1
|
Li C, Wu Z, Chen F, Dai C, Yang X, Ye S, Shi M, Chen P, Liu X, Liu F. Regulation of Nrf2/GPX4 Signaling Pathway by Hyperbaric Oxygen Protects Against Depressive Behavior and Cognitive Impairment in a Spinal Cord Injury Rat Model. CNS Neurosci Ther 2025; 31:e70421. [PMID: 40326167 PMCID: PMC12053091 DOI: 10.1111/cns.70421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025] Open
Abstract
AIMS Neuroinflammation, microglial activation, and oxidative stress contribute to neuropsychiatric deficits following spinal cord injury (SCI). Hyperbaric oxygen (HBO) therapy has demonstrated anti-inflammatory, antioxidant, and neuroprotective properties. This study aimed to investigate the therapeutic effects and underlying mechanisms of HBO on depressive-like behavior, cognitive impairment, and hippocampal pathology in a rat model of SCI. METHODS We employed a battery of behavioral assessments, unbiased stereological analysis, immunofluorescence staining, and biochemical assays to evaluate neuroinflammation, oxidative stress, mitochondrial damage, and iron accumulation in the hippocampus. Untargeted proteomic analysis was conducted to identify potential molecular targets of HBO. Western blotting was used to assess the activation of the Nrf2/GPX4 signaling pathway. ML385, a selective Nrf2 inhibitor, was intrathecally administered 30 min prior to daily HBO treatment to validate pathway involvement. RESULTS HBO treatment significantly alleviated depressive-like behavior and cognitive deficits in SCI rats. It also suppressed M1-type microglial activation and reduced hippocampal neuroinflammation. Additionally, HBO mitigated neuronal ferroptosis induced by SCI through activation of the Nrf2/GPX4 signaling pathway. The protective effects of HBO were abolished by coadministration of ML385, confirming the critical role of Nrf2 signaling in mediating its anti-ferroptosis effects. CONCLUSION These findings highlight ferroptosis as a key pathological mechanism in SCI-induced hippocampal damage and suggest that HBO therapy alleviates depressive-like behavior and cognitive impairment by targeting the Nrf2/GPX4 pathway. This study provides new insights into the therapeutic potential of HBO in managing SCI-related neuropsychiatric dysfunction.
Collapse
Affiliation(s)
- Chenlu Li
- Department of Hyperbaric OxygenNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative DiseasesThe School of Basic Medical Sciences, Fujian Medical UniversityFuzhouFujianChina
| | - Zhongyue Wu
- Department of Hyperbaric OxygenNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
- Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouFujian ProvinceChina
| | - Fuxiang Chen
- Department of NeurosurgeryNeurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Chaoxian Dai
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative DiseasesThe School of Basic Medical Sciences, Fujian Medical UniversityFuzhouFujianChina
| | - Xinyi Yang
- Department of Hyperbaric OxygenNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
- Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouFujian ProvinceChina
| | - Shumin Ye
- Department of Medicinal ChemistrySchool of Pharmacy, Fujian Medical UniversityFuzhouFujianChina
| | - Meng Shi
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative DiseasesThe School of Basic Medical Sciences, Fujian Medical UniversityFuzhouFujianChina
| | - Peng Chen
- Department of Sports MedicineNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical UniversityFujianChina
| | - Xueyan Liu
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative DiseasesThe School of Basic Medical Sciences, Fujian Medical UniversityFuzhouFujianChina
- Department of Medicinal ChemistrySchool of Pharmacy, Fujian Medical UniversityFuzhouFujianChina
| | - Fang Liu
- Department of Hyperbaric OxygenNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
| |
Collapse
|
2
|
Lv Y, Li Z, Jian H, Wu M, Li X, Ruan W, Zhou H. CX3CL1-mediated neuronal "rescue signal" influences inflammation progression following spinal cord injury via microglia. Int Immunopharmacol 2025; 153:114478. [PMID: 40101419 DOI: 10.1016/j.intimp.2025.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
Spinal cord injury (SCI) is a refractory diseases that leads to lasting impairments in sensory and motor functions. Following nerve injury, CX3CL1, a neuron membrane protein, is released. Research suggests that CX3CL1 neurons possess a unique signaling mechanism for rescue. The objective of this study was to investigate the neuroprotective mechanism of CX3CL1 after spinal cord injury. Our findings indicate that injured neurons release CX3CL1, which binds to microglia and activates the NF-κB pathway. This activation downregulates IKB and P65 phosphorylation, thereby controlling the progression of inflammation after spinal cord injury. Consequently, more neurons are protected, leading to the restoration of nerve function. In conclusion, this study has discovered that CX3CL1 played a critical role in neuroprotection following spinal cord injury, making it a potential therapeutic target for treating this condition.
Collapse
Affiliation(s)
- Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, P.R. China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhen Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, P.R. China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, P.R. China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Mingxin Wu
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, P.R. China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xueying Li
- Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Wendong Ruan
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, P.R. China.
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, P.R. China; Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China; Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
3
|
Wu A, Yang G, Liu G, Zhang J. SGK1 upregulation in GFAP + neurons in the frontal association cortex protects against neuronal apoptosis after spinal cord injury. Cell Death Dis 2025; 16:237. [PMID: 40175324 PMCID: PMC11965300 DOI: 10.1038/s41419-025-07542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Spinal cord injury (SCI) casts devastating and long-lasting impacts on the well-being of patients. Cognitive deficits and emotional disorders are common in individuals with SCI, yet the underlying mechanisms are not completely understood. Astrogliosis and glial scar formation occur during the subacute phase post-injury, playing complicated roles in remyelination and neurite regrowth. Therefore, we constructed a GFAP-IRES-Venus-AkaLuc knock-in mouse model for the corresponding studies. Surprisingly, complete spinal cord transection (SCT) surgery led to earlier and more prominent augmentation of bioluminescence in the brain than in the spinal cord. Bulk RNA sequencing revealed the activation of apoptotic signaling and the upregulation of serum and glucocorticoid-regulated kinase 1 (SGK1). The pattern of GFAP signals changed throughout the brain after SCT, as indicated by tissue clearing and immunostaining. Specifically, GFAP signals were intensified in the frontal association cortex (FrA), an encephalic region involved in associative learning and recognition memory processes. Further exploration unraveled that intensified GFAP signals in the FrA were attributed to apoptotic neurons with SGK1 upregulation, which was induced by sustained high glucocorticoid levels after SCT. The introduction of SGK1 silencing vectors confirmed that SGK upregulation in these FrA neurons exerted anti-apoptotic effects through NRF2/HO-1 signaling. In addition, SGK1 knockdown in FrA neurons aggravated the post-SCI depressive-like behaviors. Thus, ectopic SGK1 expression designated for limbic neurons could serve as a promising therapeutic target for the future development of treatments for spinal cord injuries.
Collapse
Affiliation(s)
- Anbiao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Genyu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
González CS, Mejia II, Villalobos HFN, Vargas MA, Ibarra A. Beyond the surface: understanding psychiatric disorders in individuals with spinal cord injury- a narrative exploration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2025:10.1007/s00586-025-08735-x. [PMID: 40085232 DOI: 10.1007/s00586-025-08735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/30/2025] [Accepted: 02/09/2025] [Indexed: 03/16/2025]
Abstract
PURPOSE Spinal Cord Injury (SCI) presents a life-threatening condition that compromises the spinal cord's integrity. Among the complications affecting SCI patients are psychiatric disorders, whose causal mechanisms remain elusive. These disorders are often attributed to multifactorial aspects, encompassing physiological, neurobiological, psychological, and social factors. In the context of SCI patients, we are interested in identifying the specific factors that contribute to the development of psychiatric disorders in this population, emphasizing the critical need for prevention strategies and comprehensive therapeutic management, ultimately aiming to improve the affected patients' quality of life. METHODS The process of searching and selecting information was performed between August and December of 2023, utilizing PubMed, ResearchGate, and NCBI as the requisite databases for this review. To ensure precise information retrieval, keywords were strategically employed, focusing on publications spanning from 1985 to the present. MeSH terms, including spinal cord injury, acute spinal cord injury, psychiatric disorders, neuropsychiatry, cognitive impairment, and chronic pain, were applied. A total of 127 articles were identified through electronic searches, and 55 of these were chosen for inclusion in this review. The consulted studies encompassed various types, such as meta-analyses, systematic reviews, animal model experiments, and others. RESULTS Various factors contributing to the onset of psychiatric disorders in patients with SCI were proposed, all grounded in evidence: neurobiological pathology; cognitive impairment; the impact of systemic diseases on psychological well-being; and, lastly, the correlation between chronic pain and diminished daily functionality, experiences widely encountered by SCI patients. CONCLUSION The diagnosis of psychiatric disorders remains largely clinical and syndromic, with unclear causal mechanisms. Understanding psychiatric symptoms in SCI patients requires further investigation. Key contributing factors include neurobiological pathology linked to SCI, cognitive impairment, systemic and organ-specific diseases, and chronic pain associated with reduced functionality. We emphasize the importance of therapeutic and rehabilitative measures that address both physical and psychological health to improve overall quality of life.
Collapse
Affiliation(s)
- Carlos Santander González
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, México
| | - Ivan Ignacio Mejia
- Secretaría de la Defensa Nacional, Escuela Militar de Graduados de Sanidad, Ciudad de México, México
| | | | - Marco Antonio Vargas
- Secretaría de la Defensa Nacional, Escuela Militar de Graduados de Sanidad, Ciudad de México, México
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México, México.
