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/29/2010] [Accepted: 11/05/2010] [Indexed: 01/25/2023]
Abstract
This study examined the role of Rab5a GTPase in regulating hCG-induced internalization and trafficking of the hCG-LH receptor complex in transfected 293T cells. Coexpression of wild-type Rab5a (WT) or constitutively active Rab5a (Q79L) with LHR significantly increased hCG-induced LHR internalization. Conversely, coexpression of dominant negative Rab5a (S34N) with LHR reduced internalization. Confocal microscopy showed LHR colocalizing with Rab5a (WT) and Rab5a (Q79L) in punctuate structures. Coexpression of Rab5a (WT) and Rab5a (Q79L) with LHR significantly increased colocalization of LHR in early endosomes. Conversely, dominant negative Rab5a (S34N) decreased this colocalization. While Rab5a stimulated internalization of LHR, it significantly decreased LHR recycling to the cell surface and increased degradation. Dominant negative Rab5a (S34N) increased LHR recycling and decreased degradation. These results suggest that Rab5a plays a role in LHR trafficking by facilitating internalization and fusion to early endosomes, increasing the degradation of internalized receptor resulting in a reduction in LHR recycling.
Collapse
Affiliation(s)
- Thippeswamy Gulappa
- Departments of Obstetrics and Gynecology and Biological Chemistry, University of Michigan Medical School, University of Michigan, 6428 Medical Science I, 1301 Catherine Street, Ann Arbor, MI 48109-0617, USA
| | - Christine L. Clouser
- Departments of Obstetrics and Gynecology and Biological Chemistry, University of Michigan Medical School, University of Michigan, 6428 Medical Science I, 1301 Catherine Street, Ann Arbor, MI 48109-0617, USA
| | - K. M. J. Menon
- Departments of Obstetrics and Gynecology and Biological Chemistry, University of Michigan Medical School, University of Michigan, 6428 Medical Science I, 1301 Catherine Street, Ann Arbor, MI 48109-0617, USA
| |
Collapse
|
39
|
Zhan K, Xie H, Gall J, Ma M, Griesbeck O, Salehi A, Rao J. Real-time imaging of Rab5 activity using a prequenched biosensor. ACS Chem Biol 2011; 6:692-9. [PMID: 21506516 PMCID: PMC3684446 DOI: 10.1021/cb100377m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A key regulator of receptor-mediated endocytosis, Rab5, plays a pivotal role in cargo receptor internalization, endosomal maturation, and transduction and degradation of internalized signaling molecules and recycling cargo receptor. Stressful conditions within cells lead to increased Rab5 activation, and increasing evidence correlates Rab5 activity abnormalities with certain diseases. Current antibody-based imaging methods cannot distinguish active Rab5 from total Rab5 population and provide dynamic information on magnitude and duration of Rab5 activation in cellular events and pathogenesis. We report here novel molecular imaging probes that specifically target GTP-bound Rab5 associated with the early endosome membrane in live cells and fixed mouse brain tissues. Our Rab5 activity fluorescent biosensor (RAFB) contains the Rab5 binding domain of the Rab5 effector Rabaptin 5, a fluorophore (a quantum dot or fluorescent dye) and a cell-penetrating peptide for live-cell delivery. The quantum dot conjugated RAFB was able to image the elevated Rab5 activity in both the cortex and hippocampi tissues of a Ts65Dn mouse. A prequenched RAFB based on fluorescence resonance energy transfer (FRET) can image cytosolic active Rab5 in single live cells. This novel method should enable imaging of the biological process in which Rab5 activity is regulated in various cellular systems.
