1
|
Sandoval KC, Rychlik J, Choe KY. Calcium Dynamics in Hypothalamic Paraventricular Oxytocin Neurons and Astrocytes Associated with Social and Stress Stimuli. eNeuro 2025; 12:ENEURO.0196-24.2025. [PMID: 40262904 PMCID: PMC12071343 DOI: 10.1523/eneuro.0196-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025] Open
Abstract
Activation of hypothalamic paraventricular oxytocin (OXTPVN) neurons by social or stress stimuli triggers OXT release to promote social investigation and buffer adverse effects of stress, respectively. Astrocytes, a type of glial cells, can bidirectionally interact with hypothalamic neurons to participate in local activity regulation within the paraventricular nucleus (PVN). It remains unknown whether contextual factors related to stimuli, as well as biological factors such as sex, influence OXTPVN neuronal or astrocyte activity and/or their interactions. To address this question, we performed dual-color fiber photometry in freely behaving male and female mice to simultaneously record Ca2+ dynamics in OXTPVN neurons and astrocytes during acute social (i.e., interactions with familiar vs. unfamiliar conspecifics) and stress (i.e., looming shadow) stimuli. During social stimuli, we observed the most pronounced Ca2+ changes in OXTPVN neurons in females, revealing sex and familiarity context specificity. No astrocyte Ca2+ changes were detected in either sex regardless of conspecific familiarity. In contrast, looming shadow stress increased Ca2+ in both OXTPVN neurons and astrocytes in both sexes during an active escape ("run") strategy. Ca2+ level changes in OXTPVN neurons and astrocytes were significantly correlated during social investigations in both sexes regardless of conspecific familiarity. During looming shadow, this functional coupling was only observed in females during active escape. Together, our results suggest that sex, context, and behavioral strategy serve as major factors that shape the activity of OXTPVN neurons and astrocytes, as well as their functional coupling, to potentially aid the adaptive response to social or stress stimuli.
Collapse
Affiliation(s)
- Katy Celina Sandoval
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Joshua Rychlik
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Katrina Y Choe
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
2
|
Sun Y, Wang X, Chen Y, Luan Z, Hao R. The impact of exogenous Oxytocin on visual cortex plasticity across different stages of visual development. Sci Rep 2025; 15:12137. [PMID: 40204929 PMCID: PMC11982226 DOI: 10.1038/s41598-025-96573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
The plasticity of ocular dominance is most prominent during the critical period of visual development, influenced by the balance of excitatory and inhibitory synaptic transmission in the visual cortex. Astrocytes play a crucial role in regulating synaptic plasticity through phagocytosis of synapses. However, the ability of astrocytes to modulate synaptic plasticity after the critical period remains unclear. Oxytocin (OT), a neuropeptide involved in neural circuit formation, has shown potential in enhancing synaptic plasticity. This study explores the role of OT in restoring visual cortical plasticity during and after the critical period of visual development. We performed monocular deprivation (MD) on mice during the critical period and extended the deprivation until adulthood. Visual cortical plasticity was evaluated using pattern visual evoked potentials (PVEPs), immunofluorescence staining, and western blotting. Excitatory synaptic markers (VGLUT1, PSD- 95) and inhibitory synaptic markers (VGAT, Gephyrin) were analyzed. The effects of OT administration, alone or combined with reverse occlusion (RO), on ocular dominance plasticity and astrocyte activity were assessed. During the critical period, MD induced a significant ocular dominance shift with reduced cortical response from the deprived eye, primarily through decreased excitatory synaptic markers (VGLUT1: P < 0.05; PSD- 95: P < 0.05). OT administration further enhanced this shift by reducing GFAP expression and decreasing astrocytic phagocytosis of excitatory synapses. After the critical period, prolonged MD reduced excitatory synaptic marker expression in the visual cortex (P < 0.05), and RO alone did not restore cortical plasticity. However, the combination of OT and RO increased excitatory synaptic marker expression (VGLUT1: P < 0.05; PSD- 95: P < 0.05 and restored ocular dominance plasticity. Our findings demonstrate that OT can modulate astrocyte activity and enhance excitatory synaptic plasticity, facilitating the recovery of visual cortical plasticity both during and after the critical period. These results highlight the potential of OT as a therapeutic intervention for visual impairments caused by disrupted sensory experiences during development.
Collapse
Affiliation(s)
- Yifan Sun
- Clinical College of Ophthalmology, Tianjin Medical University, 300020, Tianjin, PR China
- Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin Eye Institute, 300020, Tianjin, PR China
| | - Xiao Wang
- Clinical College of Ophthalmology, Tianjin Medical University, 300020, Tianjin, PR China
- Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin Eye Institute, 300020, Tianjin, PR China
| | - Yamin Chen
- Clinical College of Ophthalmology, Tianjin Medical University, 300020, Tianjin, PR China
- Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin Eye Institute, 300020, Tianjin, PR China
| | - Zichen Luan
- Clinical College of Ophthalmology, Tianjin Medical University, 300020, Tianjin, PR China
- Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin Eye Institute, 300020, Tianjin, PR China
| | - Rui Hao
- Clinical College of Ophthalmology, Tianjin Medical University, 300020, Tianjin, PR China.
- Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin Eye Institute, 300020, Tianjin, PR China.
- Nankai University Affiliated Eye Hospital, Nankai University, 300020, Tianjin, PR China.
| |
Collapse
|
3
|
Watanabe A, Guo C, Sjöström PJ. The developmental profile of visual cortex astrocytes. iScience 2023; 26:106828. [PMID: 37250801 PMCID: PMC10212985 DOI: 10.1016/j.isci.2023.106828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/08/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
We investigated how astrocytes in layer 5 mouse visual cortex mature over postnatal days (P) 3-50. Across this age range, resting membrane potential increased, input resistance decreased, and membrane responses became more passive with age. Two-photon (2p) and confocal imaging of dye-loaded cells revealed that gap-junction coupling increased starting ∼P7. Morphological reconstructions revealed increased branch density but shorter branches after P20, suggesting that astrocyte branches may get pruned as tiling is established. Finally, we visualized spontaneous Ca2+ transients with 2p microscopy and found that Ca2+ events decorrelated, became more frequent and briefer with age. As astrocytes mature, spontaneous Ca2+ activity thus changes from relatively cell-wide, synchronous waves to local transients. Several astrocyte properties were stably mature from ∼P15, coinciding with eye opening, although morphology continued to develop. Our findings provide a descriptive foundation of astrocyte maturation, useful for the study of astrocytic impact on visual cortex critical period plasticity.
Collapse
Affiliation(s)
- Airi Watanabe
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
- Integrated Program in Neuroscience, Irving Ludmer Building, McGill University, 1033 Pine Avenue West, Montreal, QC H3A 1A1, Canada
| | - Connie Guo
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
- Department of Anatomy and Cell Biology, Faculty of Science, McGill University, Strathcona Anatomy and Dentistry Building, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Per Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| |
Collapse
|
4
|
Jiang YH, Li T, Liu Y, Liu X, Jia S, Hou C, Chen G, Wang H, Ling S, Gao Q, Wang XR, Wang YF. Contribution of inwardly rectifying K + channel 4.1 of supraoptic astrocytes to the regulation of vasopressin neuronal activity by hypotonicity. Glia 2023; 71:704-719. [PMID: 36408843 DOI: 10.1002/glia.24306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
Abstract
Astrocytic morphological plasticity and its modulation of adjacent neuronal activity are largely determined by astrocytic volume regulation, in which glial fibrillary acidic protein (GFAP), aquaporin 4 (AQP4), and potassium channels including inwardly rectifying K+ channel 4.1 (Kir4.1) are essential. However, associations of astrocyte-dominant Kir4.1 with other molecules in astrocytic volume regulation and the subsequent influence on neuronal activity remain unclear. Here, we report our study on these issues using primary cultures of rat pups' hypothalamic astrocytes and male adult rat brain slices. In astrocyte culture, hyposmotic challenge (HOC) significantly decreased GFAP monomer expression and astrocytic volume at 1.5 min and increased Kir4.1 expression and inwardly rectifying currents (IRCs) at 10 min. BaCl2 (100 μmol/l) suppressed the HOC-increased IRCs, which was simulated by VU0134992 (2 μmol/l), a Kir4.1 blocker. Preincubation of the astrocyte culture with TGN-020 (10 μmol/l, a specific AQP4 blocker) made the HOC-increased Kir4.1 currents insignificant. In hypothalamic brain slices, HOC initially decreased and then increased the firing rate of vasopressin (VP) neurons in the supraoptic nucleus. In the presence of BaCl2 or VU0134992, HOC-elicited rebound increase in VP neuronal activity was blocked. GFAP was molecularly associated with Kir4.1, which was increased by HOC at 20 min; this increase was blocked by BaCl2 . These results suggest that HOC-evoked astrocytic retraction or decrease in the volume and length of its processes is associated with increased Kir4.1 activity. Kir4.1 involvement in HOC-elicited astrocytic retraction is associated with AQP4 activity and GFAP plasticity, which together determines the rebound excitation of VP neurons.
Collapse
Affiliation(s)
- Yun-Hao Jiang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.,Neuroelectrophysiology Laboratory, School of Mental Health, Qiqihar Medical University, Qiqihar, China
| | - Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Chunmei Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Guichuan Chen
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hongyang Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuo Ling
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Qiang Gao
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiao-Ran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Heteromerization of Dopamine D2 and Oxytocin Receptor in Adult Striatal Astrocytes. Int J Mol Sci 2023; 24:ijms24054677. [PMID: 36902106 PMCID: PMC10002782 DOI: 10.3390/ijms24054677] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The ability of oxytocin (OT) to interact with the dopaminergic system through facilitatory D2-OT receptor (OTR) receptor-receptor interaction in the limbic system is increasingly considered to play roles in social or emotional behavior, and suggested to serve as a potential therapeutic target. Although roles of astrocytes in the modulatory effects of OT and dopamine in the central nervous system are well recognized, the possibility of D2-OTR receptor-receptor interaction in astrocytes has been neglected. In purified astrocyte processes from adult rat striatum, we assessed OTR and dopamine D2 receptor expression by confocal analysis. The effects of activation of these receptors were evaluated in the processes through a neurochemical study of glutamate release evoked by 4-aminopyridine; D2-OTR heteromerization was assessed by co-immunoprecipitation and proximity ligation assay (PLA). The structure of the possible D2-OTR heterodimer was estimated by a bioinformatic approach. We found that both D2 and OTR were expressed on the same astrocyte processes and controlled the release of glutamate, showing a facilitatory receptor-receptor interaction in the D2-OTR heteromers. Biochemical and biophysical evidence confirmed D2-OTR heterodimers on striatal astrocytes. The residues in the transmembrane domains four and five of both receptors are predicted to be mainly involved in the heteromerization. In conclusion, roles for astrocytic D2-OTR in the control of glutamatergic synapse functioning through modulation of astrocytic glutamate release should be taken into consideration when considering interactions between oxytocinergic and dopaminergic systems in striatum.
Collapse
|
6
|
Baudon A, Clauss Creusot E, Charlet A. [Emergent role of astrocytes in oxytocin-mediated modulatory control of neuronal circuits and brain functions]. Biol Aujourdhui 2023; 216:155-165. [PMID: 36744981 DOI: 10.1051/jbio/2022022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 02/07/2023]
Abstract
The neuropeptide oxytocin has been in the focus of scientists for decades due to its profound and pleiotropic effects on physiology, activity of neuronal circuits and behaviors. Until recently, it was believed that oxytocinergic action exclusively occurs through direct activation of neuronal oxytocin receptors. However, several studies demonstrated the existence and functional relevance of astroglial oxytocin receptors in various brain regions in the mouse and rat brain. Astrocytic signaling and activity are critical for many important physiological processes including metabolism, neurotransmitter clearance from the synaptic cleft and integrated brain functions. While it can be speculated that oxytocinergic action on astrocytes predominantly facilitates neuromodulation via the release of gliotransmitters, the precise role of astrocytic oxytocin receptors remains elusive. In this review, we discuss the latest studies on the interaction between the oxytocinergic system and astrocytes, and give details of underlying intracellular cascades.
