1
|
Ji C, Wang Y, Ju Y, Liu S, Chen X, Wang J, Sun N, Tang Z, Gu P, Ji J. The role of HMOX1-mediated ferroptosis in blue light-induced damage to retinal pigment epithelium. Sci Rep 2025; 15:18949. [PMID: 40442370 PMCID: PMC12122798 DOI: 10.1038/s41598-025-03757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 05/22/2025] [Indexed: 06/02/2025] Open
Abstract
Currently, blue light irradiation is frequently encountered in daily life and is widely considered a high-risk factor for retinal damage. In particular, blue light-induced dysfunction and death of the retinal pigment epithelium (RPE) may ultimately contribute to irreversible vision impairment and even blindness. However, the underlying pathogenic mechanism and pathogenically targeted protection against blue light-induced RPE degeneration remain unclear. In this study, through sophisticated biochemical evaluation and high-throughput sequencing, the predominant pathological process during blue light-induced RPE degeneration was confirmed to be HMOX1-mediated RPE ferroptosis, which may be involved in the Nrf2-SLC7A11-HMOX1 hierarchy. Upon further knockdown of HMOX1 with si-HMOX1 or the HMOX1 inhibitor zinc protoporphyrin (ZnPP), specific inhibition of HMOX1 overexpression significantly suppressed RPE ferroptosis. In mice, treatment with ZnPP effectively rescued RPE degeneration and visual function. These results highlighted that HMOX1-mediated ferroptosis might be a potential target for protection against blue light-induced damage to RPE cells.
Collapse
Affiliation(s)
- Chunyi Ji
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Yiqi Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Yahan Ju
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Siwei Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Xirui Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Jiajing Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Na Sun
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhimin Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P.R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China.
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P.R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China.
| | - Jing Ji
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P.R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China.
| |
Collapse
|
2
|
Pértille F, Badam T, Mitheiss N, Løtvedt P, Tsakoumis E, Gustafsson M, Coutinho LL, Jensen P, Guerrero‐Bosagna C. Sex-Specific Methylomic and Transcriptomic Responses of the Avian Pineal Gland to Unpredictable Illumination Patterns. J Pineal Res 2025; 77:e70040. [PMID: 40091567 PMCID: PMC11911909 DOI: 10.1111/jpi.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/03/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
In the production environment of chickens, exposure to unpredictable light patterns is a common painless stressor, widely used to influence growth rate and egg production efficiency. The pineal gland, a key regulator of circadian rhythms through melatonin secretion, responds to environmental light cues, and its function is modulated by epigenetic mechanisms. In this study, we investigated how the pineal gland methylome and transcriptome (including micro-RNAs) interact to respond to a rearing exposure to unpredictable illumination patterns, with a particular focus on sex differences. We conducted an integrative multi-omic analysis-including methylomic (MeDIP-seq), transcriptomic (RNA-seq), and miRNA expression profiling-on the pineal gland of Hy-Line White chickens (n = 34, 18 females, 16 males) exposed to either a standard 12:12 light-dark cycle (control) or a randomized, unpredictable light schedule from Days 3 to 24 post-hatch. Our findings reveal that unpredictable light exposure alters the pineal gland methylome and transcriptome in a sex-specific manner. However, while transcriptomic differences between sexes increased due to the stress, methylomic differences decreased, particularly on the Z chromosome. These changes were driven by females (the heterogametic sex in birds), which became more male-like in their pineal methylome after exposure to the illumination stress, leading to reduced epigenetic sexual dimorphism while maintaining differences at the gene expression level. Further, we implemented a fixed sex effect model as a biological proof of concept, identifying a network of 12 key core genes interacting with 102 other genes, all linked to circadian regulation and stress adaptation. This network of genes comprises a core regulatory framework for circadian response. Additionally, tissue-specific expression analysis and cell-type specific expression analysis revealed enrichment in brain regions critical for circadian function, including neuronal populations involved in circadian regulation and the hypothalamic-pituitary-thyroid axis. Together, these findings provide strong evidence of sex-specific epigenetic transcriptomic responses of the pineal gland upon illumination stress and offer valuable insights into the interplay of different omic levels in relation to circadian response.
Collapse
Affiliation(s)
- Fábio Pértille
- Department of Organismal BiologyPhysiology and Environmental ToxicologyUppsala UniversityUppsalaSweden
| | - Tejaswi Badam
- Department of Computational BiologyLuxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
- IFM BioinformaticsLinköping UniversityLinköpingSweden
| | - Nina Mitheiss
- Avian Behavioural Genomics and Physiology GroupIFM BiologyLinköping UniversityLinköpingSweden
| | - Pia Løtvedt
- Avian Behavioural Genomics and Physiology GroupIFM BiologyLinköping UniversityLinköpingSweden
| | - Emmanouil Tsakoumis
- Department of Organismal BiologyPhysiology and Environmental ToxicologyUppsala UniversityUppsalaSweden
| | - Mika Gustafsson
- Department of Computational BiologyLuxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Luiz Lehmann Coutinho
- Animal Biotechnology Laboratory, Animal Science and Pastures Department“Luiz de Queiroz” College of Agriculture (ESALQ)University of São Paulo (USP)PiracicabaSão PauloBrazil
| | - Per Jensen
- Avian Behavioural Genomics and Physiology GroupIFM BiologyLinköping UniversityLinköpingSweden
| | - Carlos Guerrero‐Bosagna
- Department of Organismal BiologyPhysiology and Environmental ToxicologyUppsala UniversityUppsalaSweden
| |
Collapse
|
3
|
Wei SQ, Yin P, Tang WY, Zhang ZY, Chu W, Tong Q, Li BM, Zheng WC, Wang CY. Prenatal light exposure affects diurnal rhythms and visual development of the layer embryonic retina. Poult Sci 2025; 104:104497. [PMID: 39566169 PMCID: PMC11617458 DOI: 10.1016/j.psj.2024.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
It is believed that some wavelengths of light penetrate through eggshell and are perceived by avian embryo, and may consequently affect rhythm establishment and development. This research aimed to explore the influence of prenatal light exposure on the morphological alterations of retinal tissue, the expression of visual developmental signaling systems (TGF-β/Smad pathway), the expression of clock related genes (cClock, cBmal1, cBmal2, cAanat), and melatonin concentration in the chicken embryonic retina. Layer eggs (Jingfen No.6) were subjected to white light (5000K, WL) and green light (520 nm/515-525 nm, GL) with a 12L:12D photoperiod throughout the entire incubation period, in contrast to no light incubation (NL). The results showed that the thickness of retina and each retinal lamina of chicken embryo in WL at E20 was much thicker than that of chicken embryo in GL (P < 0.05). In contrary, the expression level of TGF-β1 mRNA and Smad2/3 protein in retina was dramatically downregulated in WL when compared to that in NL and GL (P < 0.01). Furthermore, the incubation light simultaneously significantly affected the diurnal rhythms of the chicken embryonic retina. The expression of three clock genes (cBmal1/2, cClock) and cAanat exhibited significant diurnal rhythms in GL (P < 0.05). Additionally, green light stimulation significantly enhanced melatonin secretion but did not show diurnal rhythm. However, cBmal1, cAanat, and melatonin expression exhibited diurnal rhythms (P < 0.01), while the others did not in WL. In NL, only cBmal1 exhibited diurnal rhythmicity (P < 0.01). In conclusion, providing light of different wavelengths during the incubation process of poultry can have varying effects on embryonic visual development and the establishment of diurnal rhythms. WL had an advantage to GL and NL on retina development and diurnal rhythm through significantly influencing the expression of genes related to visual developmental signaling pathways and clock genes. A well-developed retina in WL exposure chicken embryo may be beneficial for establishing a melatonin rhythm. Conversely, the established circadian rhythm could improve embryonic development.
Collapse
Affiliation(s)
- S Q Wei
- Department of Agricultural Structure and Environmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - P Yin
- Department of Agricultural Structure and Environmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - W Y Tang
- Department of Agricultural Structure and Environmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Z Y Zhang
- Department of Agricultural Structure and Environmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - W Chu
- Department of Agricultural Structure and Environmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Q Tong
- Department of Agricultural Structure and Environmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing 100083, China.
| | - B M Li
- Department of Agricultural Structure and Environmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing 100083, China
| | - W C Zheng
- Department of Agricultural Structure and Environmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing 100083, China
| | - C Y Wang
- Department of Agricultural Structure and Environmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing 100083, China
| |
Collapse
|
4
|
Chernyshkova O, Erofeeva N, Meshalkina D, Balykina A, Gambaryan S, Belyakov M, Firsov M. Light induces a rapid increase in cAMP and activates PKA in rod outer segments of the frog retina. J Gen Physiol 2024; 156:e202313530. [PMID: 39436404 PMCID: PMC11498274 DOI: 10.1085/jgp.202313530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/29/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
The phototransduction cascade enables the photoreceptor to detect light over a wide range of intensities without saturation. The main second messenger of the cascade is cGMP and the primary regulatory mechanism is calcium feedback. However, some experimental data suggest that cAMP may also play a role in regulating the phototransduction cascade, but this would require changes in cAMP on a time scale of seconds. Currently, there is a lack of data on the dynamics of changes in intracellular cAMP levels on this timescale. This is largely due to the specificity of the sensory modality of photoreceptors, which makes it practically impossible to use conventional experimental approaches based on fluorescence methods. In this study, we employed the method of rapid cryofixation of retinal samples after light stimulation and subsequent isolation of outer segment preparations. The study employed highly sensitive metabolomics approaches to measure levels of cAMP. Additionally, PKA activity was measured in the samples using a western blot. The results indicate that when exposed to near-saturating but still moderate light, cAMP levels increase transiently within the first second and then return to pre-stimulus levels. The increase in cAMP activates PKA, resulting in the phosphorylation of PKA-specific substrates in frog retinal outer segments.