Collapse
Affiliation(s)
- Ke Zhan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, California 94305-5484
| | - Hexin Xie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, California 94305-5484
| | - Jessica Gall
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, California 94305-5484
| | - Manlung Ma
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, California 94305-5484
| | - Oliver Griesbeck
- Max-Planck-Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ahmad Salehi
- Department of Psychiatry, Stanford University School of Medicine, 1201 Welch Road, California 94305-5484
- Palo Alto VA Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304
| | - Jianghong Rao
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, California 94305-5484
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
40
|
Wesson DW, Nixon RA, Levy E, Wilson DA. Mechanisms of neural and behavioral dysfunction in Alzheimer's disease. Mol Neurobiol 2011; 43:163-79. [PMID: 21424679 PMCID: PMC3090690 DOI: 10.1007/s12035-011-8177-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
This review critically examines progress in understanding the link between Alzheimer's disease (AD) molecular pathogenesis and behavior, with an emphasis on the impact of amyloid-β. We present the argument that the AD research field requires more multifaceted analyses into the impacts of Alzheimer's pathogenesis which combine simultaneous molecular-, circuit-, and behavior-level approaches. Supporting this argument is a review of particular research utilizing similar, "systems-level" methods in mouse models of AD. Related to this, a critique of common physiological and behavioral models is made-highlighting the likely usefulness of more refined and specific tools in understanding the relationship between candidate molecular pathologies and behavioral dysfunction. Finally, we propose challenges for future research which, if met, may greatly extend our current understanding of how AD molecular pathology impacts neural network function and behavior and possibly may lead to refinements in disease therapeutics.
Collapse
Affiliation(s)
- Daniel W Wesson
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, New York University School of Medicine, Orangeburg, NY 10962, USA.
| | | | | | | |
Collapse
|
41
|
Eschbach J, Dupuis L. Cytoplasmic dynein in neurodegeneration. Pharmacol Ther 2011; 130:348-63. [PMID: 21420428 DOI: 10.1016/j.pharmthera.2011.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 12/11/2022]
Abstract
Cytoplasmic dynein 1 (later referred to as dynein) is the major molecular motor moving cargoes such as mitochondria, organelles and proteins towards the minus end of microtubules. Dynein is involved in multiple basic cellular functions, such as mitosis, autophagy and structure of endoplasmic reticulum and Golgi, but also in neuron specific functions in particular retrograde axonal transport. Dynein is regulated by a number of protein complexes, notably by dynactin. Several studies have supported indirectly the involvement of dynein in neurodegeneration associated with Alzheimer's disease, Parkinson's disease, Huntington's disease and motor neuron diseases. First, axonal transport disruption represents a common feature occurring in neurodegenerative diseases. Second, a number of dynein-dependent processes, including autophagy or clearance of aggregation-prone proteins, are found defective in most of these diseases. Third, a number of mutant genes in various neurodegenerative diseases are involved in the regulation of dynein transport. This includes notably mutations in the P150Glued subunit of dynactin that are found in Perry syndrome and motor neuron diseases. Interestingly, gene products that are mutant in Huntington's disease, Parkinson's disease, motor neuron disease or spino-cerebellar ataxia are also involved in the regulation of dynein motor activity or of cargo binding. Despite a constellation of indirect evidence, direct links between the motor itself and neurodegeneration are few, and this might be due to the requirement of fully active dynein for development. Here, we critically review the evidence of dynein involvement in different neurodegenerative diseases and discuss potential underlying mechanisms.
Collapse
Affiliation(s)
- Judith Eschbach
- Inserm U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Strasbourg, F-67085, France
| | | |
Collapse
|
42
|
Martinez-Pena y Valenzuela I, Mouslim C, Akaaboune M. Calcium/calmodulin kinase II-dependent acetylcholine receptor cycling at the mammalian neuromuscular junction in vivo. J Neurosci 2010; 30:12455-65. [PMID: 20844140 PMCID: PMC2948863 DOI: 10.1523/jneurosci.3309-10.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 07/23/2010] [Accepted: 07/27/2010] [Indexed: 11/21/2022] Open
Abstract
At the mammalian skeletal neuromuscular junction, cycling of nicotinic ACh receptors (nAChRs) is critical for the maintenance of a high postsynaptic receptor density. However, the mechanisms that regulate nAChRs recycling in living animals remain unknown. Using in vivo time-lapse imaging, fluorescence recovery after photobleaching, and biochemical pull down assays, we demonstrated that recycling of internalized nAChRs into fully functional and denervated synapses was promoted by both direct muscle stimulation and pharmacologically induced intracellular calcium elevations. Most of internalized nAChRs are recycled directly into synaptic sites. Chelating of intracellular calcium below resting level drastically decreased cycling of nAChRs. Furthermore we found that calcium-dependent AChR recycling is mediated by Ca(2+)/calmodulin-dependent kinase II (CaMKII). Inhibition of CaMKII selectively blocked recycling and caused intracellular accumulation of internalized nAChRs, whereas internalization of surface receptors remained unaffected. Electroporation of CaMKII-GFP isoforms into the sternomastoid muscle showed that muscle-specific CaMKIIβm isoform is highly expressed at the neuromuscular junction (NMJ) and precisely colocalized with nAChRs at crests of synaptic folds while the CaMKIIγ and δ isoforms are poorly expressed in synaptic sites. These results indicate that Ca(2+) along with CaMKII activity are critical for receptor recycling and may provide a mechanism by which the postsynaptic AChR density is maintained at the NMJ in vivo.