Collapse
Affiliation(s)
- Angel Baudon
- Centre National de la Recherche Scientifique et Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| | - Etienne Clauss Creusot
- Centre National de la Recherche Scientifique et Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| | - Alexandre Charlet
- Centre National de la Recherche Scientifique et Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| |
Collapse
|
7
|
Zhao Z, He J, Chen Y, Wang Y, Wang C, Tan C, Liao J, Xiao G. The pathogenesis of idiopathic normal pressure hydrocephalus based on the understanding of AQP1 and AQP4. Front Mol Neurosci 2022; 15:952036. [PMID: 36204139 PMCID: PMC9530743 DOI: 10.3389/fnmol.2022.952036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a neurological disorder without a recognized cause. Aquaporins (AQPs) are transmembrane channels that carry water through cell membranes and are critical for cerebrospinal fluid circulation and cerebral water balance. The function of AQPs in developing and maintaining hydrocephalus should be studied in greater detail as a possible diagnostic and therapeutic tool. Recent research indicates that patients with iNPH exhibited high levels of aquaporin 1 and low levels of aquaporin 4 expression, suggesting that these AQPs are essential in iNPH pathogenesis. To determine the source of iNPH and diagnose and treat it, it is necessary to examine and appreciate their function in the genesis and maintenance of hydrocephalus. The expression, function, and regulation of AQPs in iNPH are reviewed in this article, in order to provide fresh targets and suggestions for future research.
Collapse
Affiliation(s)
- Zitong Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yibing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuchang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chuansen Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changwu Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junbo Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Gelei Xiao
| |
Collapse
|
8
|
Baudon A, Clauss Creusot E, Althammer F, Schaaf CP, Charlet A. Emerging role of astrocytes in oxytocin-mediated control of neural circuits and brain functions. Prog Neurobiol 2022; 217:102328. [PMID: 35870680 DOI: 10.1016/j.pneurobio.2022.102328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022]
Abstract
The neuropeptide oxytocin has been in the focus of scientists for decades due to its profound and pleiotropic effects on physiology, activity of neuronal circuits and behaviors, among which sociality. Until recently, it was believed that oxytocinergic action exclusively occurs through direct activation of neuronal oxytocin receptors. However, several studies demonstrated the existence and functional relevance of astroglial oxytocin receptors in various brain regions in the mouse and rat brain. Astrocytic signaling and activity is critical for many important physiological processes including metabolism, neurotransmitter clearance from the synaptic cleft and integrated brain functions. While it can be speculated that oxytocinergic action on astrocytes predominantly facilitates neuromodulation via the release of specific gliotransmitters, the precise role of astrocytic oxytocin receptors remains elusive. In this review, we discuss the latest studies on the interaction between the oxytocinergic system and astrocytes, including detailed information about intracellular cascades, and speculate about future research directions on astrocytic oxytocin signaling.
Collapse
Affiliation(s)
- Angel Baudon
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, Strasbourg 67000 France
| | - Etienne Clauss Creusot
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, Strasbourg 67000 France
| | | | | | - Alexandre Charlet
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, Strasbourg 67000 France.
| |
Collapse
|
9
|
Amato S, Averna M, Guidolin D, Pedrazzi M, Pelassa S, Capraro M, Passalacqua M, Bozzo M, Gatta E, Anderlini D, Maura G, Agnati LF, Cervetto C, Marcoli M. Heterodimer of A2A and Oxytocin Receptors Regulating Glutamate Release in Adult Striatal Astrocytes. Int J Mol Sci 2022; 23:ijms23042326. [PMID: 35216441 PMCID: PMC8879615 DOI: 10.3390/ijms23042326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Roles of astrocytes in the modulatory effects of oxytocin (OT) in central nervous system are increasingly considered. Nevertheless, OT effects on gliotransmitter release have been neglected. METHODS In purified astrocyte processes from adult rat striatum, we assessed OT receptor (OTR) and adenosine A2A receptor expression by confocal analysis. The effects of receptors activation on glutamate release from the processes were evaluated; A2A-OTR heteromerization was assessed by co-immunoprecipitation and PLA. Structure of the possible heterodimer of A2A and OT receptors was estimated by a bioinformatic approach. RESULTS Both A2A and OT receptors were expressed on the same astrocyte processes. Evidence for A2A-OTR receptor-receptor interaction was obtained by measuring the release of glutamate: OT inhibited the evoked glutamate release, while activation of A2A receptors, per se ineffective, abolished the OT effect. Biochemical and biophysical evidence for A2A-OTR heterodimers on striatal astrocytes was also obtained. The residues in the transmembrane domains 4 and 5 of both receptors are predicted to be mainly involved in the heteromerization. CONCLUSIONS When considering effects of OT in striatum, modulation of glutamate release from the astrocyte processes and of glutamatergic synapse functioning, and the interaction with A2A receptors on the astrocyte processes should be taken into consideration.
Collapse
Affiliation(s)
- Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
| | - Monica Averna
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (M.A.); (M.P.); (M.C.); (M.P.)
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Via Gabelli 63, 35122 Padova, Italy;
| | - Marco Pedrazzi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (M.A.); (M.P.); (M.C.); (M.P.)
| | - Simone Pelassa
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
| | - Michela Capraro
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (M.A.); (M.P.); (M.C.); (M.P.)
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (M.A.); (M.P.); (M.C.); (M.P.)
- Italian Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Matteo Bozzo
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy;
| | - Elena Gatta
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genova, Italy;
| | - Deanna Anderlini
- Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Blair Drive, St. Lucia, QLD 4067, Australia;
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy;
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
- Correspondence: (C.C.); (M.M.)
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (S.A.); (S.P.); (G.M.)
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova, Italy
- Correspondence: (C.C.); (M.M.)
| |
Collapse
|
10
|
Rosén A, Gennser M, Oscarsson N, Kvarnström A, Sandström G, Seeman-Lodding H, Simrén J, Zetterberg H. Protein tau concentration in blood increases after SCUBA diving: an observational study. Eur J Appl Physiol 2022; 122:993-1005. [PMID: 35142945 PMCID: PMC8926952 DOI: 10.1007/s00421-022-04892-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022]
Abstract
Purpose It is speculated that diving might be harmful to the nervous system. The aim of this study was to determine if established markers of neuronal injury were increased in the blood after diving. Methods Thirty-two divers performed two identical dives, 48 h apart, in a water-filled hyperbaric chamber pressurized to an equivalent of 42 m of sea water for 10 min. After one of the two dives, normobaric oxygen was breathed for 30 min, with air breathed after the other. Blood samples were obtained before and at 30–45 and 120 min after diving. Concentrations of glial fibrillary acidic, neurofilament light, and tau proteins were measured using single molecule array technology. Doppler ultrasound was used to detect venous gas emboli. Results Tau was significantly increased at 30–45 min after the second dive (p < 0.0098) and at 120 min after both dives (p < 0.0008/p < 0.0041). Comparison of matching samples showed that oxygen breathing after diving did not influence tau results. There was no correlation between tau concentrations and the presence of venous gas emboli. Glial fibrillary acidic protein was decreased 30–45 min after the first dive but at no other point. Neurofilament light concentrations did not change. Conclusions Tau seems to be a promising marker of dive-related neuronal stress, which is independent of the presence of venous gas emboli. Future studies could validate these results and determine if there is a quantitative relationship between dive exposure and change in tau blood concentration. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-022-04892-9.
Collapse
Affiliation(s)
- Anders Rosén
- Department of Anaesthesia and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Department of Anaesthesia and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Mikael Gennser
- Swedish Aerospace Physiology Centre, Division of Environmental Physiology, Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, KTH, Stockholm, Sweden
| | - Nicklas Oscarsson
- Department of Anaesthesia and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Anaesthesia and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andreas Kvarnström
- Department of Anaesthesia and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Anaesthesia and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Göran Sandström
- Department of Anaesthesia and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Swedish Armed Forces, Center for Defence Medicine, Gothenburg, Sweden
| | - Helen Seeman-Lodding
- Department of Anaesthesia and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Anaesthesia and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joel Simrén
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
11
|
Liu X, Wu G, Tang N, Li L, Liu C, Wang F, Ke S. Glymphatic Drainage Blocking Aggravates Brain Edema, Neuroinflammation via Modulating TNF-α, IL-10, and AQP4 After Intracerebral Hemorrhage in Rats. Front Cell Neurosci 2022; 15:784154. [PMID: 34975411 PMCID: PMC8718698 DOI: 10.3389/fncel.2021.784154] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Objective: The “Glymphatic” system, a network of perivascular tunnels wrapped by astrocyte endfeet, was reported to be closely associated with the diseases of the central nervous system. Here, we investigated the role of the glymphatic system in intracerebral hemorrhage (ICH) and its protective mechanism. Method: Experimental ICH model was induced by type IV collagenase in rats. Cerebral lymphatic blockage was induced by ligation and removal of cervical lymph nodes. The experimental rats were divided into sham-operated (SO) group, ICH group, and cerebral lymphatic blocking and ICH (ICH + CLB) group. Neurological scores were measured using the Garcia scoring system on the third and seventh day after ICH. Active caspase-3 was immunostained to evaluate neuronal apoptosis. Brain water content was calculated using the dry-wet specific gravity method. The expression of inflammatory factors TNF-α, IL-1β, and IL-10 were detected using ELISA. Aquaporins-4 (AQP-4) and glial fibrillary acidic protein (GFAP) were detected using western blot analysis. Results: The neurological scores of rats in the CLB + ICH group were significantly lower than those in the in ICH group. The number of active caspase-3 neurons was significantly higher in the CLB + ICH group compared to the ICH group. CLB significantly aggravated ICH-induced brain edema 3 d after ICH. There was an increase in the expression of TNF-α, IL-1β, IL-10, AQP-4, GFAP after ICH. The expression of TNF-α was significantly higher in the CLB + ICH group compared to ICH group 3 d after ICH while there was no difference 7 d after ICH. There was no statistical difference in the expression of IL-1β between the ICH group and CLB + ICH group. However, the expression of IL-10 in the CLB + ICH group was significantly lower than that in the ICH group. Lastly, AQP-4 expression was significantly lower in the CLB + ICH group compared to the ICH group while the expression of GFAP was higher in the CLB + ICH group compared to the ICH group. Conclusion: CLB exacerbated cerebral edema, neuroinflammation, neuronal apoptosis and caused neurological deficits in rats with ICH via down-regulating AQP-4, up-regulating inflammatory TNF-α and inhibiting IL-10 expression. The glymphatic drainage system protects against neurologic injury after ICH induction in rats under normal physiological conditions.
Collapse
Affiliation(s)
- Xichang Liu
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Gang Wu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Na Tang
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Li Li
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Cuimin Liu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Feng Wang
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shaofa Ke
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
12
|
Abstract
Oxytocin (OT) is a nonapeptide mainly produced in the supraoptic and paraventricular nuclei. OT in the brain and blood has extensive functions in both mental and physical activities. These functions are mediated by OT receptors (OTRs) that are distributed in a broad spectrum of tissues with dramatic sexual dimorphism. In both sexes, OT generally facilitates social cognition and behaviors, facilitates parental behavior and sexual activity and inhibits feeding and pain perception. However, there are significant differences in OT levels and distribution of OTRs in men from women. Thus, many OT functions in men are different from women, particularly in the reproduction. In men, the reproductive functions are relatively simple. In women, the reproductive functions involve menstrual cycle, pregnancy, parturition, lactation, and menopause. These functions make OT regulation of women's health and disease a unique topic of physiological and pathological studies. In menstruation, pre-ovulatory increase in OT secretion in the hypothalamus and the ovary can promote the secretion of gonadotropin-releasing hormone and facilitate ovulation. During pregnancy, increased OT synthesis and preterm release endow OT system the ability to promote maternal behavior and lactation. In parturition, cervix expansion-elicited pulse OT secretion and uterine OT release accelerate the expelling of fetus and reduce postpartum hemorrhage. During lactation, intermittent pulsatile OT secretion is necessary for the milk-ejection reflex and maternal behavior. Disorders in OT secretion can account for maternal depression and hypogalactia. In menopause, the reduction of OT secretion accounts for many menopausal symptoms and diseases. These issues are reviewed in this work.