Collapse
Affiliation(s)
- Olga Chernyshkova
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalia Erofeeva
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Darya Meshalkina
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna Balykina
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Stepan Gambaryan
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Michael Belyakov
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, St. Petersburg, Russia
| | - Michael Firsov
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
5
|
Thompson P, Vilkelyte V, Woronkowicz M, Tavakoli M, Skopinski P, Roberts H. Adenylyl Cyclase in Ocular Health and Disease: A Comprehensive Review. BIOLOGY 2024; 13:445. [PMID: 38927325 PMCID: PMC11200476 DOI: 10.3390/biology13060445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Adenylyl cyclases (ACs) are a group of enzymes that convert adenosine-5'-triphosphate (ATP) to cyclic adenosine 3',5' monophosphate (cAMP), a vital and ubiquitous signalling molecule in cellular responses to hormones and neurotransmitters. There are nine transmembrane (tmAC) forms, which have been widely studied; however, the tenth, soluble AC (sAC) is less extensively characterised. The eye is one of the most metabolically active sites in the body, where sAC has been found in abundance, making it a target for novel therapeutics and biomarking. In the cornea, AC plays a role in endothelial cell function, which is vital in maintaining stromal dehydration, and therefore, clarity. In the retina, AC has been implicated in axon cell growth and survival. As these cells are irreversibly damaged in glaucoma and injury, this molecule may provide focus for future therapies. Another potential area for glaucoma management is the source of aqueous humour production, the ciliary body, where AC has also been identified. Furthering the understanding of lacrimal gland function is vital in managing dry eye disease, a common and debilitating condition. sAC has been linked to tear production and could serve as a therapeutic target. Overall, ACs are an exciting area of study in ocular health, offering multiple avenues for future medical therapies and diagnostics. This review paper explores the diverse roles of ACs in the eye and their potential as targets for innovative treatments.
Collapse
Affiliation(s)
- Polly Thompson
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK;
| | - Virginija Vilkelyte
- University of Exeter Medical School, St Luke’s Campus, University of Exeter, Exeter EX1 2HZ, UK
| | - Malgorzata Woronkowicz
- NDDH, Royal Devon University Healthcare NHS Foundation Trust, Barnstaple EX31 4JB, UK;
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
| | - Mitra Tavakoli
- University of Exeter Medical School, St Luke’s Campus, University of Exeter, Exeter EX1 2HZ, UK
| | - Piotr Skopinski
- Department of Ophthalmology, SPKSO Ophthalmic University Hospital, Medical University of Warsaw, 00-576 Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Harry Roberts
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK;
- University of Exeter Medical School, St Luke’s Campus, University of Exeter, Exeter EX1 2HZ, UK
| |
Collapse
|
6
|
Felder-Schmittbuhl MP, Hicks D, Ribelayga CP, Tosini G. Melatonin in the mammalian retina: Synthesis, mechanisms of action and neuroprotection. J Pineal Res 2024; 76:e12951. [PMID: 38572848 DOI: 10.1111/jpi.12951] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/09/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Melatonin is an important player in the regulation of many physiological functions within the body and in the retina. Melatonin synthesis in the retina primarily occurs during the night and its levels are low during the day. Retinal melatonin is primarily synthesized by the photoreceptors, but whether the synthesis occurs in the rods and/or cones is still unclear. Melatonin exerts its influence by binding to G protein-coupled receptors named melatonin receptor type 1 (MT1) and type 2 (MT2). MT1 and MT2 receptors activate a wide variety of signaling pathways and both receptors are present in the vertebrate photoreceptors where they may form MT1/MT2 heteromers (MT1/2h). Studies in rodents have shown that melatonin signaling plays an important role in the regulation of retinal dopamine levels, rod/cone coupling as well as the photopic and scotopic electroretinogram. In addition, melatonin may play an important role in protecting photoreceptors from oxidative stress and can protect photoreceptors from apoptosis. Critically, melatonin signaling is involved in the modulation of photoreceptor viability during aging and other studies have implicated melatonin in the pathogenesis of age-related macular degeneration. Hence melatonin may represent a useful tool in the fight to protect photoreceptors-and other retinal cells-against degeneration due to aging or diseases.
Collapse
Affiliation(s)
- Marie Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - David Hicks
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Christophe P Ribelayga
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, Texas, USA
| | - Gianluca Tosini
- Department of Pharmacology & Toxicology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Xu Y, Qiu Y, Zhang Y, Li X. A cAMP phosphodiesterase is essential for sclerotia formation and virulence in Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2023; 14:1175552. [PMID: 37324679 PMCID: PMC10264682 DOI: 10.3389/fpls.2023.1175552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Sclerotinia sclerotiorum is a plant pathogenic fungus that causes white mold or stem rot diseases. It affects mostly dicotyledonous crops, resulting in significant economic losses worldwide. Sclerotia formation is a special feature of S. sclerotiorum, allowing its survival in soil for extended periods and facilitates the spread of the pathogen. However, the detailed molecular mechanisms of how sclerotia are formed and how virulence is achieved in S. sclerotiorum are not fully understood. Here, we report the identification of a mutant that cannot form sclerotia using a forward genetics approach. Next-generation sequencing of the mutant's whole genome revealed candidate genes. Through knockout experiments, the causal gene was found to encode a cAMP phosphodiesterase (SsPDE2). From mutant phenotypic examinations, we found that SsPDE2 plays essential roles not only in sclerotia formation, but also in the regulation of oxalic acid accumulation, infection cushion functionality and virulence. Downregulation of SsSMK1 transcripts in Sspde2 mutants revealed that these morphological defects are likely caused by cAMP-dependent inhibition of MAPK signaling. Moreover, when we introduced HIGS construct targeting SsPDE2 in Nicotiana benthamiana, largely compromised virulence was observed against S. sclerotiorum. Taken together, SsPDE2 is indispensable for key biological processes of S. sclerotiorum and can potentially serve as a HIGS target to control stem rot in the field.
Collapse
Affiliation(s)
- Yan Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Yilan Qiu
- Department of Life Science, Hunan Normal University, Changsha, China
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Mathur PD, Zou J, Neiswanger G, Zhu D, Wang Y, Almishaal AA, Vashist D, Hammond HK, Park AH, Yang J. Adenylyl cyclase 6 plays a minor role in the mouse inner ear and retina. Sci Rep 2023; 13:7075. [PMID: 37127773 PMCID: PMC10151359 DOI: 10.1038/s41598-023-34361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
Adenylyl cyclase 6 (AC6) synthesizes second messenger cAMP in G protein-coupled receptor (GPCR) signaling. In cochlear hair cells, AC6 distribution relies on an adhesion GPCR, ADGRV1, which is associated with Usher syndrome (USH), a condition of combined hearing and vision loss. ADGRV1 is a component of the USH type 2 (USH2) protein complex in hair cells and photoreceptors. However, the role of AC6 in the inner ear and retina has not been explored. Here, we found that AC6 distribution in hair cells depends on the USH2 protein complex integrity. Several known AC6 regulators and effectors, which were previously reported to participate in ADGRV1 signaling in vitro, are localized to the stereociliary compartments that overlap with AC6 distribution in hair cells. In young AC6 knockout (Adcy6-/-) mice, the activity of cAMP-dependent protein kinase, but not Akt kinase, is altered in cochleas, while both kinases are normal in vestibular organs. Adult Adcy6-/- mice however exhibit normal hearing function. AC6 is expressed in mouse retinas but rarely in photoreceptors. Adcy6-/- mice have slightly enhanced photopic but normal scotopic vision. Therefore, AC6 may participate in the ADGRV1 signaling in hair cells but AC6 is not essential for cochlear and retinal development and maintenance.
Collapse
Affiliation(s)
- Pranav Dinesh Mathur
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA
- Vecprobio Inc., San Diego, CA, 92126, USA
| | - Junhuang Zou
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA
| | - Grace Neiswanger
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA
| | - Daniel Zhu
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA
| | - Yong Wang
- Division of Otolaryngology, Department of Surgery, University of Utah, Salt Lake City, UT, 84132, USA
| | - Ali A Almishaal
- Department of Communication Sciences and Disorders, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Speech-Language Pathology and Audiology, College of Applied Medical Sciences, University of Hail, Hail, 81451, Saudi Arabia
| | - Deepti Vashist
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA
| | - H Kirk Hammond
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Albert H Park
- Division of Otolaryngology, Department of Surgery, University of Utah, Salt Lake City, UT, 84132, USA
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA.
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA.
- Division of Otolaryngology, Department of Surgery, University of Utah, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
9
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Small Hepatitis B Virus Surface Antigen Promotes Hepatic Gluconeogenesis via Enhancing Glucagon/cAMP/Protein Kinase A/CREB Signaling. J Virol 2022; 96:e0102022. [PMID: 36394315 PMCID: PMC9749458 DOI: 10.1128/jvi.01020-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hepatitis B virus (HBV) is a major risk factor for serious liver diseases. The liver plays a unique role in controlling carbohydrate metabolism to maintain the glucose level within the normal range. Chronic HBV infection has been reported to associate with a high prevalence of diabetes. However, the detailed molecular mechanism underlying the potential association remains largely unknown. Here, we report that liver-targeted delivery of small HBV surface antigen (SHBs), the most abundant viral protein of HBV, could elevate blood glucose levels and impair glucose and insulin tolerance in mice by promoting hepatic gluconeogenesis. Hepatocytes with SHB expression also exhibited increased glucose production and expression of gluconeogenic genes glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase (PEPCK) in response to glucagon stimulation. Mechanistically, SHBs increased cellular levels of cyclic AMP (cAMP) and consequently activated protein kinase A (PKA) and its downstream effector cAMP-responsive element binding protein (CREB). SHBs-induced activation of CREB enhanced transcripts of gluconeogenic genes, thus promoting hepatic gluconeogenesis. The elevated cAMP level resulted from increased transcription activity and expression of adenylyl cyclase 1 (AC1) by SHBs through a binary E-box factor binding site (BEF). Taken together, we unveiled a novel pathogenic role and mechanism of SHBs in hepatic gluconeogenesis, and these results might highlight a potential target for preventive and therapeutic intervention in the development and progression of HBV-associated diabetes. IMPORTANCE Chronic HBV infection causes progressive liver damage and is found to be a risk factor for diabetes. However, the mechanism in the regulation of glucose metabolism by HBV remains to be established. In the current study, we demonstrate for the first time that the small hepatitis B virus surface antigen (SHBs) of HBV elevates AC1 transcription and expression to activate cAMP/PKA/CREB signaling and subsequently induces the expression of gluconeogenic genes and promotes hepatic gluconeogenesis both in vivo and in vitro. This study provides a direct link between HBV infection and diabetes and implicates that SHBs may represent a potential target for the treatment of HBV-induced metabolic disorders.