Collapse
Affiliation(s)
| | - Chakib Mouslim
- Department of Molecular, Cellular and Developmental Biology, and
| | - Mohammed Akaaboune
- Department of Molecular, Cellular and Developmental Biology, and
- Program in Neuroscience, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
43
|
Yang HJ, Joo Y, Hong BH, Ha SJ, Woo RS, Lee SH, Suh YH, Kim HS. Amyloid Precursor Protein Binding Protein-1 Is Up-regulated in Brains of Tg2576 Mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:229-33. [PMID: 20827337 DOI: 10.4196/kjpp.2010.14.4.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 07/27/2010] [Accepted: 08/05/2010] [Indexed: 12/13/2022]
Abstract
Amyloid precursor protein binding protein-1 (APP-BP1) binds to the carboxyl terminus of amyloid precursor protein and serves as a bipartite activation enzyme for the ubiquitin-like protein, NEDD8. Previously, it has been reported that APP-BP1 rescues the cell cycle S-M checkpoint defect in Ts41 hamster cells, that this rescue is dependent on the interaction of APP-BP1 with hUba3. The exogenous expression of APP-BP1 in neurons has been reported to cause DNA synthesis and apoptosis via a signaling pathway that is dependent on APP-BP1 binding to APP. These results suggest that APP-BP1 overexpression contributes to neurodegeneration. In the present study, we explored whether APP-BP1 expression was altered in the brains of Tg2576 mice, which is an animal model of Alzheimer's disease. APP-BP1 was found to be up-regulated in the hippocampus and cortex of 12 month-old Tg2576 mice compared to age-matched wild-type mice. In addition, APP-BP1 knockdown by siRNA treatment reduced cullin-1 neddylation in fetal neural stem cells, suggesting that APP-BP1 plays a role in cell cycle progression in the cells. Collectively, these results suggest that increased expression of APP-BP1, which has a role in cell cycle progression in neuronal cells, contributes to the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Hyun Jung Yang
- Department of Food and Nutrition, Kookmin University College of Natural Sciences, Seoul 136-702, Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Park B, Ying H, Shen X, Park JS, Qiu Y, Shyam R, Yue BYJT. Impairment of protein trafficking upon overexpression and mutation of optineurin. PLoS One 2010; 5:e11547. [PMID: 20634958 PMCID: PMC2902519 DOI: 10.1371/journal.pone.0011547] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/17/2010] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Glaucoma is a major blinding disease characterized by progressive loss of retinal ganglion cells (RGCs) and axons. Optineurin is one of the candidate genes identified so far. A mutation of Glu(50) to Lys (E50K) has been reported to be associated with a more progressive and severe disease. Optineurin, known to interact with Rab8, myosin VI and transferrin receptor (TfR), was speculated to have a role in protein trafficking. Here we determined whether, and how optineurin overexpression and E50K mutation affect the internalization of transferrin (Tf), widely used as a marker for receptor-mediated endocytosis. METHODOLOGY/PRINCIPAL FINDINGS Human retinal pigment epithelial (RPE) and rat RGC5 cells transfected to overexpress wild type optineurin were incubated with Texas Red-Tf to evaluate Tf uptake. Granular structures or dots referred to as foci formed in perinuclear regions after transfection. An impairment of the Tf uptake was in addition observed in transfected cells. Compared to overexpression of the wild type, E50K mutation yielded an increased foci formation and a more pronounced defect in Tf uptake. Co-transfection with TfR, but not Rab8 or myosin VI, construct rescued the optineurin inhibitory effect, suggesting that TfR was the factor involved in the trafficking phenotype. Forced expression of both wild type and E50K optineurin rendered