Collapse
Affiliation(s)
- Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haipeng Yang
- Neonatal Division of the Department of Pediatrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liqun Han
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingxing Ma
- Department of Colorectal Cancer Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Mingxing Ma,
| |
Collapse
|
13
|
Wang P, Wang SC, Liu X, Jia S, Wang X, Li T, Yu J, Parpura V, Wang YF. Neural Functions of Hypothalamic Oxytocin and its Regulation. ASN Neuro 2022; 14:17590914221100706. [PMID: 35593066 PMCID: PMC9125079 DOI: 10.1177/17590914221100706] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 12/26/2022] Open
Abstract
Oxytocin (OT), a nonapeptide, has a variety of functions. Despite extensive studies on OT over past decades, our understanding of its neural functions and their regulation remains incomplete. OT is mainly produced in OT neurons in the supraoptic nucleus (SON), paraventricular nucleus (PVN) and accessory nuclei between the SON and PVN. OT exerts neuromodulatory effects in the brain and spinal cord. While magnocellular OT neurons in the SON and PVN mainly innervate the pituitary and forebrain regions, and parvocellular OT neurons in the PVN innervate brainstem and spinal cord, the two sets of OT neurons have close interactions histologically and functionally. OT expression occurs at early life to promote mental and physical development, while its subsequent decrease in expression in later life stage accompanies aging and diseases. Adaptive changes in this OT system, however, take place under different conditions and upon the maturation of OT release machinery. OT can modulate social recognition and behaviors, learning and memory, emotion, reward, and other higher brain functions. OT also regulates eating and drinking, sleep and wakefulness, nociception and analgesia, sexual behavior, parturition, lactation and other instinctive behaviors. OT regulates the autonomic nervous system, and somatic and specialized senses. Notably, OT can have different modulatory effects on the same function under different conditions. Such divergence may derive from different neural connections, OT receptor gene dimorphism and methylation, and complex interactions with other hormones. In this review, brain functions of OT and their underlying neural mechanisms as well as the perspectives of their clinical usage are presented.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C. Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, California, USA
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Neuroscience Laboratory for Translational Medicine, School of Mental Health, Qiqihar Medical University, Qiqihar, China
| | - Jiawei Yu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Kerqin District Maternity & Child Healthcare Hospital, Tongliao, Inner Mongolia, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Takanashi K, Shibata K, Mizuno K, Komatsu R, Koizumi S. Goshajinkigan attenuates paclitaxel-induced neuropathic pain via cortical astrocytes. Pharmacol Res Perspect 2021; 9:e00850. [PMID: 34676996 PMCID: PMC8532134 DOI: 10.1002/prp2.850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022] Open
Abstract
The anticancer agents platinum derivatives and taxanes such as paclitaxel (PCX) often cause neuropathy known as chemotherapy‐induced peripheral neuropathy with high frequency. However, the cellular and molecular mechanisms underlying such neuropathy largely remain unknown. Here, we show new findings that the effect of Goshajinkigan (GJG), a Japanese KAMPO medicine, inhibits PCX‐induced neuropathy by acting on astrocytes. The administration of PCX in mice caused the sustained neuropathy lasting at least 4 weeks, which included mechanical allodynia and thermal hyperalgesia but not cold allodynia. PCX‐evoked pain behaviors were associated with the sensitization of all primary afferent fibers. PCX did not activate microglia or astrocytes in the spinal cord. However, it significantly activated astrocytes in the primary sensory (S1) cortex without affecting S1 microglial activation there. GJG significantly inhibited the PCX‐induced mechanical allodynia by 50% and thermal hyperalgesia by 90%, which was in accordance with the abolishment of astrocytic activation in the S1 cortex. Finally, the inhibition of S1 astrocytes by an astrocyte‐toxin L‐alpha‐aminoadipic acid abolished the PCX‐induced neuropathy. Our findings suggest that astrocytes in the S1 cortex would play an important role in the pathogenesis of PCX‐induced neuropathy and are a potential target for its treatment.
Collapse
Affiliation(s)
- Kenta Takanashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Keisuke Shibata
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Keita Mizuno
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan.,Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co, Inashiki-gun, Japan
| | - Ryohei Komatsu
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan.,Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
15
|
Li D, Cui D, Jia S, Liu X, Wang X, Qiu D, Wang YF. Involvement of Supraoptic Astrocytes in Basilar Artery Occlusion-Evoked Differential Activation of Vasopressin Neurons and Vasopressin Secretion in Rats. Neurochem Res 2021; 46:2651-2661. [PMID: 33532897 DOI: 10.1007/s11064-021-03246-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/02/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Vasopressin (VP) is a key factor in the development of brain injury in ischemic stroke. However, the regulation of VP secretion in basilar artery occlusion (BAO) remains unclear. To clarify the regulation of VP secretion in BAO and the underlying mechanisms, we performed this study in a rat model of BAO with (BC) or without common carotid artery occlusion (CCAO). The results showed that BAO and BC time-dependently increased neurological scores and that BC also increased water contents in the medulla at 2 h and in the pontine at 8 h. Moreover, plasma VP level increased significantly at BAO-8 h, CCAO and BC-2 h but not at BC-8 h; however, VP expressions increased in the supraoptic nucleus (SON) at BC-8 h. The neurological scores were highly correlated with pontine water contents and plasma VP levels. The number of phosphorylated extracellular signal-regulated protein kinase1/2-positive VP neurons increased significantly in the SON at BC-8 h. Similarly, the number of c-Fos-positive VP neurons increased significantly in the SON at BAO-8 h and BC-8 h. In addition, the length of glial fibrillary acidic protein (GFAP) filaments increased significantly in BC compared to BAO only. Aquaporin 4 (AQP4) puncta around VP neurons increased significantly at BC-8 h relative to BC-2 h, which had negative correlation with plasma VP levels. These findings indicate that BAO facilitates VP secretion and increases VP neuronal activity in the SON. The peripheral VP release is possibly under a negative feedback regulation of central VP neuronal activity through increasing GFAP and AQP4 expression in astrocytic processes.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150081, China.
- Department of Physiology, Hainan Medical University, Haikou, China.
| | - Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150081, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150081, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150081, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150081, China
| | - Delai Qiu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150081, China.
| |
Collapse
|
16
|
Li D, Li T, Yu J, Liu X, Jia S, Wang X, Wang P, Wang YF. Astrocytic Modulation of Supraoptic Oxytocin Neuronal Activity in Rat Dams with Pup-Deprivation at Different Stages of Lactation. Neurochem Res 2021; 46:2601-2611. [PMID: 32930948 DOI: 10.1007/s11064-020-03129-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Appropriate interactions between astrocytes and oxytocin neurons in the hypothalamo- neurohypophysial system are essential for normal lactation. To further explore the mechanisms underlying astrocytic modulation of oxytocin neuronal activity, we observed astrocytic plasticity in the supraoptic nucleus of lactating rats with intermittent pup-deprivation (PD, 20 h/day) at early (day 1-5) and middle (day 8-12) stages of lactation. PD at both stages decreased suckling duration and litter's body weight gain. They also significantly increased the expression of glial fibrillary acidic protein (GFAP) in Western blots while increased GFAP filaments and the colocalization of GFAP filaments with aquaporin 4 (AQP4) puncta in astrocyte processes surrounding oxytocin neuronal somata in immunohistochemistry in the supraoptic nucleus. Suckling between adjacent milk ejections but not shortly after them decreased molecular association between GFAP and AQP4. In hypothalamic slices from male rats, oxytocin treatment (0.1 nmol/L, 10 min) significantly reduced the length of GFAP filaments and AQP4 puncta in the processes but increased GFAP staining in the somata. These oxytocin effects were blocked by pretreatment of the slices with N-(1,3,4-Thiadiazolyl) nicotinamide (TGN-020, inhibitor of AQP4, 10 µmol/L, 5 min before oxytocin). In addition, inhibition of AQP4 with TGN-020 blocked excitation in oxytocin neurons evoked by prostaglandin E2, a downstream signal of oxytocin receptor and mediator of oxytocin-evoked burst firing, in whole-cell patch-clamp recordings. These results indicate that AQP4-associated astrocytic plasticity is essential for normal oxytocin neuronal activity during lactation and that PD-evoked hypogalactia is associated with astrocytic process expansion following increased GFAP and AQP4 expressions.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150081, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150081, China
| | - Jiawei Yu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150081, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150081, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150081, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150081, China
| | - Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150081, China.
| |
Collapse
|
17
|
Wang SC, Parpura V, Wang YF. Astroglial Regulation of Magnocellular Neuroendocrine Cell Activities in the Supraoptic Nucleus. Neurochem Res 2021; 46:2586-2600. [PMID: 33216313 PMCID: PMC8134618 DOI: 10.1007/s11064-020-03172-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
Studies on the interactions between astrocytes and neurons in the hypothalamo-neurohypophysial system have significantly facilitated our understanding of the regulation of neural activities. This has been exemplified in the interactions between astrocytes and magnocellular neuroendocrine cells (MNCs) in the supraoptic nucleus (SON), specifically during osmotic stimulation and lactation. In response to changes in neurochemical environment in the SON, astrocytic morphology and functions change significantly, which further modulates MNC activity and the secretion of vasopressin and oxytocin. In osmotic regulation, short-term dehydration or water overload causes transient retraction or expansion of astrocytic processes, which increases or decreases the activity of SON neurons, respectively. Prolonged osmotic stimulation causes adaptive change in astrocytic plasticity in the SON, which allows osmosensory neurons to reserve osmosensitivity at new levels. During lactation, changes in neurochemical environment cause retraction of astrocytic processes around oxytocin neurons, which increases MNC's ability to secrete oxytocin. During suckling by a baby/pup, astrocytic processes in the mother/dams exhibit alternative retraction and expansion around oxytocin neurons, which mirrors intermittently synchronized activation of oxytocin neurons and the post-excitation inhibition, respectively. The morphological and functional plasticities of astrocytes depend on a series of cellular events involving glial fibrillary acidic protein, aquaporin 4, volume regulated anion channels, transporters and other astrocytic functional molecules. This review further explores mechanisms underlying astroglial regulation of the neuroendocrine neuronal activities in acute processes based on the knowledge from studies on the SON.
Collapse
Affiliation(s)
- Stephani C Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, CA, USA
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35242, USA.
| | - Yu-Feng Wang
- Department of Physiology School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150086, China.
| |
Collapse
|
18
|
Li D, Liu H, Wang H, Jia S, Wang X, Ling S, Chen G, Liu X, Wang YF. Astrocytic Hydrogen Sulfide Regulates Supraoptic Cellular Activity in the Adaptive Response of Lactating Rats to Chronic Social Stress. ASN Neuro 2021; 13:17590914211043087. [PMID: 34579557 PMCID: PMC8642056 DOI: 10.1177/17590914211043087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Maternal social stress among breastfeeding women can be adapted in chronic process.
However, neuroendocrine mechanisms underlying such adaptation remain to be identified.
Here, we report the effects of 2 hr/day unfamiliar male rat invasion (UMI) stress on
maternal behaviors in lactating rats during postpartum day 8 (UMI8) to postpartum day 12
(UMI12). Rat dams at UMI8 presented signs of maternal anxiety, depression, and attacks
toward male intruder. These changes partially reversed at UMI12 except the sign of
anxiety. In the supraoptic nucleus (SON), UMI12 but not UMI8 significantly increased the
expression of c-Fos and phosphorylated extracellular signal-regulated protein kinase 1/2.