Collapse
|
11
|
Allen AE. Circadian Regulation of the Rod Contribution to Mesopic Vision in Mice. J Neurosci 2022; 42:8795-8806. [PMID: 36216501 PMCID: PMC9698662 DOI: 10.1523/jneurosci.0486-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
At intermediate (mesopic) light levels, rods and cones are both active and can contribute to vision. This presents a challenge to the retina because the visual responses originating with rods and cones are distinct, yet their visual responses must be seamlessly combined. The current study aimed to establish how the circadian clock regulates rod and/or cone vision in these conditions, given the strong time-of-day change in the reliance on each photoreceptor. Visual responses were recorded in the retina and visual thalamus of anaesthetized male mice at distinct circadian time points, and the method of receptor silent substitution was used to selectively stimulate different photoreceptor types. With stimuli designed to only activate rods, responses in the mesopic range were highly rhythmic and peaked in amplitude in the subjective night. This rhythm was abolished following intravitreal injection of the gap junction blocker meclofenamic acid, consistent with a circadian variation in the strength of electrical coupling of photoreceptors. In contrast, responses to stimuli designed to only activate cones were arrhythmic within the mesopic to photopic range when adapted to the background irradiance. The outcome was that combined rod-plus-cone responses showed a stable contrast-response relationship across mesopic-photopic backgrounds in the circadian day, whereas at night, responses were significantly amplified at lower light levels. These data support the idea that the circadian clock is a key regulator of vision, in this case defining the relative amplitude of rod/cone vision across the mesopic transition according to time of day.SIGNIFICANCE STATEMENT Although the importance of circadian clocks in regulating vision has been long recognized, less is known about how the clock shapes vision in conditions where both rods and cones are active (mesopic conditions). Here, the novel approach of receptor silent substitution has been applied to trace rod and cone visual responses in mice across the circadian cycle and has identified pronounced rhythms in rod, but not cone, vision. This has the effect of boosting responses in dimmer backgrounds at night at the cost of impaired contrast-response stability across the mesopic to photopic range. Thus, the circadian clock drives anticipatory changes in the relative contribution of rods versus cones to vision, which match the prevailing visual environment.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
12
|
Bery A, Bagchi U, Bergen AA, Felder-Schmittbuhl MP. Circadian clocks, retinogenesis and ocular health in vertebrates: new molecular insights. Dev Biol 2022; 484:40-56. [DOI: 10.1016/j.ydbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/22/2022]
|
13
|
Ju Y, Tang Z, Dai X, Gao H, Zhang J, Liu Y, Yang Y, Ni N, Zhang D, Wang Y, Sun N, Yin L, Luo M, Zhang J, Gu P. Protection against light-induced retinal degeneration via dual anti-inflammatory and anti-angiogenic functions of thrombospondin-1. Br J Pharmacol 2020; 179:1938-1961. [PMID: 33125704 DOI: 10.1111/bph.15303] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Retinal photodamage is a high-risk factor for age-related macular degeneration (AMD), the leading cause of irreversible blindness worldwide. However, both the pathogenesis and effective therapies for retinal photodamage are still unclear and debated. EXPERIMENTAL APPROACH The anti-inflammatory effects of thrombospondin-1 on blue light-induced inflammation in ARPE-19 cells and in retinal inflammation were evaluated. Furthermore, the anti-angiogenic effects of thrombospondin-1 on human microvascular endothelial cells (hMEC-1 cells) and a laser-induced choroidal neovascularisation (CNV) mouse model were evaluated. in vitro experiments, including western blotting, immunocytochemistry, migration assays and tube formation assays, as well as in vivo experiments, including immunofluorescence, visual electrophysiology, spectral-domain optical coherence tomography, and fluorescein angiography, were employed to evaluate the anti-inflammatory and anti-angiogenic effects of thrombospondin-1. KEY RESULTS Specific effects of blue light-induced retinal inflammation and pathological angiogenesis were reflected by up-regulation of pro-inflammatory factors and activation of angiogenic responses, predominantly regulated by the NF-κB and VEGFR2 pathways respectively. During the blue light-induced pathological progress, THBS-1 derived from retinal pigment epithelium down-regulated proteomics and biological assays. Thrombospondin-1 treatment also suppressed inflammatory infiltration and neovascular leakage. The protective effect of Thrombospondin-1 was additionally demonstrated by a substantial rescue of visual function. Mechanistically, thrombospondin-1 reversed blue light-induced retinal inflammation and angiogenesis by blocking the activated NF-κB and VEGFR2 pathways, respectively. CONCLUSION AND IMPLICATIONS Thrombospondin-1, with dual anti-inflammatory and anti-neovascularisation properties, is a promising agent for protection against blue light-induced retinal damage and retinal degenerative disorders which are pathologically associated with inflammatory and angiogenic progress.
Collapse
Affiliation(s)
- Yahan Ju
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Zhimin Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xiaochan Dai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huiqin Gao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jing Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yan Liu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yanan Yang
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai, China
| | - Ni Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Dandan Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yuyao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Na Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Luqiao Yin
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai, China
| | - Min Luo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai, China
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
14
|
Scuderi L, Davinelli S, Iodice CM, Bartollino S, Scapagnini G, Costagliola C, Scuderi G. Melatonin: Implications for Ocular Disease and Therapeutic Potential. Curr Pharm Des 2020; 25:4185-4191. [PMID: 31724508 DOI: 10.2174/1381612825666191113110225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
Abstract
Melatonin, an indoleamine secreted mainly by the pineal gland, is known to modulate a wide range of circadian functions. However, this neurohormone is also synthesized within the eye and acts directly on ocular structures to mediate a variety of physiological processes. This review is focused on the role and therapeutic potential of melatonin in ocular diseases. We summarize data indicating that melatonin may represent a powerful tool to counteract ocular dysfunctions such as uveitis, glaucoma, age-related macular degeneration, and diabetic retinopathy. A search strategy was conducted to identify studies in PubMed (January 1990 to September 2017). In particular, we included experimental studies, clinical trials, and reviews to provide suitable insights and elucidations regarding the action of melatonin on age-related ocular disorders. Literature data suggest that melatonin could potentially protect ocular tissues by decreasing the production of free radicals and pro-inflammatory mediators. Additionally, melatonin appears to be safe and well-tolerated, even at high doses, and no adverse/side effects were reported. Although this topic remains under intense investigation, we can conclude that melatonin, as a single agent or in combination with other drugs, is an attractive pharmacological candidate for age-related ocular diseases.
Collapse
Affiliation(s)
- Luca Scuderi
- Neuroscience, Mental Health and Sense Organs Department, Faculty of Medicine and Psychology, University of Rome "La Sapienza", Rome, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Clemente Maria Iodice
- Neuroscience, Mental Health and Sense Organs Department, Faculty of Medicine and Psychology, University of Rome "La Sapienza", Rome, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Gianluca Scuderi
- Neuroscience, Mental Health and Sense Organs Department, Faculty of Medicine and Psychology, University of Rome "La Sapienza", Rome, Italy
| |
Collapse
|
15
|
Jiang N, Cao J, Wang Z, Dong Y, Chen Y. Effect of monochromatic light on the temporal expression of N-acetyltransferase in chick pineal gland. Chronobiol Int 2020; 37:1140-1150. [PMID: 32308045 DOI: 10.1080/07420528.2020.1754846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The avian pineal gland is an independent molecular oscillator that receives external light information that regulates the synthesis and secretion of melatonin. Arylalkylamine N-acetyltransferase plays an important role in the pineal gland by controlling the rhythmic production of melatonin. Previous study showed that monochromatic light influences the secretion of melatonin, which is regulated by the molecular circadian clock genes in chick pineal gland. This study was designed to investigate the effect of monochromatic light on the circadian rhythm of levels of cAanat, clock protein (CLOCK and BMAL1), cCreb, and opsins (cOpnp, Pinopsin; cOpn4-1, Melanopsin-1; cOpn4-2, Melanopsin-2) in chick pineal gland. A total of 240 post-hatching day (P) 0 broiler chickens were reared under white (WL), red (RL), green (GL), and blue light (BL) with light (L)-dark (D) cycle of 12L:12D for 14 d. The results show significant circadian rhythms in the expression of cAanat, CLOCK, BMAL1, cCreb, cOpnp, cOpn4-1, and cOpn4-2, but not for cOpnp under RL. Compared with WL, GL increased the level of cAanat mRNA, while RL decreased it. Meanwhile, CLOCK and BMAL1 proteins were expressed at high levels in GL. Furthermore, the peak of the 24 h pattern of cOpnp mRNA in GL was earlier than that of in WL, RL, and BL. These results demonstrated that monochromatic light affects the daily expression of cAanat in the chick pineal gland via the biological clock. GL activates the transcription of cAanat, while RL suppresses the transcription of cAanat. Meanwhile, GL appears to induce the peak of cOpnp mRNA in advance to affect the transmission of light. Thus, monochromatic light regulates cAanat in the chick pineal gland by affecting the levels of clock regulators via entraining the expression of pineal gland opsins.
Collapse
Affiliation(s)
- Nan Jiang
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University , Haidian, Beijing, China.,Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, Qingdao Agricultural University , Qingdao, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University , Haidian, Beijing, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University , Haidian, Beijing, China
| | - Yulan Dong
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University , Haidian, Beijing, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University , Haidian, Beijing, China
| |
Collapse
|
16
|
Bian J, Wang Z, Dong Y, Cao J, Chen Y. Effect of monochromatic light on the circadian clock of cultured chick retinal tissue. Exp Eye Res 2020; 194:108008. [PMID: 32198015 DOI: 10.1016/j.exer.2020.108008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/20/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022]
Abstract
The central biological clock system of bird is formed by hypothalamus suprachiasmatic nucleus, pineal gland and retina thereby interacting with each other in a neuroendocrine loop. Previous results have confirmed that monochromatic light can influence the clock genes in the pineal gland, hypothalamus and retina of chicks in vivo. The present work was conducted to study whether the cultured retinal tissue of chick could maintain the circadian oscillation and whether the monochromatic light affect the expression level of cultured retinal circadian clock in vitro. Retinal tissues of 0-day-old chicks were cultured in vitro under 4 light treatments (white, red, green and blue lights) with light dark cycle 12:12 and constant dark. The tissues and culture medium were collected every each 4 h. Melanopsin, clock genes, cAanat, the positive-regulating clock proteins and melatonin were measured. The results showed that cOpn4-1, cOpn4-2, cBmal1, cCry1, cPer2, cPer3, cAanat and melatonin concentrations possessed a significant circadian rhythm in cultured chick retina tissues under different monochromatic lights; while, in constant dark, cBmal1, cCry1, cPer2, cPer3, cAanat and melatonin concentration possessed a significant circadian rhythm. Green light promoted the circadian expression level of cOpn4-1, cOpn4-2, cBmal1, cAanat and BMAL1 proteins and the circadian rhythm of melatonin secretion of retina by increasing the mesors and amplitudes. In addition, green light significantly increased the average expression levels of cClock, cBmal2 and CLOCK proteins which were expressed arrhythmically. Results suggested that the retina is a central oscillator with autonomous circadian rhythm. In isolated retina tissues, green light activated the expression of melanopsin and promoted the expression of positive-regulating clock genes, thereby up-regulating the expression of cAanat and resulting the increasing of the synthesis and secretion of melatonin.