- Secretaría de la Defensa Nacional, Escuela Militar de Graduados de Sanidad, Ciudad de México, México.
| |
Collapse
|
5
|
Xie Z, Xu T, Chen J, Gui Y, Wan D, Li M. Blocking the p38 MAPK Signaling Pathway in the Rat Hippocampus Alleviates the Depressive-like Behavior Induced by Spinal Cord Injury. ACS Chem Neurosci 2025; 16:595-603. [PMID: 39874065 DOI: 10.1021/acschemneuro.4c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Patients with spinal cord injury (SCI) may develop depression, which can affect their rehabilitation. However, the underlying mechanism of depression in SCI patients remains unclear. Previous studies have revealed increased p38 MAPK phosphorylation in the rat hippocampus after SCI, accompanied by depression-like behaviors. However, the role of the p38 MAPK signaling pathway in SCI-induced depression remains unclear. In this study, we used an aneurysm clip-induced rat SCI model to investigate whether p38 MAPK phosphorylation in the hippocampus is associated with depression-like behaviors in rats after SCI. Behavioral testing revealed that SB203580, a p38 MAPK signaling inhibitor, reduced depression-like behaviors. Western blotting and morphological analyses showed that SB203580 inhibited the activation of microglia and astrocytes in the hippocampus after SCI. Additionally, SB203580 reduced the expression of tumor necrosis factor α and increased p38 MAPK phosphorylation and the number of bromodeoxyuridine-positive cells in the hippocampus. These findings suggest that SB203580 can inhibit hippocampal remodeling and the neuroimmune response in the rat hippocampus after SCI. Therefore, the phosphorylation of p38 MAPK in the hippocampus plays a key role in the depression-like behaviors induced by SCI. The inhibition of p38 MAPK phosphorylation may represent a mechanism to protect against hippocampal injury induced by SCI.
Collapse
Affiliation(s)
- Zhiping Xie
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 152 Aiguo Road, Nanchang, Jiangxi 330006, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Jiangxi(National Regional Center for Neurological Diseases), No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi 330038, P. R. China
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, the first Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006, China
| | - Tianqi Xu
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 152 Aiguo Road, Nanchang, Jiangxi 330006, China
- Jiangxi Medical College, Nanchang University, No. 152 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Jiwu Chen
- Department of Neurology, Le'an County People's Hospital, No. 189 Zhanqian Road, Le'an County, Fuzhou, Jiangxi 344300, China
| | - Yongping Gui
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 152 Aiguo Road, Nanchang, Jiangxi 330006, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Jiangxi(National Regional Center for Neurological Diseases), No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi 330038, P. R. China
| | - Dengfeng Wan
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 152 Aiguo Road, Nanchang, Jiangxi 330006, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Jiangxi(National Regional Center for Neurological Diseases), No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi 330038, P. R. China
| | - Meihua Li
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, the first Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006, China
| |
Collapse
|
6
|
Kong G, Liu J, Wang J, Yu X, Li C, Deng M, Liu M, Wang S, Tang C, Xiong W, Fan J. Engineered Extracellular Vesicles Modified by Angiopep-2 Peptide Promote Targeted Repair of Spinal Cord Injury and Brain Inflammation. ACS NANO 2025; 19:4582-4600. [PMID: 39853366 PMCID: PMC11803916 DOI: 10.1021/acsnano.4c14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
Engineered extracellular vesicles play an increasingly important role in the treatment of spinal cord injury. In order to prepare more effective engineered extracellular vesicles, we biologically modified M2 microglia. Angiopep-2 (Ang2) is an oligopeptide that can target the blood-brain barrier. Through single-cell sequencing and immunofluorescence experiments, we confirmed that the expression of LRP-1, the targeted receptor of Ang2, was elevated after spinal cord injury. Subsequently, we integrated the Ang2 peptide segment into M2 microglia to obtain Ang2-EVs, which could successfully target the site of spinal cord injury. However, in order to improve the function of Ang2-EVs, we pretreated M2 microglia with melatonin, which has anti-inflammatory effects, to obtain M-Ang2-EVs. The results of single-nucleus sequencing of the mouse spinal cord verified that neurons and OPCs gradually transformed into subtypes related to nerve repair functions after treatment with M-Ang2-EVs. This is consistent with the sequencing and enrichment analysis of miRNAs contained in M-Ang2-EVs. We further verified through experiments that M-Ang2-EVs can promote microglia/macrophages to phagocytose sphingomyelin, promote axon remyelination and axon elongation, and maintain the integrity of the blood-spinal barrier. Since Ang2 can also target the blood-brain barrier, we found that M-Ang2-EVs can also reduce brain inflammation that results from spinal cord injury. Our study applied the Angiopep-2 peptide to spinal cord injury to enhance the targeting of injured cells, and successfully construct engineered extracellular vesicles that can target the spinal cord injury site and the brain.
Collapse
Affiliation(s)
- Guang Kong
- Department
of Orthopedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710000 Shaanxi, China
| | - Jie Liu
- Department
of Orthopedics, The Affiliated Taizhou People’s
Hospital of Nanjing Medical University, Taizhou School of Clinical
Medicine, Nanjing Medical University, 366 Taihu Road, Taizhou 225300 Jiangsu, China
| | - Juan Wang
- Department
of Human Anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing 210000 Jiangsu, China
| | - Xiaohu Yu
- Department
of Orthopedics, The First Affiliated Hospital
of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000 Jiangsu, China
| | - Cong Li
- Department
of Orthopedics, The First Affiliated Hospital
of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000 Jiangsu, China
| | - Mingyang Deng
- Department
of Orthopedics, The First Affiliated Hospital
of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000 Jiangsu, China
| | - Minhao Liu
- Department
of Orthopedics, The First Affiliated Hospital
of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000 Jiangsu, China
| | - Siming Wang
- Department
of Orthopedics, The First Affiliated Hospital
of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000 Jiangsu, China
| | - Chunming Tang
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 300
Guangzhou Road, Nanjing 210000 Jiangsu, China
| | - Wu Xiong
- Department
of Orthopedics, The First Affiliated Hospital
of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000 Jiangsu, China
| | - Jin Fan
- Department
of Orthopedics, The First Affiliated Hospital
of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000 Jiangsu, China
| |
Collapse
|
7
|
Jiang W, Yu W, Tan Y. Activation of GPR55 alleviates neuropathic pain and chronic inflammation. Biotechnol Appl Biochem 2025; 72:196-206. [PMID: 39219239 DOI: 10.1002/bab.2656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Neuropathic pain (NP) significantly impacts the quality of life due to its prolonged duration and lack of effective treatment. Recent findings suggest that targeting neuroinflammation is a promising approach for treating NP. G protein-coupled receptor 55 (GPR55), a member of the GPCR family, plays an important role in neuroinflammatory regulation. CID16020046, a GPR55 agonist, possesses promising anti-neuroinflammatory effects. Herein, the therapeutic effect of CID16020046 on NP was investigated in an NP rat model. The NP model was established using the unilateral sciatic nerve chronic constriction injury (CCI) assay. Both sham and CCI rats were intraperitoneally administered with 20 mg/kg CID16020046. NP was assessed using paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). First, we showed that GPR55 was downregulated in the spinal dorsal horn of CCI rats. After CCI rats were treated with CID16020046, the values of PWT and PWL were increased, indicating their effect on pain relief. The treated rats had attenuated release of inflammatory cytokines in the spinal cord, decreased spinal malondialdehyde (MDA) levels, and increased spinal glutathione peroxidase (GSH-PX) activity. Additionally, the increased levels of phosphorylated nuclear factor (NF)-κB p65 in CCI rats were significantly alleviated by CID16020046 treatment. Mechanistically, we showed that CID16020046 significantly suppressed the activation of the Janus kinase (JAK2)/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway in the spinal cord of CCI-treated rats. However, Colivelin TFA (a STAT3 agonist) abolished the effect of CID16020046 on JAK2/STAT3 activation. In conclusion, our data demonstrate that the activation of GPR55 by CID16020046 alleviates NP and neuroinflammation in CCI rats by mediating the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Weiqun Jiang
- Department of Anesthesiology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Wenbin Yu
- Department of Anesthesiology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Yu Tan
- Department of Anesthesiology, Nanchang First Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Ronchetti S, Labombarda F, Del Core J, Roig P, De Nicola AF, Pietranera L. The phytoestrogen genistein improves hippocampal neurogenesis and cognitive impairment and decreases neuroinflammation in an animal model of metabolic syndrome. J Neuroendocrinol 2025; 37:e13480. [PMID: 39676329 DOI: 10.1111/jne.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Metabolic syndrome (MS) is the medical term for the combination of at least three of the following factors: obesity, hyperlipidemia, hyperglycemia, insulin resistance, and hypertension. The spontaneously hypertensive rat (SHR) is an accepted animal model for the study of human MS that reveals all the features of the syndrome when fed high-fat, high-carbohydrate diets. The intake of high-fat diets in rats has been shown to produce brain neuropathology. In humans, MS increases the risk of cognitive impairment, dementia, and Alzheimer's disease. Genistein (GEN) is a phytoestrogen found in soy that lacks feminizing and carcinogenic effects and was found to have neuroprotective and anti-inflammatory effects in many pathological conditions. Considering that multiple data support that natural phytoestrogens may be therapeutic options for CNS maladies, we aim to elucidate if these properties also apply to a rat model of MS. Thus, GEN effects on neuroinflammation, neurogenesis, and cognition were evaluated in SHR eating a fat/carbohydrate-enriched diet. To characterize the neuropathology and cognitive dysfunction of MS we fed SHR with a high-fat diet (4520 kcal/kg) along with a 20% sucrose solution to drink. MS rats displayed a significant increase in body weight, BMI and obesity indexes along with an increased in fasting glucose levels, glucose intolerance, high blood pressure, and high blood triglyceride levels. MS rats were injected with GEN during 2 weeks a dose of 10 mg/kg. We found that MS rats showed a decreased number of DCX+ neural progenitors in the dentate gyrus and treatment with GEN increased this parameter. Expression of GFAP was increased in the DG and CA1 areas of the hippocampus and treatment decreased astrogliosis in all of them. We measured the expression of IBA1+ microglia in the same regions and classified microglia according to their morphology: we found that MS rats presented an increased proportion of the hypertrophied phenotype and GEN produced a shift in microglial phenotypes toward a ramified type. Furthermore, colocalization of IBA1 with the proinflammatory marker TNFα showed increased proportion of proinflammatory microglia in MS and a reduction with GEN treatment. On the other hand, colocalization with the anti-inflammatory marker Arg1 showed that MS has decreased proportion of anti-inflammatory microglia and GEN treatment increased this parameter. Cognitive dysfunction was evaluated in rats with MS using a battery of behavioral tests that assessed hippocampus-dependent spatial and working memory, such as the novel object recognition test (NOR), the novel object location test (NOL), and the free-movement pattern Y-maze (FMP-YMAZE) and the d-YMAZE. In all of them, MS performed poorly and GEN was able to improve cognitive impairments. These results indicate that GEN was able to exert neuroprotective actions increasing neurogenesis and improving cognitive impairments while decreasing astrogliosis, microgliosis, and neuroinflammatory environment in MS rats. Together, these results open an interesting possibility for proposing this phytoestrogen as a neuroprotective therapy for MS.