TfR to colocalize with the foci. Surface biotinylation experiments showed that the surface level of TfR was also reduced, leading presumably to an impeded Tf uptake. A non-consequential Leu(157) to Ala (L157A) mutation that displayed much reduced foci formation and TfR binding had normal TfR distribution, normal surface TfR level and normal Tf internalization. CONCLUSIONS/SIGNIFICANCE The present study demonstrates that overexpression of wild type optineurin results in impairment of the Tf uptake in RPE and RGC5 cells. The phenotype is related to the optineurin interaction with TfR. Our results further indicate that E50K induces more dramatic effects than the wild type optineurin, and is thus a gain-of-function mutation. The defective protein trafficking may be one of the underlying bases why glaucoma pathology develops in patients with E50K mutation.
Collapse
Affiliation(s)
- BumChan Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Hongyu Ying
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Jeong-Seok Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Ye Qiu
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Rajalekshmy Shyam
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Beatrice Y. J. T. Yue
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
45
|
Zhang X, Zhou J, Chin MH, Schepmoes AA, Petyuk VA, Weitz KK, Petritis BO, Monroe ME, Camp DG, Wood SA, Melega WP, Bigelow DJ, Smith DJ, Qian WJ, Smith RD. Region-specific protein abundance changes in the brain of MPTP-induced Parkinson's disease mouse model. J Proteome Res 2010; 9:1496-509. [PMID: 20155936 PMCID: PMC2859700 DOI: 10.1021/pr901024z] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration in the nigrostriatal region of the brain; however, the neurodegeneration extends well beyond dopaminergic neurons. To gain a better understanding of the molecular changes relevant to PD, we applied two-dimensional LC-MS/MS to comparatively analyze the proteome changes in four brain regions (striatum, cerebellum, cortex, and the rest of brain) using a MPTP-induced PD mouse model with the objective to identify potential nigrostriatal-specific and other region-specific protein abundance changes. The combined analyses resulted in the identification of 4,895 nonredundant proteins with at least two unique peptides per protein. The relative abundance changes in each analyzed brain region were estimated based on the spectral count information. A total of 518 proteins were observed with substantial MPTP-induced abundance changes across different brain regions. A total of 270 of these proteins were observed with specific changes occurring either only in the striatum and/or in the rest of the brain region that contains substantia nigra, suggesting that these proteins are associated with the underlying nigrostriatal pathways. Many of the proteins that exhibit changes were associated with dopamine signaling, mitochondrial dysfunction, the ubiquitin system, calcium signaling, the oxidative stress response, and apoptosis. A set of proteins with either consistent change across all brain regions or with changes specific to the cortex and cerebellum regions were also detected. Ubiquitin specific protease (USP9X), a deubiquination enzyme involved in the protection of proteins from degradation and promotion of the TGF-beta pathway, exhibited altered abundance in all brain regions. Western blot validation showed similar spatial changes, suggesting that USP9X is potentially associated with neurodegeneration. Together, this study for the first time presents an overall picture of proteome changes underlying both nigrostriatal pathways and other brain regions potentially involved in MPTP-induced neurodegeneration. The observed molecular changes provide a valuable reference resource for future hypothesis-driven functional studies of PD.