At UMI8 but not UMI12, length of glial fibrillary acidic protein (GFAP, astrocytic
cytoskeletal element) filaments around oxytocin (OT) neurons was significantly longer than
that of their controls; the amount of GFAP fragments at UMI12 was significantly less than
that at UMI8. Expression of cystathionine β-synthase (CBS, enzyme for H2S
synthesis) at UMI12 was significantly higher than that at UMI8. CBS expression did not
change significantly in the somatic zone of the SON but decreased significantly at the
ventral glia lamina at UMI8. In brain slices of the SON, aminooxyacetate (a CBS blocker)
significantly increased the expression of GFAP proteins that were molecularly associated
with CBS. Aminooxyacetate also reduced the firing rate of OT neurons whereas
Na2S, a donor of H2S, increased it. The adaptation during chronic
social stress is possibly attributable to the increased production of H2S by
astrocytes and the subsequent retraction of astrocytic processes around OT neurons.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Physiology, 12455Hainan Medical University, Haikou, China.,Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| | - Hongyang Wang
- Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| | - Shuo Ling
- Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| | - Guichuan Chen
- Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Friuli M, Eramo B, Valenza M, Scuderi C, Provensi G, Romano A. Targeting the Oxytocinergic System: A Possible Pharmacological Strategy for the Treatment of Inflammation Occurring in Different Chronic Diseases. Int J Mol Sci 2021; 22:10250. [PMID: 34638587 PMCID: PMC8508899 DOI: 10.3390/ijms221910250] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Unresolved inflammation represents a central feature of different human pathologies including neuropsychiatric, cardiovascular, and metabolic diseases. The epidemiologic relevance of such disorders justifies the increasing interest in further understanding the mechanisms underpinning the inflammatory process occurring in such chronic diseases to provide potential novel pharmacological approaches. The most common and effective therapies for controlling inflammation are glucocorticoids; however, a variety of other molecules have been demonstrated to have an anti-inflammatory potential, including neuropeptides. In recent years, the oxytocinergic system has seen an explosion of scientific studies, demonstrating its potential to contribute to a variety of physiological processes including inflammation. Therefore, the aim of the present review was to understand the role of oxytocin in the modulation of inflammation occurring in different chronic diseases. The criterion we used to select the diseases was based on the emerging literature showing a putative involvement of the oxytocinergic system in inflammatory processes in a variety of pathologies including neurological, gastrointestinal and cardiovascular disorders, diabetes and obesity. The evidence reviewed here supports a beneficial role of oxytocin in the control of both peripheral and central inflammatory response happening in the aforementioned pathologies. Although future studies are necessary to elucidate the mechanistic details underlying such regulation, this review supports the idea that the modulation of the endogenous oxytocinergic system might represent a new potential pharmacological approach for the treatment of inflammation.
Collapse
Affiliation(s)
- Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Barbara Eramo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Marta Valenza
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology of Toxicology, University of Florence, 50139 Florence, Italy;
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| |
Collapse
|
20
|
Cui D, Jia S, Yu J, Li D, Li T, Liu Y, Chang J, Wang X, Liu X, Wang YF. Alleviation of Cerebral Infarction of Rats With Middle Cerebral Artery Occlusion by Inhibition of Aquaporin 4 in the Supraoptic Nucleus. ASN Neuro 2021; 12:1759091420960550. [PMID: 32985231 PMCID: PMC7545515 DOI: 10.1177/1759091420960550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In ischemic stroke, vasopressin hypersecretion is a critical factor of cerebral swelling and brain injury. To clarify neural mechanisms underlying ischemic stroke-evoked vasopressin hypersecretion, we observed the effect of unilateral permanent middle cerebral artery occlusion (MCAO) in rats on astrocytic plasticity and vasopressin neuronal activity in the supraoptic nucleus (SON) as well as their associated cerebral injuries. MCAO for 8 hr caused cerebral infarction in the MCAO side where water contents also increased. Immunohistochemical examination revealed that the percentage of phosphorylated extracellular signal-regulated protein kinase 1/2 (pERK1/2)-positive vasopressin neurons in the SON of MCAO side was significantly higher than that in non-MCAO side and in sham group. In the cortex, pERK1/2 and aquaporin 4 expressions increased significantly in the infarction area, while glial fibrillary acidic protein (GFAP) reduced significantly compared with the noninfarction side in brain cortex. Microinjection of N-(1,3,4-Thiadiazolyl)nicotinamide-020 [TGN-020, a specific blocker of aquaporin 4] into the SON blocked MCAO-evoked increases in pERK1/2 in the SON as well as the reduction of GFAP and the increase in pERK1/2 and aquaporin 4 in the infarction area of the cortex. Finally, oxygen and glucose deprivation reduced GFAP expression and the colocalization and molecular association of GFAP with aquaporin 4 in the SON in brain slices. These effects were blocked by TGN-020 and/or phloretin, a blocker of astrocytic volume-regulated anion channels. These findings indicate that blocking aquaporin 4 in the SON may reduce the activation of vasopressin neurons and brain injuries elicited by vasopressin during ischemic stroke.
Collapse
Affiliation(s)
- Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Jiawei Yu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Jinlong Chang
- The Seventh Affiliated Hospital, Sun Yat-sen Universtiy, Shenzhen, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
Abdelwahab LA, Galal OO, Abd El-Rahman SS, El-Brairy AI, Khattab MM, El-Khatib AS. Targeting the oxytocin system to ameliorate early life depressive-like behaviors in maternally-separated rats. Biol Pharm Bull 2021; 44:1445-1457. [PMID: 34349049 DOI: 10.1248/bpb.b21-00247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxytocin (OXT) - "the love hormone" - has been involved in the anti-depressant activity of some selective serotonin reuptake inhibitors (SSRIs). The exact mechanism underlying the OXT pathway in depression is not fully clear. This study aimed to investigate the effect of OXT analogue, carbetocin (CBT) and the SSRI, escitalopram (ESCIT) on depressive-like behaviors following maternal separation (MS). It is worthy to mention that intranasal CBT has been approved by FDA for Prader-Willi syndrome. Adolescent Wistar albino maternally-separated rats were given CBT, (100 μg/animal/day via inhalation route), and, ESCIT, (20 mg kg-1, po) either alone or in combination for 7 days. Repeated 3-h MS demonstrated increased immobility time in forced swim test (FST) and decreased locomotor activity in open field test. MS elevated plasma level of adrenocortico-trophic hormone (ACTH) but notably reduced plasma OXT, with no effect on hippocampal OXT-R expression. Following MS, hippocampal contents of 5-hydroxytryptamine receptors (5HT1A-R), serotonin transporter (SERT) were increased. CBT and ESCIT corrected the behavioral dysfunction in FST and suppressed the high levels of ACTH. Additionally, both treatments boosted OXT level, reduced 5HT1A-R and normalized SERT contents, which reflects increased availability of serotonin. Finally, CBT markedly ameliorated the histopathological damage induced by MS and suppressed the increased glial fibrillary acidic protein. CBT and ESCIT manage depressive-like behavior by positively affecting serotonergic and oxytocinergic systems. Targeting OXT system -using CBT- ameliorated depressive like behaviors induced by maternal separation most probably via enhancing OXT plasma levels, attenuating hormonal ACTH and restoring the expression of hippocampal oxytocin and serotonin mechanisms.
Collapse
Affiliation(s)
- Lobna A Abdelwahab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA)
| | - Omneya O Galal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University (ACU)
| | | | - Amany I El-Brairy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA)
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University
| |
Collapse
|
22
|
Wang X, Li T, Liu Y, Jia S, Liu X, Jiang Y, Wang P, Parpura V, Wang Y. Aquaporin 4 differentially modulates osmotic effects on vasopressin neurons in rat supraoptic nucleus. Acta Physiol (Oxf) 2021; 232:e13672. [PMID: 33978309 DOI: 10.1111/apha.13672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
AIM Glial fibrillary acidic protein (GFAP) molecularly associates with aquaporin 4 (AQP4) in astrocytic plasticity. Here, we further examined how AQP4 modulates osmotic effects on vasopressin (VP) neurons in rat supraoptic nucleus (SON) through interactions with GFAP in astrocytes. METHODS Brain slices from adult male rats were kept under osmotic stimulation. Western blot, co-immunoprecipitation, immunohistochemistry and patch-clamp recordings were used for analysis of expressions and interactions between GFAP and AQP4, astrocyte-specific proteins in the SON, as well as their influence on VP neuronal activity. Data were analysed using SPSS software. RESULTS Hyposmotic challenge (HOC) of acute SON slices caused an early (within 5 minutes) and transient increase in the colocalization of AQP4 with GFAP filaments. This effect was prominent at astrocytic processes surrounding VP neuron somata and was accompanied by inhibition of VP neuronal activity. Similar HOC effect was seen in the SON isolated from rats subjected to in vivo HOC, wherein a transiently increased molecular association between GFAP and AQP4 was detected using co-immunoprecipitation. The late stage rebound excitation (10 minutes) of VP neurons in brain slices subjected to HOC and the associated astrocytic GFAP's 'return to normal' were both hampered by 2-(nicotinamide)-1,3,4-thiadiazole, a specific AQP4 channel blocker that itself did not influence VP neuronal activity. Moreover, this agent prevented hyperosmotic stress-evoked excitation of VP neurons and associated reduction in GFAP filaments. CONCLUSION These findings indicate that osmotically driven increase in VP neuronal activity requires the activation of AQP4, which determines a retraction of GFAP filaments.
Collapse
Affiliation(s)
- Xiaoran Wang
- Department of Physiology Harbin Medical University Harbin China
| | - Tong Li
- Department of Physiology Harbin Medical University Harbin China
| | - Yang Liu
- Department of Physiology Harbin Medical University Harbin China
| | - Shuwei Jia
- Department of Physiology Harbin Medical University Harbin China
| | - Xiaoyu Liu
- Department of Physiology Harbin Medical University Harbin China
| | - Yunhao Jiang
- Department of Physiology Harbin Medical University Harbin China
| | - Ping Wang
- Department of Genetics Harbin Medical University Harbin China
| | - Vladimir Parpura
- Department of Neurobiology The University of Alabama at Birmingham Birmingham AL USA
| | - Yu‐Feng Wang
- Department of Physiology Harbin Medical University Harbin China
| |
Collapse
|
23
|
Li T, Jia SW, Hou D, Wang X, Li D, Liu Y, Cui D, Liu X, Hou CM, Wang P, Brown CH, Wang YF. Oxytocin Modulation of Maternal Behavior and Its Association With Immunological Activity in Rats With Cesarean Delivery. ASN Neuro 2021; 13:17590914211014731. [PMID: 34210188 PMCID: PMC8255569 DOI: 10.1177/17590914211014731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Oxytocin (OT), a neuropeptide produced in the supraoptic (SON) and paraventricular (PVN) nuclei, is not only essential for lactation and maternal behavior but also for normal immunological activity. However, mechanisms underlying OT regulation of maternal behavior and its association with immunity around parturition, particularly under mental and physical stress, remain unclear. Here, we observed effects of OT on maternal behavior in association with immunological activity in rats after cesarean delivery (CD), a model of reproductive stress. CD significantly reduced maternal interests to the pups throughout postpartum day 1-8. On postpartum day 5, CD decreased plasma OT levels and thymic index but increased vasopressin, interleukin (IL)-1β, IL-6 and IL-10 levels. CD had no significant effect on plasma adrenocorticotropic hormone and corticosterone levels. In the hypothalamus, CD decreased corticotropin-releasing hormone contents in the PVN but increased OT contents in the PVN and SON and OT release from hypothalamic implants. CD also increased c-Fos expression, particularly in the cytoplasm of OT neurons. Lastly, CD depolarized resting membrane potential and increased spike width while increasing the variability of the firing rate of OT neurons in brain slices. Thus, CD can increase hypothalamic OT contents and release but reduce pituitary release of OT into the blood, which is associated with depressive-like maternal behavior, increased inflammatory cytokine release and decreased relative weight of the thymus.