Collapse
Affiliation(s)
- Santiago Ronchetti
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Julian Del Core
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Luciana Pietranera
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Stefanov A, Brakel K, Rau J, Joseph RM, Guice C, Araguz K, Hemphill A, Madry J, Irion A, Dash S, Souza KA, Hook MA. Depression-like behavior is associated with deficits in cognition and hippocampal neurogenesis in a subset of spinally contused male, but not female, rats. Brain Behav Immun 2025; 123:270-287. [PMID: 39288895 DOI: 10.1016/j.bbi.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024] Open
Abstract
Depression and cognitive deficits present at higher rates among people with spinal cord injury (SCI) compared to the general population, yet these SCI comorbidities are poorly addressed. Sex and age appear to play roles in depression incidence, but consensus on the direction of their effects is limited. Systemic and cortical inflammation and disruptions in hippocampal neurogenesis have been identified as potential treatment targets, but a comprehensive understanding of these mechanisms remains elusive. We used a rodent SCI model to interrogate these gaps in knowledge. We examined post-injury depression-like behavior and cognitive deficits, as well as the association between affect, cognition, chronic hippocampal inflammation and hippocampal neurogenesis, in young and middle-aged male and female Sprague-Dawley rats. Depression-like behavior manifested in male and female subsets of SCI rats irrespective of age, at rates commensurate with the incidence of clinical depression. Changes in components of behavior were driven by sex and age, and affective outcomes were independent of common post-injury pathophysiological outcomes including locomotor functional deficits and spinal lesion severity. Interestingly, however, only male depression-like SCI rats exhibited deficits in hippocampal-associated spatial cognition. Neurogenesis was also disrupted in only SCI males in regions of the hippocampus responsible for affective outcomes. Decreased neurogenesis among middle-aged male subjects coincided with increases in numbers of the pro-inflammatory markers CD86 and iNOS, while middle-aged females had increased numbers of cells expressing Iba-1 and anti-inflammatory marker CD206. Overall, the present data suggest that post-SCI depression and cognition may be affected, in part, by sex- and age-dependent changes in hippocampal neurogenesis and inflammation. Hippocampal neurogenesis is a potential target to address psychological wellbeing after SCI, but therapeutic strategies must carefully consider sex and age as biological variables.
Collapse
Affiliation(s)
- Alex Stefanov
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843.
| | - Kiralyn Brakel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843
| | - Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843
| | - Rose M Joseph
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Corey Guice
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Kendall Araguz
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Annebel Hemphill
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Jessica Madry
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Andrew Irion
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Swapnil Dash
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Karienn A Souza
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843
| |
Collapse
|
10
|
Stickland CA, Sztranyovszky Z, Rickard JJS, Goldberg Oppenheimer P. Validation of optimised intracranial spectroscopic probe for instantaneous in-situ monitoring and classification of traumatic brain injury. Exp Neurol 2024; 382:114960. [PMID: 39299676 DOI: 10.1016/j.expneurol.2024.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The development of an optical interface to directly distinguish the brain tissue's biochemistry is the next step in understanding traumatic brain injury (TBI) pathophysiology and the best and most appropriate treatment in cases where in-hospital intracranial access is required. Despite TBI being a globally leading cause of morbidity and mortality in patients under 40, there is still a lack of objective diagnostical tools. Further, given its pathophysiological complexity the majority of treatments provided are purely symptomatic without standardized therapeutic targets. Our tailor-engineered prototype of the intracranial Raman spectroscopy probe (Intra-RSP) is designed to bridge the gap and provide real-time spectroscopic insights to monitor TBI and its evolution as well as identify patient-specific molecular targets for timely intervention. Raman spectroscopy being rapid, label-free and non-destructive, renders it an ideal portable diagnostics tool. In combination with our in-house developed software, using machine learning algorithms for multivariate analysis, the Intra-RSP is shown to accurately differentiate simulated TBI conditions in rat brains from the healthy controls, directly from the brain surface as well as through the rat's skull. Using clinically pre-established methods of cranial entry, the Intra-RSP can be inserted into a 2-piece optimised cranial bolt with integrated focussing and correctly identify a sample in real-life conditions with an accuracy >80 %. To further validate the Intra-RSP's efficiency as a TBI monitoring device, rat brains mildly damaged from inflicted spinal cord injury were found to be correctly classified with 94.5 % accuracy. Through optimization and rigorous in-vivo validation, the Intra-RSP prototype is envisioned to seamlessly integrate into existing standards of neurological care, serving as a minimally invasive, in-situ neuromonitoring tool. This transformative approach has the potential to revolutionize the landscape of neurological care by providing clinicians with unprecedented insights into the nature of brain injuries and fostering targeted, timely and effective therapeutic interventions.
Collapse
Affiliation(s)
- Clarissa A Stickland
- School of Chemical Engineering, College of Engineering and Physical Science, University of Birmingham, B15 2TT, UK
| | - Zoltan Sztranyovszky
- School of Chemical Engineering, College of Engineering and Physical Science, University of Birmingham, B15 2TT, UK
| | - Jonathan J S Rickard
- School of Chemical Engineering, College of Engineering and Physical Science, University of Birmingham, B15 2TT, UK; Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, College of Engineering and Physical Science, University of Birmingham, B15 2TT, UK; Institute of Healthcare Technologies, Mindelsohn Way, Birmingham B15 2TH, UK.
| |
Collapse
|
11
|
Dong L, Luan MY, Qi YN, Tian CX, Zheng Y. Calcium homeostasis restoration in pyramidal neurons through micrometer-scale wireless electrical stimulation in spinal cord injured mice. Biochem Biophys Res Commun 2024; 735:150487. [PMID: 39096885 DOI: 10.1016/j.bbrc.2024.150487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Spinal Cord Injury (SCI) is a significant neurological disorder that can result in severe motor and cognitive impairments. Neuronal regeneration and functional recovery are critical aspects of SCI treatment, with calcium signaling being a crucial indicator of neuronal excitability. In this study, we utilized a murine model to investigate the effects of targeted wireless electrical stimulation (ES) on neuronal activity following SCI. After establishing a complete SCI model in normal mice, flexible electrodes were implanted, and targeted wireless ES was administered to the injury site. We employed fiber-optic photometric in vivo calcium imaging to monitor calcium signals in pyramidal neurons within the CA3 region of the hippocampus and the M1 region of the primary motor cortex. The experimental results demonstrated a significant reduction in calcium signals in CA3 and M1 pyramidal neurons following SCI (reduced by 76 % and 59 %, in peak respectively). However, the application of targeted wireless ES led to a marked increase in calcium signals in these neurons (increased by 118 % and 69 %, in peak respectively), indicating a recovery of calcium activity. These observations suggest that wireless ES has a positive modulatory effect on the excitability of pyramidal neurons post-SCI. Understanding these mechanisms is crucial for developing therapeutic strategies aimed at enhancing neuronal recovery and functional restoration following spinal cord injuries.
Collapse
Affiliation(s)
- Lei Dong
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Meng-Ying Luan
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Ye-Nan Qi
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Chun-Xiao Tian
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300203, China.
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
12
|
Zhao Q, Zhu Y, Ren Y, Zhao L, Zhao J, Yin S, Ni H, Zhu R, Cheng L, Xie N. Targeting resident astrocytes attenuates neuropathic pain after spinal cord injury. eLife 2024; 13:RP95672. [PMID: 39545839 PMCID: PMC11567666 DOI: 10.7554/elife.95672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Astrocytes derive from different lineages and play a critical role in neuropathic pain after spinal cord injury (SCI). Whether selectively eliminating these main origins of astrocytes in lumbar enlargement could attenuate SCI-induced neuropathic pain remains unclear. Through transgenic mice injected with an adeno-associated virus vector and diphtheria toxin, astrocytes in lumbar enlargement were lineage traced, targeted, and selectively eliminated. Pain-related behaviors were measured with an electronic von Frey apparatus and a cold/hot plate after SCI. RNA sequencing, bioinformatics analysis, molecular experiment, and immunohistochemistry were used to explore the potential mechanisms after astrocyte elimination. Lineage tracing revealed that the resident astrocytes but not ependymal cells were the main origins of astrocytes-induced neuropathic pain. SCI-induced mice to obtain significant pain symptoms and astrocyte activation in lumbar enlargement. Selective resident astrocyte elimination in lumbar enlargement could attenuate neuropathic pain and activate microglia. Interestingly, the type I interferons (IFNs) signal was significantly activated after astrocytes elimination, and the most activated Gene Ontology terms and pathways were associated with the type I IFNs signal which was mainly activated in microglia and further verified in vitro and in vivo. Furthermore, different concentrations of interferon and Stimulator of interferon genes (STING) agonist could activate the type I IFNs signal in microglia. These results elucidate that selectively eliminating resident astrocytes attenuated neuropathic pain associated with type I IFNs signal activation in microglia. Targeting type I IFNs signals is proven to be an effective strategy for neuropathic pain treatment after SCI.