Collapse
Affiliation(s)
- Jiang Bian
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China; Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, 037009, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Yulan Dong
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China.
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China.
| |
Collapse
|
17
|
Ko GYP. Circadian regulation in the retina: From molecules to network. Eur J Neurosci 2020; 51:194-216. [PMID: 30270466 PMCID: PMC6441387 DOI: 10.1111/ejn.14185] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
The mammalian retina is the most unique tissue among those that display robust circadian/diurnal oscillations. The retina is not only a light sensing tissue that relays light information to the brain, it has its own circadian "system" independent from any influence from other circadian oscillators. While all retinal cells and retinal pigment epithelium (RPE) possess circadian oscillators, these oscillators integrate by means of neural synapses, electrical coupling (gap junctions), and released neurochemicals (such as dopamine, melatonin, adenosine, and ATP), so the whole retina functions as an integrated circadian system. Dysregulation of retinal clocks not only causes retinal or ocular diseases, it also impacts the circadian rhythm of the whole body, as the light information transmitted from the retina entrains the brain clock that governs the body circadian rhythms. In this review, how circadian oscillations in various retinal cells are integrated, and how retinal diseases affect daily rhythms.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
18
|
Koskela S, Turunen T, Ala-Laurila P. Mice Reach Higher Visual Sensitivity at Night by Using a More Efficient Behavioral Strategy. Curr Biol 2019; 30:42-53.e4. [PMID: 31866370 DOI: 10.1016/j.cub.2019.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/01/2019] [Accepted: 11/05/2019] [Indexed: 11/17/2022]
Abstract
Circadian clocks predictively adjust the physiology of organisms to the day/night cycle. The retina has its own clock, and many diurnal changes in its physiology have been reported. However, their implications for retinal functions and visually guided behavior are largely unresolved. Here, we study the impact of diurnal rhythm on the sensitivity limit of mouse vision. A simple photon detection task allowed us to link well-defined retinal output signals directly to visually guided behavior. We show that visually guided behavior at its sensitivity limit is strongly under diurnal control, reaching the highest sensitivity and stability at night. The diurnal differences in visual sensitivity did not arise in the retina, as assessed by spike recordings from the most sensitive retinal ganglion cell types: ON sustained, OFF sustained, and OFF transient alpha ganglion cells. Instead, we found that mice, as nocturnal animals, use a more efficient search strategy for visual cues at night. Intriguingly, they can switch to the more efficient night strategy even at their subjective day after first having performed the task at night. Our results exemplify that the shape of visual psychometric functions depends robustly on the diurnal state of the animal, its search strategy, and even its diurnal history of performing the task. The results highlight the impact of the day/night cycle on high-level sensory processing, demonstrating a direct diurnal impact on the behavioral strategy of the animal.
Collapse
Affiliation(s)
- Sanna Koskela
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00790 Helsinki, Finland
| | - Tuomas Turunen
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00790 Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 02150 Espoo, Finland
| | - Petri Ala-Laurila
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00790 Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 02150 Espoo, Finland.
| |
Collapse
|
19
|
Sánchez-Bretaño A, Suen TC, Baba K, DeBruyne J, Tosini G. Melatonin receptor heterodimerization in a photoreceptor-like cell line endogenously expressing melatonin receptors. Mol Vis 2019; 25:791-799. [PMID: 31819341 PMCID: PMC6887793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/29/2019] [Indexed: 11/09/2022] Open
Abstract
Purpose Melatonin signaling plays an important role in the modulation of retinal physiology and photoreceptor viability during aging. In this study, we investigated whether 661W cells-a photoreceptor-like cell that endogenously expresses melatonin receptor type 1 (MT1) and melatonin receptor type 2 (MT2) receptors-represent a useful model for studying the biology of heterodimerization and signaling of MT1/2 receptors. Methods 661W cells were cultured, and MT1/MT2 heterodimerization in 661W cells was assessed with proximity ligation assay. MT2 was removed from the 661W cells using the MT2-CRISPR/Cas9 system. Melatonin receptor signaling was investigated by measuring cAMP levels and activation of the AKT-FoxO1 pathway. Results The results demonstrated that heterodimerization of MT1 and MT2 receptors occurs in 661W cells. The pathways activated by MT1/MT2 heterodimer (MT1/2h) in 661W cells are similar to those previously reported in mouse photoreceptors. Disruption of the heterodimer formation by genetically ablating MT2 from 661W cells abolished the activation of melatonin signaling in these cells. Conclusions The data indicated that in 661W cells, MT1 and MT2 receptors are functional only when they are associated in a heteromeric complex, as occurs in mouse photoreceptors. 661W cells represent a useful model for studying the mechanism underlying MT1/MT2 heterodimerization.
Collapse
Affiliation(s)
- Aída Sánchez-Bretaño
- Department of Pharmacology and Toxicology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA
| | - Ting-Chung Suen
- Department of Pharmacology and Toxicology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA
| | - Kenkichi Baba
- Department of Pharmacology and Toxicology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA
| | - Jason DeBruyne
- Department of Pharmacology and Toxicology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA
| |
Collapse
|
20
|
Betti L, Palego L, Demontis GC, Miraglia F, Giannaccini G. Hydroxyindole- O-methyltransferase (HIOMT) activity in the retina of melatonin-proficient mice. Heliyon 2019; 5:e02417. [PMID: 31687544 PMCID: PMC6819757 DOI: 10.1016/j.heliyon.2019.e02417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/19/2019] [Accepted: 09/02/2019] [Indexed: 01/02/2023] Open
Abstract
Numerous pieces of evidence support the expression by the mammalian retina of Hydroxyindole-O-methyltransferase (HIOMT, EC 2.1.1.4), the enzyme directly responsible for the biosynthesis of the pineal chronobiotic hormone melatonin (MLT). However, conflicting results obtained so far by enzyme-kinetic and immune-detection techniques still make HIOMT presence and relevance in the eye a matter of debate. This work aimed at evaluating unambiguously HIOMT activity in the mouse retina, a valuable model for studying the effects of MLT variations on ocular pathophysiology. Since laboratory mouse strains can bear genetic polymorphisms yielding defective enzymes of MLT biosynthesis, retinas and control pineal glands used in this study were obtained in a MLT-proficient crossing of A/J mice, the A/J/C57BL/10 strain. To improve the radiochemical reference assay, we tested different homogenization procedures coupled with HPLC detection. Concomitantly, we quantified MLT, and its precursor N-acetyl-serotonin (NAS) by HPLC coupled to electrochemical detection in retinas isolated from either light- or dark-adapted mice. Results showed that the standard radio-chemical assay was successful for pineal HIOMT only, whereas specific homogenization buffers and HPLC were required to detect retinal activity, presumably due to interfering methyl-transferases inhibited by NAS. Under present conditions, retinal HIOMT Vmax accounted for by ≈ 40 fmol/h/mg protein, 2.6-hundreds-fold lower than the pineal counterpart, displaying equivalent KMs (≈10 μM). Moreover, NAS and MLT rapidly decreased in light-exposed isolated retinas, corroborating light-sensitive in-situ MLT formation. Conclusively, we measured mouse retinal HIOMT kinetics under basal conditions, a useful result to elucidate the regulatory patterns, the possible impact on eye health, and therapeutic approaches related to this enzyme.
Collapse
Affiliation(s)
- Laura Betti
- Department of Pharmacy, Via Bonanno 6, University of Pisa, 56126 Pisa, Italy
- Corresponding author.
| | - Lionella Palego
- Department of Clinical and Experimental Medicine, Via Savi 10, University of Pisa, 56126 Pisa, Italy
- Corresponding author.
| | - Gian Carlo Demontis
- Department of Pharmacy, Via Bonanno 6, University of Pisa, 56126 Pisa, Italy
| | - Fabiana Miraglia
- Department of Pharmacy, Via Bonanno 6, University of Pisa, 56126 Pisa, Italy
| | - Gino Giannaccini
- Department of Pharmacy, Via Bonanno 6, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
21
|
Jiao X, Wu M, Lu D, Gu J, Li Z. Transcriptional Profiling of Daily Patterns of mRNA Expression in the C57BL/6J Mouse Cornea. Curr Eye Res 2019; 44:1054-1066. [PMID: 31136724 DOI: 10.1080/02713683.2019.1625408] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose: The purpose of this study was to determine how the transcriptome of the murine cornea adapts to diurnal changes in physiology. Methods: C57BL/6J mice were maintained under a 12-h light/12-h dark (LD) cycle for two weeks. Corneas were collected from euthanized mice at Zeitgeber time (ZT) 0, 3, 6, 9, 12, 15, 18, and 21. Total RNA was extracted and subjected to RNA sequencing (RNA-Seq). A JTK_CYCLE algoithm and other software tools were used to analyze the transcriptional data to determine the periodicity, rhythmicity, and amplitude of the transcripts. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the enrichment of cycling transcripts. Results: Approximately 24% of the total transcripts from the murine corneal genome were rhythmically expressed over an LD cycle. GO analysis showed that these cycling genes are primarily involved in cellular and metabolic processes. A KEGG pathway analysis identified 6 branches and 44 pathways that encode the gene outputs necessary for basic cellular functions and processes. More importantly, most of the rhythmic genes between the day and night are enriched in their own unique pathways in addition to some common pathways. Furthermore, most of the rhythmic gene expression was concentrated in the 12-h and 24-h periods. A comparative analysis of GO and KEGG showed large differences in metabolic processes, but not cellular processes. Finally, the murine cornea also rhythmically expressed 11 canonical components of circadian clock genes over an LD cycle at the transcriptional level. Conclusions: One fourth of the corneal transcriptome follows a rhythmic expression pattern involved in basic molecular and cellular mechanisms. This implies that the time of day contributes significantly to the overall temporal organization of the corneal transcriptome.