Collapse
Affiliation(s)
- Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shu-Wei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dan Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Chun-Mei Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Colin H Brown
- Department of Physiology and Center for Neuroendocrinology, University of Otego, Dunedin, New Zealand
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Li T, Jia SW, Hou D, Liu X, Li D, Liu Y, Cui D, Wang X, Hou C, Brown CH, Wang YF. Intranasal Oxytocin Restores Maternal Behavior and Oxytocin Neuronal Activity in the Supraoptic Nucleus in Rat Dams with Cesarean Delivery. Neuroscience 2021; 468:235-246. [PMID: 34166764 DOI: 10.1016/j.neuroscience.2021.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Oxytocin (OT) is a key factor for maternal behavior. However, neurochemical regulation of OT neurons, the major source of OT, remains incompletely understood. Here we report the effect of intranasally-applied OT (IAO) on OT neuronal activity in the supraoptic nucleus (SON) and on maternal behavior in a rat model of cesarean delivery (CD) at day 4-5 (stage I) and day 8-9 (stage II) following delivery. We found that at stage I, CD dams exhibited significantly longer latency of pup retrieval, lower number of anogenital licks and smaller acinar area of the mammary glands. In the SON, the number of OT neurons expressing phosphorylated extracellular signal-regulated protein kinase 1/2 (pERK 1/2) decreased significantly. IAO reversed the depressive-like maternal behavior and involution-like change in the mammary glands, and restored the number of pERK1/2-positive OT neurons in CD dams. At stage II, CD did not significantly influence the latency of retrieval and pERK1/2 expression in the SON. However, CD still reduced the number of anogenital licks during suckling, which was reversed by IAO. Notably, IAO but not hypodermic OT application in CD dams significantly increased litter's body weight gains. In brain slices, CD but not CD plus IAO significantly depolarized membrane potential and increased spike duration in OT neurons. In vasopressin neurons, CD, but not CD plus IAO, significantly depolarized membrane potential and increased the firing rate. Thus, decreased OT neuronal activity and increased vasopressin neuronal activity impair maternal behavior in CD dams, which can be prevented by IAO .
Collapse
Affiliation(s)
- Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shu-Wei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dan Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Chunmei Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Colin H Brown
- Department of Physiology and Center for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| |
Collapse
|
25
|
Madrigal MP, Jurado S. Specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain. Commun Biol 2021; 4:586. [PMID: 33990685 PMCID: PMC8121848 DOI: 10.1038/s42003-021-02110-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Oxytocin (OXT) and arginine vasopressin (AVP) support a broad range of behaviors and homeostatic functions including sex-specific and context-appropriate social behaviors. Although the alterations of these systems have been linked with social-related disorders such as autism spectrum disorder, their formation and developmental dynamics remain largely unknown. Using novel brain clearing techniques and 3D imaging, we have reconstructed the specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain with unprecedented cellular resolution. A systematic quantification indicates that OXT and AVP neurons in the hypothalamus display distinctive developmental dynamics and high cellular plasticity from embryonic to early postnatal stages. Our findings reveal new insights into the specification and consolidation of neuropeptidergic systems in the developing CNS.
Collapse
Affiliation(s)
- María Pilar Madrigal
- grid.466805.90000 0004 1759 6875Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Alicante, Spain
| | - Sandra Jurado
- grid.466805.90000 0004 1759 6875Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
26
|
Li D, Liu X, Li T, Wang X, Jia S, Wang P, Wang YF. Involvement of Protein Kinase A in Oxytocin Neuronal Activity in Rat Dams with Pup Deprivation. Neurochem Res 2021; 46:980-991. [PMID: 33611682 DOI: 10.1007/s11064-020-03218-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/20/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Oxytocin (OT) neuronal activity is the key factor for breastfeeding and it can be disrupted by mother-baby separation. To explore cellular mechanisms underlying OT neuronal activity, we studied the role of protein kinase A (PKA) in OT neuronal activity in the supraoptic nucleus (SON) using a rodent model of pup deprivation (PD) Intermittent (IPD) or continuous (CPD) PD significantly reduced suckling duration and number of milk ejections in lactating rats, particularly those with CPD. In Western blots of the SON, PD increased expressions of OT receptor (OTR) and its immediate downstream effectors, Gαq and Gβ subunits, particularly IPD, but reduced the expression of catalytic subunit of PKA (cPKA). In brain slices, inhibition of PKA blocked prostaglandin E2-evoked increase in firing activity including burst firing in OT neurons. In IPD dams, filamentous actin formed ring-like structures in the cytoplasmic region of OT neurons, which was reduced in CPD. Moreover, molecular association between actin and cPKA also reduced in PD dams. Incubation of brain slices with OT reduced the expression of cPKA, which was blocked by pretreatment with atosiban, an antagonist of OTR. These results indicate that PD disrupts OT neuronal activity through dissociating the Gq proteins and PKA in OTR-associated signaling cascade, which couples with reduced interactions between filamentous actin and PKA in OT neurons in the SON. This study highlights that PKA can be a novel target treating abnormal OT neuronal activity and its associated diseases.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
- Department of Physiology, Hainan Medical University, Haikou, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
27
|
Sundar M, Patel D, Young Z, Leong KC. Oxytocin and Addiction: Potential Glutamatergic Mechanisms. Int J Mol Sci 2021; 22:ijms22052405. [PMID: 33673694 PMCID: PMC7957657 DOI: 10.3390/ijms22052405] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, oxytocin (OXT) has been investigated for its potential therapeutic role in addiction. OXT has been found to diminish various drug-seeking and drug-induced behaviors. Although its behavioral effects are well-established, there is not much consensus on how this neuropeptide exerts its effects. Previous research has given thought to how dopamine (DA) may be involved in oxytocinergic mechanisms, but there has not been as strong of a focus on the role that glutamate (Glu) has. The glutamatergic system is critical for the processing of rewards and the disruption of glutamatergic projections produces the behaviors seen in drug addicts. We introduce the idea that OXT has direct effects on Glu transmission within the reward processing pathway. Thus, OXT may reduce addictive behaviors by restoring abnormal drug-induced changes in the glutamatergic system and in its interactions with other neurotransmitters. This review offers insight into the mechanisms through which a potentially viable therapeutic target, OXT, could be used to reduce addiction-related behaviors.
Collapse
|
28
|
Althammer F, Eliava M, Grinevich V. Central and peripheral release of oxytocin: Relevance of neuroendocrine and neurotransmitter actions for physiology and behavior. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:25-44. [PMID: 34225933 DOI: 10.1016/b978-0-12-820107-7.00003-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hypothalamic neuropeptide oxytocin (OT) is critically involved in the modulation of socio-emotional behavior, sexual competence, and pain perception and anticipation. While intracellular signaling of OT and its receptor (OTR), as well as the functional connectivity of hypothalamic and extra-hypothalamic OT projections, have been recently explored, it remains elusive how one single molecule has pleotropic effects from cell proliferation all the way to modulation of complex cognitive processes. Moreover, there are astonishing species-dependent differences in the way OT regulates various sensory modalities such as touch, olfaction, and vision, which can be explained by differences in OTR expression in brain regions processing sensory information. Recent research highlights a small subpopulation of OT-synthesizing cells, namely, parvocellular cells, which merely constitute 1% of the total number of OT cells but act as "master cells' that regulate the activity of the entire OT system. In this chapter, we summarize the latest advances in the field of OT research with a particular focus on differences between rodents, monkeys and humans and highlight the main differences between OT and its "sister" peptide arginine-vasopressin, which often exerts opposite effects on physiology and behavior.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Neuroscience Department, Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, United States
| | - Marina Eliava
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
29
|
Li D, Liu X, Liu H, Li T, Jia S, Wang X, Wang P, Qin D, Wang YF. Key Roles of Cyclooxygenase 2-Protein Kinase A-Hyperpolarization-activated Cyclic Nucleotide-gated Channel 3 Pathway in the Regulation of Oxytocin Neuronal Activity in Lactating Rats with Intermittent Pup-Deprivation. Neuroscience 2020; 452:13-25. [PMID: 33137408 DOI: 10.1016/j.neuroscience.2020.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
Suckling-evoked pulsatile release of oxytocin (OT) from the posterior pituitary plays a key role in breastfeeding, which relies on burst-like discharges of OT neurons. To explore cellular mechanisms regulating OT neuronal activity, using lactating rats with pup-deprivation (PD) during postpartum day 1-5, we observed the involvement of prostaglandin, cyclic AMP/protein kinase A (PKA) and hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) signaling pathway in OT neuronal activity. PD gradually reduced lactation efficiency. Intermittent PD (IPD) was largely reversed by intranasally-applied OT (IAO) but not by hypodermically-applied OT. IPD caused involution-like histological changes in the mammary glands, increased hypothalamic OT release but did not influence plasma OT concentrations. In the supraoptic nucleus, IPD increased OT receptor (OTR) expressions in OT neurons as well as Gαq subunit, Gβ subunit and cyclooxygenase 2 (Cox-2). These effects except that on Gβ subunit were reversed by IAO. Notably, IPD increased the expression of catalytic subunit of PKA in the SON, specifically in vasopressin neurons but not in OT neurons. In addition, IPD increased the expression of HCN3. IAO partially reversed these changes in the SON. Lastly, blocking HCN3 blocked excitation and burst firing in OT neurons-evoked by prostaglandin E2, a key mediator of OT-evoked burst firing; blocking Cox-2 or PKA reduced the molecular association between OTR and HCN3. Thus, there is a prostaglandin-cAMP/PKA-HCN3 pathway in the regulation of OT neuronal activity. PD disrupts lactation performance through uncoupling OTR and PKA-HCN3 signaling. The reversal effect of IAO highlights its therapeutic potential in PD-evoked hypogalactia.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Danian Qin
- Department of Physiology, Shantou University of Medical College, Shantou, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| |
Collapse
|
30
|
Cui D, Jia S, Li T, Li D, Wang X, Liu X, Wang YF. Alleviation of brain injury by applying TGN-020 in the supraoptic nucleus via inhibiting vasopressin neurons in rats of focal ischemic stroke. Life Sci 2020; 264:118683. [PMID: 33127515 DOI: 10.1016/j.lfs.2020.118683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 12/27/2022]
Abstract
AIMS To understand mechanisms underlying vasopressin hypersecretion in stroke and its association with brain injury, we investigated effects of blocking aquaporin 4 (AQP4) in the supraoptic nucleus (SON) on vasopressin neuronal activity and cerebral injuries in male rats of unilateral middle cerebral artery occlusion (MCAO). MAIN METHODS Establishing MCAO model without or with microinjection of TGN-020 into the SON, performing Western blots and immunohistochemistry and analyzing the expression levels and spatial distribution of functional proteins in the SON and/or the cerebral cortex. KEY FINDINGS MCAO increased plasma vasopressin levels, caused neurological damage and increased glycogen synthase kinase 3β (GSK-3β) in the SON and the cortex of MCAO side. In the SON, MCAO significantly increased c-Fos in vasopressin neurons and astrocytic somata in the ventral glial lamina. MCAO significantly reduced glial fibrillary acidic protein (GFAP) and AQP4 around vasopressin neurons, which accompanied separation of GFAP from AQP4. By contrast, blocking AQP4 by microinjection of TGN-020 into the SON blocked MCAO-evoked GSK-3β increase as well as the reduction of AQP4 relative to GFAP around vasopressin neurons in the SON. In the cortex, TGN-020 in the SON also blocked MCAO-evoked increase in GSK-3β while reduced neurological damages. SIGNIFICANCE These findings indicate that MCAO disrupts interactions of GFAP with AQP4 in astrocytic processes in the SON, which increases vasopressin neuronal activity. Blocking AQP4 in the SON can block abnormal activation of vasopressin neurons and alleviate ischemic brain injury, which provides novel targets for alleviating ischemic brain injury.