Collapse
Affiliation(s)
- Qing Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
| | - Yilong Ren
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Lijuan Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Jingwei Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Shuai Yin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Haofei Ni
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
- Clinical Center for Brain and Spinal Cord Research, Tongji UniversityShanghaiChina
| | - Ning Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| |
Collapse
|
13
|
Heled E, Goshen K, Kushnir T, Gur E, Maron-Olerasho S. Theory-driven assessment of cognitive flexibility in bulimia nervosa: a preliminary study. Cogn Neuropsychiatry 2024; 29:307-322. [PMID: 39835609 DOI: 10.1080/13546805.2024.2442606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Cognitive flexibility (CF) is defined as the ability to switch efficiently between different concepts or tasks. Empirical evidence of CF in individuals with bulimia nervosa (BN), offers conflicting conclusions, attributed to how CF is conceptualized and operationalized. The aims of the current study were to compare CF performance of women with BN to healthy controls, utilising a CF model that includes three subtypes termed: task switching, switching sets and stimulus-response mapping. In addition, to examine the association between CF subtypes and BN clinical characteristics. METHODS Sixty-two women (twenty-eight with BN and thirty-four healthy controls) with a mean age of 24.4, completed a CF cognitive battery. Performance was measured by response time and accuracy. RESULTS The BN group's response time was worse only on task switching, but was significantly more accurate on stimulus-response mapping. There was no significant correlation between CF scores and BN clinical characteristics. CONCLUSIONS Women with BN present with an impairment only on higher CF demands, whereas their performance at lower-level CF tends to be more accurate. Additionally, CF is independent of clinical characteristics, thus supporting evidence that it may reflect a trait nature in BN.
Collapse
Affiliation(s)
- Eyal Heled
- Department of Psychology, Ariel University, Ariel, Israel
- Neurological Rehabilitation Unit, Sheba Medical Center, Ramat-Gan, Israel
| | - Karen Goshen
- Department of Psychology, Ariel University, Ariel, Israel
| | - Talma Kushnir
- Department of Psychology, Ariel University, Ariel, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Eitan Gur
- Adults Eating Disorders Department, Sheba Medical Center, Ramat-Gan, Israel
| | | |
Collapse
|
14
|
Deulofeu M, Peña-Méndez EM, Vaňhara P, Havel J, Moráň L, Pečinka L, Bagó-Mas A, Verdú E, Salvadó V, Boadas-Vaello P. Discriminating fingerprints of chronic neuropathic pain following spinal cord injury using artificial neural networks and mass spectrometry analysis of female mice serum. Neurochem Int 2024; 181:105890. [PMID: 39455011 DOI: 10.1016/j.neuint.2024.105890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Spinal cord injury (SCI) often leads to central neuropathic pain, a condition associated with significant morbidity and is challenging in terms of the clinical management. Despite extensive efforts, identifying effective biomarkers for neuropathic pain remains elusive. Here we propose a novel approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with artificial neural networks (ANNs) to discriminate between mass spectral profiles associated with chronic neuropathic pain induced by SCI in female mice. Functional evaluations revealed persistent chronic neuropathic pain following mild SCI as well as minor locomotor disruptions, confirming the value of collecting serum samples. Mass spectra analysis revealed distinct profiles between chronic SCI and sham controls. On applying ANNs, 100% success was achieved in distinguishing between the two groups through the intensities of m/z peaks. Additionally, the ANNs also successfully discriminated between chronic and acute SCI phases. When reflexive pain response data was integrated with mass spectra, there was no improvement in the classification. These findings offer insights into neuropathic pain pathophysiology and underscore the potential of MALDI-TOF MS coupled with ANNs as a diagnostic tool for chronic neuropathic pain, potentially guiding attempts to discover biomarkers and develop treatments.
Collapse
Affiliation(s)
- Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic; Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Eladia M Peña-Méndez
- Department of Chemistry, Analytical Chemistry Division, Faculty of Sciences, University of La Laguna, 38204 San Cristóbal de La Laguna, Tenerife, Spain
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 656 91, Brno, Czech Republic
| | - Josef Havel
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lukáš Pečinka
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 656 91, Brno, Czech Republic
| | - Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain
| | - Victoria Salvadó
- Department of Chemistry, Faculty of Science, University of Girona, 17071, Girona, Catalonia, Spain.
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Catalonia, Spain.
| |
Collapse
|
15
|
Ma Y, Qiao Y, Gao X. Potential role of hippocampal neurogenesis in spinal cord injury induced post-trauma depression. Neural Regen Res 2024; 19:2144-2156. [PMID: 38488549 PMCID: PMC11034606 DOI: 10.4103/1673-5374.392855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 04/24/2024] Open
Abstract
It has been reported both in clinic and rodent models that beyond spinal cord injury directly induced symptoms, such as paralysis, neuropathic pain, bladder/bowel dysfunction, and loss of sexual function, there are a variety of secondary complications, including memory loss, cognitive decline, depression, and Alzheimer's disease. The large-scale longitudinal population-based studies indicate that post-trauma depression is highly prevalent in spinal cord injury patients. Yet, few basic studies have been conducted to address the potential molecular mechanisms. One of possible factors underlying the depression is the reduction of adult hippocampal neurogenesis which may come from less physical activity, social isolation, chronic pain, and elevated neuroinflammation after spinal cord injury. However, there is no clear consensus yet. In this review, we will first summarize the alteration of hippocampal neurogenesis post-spinal cord injury. Then, we will discuss possible mechanisms underlie this important spinal cord injury consequence. Finally, we will outline the potential therapeutic options aimed at enhancing hippocampal neurogenesis to ameliorate depression.
Collapse
Affiliation(s)
- Ying Ma
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue Qiao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
16
|
Dinh PC, Monahan PO, Fung C, Sesso HD, Feldman DR, Vaughn DJ, Hamilton RJ, Huddart R, Martin NE, Kollmannsberger C, Althouse S, Einhorn LH, Frisina R, Root JC, Ahles TA, Travis LB. Cognitive function in long-term testicular cancer survivors: impact of modifiable factors. JNCI Cancer Spectr 2024; 8:pkae068. [PMID: 39141447 PMCID: PMC11424079 DOI: 10.1093/jncics/pkae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
No study has comprehensively examined associated factors (adverse health outcomes, health behaviors, and demographics) affecting cognitive function in long-term testicular cancer survivors (TC survivors). TC survivors given cisplatin-based chemotherapy completed comprehensive, validated surveys, including those that assessed cognition. Medical record abstraction provided cancer and treatment history. Multivariable logistic regression examined relationships between potential associated factors and cognitive impairment. Among 678 TC survivors (median age = 46; interquartile range [IQR] = 38-54); median time since chemotherapy = 10.9 years, IQR = 7.9-15.9), 13.7% reported cognitive dysfunction. Hearing loss (odds ratio [OR] = 2.02; P = .040), neuropathic pain (OR = 2.06; P = .028), fatigue (OR = 6.11; P < .001), and anxiety/depression (OR = 1.96; P = .029) were associated with cognitive impairment in multivariable analyses. Being on disability (OR = 9.57; P = .002) or retired (OR = 3.64; P = .029) were also associated with cognitive decline. Factors associated with impaired cognition identify TC survivors requiring closer monitoring, counseling, and focused interventions. Hearing loss, neuropathic pain, fatigue, and anxiety/depression constitute potential targets for prevention or reduction of cognitive impairment in long-term TC survivors.
Collapse
Affiliation(s)
- Paul C Dinh
- Division of Medical Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Patrick O Monahan
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN, USA
| | - Chunkit Fung
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Howard D Sesso
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Darren R Feldman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David J Vaughn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Hamilton
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Robert Huddart
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London & Sutton, UK
- Urology Unit, Royal Marsden NHS Foundation Trust, London & Sutton, UK
| | - Neil E Martin
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Sandra Althouse
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN, USA
| | - Lawrence H Einhorn
- Division of Medical Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert Frisina
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA
| | - James C Root
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tim A Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lois B Travis
- Division of Medical Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
17
|
Lei Z, Krishnamachary B, Khan NZ, Ji Y, Li Y, Li H, Brunner K, Faden AI, Jones JW, Wu J. Spinal cord injury disrupts plasma extracellular vesicles cargoes leading to neuroinflammation in the brain and neurological dysfunction in aged male mice. Brain Behav Immun 2024; 120:584-603. [PMID: 38986724 PMCID: PMC11269008 DOI: 10.1016/j.bbi.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/22/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
Aged individuals with spinal cord injury (SCI) are prevalent with increased mortality and worse outcomes. SCI can cause secondary brain neuroinflammation and neurodegeneration. However, the mechanisms contributing to SCI-induced brain dysfunction are poorly understood. Cell-to-cell signaling through extracellular vesicles (EVs) has emerged as a critical mediator of neuroinflammation, including at a distance through circulation. We have previously shown that SCI in young adult (YA) male mice leads to robust changes in plasma EV count and microRNAs (miRs) content. Here, our goal was to investigate the impact of old age on EVs and brain after SCI. At 24 h post-injury, there was no difference in particle count or size distribution between YA and aged mice. However, aged animals increased expression of EV marker CD63 with SCI. Using the Fireplex® miRs assay, Proteomics, and mass spectrometry-based Lipidomics, circulating EVs analysis identified distinct profiles of miRs, proteins, and lipid components in old and injury animals. In vitro, plasma EVs from aged SCI mice, at a lower concentration comparable to those of YA SCI mice, induced the secretion of pro-inflammatory cytokines and neuronal apoptosis. Systemic administration of plasma EVs from SCI animals was sufficient to impair general physical function and neurological function in intact animals, which is associated with pro-inflammatory changes in the brain. Furthermore, plasma EVs from young animals had rejuvenating effects on naïve aged mice. Collectively, these studies identify the critical changes in circulating EVs cargoes after SCI and in aged animals and support a potential EV-mediated mechanism for SCI-induced brain changes.