Collapse
Affiliation(s)
- Xinwei Jiao
- Henan Provincial People's Hospital and People's Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital , Zhengzhou , China
| | - Mingjuan Wu
- International Ocular Surface Research Center and Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University Medical School , Guangzhou , China
| | - Dingli Lu
- Henan Provincial People's Hospital and People's Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital , Zhengzhou , China
| | - Jianqin Gu
- Henan Provincial People's Hospital and People's Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital , Zhengzhou , China
| | - Zhijie Li
- Henan Provincial People's Hospital and People's Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital , Zhengzhou , China.,International Ocular Surface Research Center and Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University Medical School , Guangzhou , China
| |
Collapse
|
22
|
Felder-Schmittbuhl MP, Buhr ED, Dkhissi-Benyahya O, Hicks D, Peirson SN, Ribelayga CP, Sandu C, Spessert R, Tosini G. Ocular Clocks: Adapting Mechanisms for Eye Functions and Health. Invest Ophthalmol Vis Sci 2019; 59:4856-4870. [PMID: 30347082 PMCID: PMC6181243 DOI: 10.1167/iovs.18-24957] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vision is a highly rhythmic function adapted to the extensive changes in light intensity occurring over the 24-hour day. This adaptation relies on rhythms in cellular and molecular processes, which are orchestrated by a network of circadian clocks located within the retina and in the eye, synchronized to the day/night cycle and which, together, fine-tune detection and processing of light information over the 24-hour period and ensure retinal homeostasis. Systematic or high throughput studies revealed a series of genes rhythmically expressed in the retina, pointing at specific functions or pathways under circadian control. Conversely, knockout studies demonstrated that the circadian clock regulates retinal processing of light information. In addition, recent data revealed that it also plays a role in development as well as in aging of the retina. Regarding synchronization by the light/dark cycle, the retina displays the unique property of bringing together light sensitivity, clock machinery, and a wide range of rhythmic outputs. Melatonin and dopamine play a particular role in this system, being both outputs and inputs for clocks. The retinal cellular complexity suggests that mechanisms of regulation by light are diverse and intricate. In the context of the whole eye, the retina looks like a major determinant of phase resetting for other tissues such as the retinal pigmented epithelium or cornea. Understanding the pathways linking the cell-specific molecular machineries to their cognate outputs will be one of the major challenges for the future.
Collapse
Affiliation(s)
- Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, Washington, United States
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - David Hicks
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
23
|
Ri H, Lee J, Sonn JY, Yoo E, Lim C, Choe J. Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors. Mol Cells 2019; 42:301-312. [PMID: 31091556 PMCID: PMC6530642 DOI: 10.14348/molcells.2019.2451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5 ) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB ) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.
Collapse
Affiliation(s)
- Hwajung Ri
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jongbin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jun Young Sonn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Eunseok Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
24
|
Abstract
Last year melatonin was 60 years old, or at least its discovery was 60 years ago. The molecule itself may well be almost as old as life itself. So it is time to take yet another perspective on our understanding of its functions, effects and clinical uses. This is not a formal review-there is already a multitude of systematic reviews, narrative reviews, meta-analyses and even reviews of reviews. In view of the extraordinary variety of effects attributed to melatonin in the last 25 years, it is more of an attempt to sort out some areas where a consensus opinion exists, and where placebo controlled, randomized, clinical trials have confirmed early observations on therapeutic uses. The current upsurge of concern about the multiple health problems associated with disturbed circadian rhythms has generated interest in related therapeutic interventions, of which melatonin is one. The present text will consider the physiological role of endogenous melatonin, and the mostly pharmacological effects of exogenous treatment, on the assumption that normal circulating concentrations represent endogenous pineal production. It will concentrate mainly on the most researched, and accepted area of therapeutic use and potential use of melatonin-its undoubted ability to realign circadian rhythms and sleep-since this is the author's bias. It will touch briefly upon some other systems with prominent rhythmic attributes including certain cancers, the cardiovascular system, the entero-insular axis and metabolism together with the use of melatonin to assess circadian status. Many of the ills of the developed world relate to deranged rhythms-and everything is rhythmic unless proved otherwise.
Collapse
|
25
|
Inamdar SM, Lankford CK, Laird JG, Novbatova G, Tatro N, Whitmore SS, Scheetz TE, Baker SA. Analysis of 14-3-3 isoforms expressed in photoreceptors. Exp Eye Res 2018; 170:108-116. [PMID: 29486162 DOI: 10.1016/j.exer.2018.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 11/18/2022]
Abstract
The 14-3-3 family of proteins has undergone considerable expansion in higher eukaryotes with humans and mice expressing seven isoforms (β, ε, η, γ, θ, ζ, and σ) from seven distinct genes (YWHAB, YWAHE, YWHAH, YWHAG, YWHAQ, YWHAZ, and SFN). Growing evidence indicates that while highly conserved, these isoforms are not entirely functionally redundant as they exhibit unique tissue expression profiles, subcellular localization, and biochemical functions. A key limitation in our understanding of 14-3-3 biology lies in our limited knowledge of cell-type specific 14-3-3 expression. Here we provide a characterization of 14-3-3 expression in whole retina and isolated rod photoreceptors using reverse-transcriptase digital droplet PCR. We find that all 14-3-3 genes with the exception of SFN are expressed in mouse retina with YWHAQ and YWHAE being the most highly expressed. Rod photoreceptors are enriched in YWHAE (14-3-3 ε). Immunohistochemistry revealed that 14-3-3 ε and 14-3-3 ζ exhibit unique distributions in photoreceptors with 14-3-3 ε restricted to the inner segment and 14-3-3 ζ localized to the outer segment. Our data demonstrates that, in the retina, 14-3-3 isoforms likely serve specific functions as they exhibit unique expression levels and cell-type specificity. As such, future investigations into 14-3-3 function in rod photoreceptors should be centered on 14-3-3 ε and 14-3-3 ζ, depending on the subcellular region of question.
Collapse
Affiliation(s)
- Shivangi M Inamdar
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Colten K Lankford
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph G Laird
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Gulnara Novbatova
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Nicole Tatro
- Department of Ophthalmology & Visual Sciences and Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - S Scott Whitmore
- Department of Ophthalmology & Visual Sciences and Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Todd E Scheetz
- Department of Ophthalmology & Visual Sciences and Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Sheila A Baker
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA; Department of Ophthalmology & Visual Sciences and Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
26
|
Gnaz couples the circadian and dopaminergic system to G protein-mediated signaling in mouse photoreceptors. PLoS One 2017; 12:e0187411. [PMID: 29088301 PMCID: PMC5663513 DOI: 10.1371/journal.pone.0187411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/19/2017] [Indexed: 01/08/2023] Open
Abstract
The mammalian retina harbors a circadian clockwork that regulates vision and promotes healthiness of retinal neurons, mainly through directing the rhythmic release of the neurohormones dopamine—acting on dopamine D4 receptors—and melatonin—acting on MT1 and MT2 receptors. The gene Gnaz—a unique Gi/o subfamily member—was seen in the present study to be expressed in photoreceptors where its protein product Gαz shows a daily rhythm in its subcellular localization. Apart from subcellular localization, Gnaz displays a daily rhythm in expression—with peak values at night—in preparations of the whole retina, microdissected photoreceptors and photoreceptor-related pinealocytes. In retina, Gnaz rhythmicity was observed to persist under constant darkness and to be abolished in retina deficient for Clock or dopamine D4 receptors. Furthermore, circadian regulation of Gnaz was disturbed in the db/db mouse, a model of diabetic retinopathy. The data of the present study suggest that Gnaz links the circadian clockwork—via dopamine acting on D4 receptors—to G protein-mediated signaling in intact but not diabetic retina.
Collapse
|
27
|
Astakhova LA, Nikolaeva DA, Fedotkina TV, Govardovskii VI, Firsov ML. Elevated cAMP improves signal-to-noise ratio in amphibian rod photoreceptors. J Gen Physiol 2017; 149:689-701. [PMID: 28611079 PMCID: PMC5496506 DOI: 10.1085/jgp.201611744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/31/2017] [Indexed: 11/20/2022] Open
Abstract
Vertebrate photoreceptors need to distinguish light signals from background noise to convey visual information to downstream bipolar cells. By affecting both signal and noise, Astakhova et al. find that increases in intracellular cAMP can improve the signal-to-noise ratio by twofold. The absolute sensitivity of vertebrate retinas is set by a background noise, called dark noise, which originates from several different cell types and is generated by different molecular mechanisms. The major share of dark noise is produced by photoreceptors and consists of two components, discrete and continuous. Discrete noise is generated by spontaneous thermal activations of visual pigment. These events are undistinguishable from real single-photon responses (SPRs) and might be considered an equivalent of the signal. Continuous noise is produced by spontaneous fluctuations of the catalytic activity of the cGMP phosphodiesterase. This masks both SPR and spontaneous SPR-like responses. Circadian rhythms affect photoreceptors, among other systems by periodically increasing intracellular cAMP levels ([cAMP]in), which increases the size and changes the shape of SPRs. Here, we show that forskolin, a tool that increases [cAMP]in, affects the magnitude and frequency spectrum of the continuous and discrete components of dark noise in photoreceptors. By changing both components of rod signaling, the signal and the noise, cAMP is able to increase the photoreceptor signal-to-noise ratio by twofold. We propose that this results in a substantial improvement of signal detection, without compromising noise rejection, at the rod bipolar cell synapse.
Collapse
Affiliation(s)
- Luba A Astakhova
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| | - Darya A Nikolaeva
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| | - Tamara V Fedotkina
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| | - Victor I Govardovskii
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| | - Michael L Firsov
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg, Russia
| |
Collapse
|
28
|
Allen CN, Nitabach MN, Colwell CS. Membrane Currents, Gene Expression, and Circadian Clocks. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027714. [PMID: 28246182 DOI: 10.1101/cshperspect.a027714] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neuronal circadian oscillators in the mammalian and Drosophila brain express a circadian clock comprised of interlocking gene transcription feedback loops. The genetic clock regulates the membrane electrical activity by poorly understood signaling pathways to generate a circadian pattern of action potential firing. During the day, Na+ channels contribute an excitatory drive for the spontaneous activity of circadian clock neurons. Multiple types of K+ channels regulate the action potential firing pattern and the nightly reduction in neuronal activity. The membrane electrical activity possibly signaling by changes in intracellular Ca2+ and cyclic adenosine monophosphate (cAMP) regulates the activity of the gene clock. A decline in the signaling pathways that link the gene clock and neural activity during aging and disease may weaken the circadian output and generate significant impacts on human health.