Collapse
Affiliation(s)
- Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| |
Collapse
|
31
|
Biomarkers of neuronal damage in saturation diving-a controlled observational study. Eur J Appl Physiol 2020; 120:2773-2784. [PMID: 32975632 PMCID: PMC7674315 DOI: 10.1007/s00421-020-04499-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022]
Abstract
Purpose A prospective and controlled observational study was performed to determine if the central nervous system injury markers glial fibrillary acidic protein (GFAp), neurofilament light (NfL) and tau concentrations changed in response to a saturation dive. Methods The intervention group consisted of 14 submariners compressed to 401 kPa in a dry hyperbaric chamber. They remained pressurized for 36 h and were then decompressed over 70 h. A control group of 12 individuals was used. Blood samples were obtained from both groups before, during and after hyperbaric exposure, and from the intervention group after a further 25–26 h. Results There were no statistically significant changes in the concentrations of GFAp, NfL and tau in the intervention group. During hyperbaric exposure, GFAp decreased in the control group (mean/median − 15.1/ − 8.9 pg·mL−1, p < 0.01) and there was a significant difference in absolute change of GFAp and NfL between the groups (17.7 pg·mL−1, p = 0.02 and 2.34 pg·mL−1, p = 0.02, respectively). Albumin decreased in the control group (mean/median − 2.74 g/L/ − 0.95 g/L, p = 0.02), but there was no statistically significant difference in albumin levels between the groups. In the intervention group, haematocrit and mean haemoglobin values were slightly increased after hyperbaric exposure (mean/median 2.3%/1.5%, p = 0.02 and 4.9 g/L, p = 0.06, respectively). Conclusion Hyperbaric exposure to 401 kPa for 36 h was not associated with significant increases in GFAp, NfL or tau concentrations. Albumin levels, changes in hydration or diurnal variation were unlikely to have confounded the results. Saturation exposure to 401 kPa seems to be a procedure not harmful to the central nervous system. Trial registration ClinicalTrials.gov NCT03192930.
Collapse
|
32
|
McKay EC, Counts SE. Oxytocin Receptor Signaling in Vascular Function and Stroke. Front Neurosci 2020; 14:574499. [PMID: 33071746 PMCID: PMC7544744 DOI: 10.3389/fnins.2020.574499] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
The oxytocin receptor (OXTR) is a G protein-coupled receptor with a diverse repertoire of intracellular signaling pathways, which are activated in response to binding oxytocin (OXT) and a similar nonapeptide, vasopressin. This review summarizes the cell and molecular biology of the OXTR and its downstream signaling cascades, particularly focusing on the vasoactive functions of OXTR signaling in humans and animal models, as well as the clinical applications of OXTR targeting cerebrovascular accidents.
Collapse
Affiliation(s)
- Erin C McKay
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States.,Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Scott E Counts
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States.,Neuroscience Program, Michigan State University, East Lansing, MI, United States.,Department of Family Medicine, Michigan State University, Grand Rapids, MI, United States.,Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, United States.,Michigan Alzheimer's Disease Research Center, Ann Arbor, MI, United States
| |
Collapse
|
33
|
Souza MM, Vechiato FMV, Debarba LK, Leao RM, Dias MVS, Pereira AA, Cruz JC, Elias LLK, Antunes-Rodrigues J, Ruginsk SG. Effects of Hyperosmolality on Hypothalamic Astrocytic Area, mRNA Expression and Glutamate Balance In Vitro. Neuroscience 2020; 442:286-295. [PMID: 32599125 DOI: 10.1016/j.neuroscience.2020.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
During prolonged dehydration, body fluid homeostasis is challenged by extracellular fluid (ECF) hyperosmolality, which induce important functional changes in the hypothalamus, in parallel with other effector responses, such as the activation of the local renin-angiotensin system (RAS). Therefore, in the present study we investigated the role of sodium-driven ECF hyperosmolality on glial fibrillary acid protein (GFAP) immunoreactivity and protein expression, membrane capacitance, mRNA expression of RAS components and glutamate balance in cultured hypothalamic astrocytes. Our data show that hypothalamic astrocytes respond to increased hyperosmolality with a similar decrease in GFAP expression and membrane capacitance, indicative of reduced cellular area. Hyperosmolality also downregulates the transcript levels of angiotensinogen and both angiotensin-converting enzymes, whereas upregulates type 1a angiotensin II receptor mRNA. Incubation with hypertonic solution also decreases the immunoreactivity to the membrane glutamate/aspartate transporter (GLAST) as well as tritiated-aspartate uptake by astrocytes. This latter effect is completely restored to basal levels when astrocytes previously exposed to hypertonicity are incubated under isotonic conditions. Together with a direct effect on two important local signaling systems (glutamate and RAS), these synaptic rearrangements driven by astrocytes may accomplish for a coordinated increase in the excitatory drive onto the hypothalamic neurosecretory system, ultimately culminating with increased AVP release in response to hyperosmolality.
Collapse
Affiliation(s)
- M M Souza
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - F M V Vechiato
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - L K Debarba
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - R M Leao
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - M V S Dias
- Natural Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - A A Pereira
- Food and Drugs Department, Pharmaceutical Sciences Faculty, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - J C Cruz
- Biotechnology Center, Department of Biotechnology, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | - L L K Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - S G Ruginsk
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
34
|
Abstract
The scientific community has searched for years for ways of examining neuronal tissue to track neural activity with reliable anatomical markers for stimulated neuronal activity. Existing studies that focused on hypothalamic systems offer a few options but do not always compare approaches or validate them for dependence on cell firing, leaving the reader uncertain of the benefits and limitations of each method. Thus, in this article, potential markers will be presented and, where possible, placed into perspective in terms of when and how these methods pertain to hypothalamic function. An example of each approach is included. In reviewing the approaches, one is guided through how neurons work, the consequences of their stimulation, and then the potential markers that could be applied to hypothalamic systems are discussed. Approaches will use features of neuronal glucose utilization, water/oxygen movement, changes in neuron-glial interactions, receptor translocation, cytoskeletal changes, stimulus-synthesis coupling that includes expression of the heteronuclear or mature mRNA for transmitters or the enzymes that make them, and changes in transcription factors (immediate early gene products, precursor buildup, use of promoter-driven surrogate proteins, and induced expression of added transmitters. This article includes discussion of methodological limitations and the power of combining approaches to understand neuronal function. © 2020 American Physiological Society. Compr Physiol 10:549-575, 2020.
Collapse
Affiliation(s)
- Gloria E. Hoffman
- Department of Biology, Morgan State University, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Li D, Liu H, Liu X, Wang H, Li T, Wang X, Jia S, Wang P, Wang YF. Involvement of Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel 3 in Oxytocin Neuronal Activity in Lactating Rats With Pup Deprivation. ASN Neuro 2020; 12:1759091420944658. [PMID: 32962418 PMCID: PMC7517985 DOI: 10.1177/1759091420944658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxytocin, a hypothalamic neuropeptide essential for breastfeeding, is mainly produced in oxytocin neurons in the supraoptic nucleus (SON) and paraventricular nucleus. However, mechanisms underlying oxytocin secretion, specifically the involvement of hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) in oxytocin neuronal activity, remain unclear. Using a rat model of intermittent and continuous pup deprivation (PD) at the middle stage of lactation, we analyzed the contribution of HCN3 in oxytocin receptor (OTR)-associated signaling cascade to oxytocin neuronal activity in the SON. PD caused maternal depression, anxiety, milk shortage, involution of the mammary glands, and delays in uterine recovery, particularly in continuous PD. PD increased hypothalamic but not plasma oxytocin levels in enzyme-linked immunosorbent assay. In the SON, PD increased c-Fos expression but reduced expressions of cyclooxygenase-2 and HCN3 in Western blots and/or immunohistochemistry. Moreover, PD significantly increased the molecular association of OTR with HCN3 in coimmunoprecipitation. In brain slices, inhibition of HCN3 activity with DK-AH269 blocked prostaglandin E2-evoked increase in the firing activity and burst discharge in oxytocin neurons in patch-clamp recordings. In addition, oxytocin-evoked increase in the molecular association between OTR and HCN3 in brain slices of the SON was blocked by pretreatment with indomethacin, an inhibitor of cyclooxygenase-2. These results indicate that normal activity of oxytocin neurons is under the regulation of an oxytocin receptor-cyclooxygenase-2-HCN3 pathway and that PD disrupts maternal behavior through increasing intranuclear oxytocin secretion in the SON but likely reducing bolus oxytocin release into the blood through inhibition of HCN3 activity.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University
| | - Haitao Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University
| | - Hongyang Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University
| | - Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University
- Yu-Feng Wang, Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin 150081, China.
| |
Collapse
|
36
|
Qi XR, Kamphuis W, Shan L. Astrocyte Changes in the Prefrontal Cortex From Aged Non-suicidal Depressed Patients. Front Cell Neurosci 2019; 13:503. [PMID: 31798416 PMCID: PMC6874137 DOI: 10.3389/fncel.2019.00503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 11/13/2022] Open
Abstract
Glia alterations in the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) have been postulated to play an important role in the pathophysiology of psychiatric disorders. Astroglia is the most abundant type of glial cells in the central nervous system. The expression levels of astrocyte markers (glial fibrillary acidic protein (GFAP), synemin-α, synemin-β, vimentin, nestin) in isolated gray matter from postmortem ACC and DLPFC were determined to investigate the possible involvement of astrocytes in depression. Donors were aged non-suicidal subjects with bipolar disorder (BPD) or major depressive disorder (MDD), and matched controls. GFAP mRNA levels were significantly increased in the ACC of BPD patients. However, GFAP immunohistochemistry showed that the area fraction of GFAP immunoreactive astrocytes was decreased in the ACC of BPD patients, while there were no changes in the cell density and integrated optical density (IOD), indicating that there might be a reduction of GFAP-positive astrocyte processes and remodeling of the astrocyte network in BPD. Furthermore, in controls, DLPFC GFAP mRNA levels were significantly lower with a time of death at daytime (08:01-20:00 h) compared to nighttime (20:01-08:00 h). In depression, such a diurnal pattern was not present. These findings in BPD and MDD subjects warrant further studies given the crucial roles of astrocytes in the central nervous system.
Collapse
Affiliation(s)
- Xin-Rui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Willem Kamphuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Ling Shan
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
37
|
Li D, Liu X, Liu T, Liu H, Tong L, Jia S, Wang YF. Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes. Glia 2019; 68:878-897. [PMID: 31626364 DOI: 10.1002/glia.23734] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
Abstract
Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase-2/signal transducer and activator of transcription 3 cascade and nuclear factor κ-light-chain-enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema-eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α-isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Tianming Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Li Tong
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, Harbin Medical University, Harbin, China
| |
Collapse
|
38
|
Hendaus MA, Jomha FA, Alhammadi AH. Vasopressin in the Amelioration of Social Functioning in Autism Spectrum Disorder. J Clin Med 2019; 8:jcm8071061. [PMID: 31331023 PMCID: PMC6678231 DOI: 10.3390/jcm8071061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/24/2023] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disability described by diagnostic criteria that comprise deficits in social communication and the existence of repetitive, restricted patterns of behavior, interests, or activities that can last throughout life. Many preclinical studies show the importance of arginine vasopressin (AVP) physiology in social functioning in several mammalian species. Currently, there is a trend to investigate more specific pharmacological agents to improve social functioning in patients with ASD. Neurobiological systems that are crucial for social functioning are the most encouraging conceivable signaling pathways for ASD therapeutic discovery. The AVP signaling pathway is one of the most promising. The purpose of this commentary is to detail the evidence on the use of AVP as an agent that can improve social functioning. The pharmacologic aspects of the drug as well as its potential to ameliorate social functioning characteristics in human and animal studies are described in this manuscript. AVP, especially in its inhaled form, seems to be safe and beneficial in improving social functioning including in children with autism. Larger randomized studies are required to implement a long awaited safe and feasible treatment in people with a deficiency in social functioning.
Collapse
Affiliation(s)
- Mohamed A Hendaus
- Department of Pediatrics, Section of Academic General Pediatrics, Sidra Medicine, Doha 26999, Qatar.
- Department of Pediatrics, Section of Academic General Pediatrics, Hamad Medical Corporation, Doha 3050, Qatar.