Collapse
Affiliation(s)
- Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Balaji Krishnamachary
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Niaz Z Khan
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yuanyuan Ji
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hui Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kavitha Brunner
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
18
|
Lei Z, Ritzel RM, Li Y, Li H, Faden AI, Wu J. Old age alters inflammation and autophagy signaling in the brain, leading to exacerbated neurological outcomes after spinal cord injury in male mice. Brain Behav Immun 2024; 120:439-451. [PMID: 38925420 PMCID: PMC11269014 DOI: 10.1016/j.bbi.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/20/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
Older patients with spinal cord injury (SCI) have different features with regard to neurological characteristics after injury. Recent large-scale longitudinal population-based studies showed that individuals with SCI are at a higher risk of developing dementia than non-SCI patients, indicating that SCI is a potential risk factor for dementia. Aging is known to potentiate inflammation and neurodegeneration at the injured site leading to impaired recovery from SCI. However, no research has been aimed at studying the mechanisms of SCI-mediated cognitive impairment in the elderly. The present study examined neurobehavioral and molecular changes in the brain and the underlying mechanisms associated with brain dysfunction in aged C57BL/6 male mice using a contusion SCI model. At 2 months post-injury, aged mice displayed worse performance in locomotor, cognitive and depressive-like behavioral tests compared to young adult animals. Histopathology in injured spinal cord tissue was exacerbated in aged SCI mice. In the brain, transcriptomic analysis with NanoString neuropathology panel identified activated microglia and dysregulated autophagy as the most significantly altered pathways by both age and injury. These findings were further validated by flow cytometry, which demonstrated increased myeloid and lymphocytes infiltration at both the injured site and brain of aged mice. Moreover, SCI in aged mice altered microglial function and dysregulated autophagy in microglia, resulting in worsened neurodegeneration. Taken together, our data indicate that old age exacerbates neuropathological changes in both the injured spinal cord and remote brain regions leading to poorer functional outcomes, at least in part, through altered inflammation and autophagy function.
Collapse
Affiliation(s)
- Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hui Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
19
|
Wang Z, Xie Z, Zhang Z, Zhou W, Guo B, Li M. Multi-platform omics sequencing dissects the atlas of plasma-derived exosomes in rats with or without depression-like behavior after traumatic spinal cord injury. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110987. [PMID: 38438071 DOI: 10.1016/j.pnpbp.2024.110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Exosomes can penetrate the blood-brain barrier for material exchange between the peripheral and central nervous systems. Differences in exosome contents could explain the susceptibility of different individuals to depression-like behavior after traumatic spinal cord injury (TSCI). METHODS Hierarchical clustering was used to integrate multiple depression-related behavioral outcomes in sham and TSCI rats and ultimately identify non-depressed and depressed rats. The difference in plasma exosome contents between non-depressed and depressed rats after TSCI was assessed in 15 random subjects by performing plasma exosome transcriptomics, mass spectroscope-based proteomics, and non-targeted metabolomics analyses. RESULTS The results revealed that about 27.6% of the rats developed depression-like behavior after TSCI. Totally, 10 differential metabolites, 81 differentially expressed proteins (DEPs), 373 differentially expressed genes (DEGs), and 55 differentially expressed miRNAs (DEmiRNAs) were identified between non-depressed TSCI and sham rats. Meanwhile, 37 differential metabolites, 499 DEPs, 1361 DEGs, and 89 DEmiRNAs were identified between depressed and non-depressed TSCI rats. Enrichment analysis showed that the progression of depression-like behavior after TSCI may be related to amino acid metabolism disorder and dysfunction of multiple signaling pathways, including endocytosis, lipid and atherosclerosis, toll-like receptor, TNF, and PI3K-Akt pathway. CONCLUSION Overall, our study systematically revealed for the first time the differences in plasma exosome contents between non-depressed and depressed rats after TSCI, which will help broaden our understanding of the complex molecular mechanisms involved in brain functional recombination after TSCI.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| | - Zhiping Xie
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
| | - Zhixiong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Boyu Guo
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
20
|
Richards JH, Freeman DD, Detloff MR. Myeloid Cell Association with Spinal Cord Injury-Induced Neuropathic Pain and Depressive-like Behaviors in LysM-eGFP Mice. THE JOURNAL OF PAIN 2024; 25:104433. [PMID: 38007034 PMCID: PMC11058038 DOI: 10.1016/j.jpain.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Spinal cord injury (SCI) affects ∼500,000 people worldwide annually, with the majority developing chronic neuropathic pain. Following SCI, approximately 60% of these individuals are diagnosed with comorbid mood disorders, while only ∼21% of the general population will experience a mood disorder in their lifetime. We hypothesize that nociceptive and depressive-like dysregulation occurs after SCI and is associated with aberrant macrophage infiltration in segmental pain centers. We completed moderate unilateral C5 spinal cord contusion on LysM-eGFP reporter mice to visualize infiltrating macrophages. At 6-weeks post-SCI, mice exhibit nociceptive and depressive-like dysfunction compared to naïve and sham groups. There were no differences between the sexes, indicating that sex is not a contributing factor driving nociceptive or depressive-like behaviors after SCI. Utilizing hierarchical cluster analysis, we classified mice based on endpoint nociceptive and depressive-like behavior scores. Approximately 59.3% of the SCI mice clustered based on increased paw withdrawal threshold to mechanical stimuli and immobility time in the forced swim test. SCI mice displayed increased myeloid cell presence in the lesion epicenter, ipsilateral C7-8 dorsal horn, and C7-8 DRGs as evidenced by eGFP, CD68, and Iba1 immunostaining when compared to naïve and sham mice. This was further confirmed by SCI-induced alterations in the expression of genes indicative of myeloid cell activation states and their associated secretome in the dorsal horn and dorsal root ganglia. In conclusion, moderate unilateral cervical SCI caused the development of pain-related and depressive-like behaviors in a subset of mice and these behavioral changes are consistent with immune system activation in the segmental pain pathway. PERSPECTIVE: These experiments characterized pain-related and depressive-like behaviors and correlated these changes with the immune response post-SCI. While humanizing the rodent is impossible, the results from this study inform clinical literature to closely examine sex differences reported in humans to better understand the underlying shared etiologies of pain and depressive-like behaviors following central nervous system trauma.
Collapse
Affiliation(s)
- Jonathan H. Richards
- Department of Neurobiology & Anatomy, Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, 2900 W. Queen Lane, Philadelphia, PA 19129
| | - Daniel D. Freeman
- Department of Neurobiology & Anatomy, Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, 2900 W. Queen Lane, Philadelphia, PA 19129
| | - Megan Ryan Detloff
- Department of Neurobiology & Anatomy, Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, 2900 W. Queen Lane, Philadelphia, PA 19129
| |
Collapse
|
21
|
Liu T, Ma Z, Liu L, Pei Y, Wu Q, Xu S, Liu Y, Ding N, Guan Y, Zhang Y, Chen X. Conditioned medium from human dental pulp stem cells treats spinal cord injury by inhibiting microglial pyroptosis. Neural Regen Res 2024; 19:1105-1111. [PMID: 37862215 PMCID: PMC10749599 DOI: 10.4103/1673-5374.385309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 10/22/2023] Open
Abstract
Human dental pulp stem cell transplantation has been shown to be an effective therapeutic strategy for spinal cord injury. However, whether the human dental pulp stem cell secretome can contribute to functional recovery after spinal cord injury remains unclear. In the present study, we established a rat model of spinal cord injury based on impact injury from a dropped weight and then intraperitoneally injected the rats with conditioned medium from human dental pulp stem cells. We found that the conditioned medium effectively promoted the recovery of sensory and motor functions in rats with spinal cord injury, decreased expression of the microglial pyroptosis markers NLRP3, GSDMD, caspase-1, and interleukin-1β, promoted axonal and myelin regeneration, and inhibited the formation of glial scars. In addition, in a lipopolysaccharide-induced BV2 microglia model, conditioned medium from human dental pulp stem cells protected cells from pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1β pathway. These results indicate that conditioned medium from human dental pulp stem cells can reduce microglial pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1β pathway, thereby promoting the recovery of neurological function after spinal cord injury. Therefore, conditioned medium from human dental pulp stem cells may become an alternative therapy for spinal cord injury.
Collapse
Affiliation(s)
- Tao Liu
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ziqian Ma
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Liang Liu
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yilun Pei
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Qichao Wu
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Songjie Xu
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yadong Liu
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Nan Ding
- Department of Stomatology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yan Zhang
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xueming Chen
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Aldrich JC, Scheinfeld AR, Lee SE, Dusenbery KJ, Mahach KM, Van de Veire BC, Fonken LK, Gaudet AD. Effects of dim light at night in C57BL/6 J mice on recovery after spinal cord injury. Exp Neurol 2024; 375:114725. [PMID: 38365132 PMCID: PMC10981559 DOI: 10.1016/j.expneurol.2024.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Spinal cord injury (SCI) can cause long-lasting locomotor deficits, pain, and mood disorders. Anatomical and functional outcomes are exacerbated by inflammation after SCI, which causes secondary damage. One promising target after SCI is manipulating the circadian system, which optimizes biology and behavior for time of day - including neuroimmune responses and mood-related behaviors. Circadian disruption after SCI is likely worsened by a disruptive hospital environment, which typically includes dim light-at-night (dLAN). Here, we hypothesized that mice subjected to SCI, then placed in dLAN, would exhibit worsened locomotor deficits, pain-like behavior, and anxiety-depressive-like symptoms compared to mice maintained in light days with dark nights (LD). C57BL/6 J mice received sham surgery or moderate T9 contusion SCI, then were placed permanently in LD or dLAN. dLAN after SCI did not worsen locomotor deficits; rather, SCI-dLAN mice showed slight improvement in open-field locomotion at the final timepoint. Although dLAN did not alter SCI-induced heat hyperalgesia, SCI-dLAN mice exhibited an increase in mechanical allodynia at 13 days post-SCI compared to SCI-LD mice. SCI-LD and SCI-dLAN mice had similar outcomes using sucrose preference (depressive-like) and open-field (anxiety-like) tests. At 21 dpo, SCI-dLAN mice had reduced preference for a novel juvenile compared to SCI-LD, implying that dLAN combined with SCI may worsen this mood-related behavior. Finally, lesion size was similar between SCI-LD and SCI-dLAN mice. Therefore, newly placing C57BL/6 J mice in dLAN after SCI had modest effects on locomotor, pain-like, and mood-related behaviors. Future studies should consider whether clinically-relevant circadian disruptors, alone or in combination, could be ameliorated to enhance outcomes after SCI.