Collapse
Affiliation(s)
- Charles N Allen
- Oregon Institute of Occupational Health Sciences and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology and Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024
| |
Collapse
|
29
|
NPAS2 promotes cell survival of hepatocellular carcinoma by transactivating CDC25A. Cell Death Dis 2017; 8:e2704. [PMID: 28333141 PMCID: PMC5386534 DOI: 10.1038/cddis.2017.131] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
Emerging evidences show that disruption of the circadian rhythm is associated with tumor initiation and progression. Neuronal PAS domain protein 2 (NPAS2), one of the core circadian molecules, has been proved to be a potential prognostic biomarker in colorectal and breast cancers. However, to date, the potential functional roles and molecular mechanisms by which NPAS2 affects cancer cell survival are greatly unclear, especially in hepatocellular carcinoma (HCC). We first investigated the expression of NPAS2 and its clinical significance in HCC. We then systematically explored the role of NPAS2 in HCC cell survival both in vitro and in vivo and the underlying mechanism. NPAS2 was frequently upregulated in HCC, which significantly facilitated cell survival both in vitro and in vivo mainly by promoting cell proliferation and inhibiting mitochondria-dependent intrinsic apoptosis, and thus contributed to poor prognosis of HCC patients. Mechanistically, the survival-promoting role of NPAS2 was mediated by transcriptional upregulation of the CDC25A phosphatase and subsequent dephosphorylation of CDK2/4/6 and Bcl-2, which induced cell proliferation and inhibited cell apoptosis in HCC, respectively. Moreover, BMAL1, another core clock transcription factor, was identified to heterodimerize with NPAS2 to bind to the E-box element in the promoter of CDC25A and be associated with the NPAS2-mediated tumor cell survival in HCC. Our findings demonstrate that NPAS2 has a critical role in HCC cell survival and tumor growth, which is mainly mediated by transcriptional upregulation of CDC25A. Thereby, NPAS2 may serve as a potential therapeutic target in HCC patients.
Collapse
|
30
|
Gianesini C, Hiragaki S, Laurent V, Hicks D, Tosini G. Cone Viability Is Affected by Disruption of Melatonin Receptors Signaling. Invest Ophthalmol Vis Sci 2016; 57:94-104. [PMID: 26780313 PMCID: PMC4727519 DOI: 10.1167/iovs.15-18235] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Previous studies have demonstrated that melatonin has an important role in the modulation of photoreceptor viability during aging and may be involved in the pathogenesis of age-related macular degeneration.This hormone exerts its influence by binding to G-protein coupled receptors named melatonin receptor 1 (MT1) and 2 (MT2). Melatonin receptors 1 and 2 activate a wide variety of signaling pathways. Methods Melatonin-proficient mice (C3H/f+/+) and melatonin-proficient mice lacking MT1 or MT2 receptors (MT1−/− and MT2−/−) were used in this study. Mice were killed at the ages of 3 and 18 months, and photoreceptor viability was determined by counting nuclei number in the outer nuclear layer (ONL). Cones were identified by immunohistochemistry using peanut agglutinin (PNA) and green/red and blue opsin antibodies. Protein kinase B (AKT) and forkhead box O (FOXO1) were assessed by Western blotting and immunohistochemistry. Results The number of nuclei in the ONL was significantly reduced in C3Hf+/+, MT1−/−, and MT2−/− mice at 18 months of age with respect to 3-month-old animals. In 18-month-old MT1−/− and MT2−/− mice, but not in C3H/f+/+, the number of cones was significantly reduced with respect to young MT1−/− and MT2−/− mice or age-matched C3H/f+/+. In C3H/f+/+, activation of the AKT-FOXO1 pathway in the photoreceptors showed a significant difference between night and day. Conclusions Our data indicate that disruption of MT1/MT2 heteromer signaling induces a reduction in the number of photoreceptors during aging and also suggest that the AKT-FOXO1 survival pathway may be involved in the mechanism by which melatonin protects photoreceptors.
Collapse
Affiliation(s)
- Coralie Gianesini
- Department of Pharmacology and Toxicology and Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia, United States 2Centre National de la Recherche Scientifique Unités Propres de Recherche 3212, Institute for Cellular and Integrative Neuro
| | - Susumu Hiragaki
- Department of Pharmacology and Toxicology and Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Virginie Laurent
- Centre National de la Recherche Scientifique Unités Propres de Recherche 3212, Institute for Cellular and Integrative Neurosciences, Strasbourg, France
| | - David Hicks
- Centre National de la Recherche Scientifique Unités Propres de Recherche 3212, Institute for Cellular and Integrative Neurosciences, Strasbourg, France
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology and Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
31
|
Abstract
Ocular clocks, first identified in the retina, are also found in the retinal pigment epithelium (RPE), cornea, and ciliary body. The retina is a complex tissue of many cell types and considerable effort has gone into determining which cell types exhibit clock properties. Current data suggest that photoreceptors as well as inner retinal neurons exhibit clock properties with photoreceptors dominating in nonmammalian vertebrates and inner retinal neurons dominating in mice. However, these differences may in part reflect the choice of circadian output, and it is likely that clock properties are widely dispersed among many retinal cell types. The phase of the retinal clock can be set directly by light. In nonmammalian vertebrates, direct light sensitivity is commonplace among body clocks, but in mice only the retina and cornea retain direct light-dependent phase regulation. This distinguishes the retina and possibly other ocular clocks from peripheral oscillators whose phase depends on the pace-making properties of the hypothalamic central brain clock, the suprachiasmatic nuclei (SCN). However, in mice, retinal circadian oscillations dampen quickly in isolation due to weak coupling of its individual cell-autonomous oscillators, and there is no evidence that retinal clocks are directly controlled through input from other oscillators. Retinal circadian regulation in both mammals and nonmammalian vertebrates uses melatonin and dopamine as dark- and light-adaptive neuromodulators, respectively, and light can regulate circadian phase indirectly through dopamine signaling. The melatonin/dopamine system appears to have evolved among nonmammalian vertebrates and retained with modification in mammals. Circadian clocks in the eye are critical for optimum visual function where they play a role fine tuning visual sensitivity, and their disruption can affect diseases such as glaucoma or retinal degeneration syndromes.
Collapse
Affiliation(s)
- Joseph C Besharse
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| |
Collapse
|
32
|
Effects of blue light on the circadian system and eye physiology. Mol Vis 2016; 22:61-72. [PMID: 26900325 PMCID: PMC4734149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/21/2016] [Indexed: 10/31/2022] Open
Abstract
Light-emitting diodes (LEDs) have been used to provide illumination in industrial and commercial environments. LEDs are also used in TVs, computers, smart phones, and tablets. Although the light emitted by most LEDs appears white, LEDs have peak emission in the blue light range (400-490 nm). The accumulating experimental evidence has indicated that exposure to blue light can affect many physiologic functions, and it can be used to treat circadian and sleep dysfunctions. However, blue light can also induce photoreceptor damage. Thus, it is important to consider the spectral output of LED-based light sources to minimize the danger that may be associated with blue light exposure. In this review, we summarize the current knowledge of the effects of blue light on the regulation of physiologic functions and the possible effects of blue light exposure on ocular health.
Collapse
|
33
|
McMahon DG, Iuvone PM, Tosini G. Circadian organization of the mammalian retina: from gene regulation to physiology and diseases. Prog Retin Eye Res 2013; 39:58-76. [PMID: 24333669 DOI: 10.1016/j.preteyeres.2013.12.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 01/27/2023]
Abstract
The retinal circadian system represents a unique structure. It contains a complete circadian system and thus the retina represents an ideal model to study fundamental questions of how neural circadian systems are organized and what signaling pathways are used to maintain synchrony of the different structures in the system. In addition, several studies have shown that multiple sites within the retina are capable of generating circadian oscillations. The strength of circadian clock gene expression and the emphasis of rhythmic expression are divergent across vertebrate retinas, with photoreceptors as the primary locus of rhythm generation in amphibians, while in mammals clock activity is most robust in the inner nuclear layer. Melatonin and dopamine serve as signaling molecules to entrain circadian rhythms in the retina and also in other ocular structures. Recent studies have also suggested GABA as an important component of the system that regulates retinal circadian rhythms. These transmitter-driven influences on clock molecules apparently reinforce the autonomous transcription-translation cycling of clock genes. The molecular organization of the retinal clock is similar to what has been reported for the SCN although inter-neural communication among retinal neurons that form the circadian network is apparently weaker than those present in the SCN, and it is more sensitive to genetic disruption than the central brain clock. The melatonin-dopamine system is the signaling pathway that allows the retinal circadian clock to reconfigure retinal circuits to enhance light-adapted cone-mediated visual function during the day and dark-adapted rod-mediated visual signaling at night. Additionally, the retinal circadian clock also controls circadian rhythms in disk shedding and phagocytosis, and possibly intraocular pressure. Emerging experimental data also indicate that circadian clock is also implicated in the pathogenesis of eye disease and compelling experimental data indicate that dysfunction of the retinal circadian system negatively impacts the retina and possibly the cornea and the lens.
Collapse
Affiliation(s)
- Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, 30310 GA, USA.
| |
Collapse
|
34
|
Hwang CK, Chaurasia SS, Jackson CR, Chan GCK, Storm DR, Iuvone PM. Circadian rhythm of contrast sensitivity is regulated by a dopamine-neuronal PAS-domain protein 2-adenylyl cyclase 1 signaling pathway in retinal ganglion cells. J Neurosci 2013; 33:14989-97. [PMID: 24048828 PMCID: PMC3776053 DOI: 10.1523/jneurosci.2039-13.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/16/2013] [Accepted: 08/06/2013] [Indexed: 12/25/2022] Open
Abstract
Spatial variation in light intensity, called spatial contrast, comprises much of the visual information perceived by mammals, and the relative ability to detect contrast is referred to as contrast sensitivity (Purves et al., 2012). Recently, retinal dopamine D4 receptors (D4Rs) have been implicated in modulating contrast sensitivity (Jackson et al., 2012); however, the cellular and molecular mechanisms have not been elucidated. Our study demonstrates a circadian rhythm of contrast sensitivity that peaks during the daytime, and that its regulation involves interactions of D4Rs, the clock gene Npas2, and the clock-controlled gene adenylyl cyclase 1 (Adcy1) in a subset of retinal ganglion cells (RGCs). Targeted disruption of the gene encoding D4Rs reduces the amplitude of the contrast sensitivity rhythm by reducing daytime sensitivity and abolishes the rhythmic expression of Npas2 and Adcy1 mRNA in the ganglion cell layer (GCL) of the retina. Npas2(-/-) and Adcy1(-/-) mice show strikingly similar reductions in the contrast sensitivity rhythm to that in mice lacking D4Rs. Moreover, Adcy1 transcript rhythms were abolished in the GCL of Npas2(-/-) mice. Luciferase reporter assays demonstrated that the Adcy1 promoter is selectively activated by neuronal PAS-domain protein 2 (NPAS2)/BMAL1. Our results indicate that the contrast sensitivity rhythm is modulated by D4Rs via a signaling pathway that involves NPAS2-mediated circadian regulation of Adcy1. Hence, we have identified a circadian clock mechanism in a subset of RGCs that modulates an important aspect of retinal physiology and visual processing.