- Department of Clinical Pediatrics, Weill-Cornell Medical College, Doha 26999, Qatar.
| | - Fatima A Jomha
- School of Pharmacy, Lebanese International University, Khiara 146404, Lebanon
| | - Ahmed H Alhammadi
- Department of Pediatrics, Section of Academic General Pediatrics, Sidra Medicine, Doha 26999, Qatar
- Department of Pediatrics, Section of Academic General Pediatrics, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Clinical Pediatrics, Weill-Cornell Medical College, Doha 26999, Qatar
| |
Collapse
|
39
|
Amtul Z, Yang J, Lee TY, Cechetto DF. Pathological Changes in Microvascular Morphology, Density, Size and Responses Following Comorbid Cerebral Injury. Front Aging Neurosci 2019; 11:47. [PMID: 30971910 PMCID: PMC6445844 DOI: 10.3389/fnagi.2019.00047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Aberrations in brain microcirculation and the associated increase in blood-brain-barrier (BBB) permeability in addition to neuroinflammation and Aβ deposition observed in Alzheimer’s disease (AD) and ischemia have gained considerable attention recently. However, the role of microvascular homeostasis as a pathogenic substrate to disturbed microperfusion as well as an overlapping etiologic mechanism between AD and ischemia has not been thoroughly explored. In this study, we employ temporal histopathology of cerebral vasculature in a rat model of β-amyloid (Aβ) toxicity and endothelin-1 induced-ischemia (ET1) to investigate the panorama of cerebral pathology and the protein expression on d1, d7, and d28 post-injury. The combination of Aβ and ET1 pathological states leads to an alteration in microvascular anatomy, texture, diameter, density, and protein expression, in addition to disturbed vessel-matrix-connections, inter-compartmental water exchange and basement membrane profile within the lesion epicenter localized in the striatum of Aβ+ET1 brains compared to Aβ and ET1 rats. We conclude that the neural microvascular network, in addition to the neural tissue, is not only sensitive to structural deterioration but also serves as an underlying vascular etiology between ischemia and AD pathologies. Such investigation can provide prospects to appreciate the interrelationships between structure and responses of cerebral microvasculature and to provide a venue for vascular remodeling as a new treatment strategy.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Jun Yang
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Ting-Yim Lee
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - David F Cechetto
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
40
|
Abstract
Astrocytes are the most abundant cell type in the brain and are a crucial part of solving its mysteries. Originally assumed to be passive supporting cells, astrocyte's functions are now recognized to include active modulation and information processing at the neural synapse. The full extent of the astrocyte contribution to neural processing remains unknown. This is, in part, due to the lack of methods available for astrocyte identification and analysis. Existing strategies employ genetic tools like the astrocyte specific promoters glial fibrillary acidic protein (GFAP) or Aldh1L1 to create transgenic animals with fluorescently labeled astrocytes. Recently, small molecule targeting moieties have enabled the delivery of bright fluorescent dyes to astrocytes. Here, we review methods for targeting astrocytes, with a focus on a recently developed methylpyridinium targeting moiety's development, chemical synthesis, and elaboration to provide new features like light-based spatiotemporal control of cell labeling.
Collapse
Affiliation(s)
- Alyssa N Preston
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Danielle A Cervasio
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
41
|
Liu XY, Li D, Li T, Liu H, Cui D, Liu Y, Jia S, Wang X, Jiao R, Zhu H, Zhang F, Qin D, Wang YF. Effects of Intranasal Oxytocin on Pup Deprivation-Evoked Aberrant Maternal Behavior and Hypogalactia in Rat Dams and the Underlying Mechanisms. Front Neurosci 2019; 13:122. [PMID: 30863276 PMCID: PMC6399306 DOI: 10.3389/fnins.2019.00122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
Oxytocin (OT), a hypothalamic neuropeptide, applied through nasal approach (IAO), could improve maternal health during lactation that is disrupted by mother–baby separation; however, the regulation of IAO effects on maternal behaviors and lactation as well as the underlying mechanisms remain unclear. Using lactating rats, we observed effects of intermittent pup deprivation (PD) with and without IAO on maternal behaviors and lactation as well as the activity of OT neurons in the supraoptic nucleus (SON) and the activity of hypothalamic pituitary-adrenal axis, key factors determining the milk-letdown reflex during lactation and maternal behaviors. The results showed that PD reduced maternal behaviors and lactation efficiency of rat dams as indicated by significantly longer latency to retrieve their pups and low litter’s body weight gains during the observation, respectively. In addition, PD caused early involution of the mammary glands. IAO partially improved these changes in rat dams, which was not as significant as IAO effects on control dams. In the SON, PD decreased c-Fos and increased glial fibrillary acidic protein (GFAP) filaments significantly; IAO made PD-evoked c-Fos reduction insignificant while reduced GFAP filament significantly in PD dams. IAO tended to increase the levels of phosphorylated extracellular signal-regulated kinases (pERK) 1/2 in PD dams. Moreover, PD+IAO significantly increased plasma levels of dam adrenocorticotropic hormone and corticosterone but not OT levels. Lastly, PD+IAO tended to increase the level of corticotropin-releasing hormone in the SON. These results indicate that PD disrupts maternal behaviors and lactation by suppressing the activity of hypothalamic OT-secreting system through expansion of astrocytic processes, which are partially reversed by IAO through removing astrocytic inhibition of OT neuronal activity. However, the improving effect of IAO on the maternal health could be compromised by simultaneous activation of hypothalamic pituitary-adrenocortical axis.
Collapse
Affiliation(s)
- Xiao Yu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Runsheng Jiao
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Fengmin Zhang
- Department of Pathogen, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Danian Qin
- Department of Physiology, Shantou University of Medical College, Shantou, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
42
|
Wang P, Wang SC, Li D, Li T, Yang HP, Wang L, Wang YF, Parpura V. Role of Connexin 36 in Autoregulation of Oxytocin Neuronal Activity in Rat Supraoptic Nucleus. ASN Neuro 2019; 11:1759091419843762. [PMID: 31091986 PMCID: PMC6535915 DOI: 10.1177/1759091419843762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/10/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022] Open
Abstract
In the supraoptic nucleus (SON), the incidence of dye coupling among oxytocin (OT) neurons increases significantly in nursing mothers. However, the type(s) of connexin (Cx) involved is(are) unknown. In this study, we specifically investigated whether Cx36 plays a functional role in the coupling between OT neurons in the SON of lactating rats. In this brain region, Cx36 was mainly coimmunostained with vasopressin neurons in virgin female rats, whereas in lactating rats, Cx36 was primarily colocalized with OT neurons. In brain slices from lactating rats, application of quinine (0.1 mM), a selective blocker of Cx36, significantly reduced dye coupling among OT neurons as well as the discharge/firing frequency of spikes/action potentials and their amplitude, and transiently depolarized the membrane potential of OT neurons in whole-cell patch-clamp recordings. However, quinine significantly reduced the amplitude, but not frequency, of inhibitory postsynaptic currents in OT neurons; the duration of excitatory postsynaptic currents was reduced but not their frequency and amplitude. Furthermore, the excitatory effect of OT (1 pM) on OT neurons was significantly weakened and delayed by quinine, and burst firing was absent in the presence of this inhibitor. Lastly, Western blotting analysis revealed that the presence of combined, but not alone, quinine and OT significantly reduced the amount of Cx36 in the SON. Thus, Cx36-mediated junctional communication plays a crucial role in autoregulatory control of OT neuronal activity, likely by acting at the postsynaptic sites. The level of Cx36 is modulated by its own activity and the presence of OT.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, China
| | | | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, China
| | - Hai-Peng Yang
- The Fourth Affiliated Hospital, Harbin Medical University, China
| | - Liwei Wang
- The Fourth Affiliated Hospital, Harbin Medical University, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, AL, USA
| |
Collapse
|
43
|
Pál B. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol Life Sci 2018; 75:2917-2949. [PMID: 29766217 PMCID: PMC11105518 DOI: 10.1007/s00018-018-2837-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Glutamate is the most abundant neurotransmitter of the central nervous system, as the majority of neurons use glutamate as neurotransmitter. It is also well known that this neurotransmitter is not restricted to synaptic clefts, but found in the extrasynaptic regions as ambient glutamate. Extrasynaptic glutamate originates from spillover of synaptic release, as well as from astrocytes and microglia. Its concentration is magnitudes lower than in the synaptic cleft, but receptors responding to it have higher affinity for it. Extrasynaptic glutamate receptors can be found in neuronal somatodendritic location, on astroglia, oligodendrocytes or microglia. Activation of them leads to changes of neuronal excitability with different amplitude and kinetics. Extrasynaptic glutamate is taken up by neurons and astrocytes mostly via EAAT transporters, and astrocytes, in turn metabolize it to glutamine. Extrasynaptic glutamate is involved in several physiological phenomena of the central nervous system. It regulates neuronal excitability and synaptic strength by involving astroglia; contributing to learning and memory formation, neurosecretory and neuromodulatory mechanisms, as well as sleep homeostasis.The extrasynaptic glutamatergic system is affected in several brain pathologies related to excitotoxicity, neurodegeneration or neuroinflammation. Being present in dementias, neurodegenerative and neuropsychiatric diseases or tumor invasion in a seemingly uniform way, the system possibly provides a common component of their pathogenesis. Although parts of the system are extensively discussed by several recent reviews, in this review I attempt to summarize physiological actions of the extrasynaptic glutamate on neuronal excitability and provide a brief insight to its pathology for basic understanding of the topic.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary.