Collapse
Affiliation(s)
- Xu Zhang
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O Box 999, Richland, WA 99352
| | - Jianying Zhou
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O Box 999, Richland, WA 99352
| | - Mark H. Chin
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, P.O. Box 951735, Los Angeles, CA 90095
| | - Athena A. Schepmoes
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O Box 999, Richland, WA 99352
| | - Vladislav A. Petyuk
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O Box 999, Richland, WA 99352
| | - Karl K. Weitz
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O Box 999, Richland, WA 99352
| | - Brianne O. Petritis
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O Box 999, Richland, WA 99352
| | - Matthew E. Monroe
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O Box 999, Richland, WA 99352
| | - David G. Camp
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O Box 999, Richland, WA 99352
| | - Stephen A. Wood
- National Centre for Adult Stem Cell Research, Griffith University, Nathan, Queensland, 4111, Australia
| | - William P. Melega
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, P.O. Box 951735, Los Angeles, CA 90095
| | - Diana J. Bigelow
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O Box 999, Richland, WA 99352
| | - Desmond J. Smith
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, P.O. Box 951735, Los Angeles, CA 90095
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O Box 999, Richland, WA 99352
| | - Richard D. Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O Box 999, Richland, WA 99352
| |
Collapse
|
46
|
Tachi N, Hashimoto Y, Nawa M, Matsuoka M. TAG-1 is an inhibitor of TGFbeta2-induced neuronal death via amyloid beta precursor protein. Biochem Biophys Res Commun 2010; 394:119-25. [PMID: 20184861 DOI: 10.1016/j.bbrc.2010.02.127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 02/19/2010] [Indexed: 12/26/2022]
Abstract
Our earlier studies indicated that TGFbeta2-induced neuronal cell death by binding to the extracellular domain of amyloid beta precursor protein (APP) on the cell surface and by triggering an intracellular death signal pathway, mediated by a heterotrimeric G protein Go, Rac1/cdc42, ASK1, JNK, NADPH oxidase, and caspases in this order. Recently, transient axonal glycoprotein-1 (TAG-1), a glycophosphatidylinositol-linked protein, was identified as another natural ligand of APP. TAG-1 increases APP intracellular domain release and triggers FE65-dependent transcriptional activity in a gamma-secretase-dependent manner by binding to APP. In this study, we show that TAG-1 inhibits TGFbeta2-mediated neuronal cell death via APP by attenuating the binding of TGFbeta2 to APP in a gamma-secretase-independent manner. TAG-1 is expressed in murine hippocampal neurons at 8 weeks of age, but its expression is reduced at 8 and 20 months. These findings suggest that an age-related reduction of TAG-1 expression may predispose neurons to cell death, induced by the binding of TGFbeta2 to APP. This mechanism may contribute to the onset and the progression of Alzheimer's disease-relevant neuronal cell death.
Collapse
Affiliation(s)
- Nobuyuki Tachi
- Department of Pharmacology, Tokyo Medical University, 6-1-1 Shinjuku, Tokyo 160-8402, Japan
| | | | | | | |
Collapse
|
47
|
Ginsberg SD, Mufson EJ, Counts SE, Wuu J, Alldred MJ, Nixon RA, Che S. Regional selectivity of rab5 and rab7 protein upregulation in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis 2010; 22:631-9. [PMID: 20847427 PMCID: PMC3031860 DOI: 10.3233/jad-2010-101080] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Endocytic alterations are one of the earliest changes to occur in Alzheimer's disease (AD), and are hypothesized to be involved in the selective vulnerability of specific neuronal populations during the progression of AD. Previous microarray and real-time quantitative PCR experiments revealed an upregulation of the early endosomal effector rab5 and the late endosome constituent rab7 in the hippocampus of people with mild cognitive impairment (MCI) and AD. To assess whether these select rab GTPase gene expression changes are reflected in protein levels within selectively vulnerable brain regions (basal forebrain, frontal cortex, and hippocampus) and relatively spared areas (cerebellum and striatum), we performed immunoblot analysis using antibodies directed against rab5 and rab7 on postmortem human brain tissue harvested from cases with a premortem clinical diagnosis of no cognitive impairment (NCI), MCI, and AD. Results indicate selective upregulation of both rab5 and rab7 levels within basal forebrain, frontal cortex, and hippocampus in MCI and AD, which also correlated with Braak staging. In contrast, no differences in protein levels were found in the less vulnerable cerebellum and striatum. These regional immunoblot assays are consistent with single cell gene expression data, and provide protein-based evidence for endosomal markers contributing to the vulnerability of cell types within selective brain regions during the progression of AD.