Collapse
Affiliation(s)
- Christopher K. Hwang
- Departments of Ophthalmology and Pharmacology, and
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Shyam S. Chaurasia
- Departments of Ophthalmology and Pharmacology, and
- Translational Clinical Research Laboratory, Singapore Eye Research Institute, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorder, and
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 169712
| | - Chad R. Jackson
- Departments of Ophthalmology and Pharmacology, and
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, and
| | - Guy C.-K. Chan
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Daniel R. Storm
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | | |
Collapse
|
35
|
Kunst S, Wolloscheck T, Hölter P, Wengert A, Grether M, Sticht C, Weyer V, Wolfrum U, Spessert R. Transcriptional analysis of rat photoreceptor cells reveals daily regulation of genes important for visual signaling and light damage susceptibility. J Neurochem 2013; 124:757-69. [PMID: 23145934 DOI: 10.1111/jnc.12089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/02/2012] [Accepted: 11/07/2012] [Indexed: 01/20/2023]
Abstract
Photoreceptor cells face the challenge of adjusting their function and, possibly, their susceptibility to light damage to the marked daily changes in ambient light intensity. To achieve a better understanding of photoreceptor adaptation at the transcriptional level, this study aimed to identify genes which are under daily regulation in photoreceptor cells using microarray analysis and quantitative PCR. Included in the gene set obtained were a number of genes which up until now have not been shown to be expressed in photoreceptor cells, such as Atf3 (activating transcription factor 3) and Pde8a (phosphodiesterase 8A), and others with a known impact on phototransduction and/or photoreceptor survival, such as Grk1 (G protein-coupled receptor kinase 1) and Pgc-1α (peroxisome proliferator-activated receptor γ, coactivator 1alpha). According to their daily dynamics, the genes identified could be clustered in two groups: those with peak expression during the second part of the day which are uniformly promoted to cycle by light/dark transitions and those with peak expression during the second part of the night which are predominantly driven by a clock. Since Grk1 and Pgc-1α belong in the first group, the present results support a concept in which transcriptional regulation of genes by ambient light contributes to the functional adjustment of photoreceptor cells over the 24-h period.
Collapse
Affiliation(s)
- Stefanie Kunst
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Astakhova LA, Samoiliuk EV, Govardovskii VI, Firsov ML. cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade. ACTA ACUST UNITED AC 2013; 140:421-33. [PMID: 23008435 PMCID: PMC3457688 DOI: 10.1085/jgp.201210811] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide–gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca2+ exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca2+]in. Analysis by a complete model of rod phototransduction suggests that an increase of [Ca2+]in might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca2+]in and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions.
Collapse
Affiliation(s)
- Luba A Astakhova
- IM Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | | | | | | |
Collapse
|
37
|
Huang H, Wang Z, Weng SJ, Sun XH, Yang XL. Neuromodulatory role of melatonin in retinal information processing. Prog Retin Eye Res 2013; 32:64-87. [PMID: 22986412 DOI: 10.1016/j.preteyeres.2012.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Hai Huang
- Institute of Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
38
|
Pinto CS, Reif GA, Nivens E, White C, Wallace DP. Calmodulin-sensitive adenylyl cyclases mediate AVP-dependent cAMP production and Cl- secretion by human autosomal dominant polycystic kidney cells. Am J Physiol Renal Physiol 2012; 303:F1412-24. [PMID: 22952279 DOI: 10.1152/ajprenal.00692.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In autosomal dominant polycystic kidney disease (ADPKD), binding of AVP to the V2 receptor (V2R) increases cAMP and accelerates cyst growth by stimulating cell proliferation and Cl(-)-dependent fluid secretion. Basal cAMP is elevated in human ADPKD cells compared with normal human kidney (NHK) cells. V2R mRNA levels are elevated in ADPKD cells; however, AVP caused a greater increase in global cAMP in NHK cells, suggesting an intrinsic difference in cAMP regulation. Expression, regulatory properties, and receptor coupling of specific adenylyl cyclases (ACs) provide temporal and spatial regulation of the cAMP signal. ADPKD and NHK cells express mRNAs for all nine ACs. Ca(2+)-inhibited ACs 5 and 6 are increased in ADPKD cells, while Ca(2+)/CaM-stimulated ACs 1 and 3 are downregulated. ACs 1, 3, 5, and 6 were detected in cyst cells in situ, and codistribution with aquaporin-2 suggests that these cysts were derived from collecting ducts. To determine the contribution of CaM-sensitive ACs to AVP signaling, cells were treated with W-7, a CaM inhibitor. W-7 decreased AVP-induced cAMP production and Cl(-) secretion by ADPKD cells. CaMKII inhibition increased AVP-induced cAMP, suggesting that cAMP synthesis is mediated by AC3. In contrast, CaM and CaMKII inhibition in NHK cells did not affect AVP-induced cAMP production. Restriction of intracellular Ca(2+) switched the response in NHK cells, such that CaM inhibition decreased AVP-induced cAMP production. We suggest that a compensatory response to decreased Ca(2+) in ADPKD cells switches V2R coupling from Ca(2+)-inhibited ACs 5/6 to Ca(2+)/CaM-stimulated AC3, to mitigate high cAMP levels in response to continuous AVP stimulation.
Collapse
Affiliation(s)
- Cibele S Pinto
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | | | | | | | | |
Collapse
|
39
|
Tosini G, Baba K, Hwang CK, Iuvone PM. Melatonin: an underappreciated player in retinal physiology and pathophysiology. Exp Eye Res 2012; 103:82-9. [PMID: 22960156 DOI: 10.1016/j.exer.2012.08.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 12/14/2022]
Abstract
In the vertebrate retina, melatonin is synthesized by the photoreceptors with high levels of melatonin at night and lower levels during the day. Melatonin exerts its influence by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylyl cyclase. Melatonin receptors belonging to the subtypes MT(1) and MT(2) have been identified in the mammalian retina. MT(1) and MT(2) receptors are found in all layers of the neural retina and in the retinal pigmented epithelium. Melatonin in the eye is believed to be involved in the modulation of many important retinal functions; it can modulate the electroretinogram (ERG), and administration of exogenous melatonin increases light-induced photoreceptor degeneration. Melatonin may also have protective effects on retinal pigment epithelial cells, photoreceptors and ganglion cells. A series of studies have implicated melatonin in the pathogenesis of age-related macular degeneration, and melatonin administration may represent a useful approach to prevent and treat glaucoma. Melatonin is used by millions of people around the world to retard aging, improve sleep performance, mitigate jet lag symptoms, and treat depression. Administration of exogenous melatonin at night may also be beneficial for ocular health, but additional investigation is needed to establish its potential.
Collapse
Affiliation(s)
- Gianluca Tosini
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | | | | | | |
Collapse
|
40
|
Tosini G, Ye K, Iuvone PM. N-acetylserotonin: neuroprotection, neurogenesis, and the sleepy brain. Neuroscientist 2012; 18:645-53. [PMID: 22585341 DOI: 10.1177/1073858412446634] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N-Acetylserotonin (NAS) is a naturally occurring chemical intermediate in biosynthesis of melatonin. Previous studies have shown that NAS has different brain distribution patterns from those of serotonin and melatonin, suggesting that NAS might have functions other than as a precursor or metabolite of melatonin. Indeed, several studies have now shown that NAS may play an important role in mood regulation and may have antidepressant activity. Additional studies have shown that NAS stimulates proliferation of neuroprogenitor cells and prevents some of the negative effects of sleep deprivation. It is believed that the antidepressant and neurotrophic actions of NAS are due at least in part to the capability on this molecule to activate the TrkB receptor in a brain-derived neurotrophic factor-independent manner. Emerging evidence also indicates that NAS and its derivatives have neuroprotective properties and protect retinal photoreceptor cells from light-induced degeneration. In this review, the authors discuss the literature about this exciting and underappreciated molecule.
Collapse
|
41
|
Kim NN, Shin HS, Lee J, Choi CY. Diurnal gene expression ofPeriod2,Cryptochrome1, and arylalkylamineN-acetyltransferase-2 in olive flounder,Paralichthys olivaceus. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2011.611536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
42
|
Abstract
Neurons in the suprachiasmatic nucleus (SCN) function as part of a central timing circuit that drives daily changes in our behaviour and underlying physiology. A hallmark feature of SCN neuronal populations is that they are mostly electrically silent during the night, start to fire action potentials near dawn and then continue to generate action potentials with a slow and steady pace all day long. Sets of currents are responsible for this daily rhythm, with the strongest evidence for persistent Na(+) currents, L-type Ca(2+) currents, hyperpolarization-activated currents (I(H)), large-conductance Ca(2+) activated K(+) (BK) currents and fast delayed rectifier (FDR) K(+) currents. These rhythms in electrical activity are crucial for the function of the circadian timing system, including the expression of clock genes, and decline with ageing and disease. This article reviews our current understanding of the ionic and molecular mechanisms that drive the rhythmic firing patterns in the SCN.
Collapse
Affiliation(s)
- Christopher S Colwell
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, California 90024, USA.
| |
Collapse
|
43
|
RGS2 and RGS4 modulate melatonin-induced potentiation of glycine currents in rat retinal ganglion cells. Brain Res 2011; 1411:1-8. [DOI: 10.1016/j.brainres.2011.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/08/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022]
|
44
|
Haque R, Chong NW, Ali F, Chaurasia SS, Sengupta T, Chun E, Howell JC, Klein DC, Iuvone PM. Melatonin synthesis in retina: cAMP-dependent transcriptional regulation of chicken arylalkylamine N-acetyltransferase by a CRE-like sequence and a TTATT repeat motif in the proximal promoter. J Neurochem 2011; 119:6-17. [PMID: 21790603 DOI: 10.1111/j.1471-4159.2011.07397.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arylalkylamine N-acetyltransferase (AANAT) is the key regulatory enzyme controlling the daily rhythm of melatonin biosynthesis. In chicken retinal photoreceptor cells, Aanat transcription and AANAT activity are regulated in part by cAMP-dependent mechanisms. The purpose of this study was to identify regulatory elements within the chicken Aanat promoter responsible for cAMP-dependent induction. Photoreceptor-enriched retinal cell cultures were transfected with a luciferase reporter construct containing up to 4 kb of 5'-flanking region and the first exon of Aanat. Forskolin treatment stimulated luciferase activity driven by the ∼4 kb promoter construct and by all 5'-deletion constructs except the smallest, Aanat (-217 to +120)luc. Maximal basal and forskolin-stimulated expression levels were generated by the Aanat (-484 to +120)luc construct. This construct lacks a canonical cyclic AMP-response element (CRE), but contains two other potentially important elements in its sequence: an eight times TTATT repeat (TTATT₈) and a CRE-like sequence. Electrophoretic mobility shift assays, luciferase reporter assays, chromatin immunoprecipitation, and siRNA experiments provide evidence that these elements bind c-Fos, JunD, and CREB to enhance basal and forskolin-stimulated Aanat transcription. We propose that the CRE-like sequence and TTATT₈ elements in the 484 bp proximal promoter interact to mediate cAMP-dependent transcriptional regulation of Aanat.