| |
Collapse
|
44
|
Wang YF, Parpura V. Astroglial Modulation of Hydromineral Balance and Cerebral Edema. Front Mol Neurosci 2018; 11:204. [PMID: 29946238 PMCID: PMC6007284 DOI: 10.3389/fnmol.2018.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Maintenance of hydromineral balance (HB) is an essential condition for life activity at cellular, tissue, organ and system levels. This activity has been considered as a function of the osmotic regulatory system that focuses on hypothalamic vasopressin (VP) neurons, which can reflexively release VP into the brain and blood to meet the demand of HB. Recently, astrocytes have emerged as an essential component of the osmotic regulatory system in addition to functioning as a regulator of the HB at cellular and tissue levels. Astrocytes express all the components of osmoreceptors, including aquaporins, molecules of the extracellular matrix, integrins and transient receptor potential channels, with an operational dynamic range allowing them to detect and respond to osmotic changes, perhaps more efficiently than neurons. The resultant responses, i.e., astroglial morphological and functional plasticity in the supraoptic and paraventricular nuclei, can be conveyed, physically and chemically, to adjacent VP neurons, thereby influencing HB at the system level. In addition, astrocytes, particularly those in the circumventricular organs, are involved not only in VP-mediated osmotic regulation, but also in regulation of other osmolality-modulating hormones, including natriuretic peptides and angiotensin. Thus, astrocytes play a role in local/brain and systemic HB. The adaptive astrocytic reactions to osmotic challenges are associated with signaling events related to the expression of glial fibrillary acidic protein and aquaporin 4 to promote cell survival and repair. However, prolonged osmotic stress can initiate inflammatory and apoptotic signaling processes, leading to glial dysfunction and a variety of brain diseases. Among many diseases of brain injury and hydromineral disorders, cytotoxic and osmotic cerebral edemas are the most common pathological manifestation. Hyponatremia is the most common cause of osmotic cerebral edema. Overly fast correction of hyponatremia could lead to central pontine myelinolysis. Ischemic stroke exemplifies cytotoxic cerebral edema. In this review, we summarize and analyze the osmosensory functions of astrocytes and their implications in cerebral edema.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
45
|
Amtul Z, Yang J, Nikolova S, Lee TY, Bartha R, Cechetto DF. The Dynamics of Impaired Blood-Brain Barrier Restoration in a Rat Model of Co-morbid Injury. Mol Neurobiol 2018; 55:8071-8083. [PMID: 29508280 DOI: 10.1007/s12035-018-0904-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Defect in brain microperfusion is increasingly recognized as an antecedent event to Alzheimer's disease (AD) and ischemia. Nevertheless, studies on the role of impaired microperfusion as a pathological trigger to neuroinflammation, Aβ deposition as well as blood-brain barrier (BBB) disruption, and the etiological link between AD and ischemia are lacking. In this study, we employ in vivo sequential magnetic resonance imaging (MRI) and computed tomography (CT) imaging in a co-morbid rat model of β-amyloid toxicity (Aβ) and ischemia (ET1) with subsequent histopathology of striatal lesion core and penumbra at 1, 7, and 28 days post injury. Within 24 h, cerebral injury resulted in increased BBB permeability due to the dissolution of β-dystroglycan (β-DG) and basement membrane laminin by active matrix metalloproteinase9 (MMP9). As a result, net flow of circulating IgG down a hydrostatic gradient into the parenchyma led to vasogenic edema and impaired perfusion, thus increasing the apparent hyperintensity in true fast imaging with steady-state free precession (true FISP) imaging and acute hypoperfusion in CT. This was followed by a slow recruitment of reactive astroglia to the affected brain and depolarization of aquaporin4 (AQP4) expression resulting in cytotoxic edema-in an attempt to resolve vasogenic edema. On d28, functional BBB was restored in ET1 rats as observed by astrocytic MMP9 release, β-DG stabilization, and new vessel formation. This was confirmed by reduced hyperintensity on true FISP imaging and normalized cerebral blood flow in CT. While, Aβ toxicity alone was not detrimental enough, Aβ+ET1 rats showed delayed differential expression of MMP9, late recruitment of astroglial cells, protracted loss of AQP4 depolarization, and thus delayed BBB restoration and cerebral perfusion.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| | - Jun Yang
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K7, Canada
| | - Simona Nikolova
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K7, Canada
| | - Ting-Yim Lee
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K7, Canada
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K7, Canada.,Department of Medical Biophysics, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - David F Cechetto
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 5C1, Canada
| |
Collapse
|
46
|
Anzabi M, Ardalan M, Iversen NK, Rafati AH, Hansen B, Østergaard L. Hippocampal Atrophy Following Subarachnoid Hemorrhage Correlates with Disruption of Astrocyte Morphology and Capillary Coverage by AQP4. Front Cell Neurosci 2018; 12:19. [PMID: 29445328 PMCID: PMC5797792 DOI: 10.3389/fncel.2018.00019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Despite successful management of ruptured intracranial aneurysm following subarachnoid hemorrhage (SAH), delayed cerebral ischemia (DCI) remains the main cause of high mortality and morbidity in patients who survive the initial bleeding. Astrocytes play a key role in neurovascular coupling. Therefore, changes in the neurovascular unit including astrocytes following SAH may contribute to the development of DCI and long-term complications. In this study, we characterized morphological changes in hippocampal astrocytes following experimental SAH, with special emphasis on glia-vascular cross-talk and hippocampal volume changes. Four days after induction of SAH or sham-operation in mice, their hippocampal volumes were determined by magnetic resonance imaging (MRI) and histological/stereological methods. Glial fibrillary acid protein (GFAP) immunostained hippocampal sections were examined by stereological techniques to detect differences in astrocyte morphology, and global spatial sampling method was used to quantify the length density of Aquaporin-4 (AQP4) positive capillaries. Our results indicated that hippocampal volume, as measured both by MRI and by histological approaches, was significantly lower in SAH animals than in the sham-operated group. Accordingly, in this animal model of SAH, hippocampal atrophy existed already at the time of DCI onset in humans. SAH induced retraction of GFAP positive astrocyte processes, accompanied by a significant reduction in the length density of AQP4 positive capillaries as well as narrowing of hippocampal capillaries. Meanwhile, astrocyte volume was higher in SAH mice compared with the sham-operated group. Morphological changes in hippocampal astrocytes seemingly disrupt glia-vascular interactions early after SAH and may contribute to hippocampal atrophy. We speculate that astrocytes and astrocyte-capillary interactions may provide targets for the development of therapies to improve the prognosis of SAH.
Collapse
Affiliation(s)
- Maryam Anzabi
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark
| | - Maryam Ardalan
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Nina K Iversen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark
| | - Ali H Rafati
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark.,Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Brian Hansen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark
| |
Collapse
|
47
|
Bove RM. Why monkeys do not get multiple sclerosis (spontaneously): An evolutionary approach. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:43-59. [PMID: 29492266 PMCID: PMC5824939 DOI: 10.1093/emph/eoy002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
The goal of this review is to apply an evolutionary lens to understanding the origins of multiple sclerosis (MS), integrating three broad observations. First, only humans are known to develop MS spontaneously. Second, humans have evolved large brains, with characteristically large amounts of metabolically costly myelin. This myelin is generated over long periods of neurologic development—and peak MS onset coincides with the end of myelination. Third, over the past century there has been a disproportionate increase in the rate of MS in young women of childbearing age, paralleling increasing westernization and urbanization, indicating sexually specific susceptibility in response to changing exposures. From these three observations about MS, a life history approach leads us to hypothesize that MS arises in humans from disruption of the normal homeostatic mechanisms of myelin production and maintenance, during our uniquely long myelination period. This review will highlight under-explored areas of homeostasis in brain development, that are likely to shed new light on the origins of MS and to raise further questions about the interactions between our ancestral genes and modern environments.
Collapse
Affiliation(s)
- Riley M Bove
- Department of Neurology, UCSF, San Francisco, CA, USA
| |
Collapse
|
48
|
Liu XY, Cui D, Li D, Jiao R, Wang X, Jia S, Hou D, Li T, Liu H, Wang P, Wang YF. Oxytocin Removes Estrous Female vs. Male Preference of Virgin Male Rats: Mediation of the Supraoptic Nucleus Via Olfactory Bulbs. Front Cell Neurosci 2017; 11:327. [PMID: 29109676 PMCID: PMC5660071 DOI: 10.3389/fncel.2017.00327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022] Open
Abstract
Social functions of oxytocin (OT) have been explored extensively; however, relationship between the effect of intranasally applied OT (nasal OT) on the social preference (SP) and intracerebral actions of endogenous OT remains unclear. To resolve this question, we first observed effects of nasal OT on the SP of virgin young adult male rats toward unfamiliar virgin estrous female (EF) vs. virgin male rats. The results showed that the test male rats exhibited significantly more times and longer duration accessing the female than the male, which were acutely eliminated by nasal OT. Then, we examined the approaches mediating nasal OT effects on the activity of potential brain targets in Western blots and found that nasal OT activated the olfactory bulbs (OBs) and the supraoptic nucleus (SON), but not the piriform cortex, amygdala and hippocampus as shown by significant changes in the expression of c-Fos and/or phosphorylated extracellular signal-regulated protein kinase (pERK) 1/2. Moreover, microinjection of TTX into the OBs blocked nasal OT-evoked increases in pERK1/2 levels as well as the molecular association between ERK1/2 and OT-neurophysin in the SON. Electrolytic lesions of the lateral olfactory tract did not significantly change the basal levels of pERK 1/2 in the SON; however, upon nasal OT, pERK 1/2 levels in the SON reduced significantly. Lastly, microinjection of L-aminoadipic acid (gliotoxin) into the SON to reduce OT levels reduced the duration of the test male’s accessing the EF and blocked the nasal OT-evoked increase in the duration of test male’s accessing the male while significantly increasing pERK1/2 levels in the amygdala. These findings reveal for the first time that nasal OT acutely eliminates virgin males’ SP to EFs via the OB-SON route and that OT neurons could mediate the social effects of nasal OT by suppressing social phobia generated in the amygdala.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Runsheng Jiao
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dan Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
49
|
Wang P, Qin D, Wang YF. Oxytocin Rapidly Changes Astrocytic GFAP Plasticity by Differentially Modulating the Expressions of pERK 1/2 and Protein Kinase A. Front Mol Neurosci 2017; 10:262. [PMID: 28860967 PMCID: PMC5559427 DOI: 10.3389/fnmol.2017.00262] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/31/2017] [Indexed: 12/23/2022] Open
Abstract
The importance of astrocytes to normal brain functions and neurological diseases has been extensively recognized; however, cellular mechanisms underlying functional and structural plasticities of astrocytes remain poorly understood. Oxytocin (OT) is a neuropeptide that can rapidly change astrocytic plasticity in association with lactation, as indicated in the expression of glial fibrillary acidic protein (GFAP) in the supraoptic nucleus (SON). Here, we used OT-evoked changes in GFAP expression in astrocytes of male rat SON as a model to explore the cellular mechanisms underlying GFAP plasticity. The results showed that OT significantly reduced the expression of GFAP filaments and proteins in SON astrocytes in brain slices. In lysates of the SON, OT receptors (OTRs) were co-immunoprecipitated with GFAP; vasopressin (VP), a neuropeptide structurally similar to OT, did not significantly change GFAP protein level; OT-evoked depolarization of astrocyte membrane potential was sensitive to a selective OTR antagonist (OTRA) but not to tetanus toxin, a blocker of synaptic transmission. The effects of OT on GFAP expression and on astrocyte uptake of Bauer-Peptide, an astrocyte-specific dye, were mimicked by isoproterenol (IPT; β-adrenoceptor agonist), U0126 or PD98059, inhibitors of extracellular signal-regulated protein kinase (ERK) 1/2 kinase and blocked by the OTRA or KT5720, a protein kinase A (PKA) inhibitor. The effect of OT on GFAP expressions and its association with these kinases were simulated by mSIRK, an activator of Gβγ subunits. Finally, suckling increased astrocytic expression of the catalytic subunit of PKA (cPKA) at astrocytic processes while increasing the molecular associations of GFAP with cPKA and phosphorylated ERK (pERK) 1/2. Upon the occurrence of the milk-ejection reflex, spatial co-localization of the cPKA with GFAP filaments further increased, which was accompanied with increased molecular association of GFAP with pERK 1/2 but not with cPKA. Thus, OT-elicited GFAP plasticity is achieved by sequential activation of ERK 1/2 and PKA via OTR signaling pathway in an antagonistic but coordinated manner.
Collapse
Affiliation(s)
- Ping Wang
- School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| | - Danian Qin
- Department of Physiology, Shantou UniversityShantou, China
| | - Yu-Feng Wang
- School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| |
Collapse
|
50
|
Vanya M, Szucs S, Vetro A, Bartfai G. The potential role of oxytocin and perinatal factors in the pathogenesis of autism spectrum disorders - review of the literature. Psychiatry Res 2017; 247:288-290. [PMID: 27974283 DOI: 10.1016/j.psychres.2016.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 10/25/2016] [Accepted: 12/05/2016] [Indexed: 12/29/2022]
Abstract
Autism Spectrum Disorders (ASD) are characterized by: social and communication impairments, and by restricted repetitive behaviors. The aim of the present paper is to review abnormalities of oxytocin (OXT) and related congenital malformations in ASD. A literature search was conducted in the PubMed database up to 2016 for articles related to the pathomechanism of ASD, abnormalities of OXT and the OXT polymorphism in ASD. The pathomechanism of ASD has yet to be. The development of ASD is suggested to be related to abnormalities of the oxytocin-arginin-vasopressin system. Previous results suggest that OXT and arginine vasopressin (AVP) may play a role in the etiopathogenesis of ASD.
Collapse
Affiliation(s)
- Melinda Vanya
- Department of Obstetrics and Gynaecology, Albert Szent-Gyorgyi Clinical Centre, University of Szeged, Szeged, Hungary; KF TFK Health Research and Health Promotion Research Group, Kecskemet, Hungary.
| | - Szabina Szucs
- Division of Adolescent Psychiatry, Department of Paediatrics, Albert Szent-Gyorgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Agnes Vetro
- Division of Adolescent Psychiatry, Department of Paediatrics, Albert Szent-Gyorgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Gyorgy Bartfai
- Department of Obstetrics and Gynaecology, Albert Szent-Gyorgyi Clinical Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|