Collapse
Affiliation(s)
- John C Aldrich
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Ashley R Scheinfeld
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Sydney E Lee
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Kalina J Dusenbery
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Kathryn M Mahach
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Brigid C Van de Veire
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin
| | - Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin.
| |
Collapse
|
23
|
Niella RV, Corrêa JMX, dos Santos JFR, Lima LF, Marques CSDC, Santos LC, Santana LR, Silva ÁJC, Farias KS, Pirovani CP, Silva JF, de Lavor MSL. Post-treatment with maropitant reduces oxidative stress, endoplasmic reticulum stress and neuroinflammation on peripheral nerve injury in rats. PLoS One 2024; 19:e0287390. [PMID: 38507417 PMCID: PMC10954158 DOI: 10.1371/journal.pone.0287390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/05/2023] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVE To determine the effective dose and therapeutic potential of maropitant using through expression of mediators of oxidative stress, inflammatory and of the unfolded protein response (UPR) (bio) markers on spinal cord using a model of neuropathic pain induced through chronic constriction injury (CCI) in rats. STUDY DESIGN Randomized, blinded, prospective experimental study. ANIMALS 98 male Wistar rats. METHODS Rats were anesthetized with sevoflurane and after CCI, they were randomly assigned to the following groups that received: vehicle, 3, 6, 15, 30 e 50 mg/kg/24q of maropitant. The effect on inflammatory mediators (IL10, TNFα), oxidative stress (GPx, CAT, SOD), microglial (IBA-1) and neuronal (NeuN, TACR1) markers was evaluated though immunohistochemistry and expression levels of markers of hypoxia (HIF1α, Nrf2), antioxidant enzymes (Catalse, Sod1 and GPx1), and endoplasmic reticulum stress mediators (GRP78, CHOP and PERK) through qRT-PCR. RESULTS Intraperitoneal injection (IP) of maropitant inhibited nociception with ID50 values of 4,1 mg/kg (5,85-19,36) in a neuropathic pain model through CCI. A dose of 30 mg/kg/24q was significantly effective in reducing mechanical allodynia 1 to 4h after treatment with nociception inhibition (145,83%). A reduction in the expression of hypoxia factors (HIF1α, Nrf2) was observed, along with an increase in antioxidant activity (CAT, SOD and GPX). Additionally, there was a reduction in inflammatory markes (IL10, TNFα), microglial (IBA-1), and neuronal markers (NeuN, TACR1). CONCLUSION AND CLINICAL RELEVANCE These findings demonstrate that the determined dose, administered daily for seven days, had an antinociceptive effect, as well as anti-inflammatory and antioxidant activity.
Collapse
Affiliation(s)
- Raquel Vieira Niella
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | | | | - Larissa Ferreira Lima
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | | | | - Larissa Rodrigues Santana
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Álvaro José Chávez Silva
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Keilane Silva Farias
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | | - Juneo Freitas Silva
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | |
Collapse
|
24
|
Wu Z, Feng K, Huang J, Ye X, Yang R, Huang Q, Jiang Q. Brain region changes following a spinal cord injury. Neurochem Int 2024; 174:105696. [PMID: 38354751 DOI: 10.1016/j.neuint.2024.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/16/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Brain-related complications are common in clinical practice after spinal cord injury (SCI); however, the molecular mechanisms of these complications are still unclear. Here, we reviewed the changes in the brain regions caused by SCI from three perspectives: imaging, molecular analysis, and electrophysiology. Imaging studies revealed abnormal functional connectivity, gray matter volume atrophy, and metabolic abnormalities in brain regions after SCI, leading to changes in the structure and function of brain regions. At the molecular level, chemokines, inflammatory factors, and damage-associated molecular patterns produced in the injured area were retrogradely transmitted through the corticospinal tract, cerebrospinal fluid, or blood circulation to the specific brain area to cause pathologic changes. Electrophysiologic recordings also suggested abnormal changes in brain electrical activity after SCI. Transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation alleviated pain and improved motor function in patients with SCI; therefore, transcranial therapy may be a new strategy for the treatment of patients with SCI.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Kaiming Feng
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Jinqing Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Xinyun Ye
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Ruijin Yang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Qianliang Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China.
| | - Qiuhua Jiang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China.
| |
Collapse
|
25
|
Aldrich JC, Scheinfeld AR, Lee SE, Dusenbery KJ, Mahach KM, Van de Veire BC, Fonken LK, Gaudet AD. Effects of dim light at night in C57BL/6J mice on recovery after spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.557980. [PMID: 37745393 PMCID: PMC10516041 DOI: 10.1101/2023.09.15.557980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Spinal cord injury (SCI) can cause long-lasting locomotor deficits, pain, and mood disorders. Anatomical and functional outcomes are exacerbated by inflammation after SCI, which causes secondary damage. One promising target after SCI is manipulating the circadian system, which optimizes biology and behavior for time of day - including neuroimmune responses and mood-related behaviors. Circadian disruption after SCI is likely worsened by a disruptive hospital environment, which typically includes dim light-at-night (dLAN). Here, we hypothesized that mice subjected to SCI, then placed in dLAN, would exhibit worsened locomotor deficits, pain-like behavior, and anxiety-depressive-like symptoms compared to mice maintained in light days with dark nights (LD). C57BL/6J mice received sham surgery or moderate T9 contusion SCI, then were placed permanently in LD or dLAN. dLAN after SCI did not worsen locomotor deficits; rather, SCI-dLAN mice showed slight improvement in open-field locomotion at the final timepoint. Although dLAN did not alter SCI-induced heat hyperalgesia, SCI-dLAN mice exhibited an increase in mechanical allodynia at 13 days post-SCI compared to SCI-LD mice. SCI-LD and SCI-dLAN mice had similar outcomes using sucrose preference (depressive-like) and open-field (anxiety-like) tests. At 21 dpo, SCI-dLAN mice had reduced preference for a novel juvenile compared to SCI-LD, implying that dLAN combined with SCI may worsen this mood-related behavior. Finally, lesion size was similar between SCI-LD and SCI-dLAN mice. Therefore, newly placing C57BL/6J mice in dLAN after SCI had modest effects on locomotor, pain-like, and mood-related behaviors. Future studies should consider whether clinically-relevant circadian disruptors, alone or in combination, could be ameliorated to enhance outcomes after SCI.
Collapse
Affiliation(s)
- John C Aldrich
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Ashley R Scheinfeld
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Sydney E Lee
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Kalina J Dusenbery
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Kathryn M Mahach
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Brigid C Van de Veire
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin
| | - Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin
- Department of Neurology, Dell Medical School, The University of Texas at Austin
| |
Collapse
|
26
|
Mokhtari T, Uludag K. Role of NLRP3 Inflammasome in Post-Spinal-Cord-Injury Anxiety and Depression: Molecular Mechanisms and Therapeutic Implications. ACS Chem Neurosci 2024; 15:56-70. [PMID: 38109051 DOI: 10.1021/acschemneuro.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
The majority of research on the long-term effects of spinal cord injury (SCI) has primarily focused on neuropathic pain (NP), psychological issues, and sensorimotor impairments. Among SCI patients, mood disorders, such as anxiety and depression, have been extensively studied. It has been found that chronic stress and NP have negative consequences and reduce the quality of life for individuals living with SCI. Our review examined both human and experimental evidence to explore the connection between mood changes following SCI and inflammatory pathways, with a specific focus on NLRP3 inflammasome signaling. We observed increased proinflammatory factors in the blood, as well as in the brain and spinal cord tissues of SCI models. The NLRP3 inflammasome plays a crucial role in various diseases by controlling the release of proinflammatory molecules like interleukin 1β (IL-1β) and IL-18. Dysregulation of the NLRP3 inflammasome in key brain regions associated with pain processing, such as the prefrontal cortex and hippocampus, contributes to the development of mood disorders following SCI. In this review, we summarized recent research on the expression and regulation of components related to NLRP3 inflammasome signaling in mood disorders following SCI. Finally, we discussed potential therapeutic approaches that target the NLRP3 inflammasome and regulate proinflammatory cytokines as a way to treat mood disorders following SCI.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
| | - Kadir Uludag
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| |
Collapse
|
27
|
Li L, Guo Y, Chen C, Wang Z, Liu Z. Mechanisms of hyponatremia and diabetes insipidus after acute spinal cord injury: a critical review. Chin Neurosurg J 2023; 9:32. [PMID: 37968769 PMCID: PMC10647149 DOI: 10.1186/s41016-023-00347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
The incidence of hyponatremia after spinal cord injury was reported to be between 25 and 80%. Hyponatremia can lead to a variety of clinical symptoms, from mild to severe and even life-threatening. Hyponatremia is often associated with diabetes insipidus, which refers to insufficient arginine vasopressin (AVP) secretion or defective renal response to AVP, with clinical manifestations of syndromes such as hypoosmolality, polydipsia, and polydipsia. Recent mechanistic studies on hyponatremia and diabetes insipidus after acute spinal cord injury have been performed in isolation, without integrating the above two symptoms into different pathological manifestations that occur in the same injury state and without considering the acute spinal cord injury patient's condition as a whole. The therapeutic principles of CSWS and SIADH are in opposition to one another. It is not easy to identify the mechanism of hyponatremia in clinical practice, which makes selecting the treatment difficult. According to the existing theories, treatments for hyponatremia and diabetes insipidus together are contraindicated, whether the mechanism of hyponatremia is thought to be CSWS or SIADH. In this paper, we review the mechanism of these two pathological manifestations and suggest that our current understanding of the mechanisms of hyponatremia and diabetes insipidus after high acute cervical SCI is insufficient, and it is likely that there are other undetected pathogenetic mechanisms.