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, New York University Langone Medical Center, Orangeburg, NY 10962, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Hashimoto Y, Kurita M, Aiso S, Nishimoto I, Matsuoka M. Humanin inhibits neuronal cell death by interacting with a cytokine receptor complex or complexes involving CNTF receptor alpha/WSX-1/gp130. Mol Biol Cell 2009; 20:2864-73. [PMID: 19386761 DOI: 10.1091/mbc.e09-02-0168] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Humanin (HN) inhibits neuronal death induced by various Alzheimer's disease (AD)-related insults via an unknown receptor on cell membranes. Our earlier study indicated that the activation of STAT3 was essential for HN-induced neuroprotection, suggesting that the HN receptor may belong to the cytokine receptor family. In this study, a series of loss-of-function tests indicated that gp130, the common subunit of receptors belonging to the IL-6 receptor family, was essential for HN-induced neuroprotection. Overexpression of ciliary neurotrophic factor receptor alpha (CNTFR) and/or the IL-27 receptor subunit, WSX-1, but not that of any other tested gp130-related receptor subunit, up-regulated HN binding to neuronal cells, whereas siRNA-mediated knockdown of endogenous CNTFR and/or WSX-1 reduced it. These results suggest that both CNTFR and WSX-1 may be also involved in HN binding to cells. Consistent with these results, loss-of-functions of CNTFR or WSX-1 in neuronal cells nullified their responsiveness to HN-mediated protection. In vitro-reconstituted binding assays showed that HN, but not the other control peptide, induced the hetero-oligomerization of CNTFR, WSX-1, and gp130. Together, these results indicate that HN protects neurons by binding to a complex or complexes involving CNTFR/WSX-1/gp130.
Collapse
Affiliation(s)
- Yuichi Hashimoto
- Department of Pharmacology and Neuroscience, Tokyo Medical University, Shinjuku-ku, Tokyo 160-8402, Japan
| | | | | | | | | |
Collapse
|
49
|
TRIP12 functions as an E3 ubiquitin ligase of APP-BP1. Biochem Biophys Res Commun 2008; 374:294-8. [DOI: 10.1016/j.bbrc.2008.07.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Accepted: 07/07/2008] [Indexed: 11/19/2022]
|
50
|
Flotillin-dependent clustering of the amyloid precursor protein regulates its endocytosis and amyloidogenic processing in neurons. J Neurosci 2008; 28:2874-82. [PMID: 18337418 DOI: 10.1523/jneurosci.5345-07.2008] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The flotillins/reggie proteins are associated with noncaveolar membrane microdomains and have been implicated in the regulation of a clathrin- and caveolin-independent endocytosis pathway. Endocytosis is required for the amyloidogenic processing of the amyloid precursor protein (APP) and thus to initiate the release of the neurotoxic beta-amyloid peptide (Abeta), the major component of extracellular plaques found in the brains of Alzheimer's disease patients. Here, we report that small interference RNA-mediated downregulation of flotillin-2 impairs the endocytosis of APP, in both neuroblastoma cells and primary cultures of hippocampal neurons, and reduces the production of Abeta. Similar to tetanus neurotoxin endocytosis, but unlike the internalization of transferrin, clathrin-dependent endocytosis of APP requires cholesterol and adaptor protein-2 but is independent of epsin1 function. Moreover, on a nanoscale resolution using stimulated emission depletion microscopy and by Förster resonance energy transfer with fluorescence lifetime imaging microscopy, we provide evidence that flotillin-2 promotes the clustering of APP at the cell surface. We show that the interaction of flotillin-2 with APP is dependent on cholesterol and that clustering of APP enhances its endocytosis rate. Together, our data suggest that cholesterol/flotillin-dependent clustering of APP may stimulate the internalization into a specialized clathrin-dependent endocytosis pathway to promote amyloidogenic processing.
Collapse
|