Collapse
Affiliation(s)
- Rashidul Haque
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jackson CR, Chaurasia SS, Hwang CK, Iuvone PM. Dopamine D₄ receptor activation controls circadian timing of the adenylyl cyclase 1/cyclic AMP signaling system in mouse retina. Eur J Neurosci 2011; 34:57-64. [PMID: 21676039 PMCID: PMC3129439 DOI: 10.1111/j.1460-9568.2011.07734.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the mammalian retina, dopamine binding to the dopamine D₄ receptor (D₄R) affects a light-sensitive pool of cyclic AMP by negatively coupling to the type 1 adenylyl cyclase (AC1). AC1 is the primary enzyme controlling cyclic AMP production in dark-adapted photoreceptors. A previous study demonstrated that expression of the gene encoding AC1, Adcy1, is downregulated in mice lacking Drd4, the gene encoding the D₄R. The present investigation provides evidence that D₄R activation entrains the circadian rhythm of Adcy1 mRNA expression. Diurnal and circadian rhythms of Drd4 and Adcy1 mRNA levels were observed in wild-type mouse retina. Also, rhythms in the Ca²⁺-stimulated AC activity and cyclic AMP levels were observed. However, these rhythmic activities were damped or undetectable in mice lacking the D₄R. Pharmacologically activating the D₄R 4 h before its normal stimulation at light onset in the morning advances the phase of the Adcy1 mRNA expression pattern. These data demonstrate that stimulating the D₄R is essential in maintaining the normal rhythmic production of AC1 from transcript to enzyme activity. Thus, dopamine/D₄R signaling is a novel zeitgeber that entrains the rhythm of Adcy1 expression and, consequently, modulates the rhythmic synthesis of cyclic AMP in mouse retina.
Collapse
Affiliation(s)
| | | | - Christopher K. Hwang
- Departments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, GA, USA 30322
| | - P. Michael Iuvone
- Departments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, GA, USA 30322
| |
Collapse
|
46
|
Wolloscheck T, Spiwoks-Becker I, Rickes O, Holthues H, Spessert R. Phosphodiesterase10A: abundance and circadian regulation in the retina and photoreceptor of the rat. Brain Res 2010; 1376:42-50. [PMID: 21194525 DOI: 10.1016/j.brainres.2010.12.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/14/2010] [Accepted: 12/21/2010] [Indexed: 11/19/2022]
Abstract
Phosphodiesterase10A (PDE10A) is a dual specific cyclic nucleotide phosphodiesterase that is specifically enriched in striatum and which has gained attention as a therapeutic target for psychiatric disorders. The present study shows that PDE10A is also highly expressed in retinal neurons including photoreceptors. The levels of PDE10A transcript and protein display daily rhythms which could be seen in preparations of the whole retina. Corresponding changes in PDE10A mRNA were seen in photoreceptors isolated using laser microdissection. This suggests that the expressional control of the photoreceptor Pde10a gene contributes to the observed cyclicity in the amount of retinal PDE10A. The daily rhythmicity in the retinal PDE10A mRNA amount is retained under constant darkness but can be blocked by constant light or modulated by the lighting regime. It therefore appears to be driven by the endogenous retinal clock system which itself is entrained by light. The findings presented place PDE10A in the context of the visual system and suggest a role of PDE10A in the adaptation of cyclic nucleotide signaling to daily changes in light intensity in retinal neurons including photoreceptors.
Collapse
Affiliation(s)
- Tanja Wolloscheck
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Saarstraße 19-21, 55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
47
|
Christ E, Pfeffer M, Korf H, von Gall C. Pineal melatonin synthesis is altered in Period1 deficient mice. Neuroscience 2010; 171:398-406. [DOI: 10.1016/j.neuroscience.2010.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/16/2010] [Accepted: 09/03/2010] [Indexed: 11/27/2022]
|
48
|
Yang XF, Miao Y, Ping Y, Wu HJ, Yang XL, Wang Z. Melatonin inhibits tetraethylammonium-sensitive potassium channels of rod ON type bipolar cells via MT2 receptors in rat retina. Neuroscience 2010; 173:19-29. [PMID: 21094224 DOI: 10.1016/j.neuroscience.2010.11.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/29/2010] [Accepted: 11/13/2010] [Indexed: 11/16/2022]
Abstract
By challenging specific receptors, melatonin synthesized and released by photoreceptors regulates various physiological functions in the vertebrate retina. Here, we studied modulatory effects of melatonin on K+ currents of rod-dominant ON type bipolar cells (Rod-ON-BCs) in rat retinal slices by patch-clamp techniques. Double immunofluorescence experiments conducted in isolated cell and retinal section preparations showed that the melatonin MT₂ receptor was expressed in somata, dendrites and axon terminals of rat Rod-ON-BCs. Electrophysiologically, application of melatonin selectively inhibited the tetraethylammonium (TEA)-sensitive K+ current component, but did not show any effect on the 4-aminopyridine (4-AP)-sensitive component. Consistent with the immunocytochemical result, the melatonin effect was blocked by co-application of 4-phenyl-2-propionamidotetralin (4-P-PDOT), a specific MT₂ receptor antagonist. Neither protein kinase A (PKA) nor protein kinase G (PKG) seemed to be involved because both the PKA inhibitor Rp-cAMP and the PKG inhibitor KT5823 did not block the melatonin-induced suppression of the K+ currents. In contrast, application of the phospholipase C (PLC) inhibitor U73122 or the protein kinase C (PKC) inhibitor bisindolylmaleimide IV (Bis IV) eliminated the melatonin effect, and when the Ca²+ chelator BAPTA-containing pipette was used, melatonin failed to inhibit the K+ currents. These results suggest that suppression of the TEA-sensitive K+ current component via activation of MT₂ receptors expressed on rat Rod-ON-BCs may be mediated by a Ca²+-dependent PLC/inositol 1,4,5-trisphosphate (IP₃/PKC signaling pathway.
Collapse
Affiliation(s)
- X-F Yang
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China
| | | | | | | | | | | |
Collapse
|
49
|
Loh DH, Navarro J, Hagopian A, Wang LM, Deboer T, Colwell CS. Rapid changes in the light/dark cycle disrupt memory of conditioned fear in mice. PLoS One 2010; 5. [PMID: 20824058 PMCID: PMC2932734 DOI: 10.1371/journal.pone.0012546] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/10/2010] [Indexed: 11/19/2022] Open
Abstract
Background Circadian rhythms govern many aspects of physiology and behavior including cognitive processes. Components of neural circuits involved in learning and memory, e.g., the amygdala and the hippocampus, exhibit circadian rhythms in gene expression and signaling pathways. The functional significance of these rhythms is still not understood. In the present study, we sought to determine the impact of transiently disrupting the circadian system by shifting the light/dark (LD) cycle. Such “jet lag” treatments alter daily rhythms of gene expression that underlie circadian oscillations as well as disrupt the synchrony between the multiple oscillators found within the body. Methodology/Principal Findings We subjected adult male C57Bl/6 mice to a contextual fear conditioning protocol either before or after acute phase shifts of the LD cycle. As part of this study, we examined the impact of phase advances and phase delays, and the effects of different magnitudes of phase shifts. Under all conditions tested, we found that recall of fear conditioned behavior was specifically affected by the jet lag. We found that phase shifts potentiated the stress-evoked corticosterone response without altering baseline levels of this hormone. The jet lag treatment did not result in overall sleep deprivation, but altered the temporal distribution of sleep. Finally, we found that prior experience of jet lag helps to compensate for the reduced recall due to acute phase shifts. Conclusions/Significance Acute changes to the LD cycle affect the recall of fear-conditioned behavior. This suggests that a synchronized circadian system may be broadly important for normal cognition and that the consolidation of memories may be particularly sensitive to disruptions of circadian timing.
Collapse
Affiliation(s)
- Dawn H. Loh
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, United States of America
| | - Juliana Navarro
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, United States of America
| | - Arkady Hagopian
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, United States of America
| | - Louisa M. Wang
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tom Deboer
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Wang J, Zhou T. cAMP-regulated dynamics of the mammalian circadian clock. Biosystems 2010; 101:136-43. [PMID: 20570634 DOI: 10.1016/j.biosystems.2010.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 02/06/2010] [Accepted: 06/01/2010] [Indexed: 01/27/2023]
Abstract
Previous molecular description of the mammalian timekeeping mechanism was based mainly on transcriptional/translational feedback loops (TTFLs). However, a recent experimental report challenges such a molecular architecture, showing that the cAMP signaling is an indispensable component of the mammalian circadian clock. In this paper, we develop a reduced mathematical model that characterizes the mammalian circadian network. The model with 8-state differential equations incorporates both TTFLs and cAMP-mediated feedback loop. In agreement with experimental observations, our results show that: (1) the model simulates sustained circadian (23.4-h periodic) oscillations in constant darkness and entrained circadian dynamics by light-dark cycles; (2) circadian rhythmicity is lost without cAMP signaling; (3) the system is resilient to large fluctuations in transcriptional rates; (4) it successfully simulates the phenotypes of Per1(-/-)/Per2(-/-) double-mutant mice and Bmal1(-/-) mutant mice. Our study implies that to understand the circadian pacemaking in suprachiasmatic nucleus neurons, the TTFLs should not be isolated from intracellular cAMP-dependent signaling.
Collapse
Affiliation(s)
- Junwei Wang
- School of Informatics, Guangdong University of Foreign Studies, Guangzhou, China.
| | | |
Collapse
|