Collapse
Affiliation(s)
- Lianhua Li
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China.
| | - Yanhui Guo
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Chen Chen
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Zhonghe Wang
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Zhi Liu
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Yang X, Davies BM, Coles JP, Menon DK, Stubbs DJ, Gharooni AA, Aung W, Starkey ML, Hay D, Anwar F, Timofeev IS, Helmy A, Newcombe VF, Kotter MR, Hutchinson PJ. The incidence and impact of 'Tandem Neurotrauma'. BRAIN & SPINE 2023; 3:102702. [PMID: 38021005 PMCID: PMC10668105 DOI: 10.1016/j.bas.2023.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Introduction The epidemiology and prognosis of the isolated traumatic brain injury (TBI) and spinal cord injury (SCI) are well studied. However, the knowledge of the impact of concurrent neurotrauma is very limited. Research questions To characterize the longitudinal incidence of concurrent TBI and SCI and to investigate their combined impact on clinical care and outcomes, compared to a comparative but isolated SCI or TBI. Materials and methods Data from 167,793 patients in the Trauma Audit and Research Network (TARN) registry collected in England and Wales between 2008 and 2018 were analysed. Tandem neurotrauma was defined as patients with concurrent TBI and SCI. The patient with isolated TBI or SCI was matched to the patient with tandem neurotrauma using propensity scores. Results The incidence of tandem neurotrauma increased tenfold between 2008 and 2018, from 0.21 to 2.21 per 100,000 person-years. Patients in the tandem neurotrauma group were more likely to require multiple surgeries, ICU admission, longer ICU and hospital LOS, higher 30-day mortality, and were more likely to be transferred to acute hospitals and rehabilitation or suffer death at discharge, compared to patients with isolated TBI. Likewise, individuals with tandem neurotrauma compared to those with isolated SCI had a higher tendency to receive more than one surgery, ICU admission, longer LOS for ICU and higher mortality either at 30-day follow-up or at discharge. Discussion and conclusions The incidence of tandem neurotrauma has increased steadily during the past decade. Its occurrence leads to greater mortality and care requirements, particularly when compared to TBI alone. Further investigations are warranted to improve outcomes in tandem neurotrauma.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Department of Neurosurgery, Leiden University Medical Centre, Leiden, the Netherlands
| | - Benjamin M. Davies
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan P. Coles
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Daniel J. Stubbs
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Aref-Ali Gharooni
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Wunna Aung
- The Golden Jubilee Spinal Cord Injury Centre, James Cook University Hospital, Middlesbrough, United Kingdom
| | - Michelle L. Starkey
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Douglas Hay
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Fahim Anwar
- Department of Rehabilitation Medicine, Cambridge University Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Ivan S. Timofeev
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Virginia F.J. Newcombe
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mark R.N. Kotter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Anne McLaren Laboratory for Regenerative Medicine, Welcome Trust MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Peter J.A. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
29
|
Chen X, Wang L, Zheng W, Yang Y, Yang B, Hu Y, Du J, Li X, Lu J, Chen N. The gray matter atrophy and related network changes occur in the higher cognitive region rather than the primary sensorimotor cortex after spinal cord injury. PeerJ 2023; 11:e16172. [PMID: 37842067 PMCID: PMC10569206 DOI: 10.7717/peerj.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/03/2023] [Indexed: 10/17/2023] Open
Abstract
Objective This study used functional magnetic resonance imaging (fMRI) to explore brain structural and related network changes in patients with spinal cord injury (SCI). Methods Thirty-one right-handed SCI patients and 31 gender- and age-matched healthy controls (HC) were included. The gray matter volume (GMV) changes in SCI patients were observed using voxel-based morphometry (VBM). Then, these altered gray matter clusters were used as the regions of interest (ROIs) for whole-brain functional connectivity (FC) analysis to detect related functional changes. The potential association between GMV and FC values with the visual analog scale (VAS), the American Spinal Injury Association (ASIA) score, and the course of injuries was investigated through partial correlation analysis. Results GMV of the frontal, temporal, and insular cortices was lower in the SCI group than in the HC group. No GMV changes were found in the primary sensorimotor area in the SCI group. Besides, the altered FC regions were not in the primary sensorimotor area but in the cingulate gyrus, supplementary motor area, precuneus, frontal lobe, and insular. Additionally, some of these altered GMV and FC regions were correlated with ASIA motor scores, indicating that higher cognitive regions can affect motor function in SCI patients. Conclusions This study demonstrated that gray matter and related network reorganization in patients with SCI occurred in higher cognitive regions. Future rehabilitation strategies should focus more on cognitive functions.
Collapse
Affiliation(s)
- Xin Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Ling Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Weimin Zheng
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yanhui Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yongsheng Hu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jubao Du
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xuejing Li
- Department of Radiology, China Rehabilitation Research Center, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
30
|
Maiarù M, Acton RJ, Woźniak EL, Mein CA, Bell CG, Géranton SM. A DNA methylation signature in the stress driver gene Fkbp5 indicates a neuropathic component in chronic pain. Clin Epigenetics 2023; 15:155. [PMID: 37777763 PMCID: PMC10543848 DOI: 10.1186/s13148-023-01569-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Epigenetic changes can bring insight into gene regulatory mechanisms associated with disease pathogenicity, including chronicity and increased vulnerability. To date, we are yet to identify genes sensitive to epigenetic regulation that contribute to the maintenance of chronic pain and with an epigenetic landscape indicative of the susceptibility to persistent pain. Such genes would provide a novel opportunity for better pain management, as their epigenetic profile could be targeted for the treatment of chronic pain or used as an indication of vulnerability for prevention strategies. Here, we investigated the epigenetic profile of the gene Fkbp5 for this potential, using targeted bisulphite sequencing in rodent pre-clinical models of chronic and latent hypersensitive states. RESULTS The Fkbp5 promoter DNA methylation (DNAm) signature in the CNS was significantly different between models of persistent pain, and there was a significant correlation between CNS and peripheral blood Fkbp5 DNAm, indicating that further exploration of Fkbp5 promoter DNAm as an indicator of chronic pain pathogenic origin is warranted. We also found that maternal separation, which promotes the persistency of inflammatory pain in adulthood, was accompanied by long-lasting reduction in Fkbp5 DNAm, suggesting that Fkbp5 DNAm profile may indicate the increased vulnerability to chronic pain in individuals exposed to trauma in early life. CONCLUSIONS Overall, our data demonstrate that the Fkbp5 promoter DNAm landscape brings novel insight into the differing pathogenic origins of chronic pain, may be able to stratify patients and predict the susceptibility to chronic pain.
Collapse
Affiliation(s)
- Maria Maiarù
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
- Department of Pharmacology, School of Pharmacy, University of Reading, Reading, UK
| | - Richard J Acton
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, UK
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Charterhouse Square, Queen Mary University of London, London, EC1M 6BQ, UK
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Eva L Woźniak
- Genome Centre, Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Charles A Mein
- Genome Centre, Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Charterhouse Square, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sandrine M Géranton
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
31
|
Bao J, Yang S. ScRNA analysis and ferroptosis-related ceRNA regulatory network investigation in microglia cells at different time points after spinal cord injury. J Orthop Surg Res 2023; 18:701. [PMID: 37726826 PMCID: PMC10507978 DOI: 10.1186/s13018-023-04195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Spinal cord injuries (SCI) are usually caused by mechanical trauma that leads to serious physical and psychological damage to the patient as well as a huge economic burden to the whole society. The prevention, treatment, and rehabilitation of spinal cord injuries have become a major issue for the medical community today due to the enormous social and economic expenditure induced via spinal cord injuries. Therefore, in-depth research into SCI is necessary. Microglia have been shown to be the key player in the immune inflammatory response after spinal cord injury, but the mechanisms of immune regulation at different time points after spinal cord injury remain unclear. To investigate the inflammatory biomarkers associated with microglia at different time points after SCI, we downloaded single-cell RNA sequencing data from mouse spinal cords 3- and 14-days after the injury and identified subpopulations associated with microglia. Further functional enrichment analysis also confirmed that microglia are associated with immune system regulation at different time points and that both can modulate cytokine production. As ferroptosis is a newly identified non-apoptotic programmed cell death, microglia establish a bridge between ferroptosis and CNS inflammation and may play an important role in spinal cord injury. We then screened for genes differentially expressed in microglia during 3- and 14-days after spinal cord injury and associated with iron death, named Stmn1 and Fgfbr1, respectively, and verified that these pivotal genes are closely related to the immune cells. Finally, we also screened for drug fractions associated with these pivotal genes. Our results predict key genes in the immune inflammatory process associated with microglia at different time points after spinal cord injury at the single-cell level and provide a molecular basis for better treatment of SCI.
Collapse
Affiliation(s)
- Junping Bao
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Shu Yang
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
32
|
Li Y, Khan N, Ritzel RM, Lei Z, Allen S, Faden AI, Wu J. Sexually dimorphic extracellular vesicle responses after chronic spinal cord injury are associated with neuroinflammation and neurodegeneration in the aged brain. J Neuroinflammation 2023; 20:197. [PMID: 37653491 PMCID: PMC10469550 DOI: 10.1186/s12974-023-02881-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Medical advances have made it increasingly possible for spinal cord injury (SCI) survivors to survive decades after the insult. But how SCI affects aging changes and aging impacts the injury process have received limited attention. Extracellular vesicles (EVs) are recognized as critical mediators of neuroinflammation after CNS injury, including at a distance from the lesion site. We have previously shown that SCI in young male mice leads to robust changes in plasma EV count and microRNA (miR) content. Here, our goal was to investigate the impact of biological sex and aging on EVs and brain after SCI. METHODS Young adult age-matched male and female C57BL/6 mice were subjected to SCI. At 19 months post-injury, total plasma EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis (NTA). EVs miR cargo was examined using the Fireplex® assay. The transcriptional changes in the brain were assessed by a NanoString nCounter Neuropathology panel and validated by Western blot (WB) and flow cytometry (FC). A battery of behavioral tests was performed for assessment of neurological function. RESULTS Transcriptomic changes showed a high number of changes between sham and those with SCI. Sex-specific changes were found in transcription networks related to disease association, activated microglia, and vesicle trafficking. FC showed higher microglia and myeloid counts in the injured tissue of SCI/Female compared to their male counterparts, along with higher microglial production of ROS in both injured site and the brain. In the latter, increased levels of TNF and mitochondrial membrane potential were seen in microglia from SCI/Female. WB and NTA revealed that EV markers are elevated in the plasma of SCI/Male. Particle concentration in the cortex increased after injury, with SCI/Female showing higher counts than SCI/Male. EVs cargo analysis revealed changes in miR content related to injury and sex. Behavioral testing confirmed impairment of cognition and depression at chronic time points after SCI in both sexes, without significant differences between males and females. CONCLUSIONS Our study is the first to show sexually dimorphic changes in brain after very long-term SCI and supports a potential sex-dependent EV-mediated mechanism that contributes to SCI-induced brain changes.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Niaz Khan
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Samantha Allen
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA.
| |
Collapse
|
33
|
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:245. [PMID: 37357239 DOI: 10.1038/s41392-023-01477-6] [Citation(s) in RCA: 218] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/27/2023] Open
Abstract
Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.
Collapse
Affiliation(s)
- Xiao Hu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Xiaolie He
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| |
Collapse
|
34
|
Liu JL, Wang S, Chen ZH, Wu RJ, Yu HY, Yang SB, Xu J, Guo YN, Ding Y, Li G, Zeng X, Ma YH, Gong YL, Wu CR, Zhang LX, Zeng YS, Lai BQ. The therapeutic mechanism of transcranial iTBS on nerve regeneration and functional recovery in rats with complete spinal cord transection. Front Immunol 2023; 14:1153516. [PMID: 37388732 PMCID: PMC10306419 DOI: 10.3389/fimmu.2023.1153516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Background After spinal cord transection injury, the inflammatory microenvironment formed at the injury site, and the cascade of effects generated by secondary injury, results in limited regeneration of injured axons and the apoptosis of neurons in the sensorimotor cortex (SMC). It is crucial to reverse these adverse processes for the recovery of voluntary movement. The mechanism of transcranial intermittent theta-burst stimulation (iTBS) as a new non-invasive neural regulation paradigm in promoting axonal regeneration and motor function repair was explored by means of a severe spinal cord transection. Methods Rats underwent spinal cord transection and 2 mm resection of spinal cord at T10 level. Four groups were studied: Normal (no lesion), Control (lesion with no treatment), sham iTBS (lesion and no functional treatment) and experimental, exposed to transcranial iTBS, 72 h after spinal lesion. Each rat received treatment once a day for 5 days a week; behavioral tests were administered one a week. Inflammation, neuronal apoptosis, neuroprotective effects, regeneration and synaptic plasticity after spinal cord injury (SCI) were determined by immunofluorescence staining, western blotting and mRNA sequencing. For each rat, anterograde tracings were acquired from the SMC or the long descending propriospinal neurons and tested for cortical motor evoked potentials (CMEPs). Regeneration of the corticospinal tract (CST) and 5-hydroxytryptamine (5-HT) nerve fibers were analyzed 10 weeks after SCI. Results When compared to the Control group, the iTBS group showed a reduced inflammatory response and reduced levels of neuronal apoptosis in the SMC when tested 2 weeks after treatment. Four weeks after SCI, the neuroimmune microenvironment at the injury site had improved in the iTBS group, and neuroprotective effects were evident, including the promotion of axonal regeneration and synaptic plasticity. After 8 weeks of iTBS treatment, there was a significant increase in CST regeneration in the region rostral to the site of injury. Furthermore, there was a significant increase in the number of 5-HT nerve fibers at the center of the injury site and the long descending propriospinal tract (LDPT) fibers in the region caudal to the site of injury. Moreover, CMEPs and hindlimb motor function were significantly improved. Conclusion Neuronal activation and neural tracing further verified that iTBS had the potential to provide neuroprotective effects during the early stages of SCI and induce regeneration effects related to the descending motor pathways (CST, 5-HT and LDPT). Furthermore, our results revealed key relationships between neural pathway activation, neuroimmune regulation, neuroprotection and axonal regeneration, as well as the interaction network of key genes.
Collapse
Affiliation(s)
- Jia-Lin Liu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Rehabilitation Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Shuai Wang
- Rehabilitation Medicine Department, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zheng-Hong Chen
- Rehabilitation Medicine Department, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rong-Jie Wu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou, China
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hai-Yang Yu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shang-Bin Yang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Xu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi-Nan Guo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangzhou Institute of Clinical Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Yu-Lai Gong
- Department of Neurology, Sichuan Provincial Rehabilitation Hospital, Chengdu, China
| | - Chuang-Ran Wu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li-Xin Zhang
- Rehabilitation Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
35
|
Pfyffer D, Zimmermann S, Şimşek K, Kreis R, Freund P, Seif M. Magnetic resonance spectroscopy investigation in the right human hippocampus following spinal cord injury. Front Neurol 2023; 14:1120227. [PMID: 37251221 PMCID: PMC10213741 DOI: 10.3389/fneur.2023.1120227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Preclinical studies have shown that cognitive impairments following spinal cord injury (SCI), such as impaired spatial memory, are linked to inflammation, neurodegeneration, and reduced neurogenesis in the right hippocampus. This cross-sectional study aims to characterize metabolic and macrostructural changes in the right hippocampus and their association to cognitive function in traumatic SCI patients. Methods Within this cross-sectional study, cognitive function was assessed in 28 chronic traumatic SCI patients and 18 age-, sex-, and education-matched healthy controls by a visuospatial and verbal memory test. A magnetic resonance spectroscopy (MRS) and structural MRI protocol was performed in the right hippocampus of both groups to quantify metabolic concentrations and hippocampal volume, respectively. Group comparisons investigated changes between SCI patients and healthy controls and correlation analyses investigated their relationship to memory performance. Results Memory performance was similar in SCI patients and healthy controls. The quality of the recorded MR spectra was excellent in comparison to the best-practice reports for the hippocampus. Metabolite concentrations and volume of the hippocampus measured based on MRS and MRI were not different between two groups. Memory performance in SCI patients and healthy controls was not correlated with metabolic or structural measures. Conclusion This study suggests that the hippocampus may not be pathologically affected at a functional, metabolic, and macrostructural level in chronic SCI. This points toward the absence of significant and clinically relevant trauma-induced neurodegeneration in the hippocampus.
Collapse
Affiliation(s)
- Dario Pfyffer
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Sandra Zimmermann
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Kadir Şimşek
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Roland Kreis
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maryam Seif
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
36
|
Zangbar HS, Fallahi S, Hosseini L, Ghorbani M, Jafarzadehgharehziaaddin M, Shahabi P. Spinal cord injury leads to more neurodegeneration in the hippocampus of aged male rats compared to young rats. Exp Brain Res 2023; 241:1569-1583. [PMID: 37129669 DOI: 10.1007/s00221-023-06577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/14/2023] [Indexed: 05/03/2023]
Abstract
Although the disruptive effects of spinal cord injury (SCI) on the hippocampus have been confirmed in some animal studies, no study has investigated its retrograde manifestations in the hippocampus of aged subjects. Herein, we compared the aged rats with young ones 3 weeks after the induction of SCI (Groups: Sham.Young, SCI.Young, Sham.Aged, SCI.Aged). The locomotion, hippocampal apoptosis, hippocampal rhythms (Delta, Theta, Beta, Gamma) max frequency (Max.rf) and power, hippocampal neurogenesis, and hippocampal receptors (NMDA, GABA A, Muscarinic1/M1), which are important in the generation of rhythms and neurogenesis, were compared in aged rats in contrast to young rats. At the end of the third week, the number of apoptotic (Tunel+) cells in the hippocampus (CA1, DG) of SCI animals was significantly higher compared to the sham animals, and also, it was significantly higher in the SCI.Aged group compared to SCI.Young group. Moreover, the rate of neurogenesis (DCX+, BrdU+ cells) and expression of M1 and NMDA receptors were significantly lower in the SCI.Aged group compared to SCI.Young group. The power and Max.fr of all rhythms were significantly lower in SCI groups compared to sham groups. Despite the decrease in the power of rhythms in the SCI.Aged group compared to SCI.Young group, there was no significant difference between them, and in terms of Max.fr index, only the Max.fr of theta and beta rhythms were significantly lower in the SCI.Aged group compared to SCI.Young group. This study showed that SCI could cause more neurodegeneration in the hippocampus of aged animals compared to young animals.
Collapse
Affiliation(s)
- Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, East Azarbayjan, Tabriz, Iran.
| | - Solmaz Fallahi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, East Azarbayjan, 51666-14766, Tabriz, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Ghorbani
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, East Azarbayjan, 51666-14766, Tabriz, Iran
| | | | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, East Azarbayjan, 51666-14766, Tabriz, Iran.
| |
Collapse
|
37
|
Ginsenoside Rg1 attenuation of neurogenesis disorder and neuronal apoptosis in the rat hippocampus after spinal cord injury may involve brain-derived neurotrophic factor/extracellular signal-regulated kinase signaling. Neuroreport 2023; 34:290-298. [PMID: 36881751 DOI: 10.1097/wnr.0000000000001891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVE We previously demonstrated that spinal cord injury (SCI) induced hippocampus injury and depression in rodents. Ginsenoside Rg1 effectively prevents neurodegenerative disorders. Here, we investigated the effects of ginsenoside Rg1 on the hippocampus after SCI. METHODS We used a rat compression SCI model. Western blotting and morphologic assays were used to investigate the protective effects of ginsenoside Rg1 in the hippocampus. RESULTS Brain-derived neurotrophic factor/extracellular signal-regulated kinases (BDNF/ERK) signaling was altered in the hippocampus at 5 weeks after SCI. SCI attenuated neurogenesis and enhanced the expression of cleaved caspase-3 in the hippocampus; however, ginsenoside Rg1 attenuated cleaved caspase-3 expression and improved neurogenesis and BDNF/ERK signaling in the rat hippocampus. The results suggest that SCI affects BDNF/ERK signaling, and ginsenoside Rg1 can attenuate hippocampal damage after SCI. CONCLUSION We speculate that the protective effects of ginsenoside Rg1 in hippocampal pathophysiology after SCI may involve BDNF/ERK signaling. Ginsenoside Rg1 shows promise as a therapeutic pharmaceutical product when seeking to counter SCI-induced hippocampal damage.
Collapse
|
38
|
Lee HJ, Hoe HS. Inhibition of CDK4/6 regulates AD pathology, neuroinflammation and cognitive function through DYRK1A/STAT3 signaling. Pharmacol Res 2023; 190:106725. [PMID: 36907286 DOI: 10.1016/j.phrs.2023.106725] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Repurposing approved drugs is an emerging therapeutic development strategy for Alzheimer's disease (AD). The CDK4/6 inhibitor abemaciclib mesylate is an FDA-approved drug for breast cancer treatment. However, whether abemaciclib mesylate affects Aβ/tau pathology, neuroinflammation, and Aβ/LPS-mediated cognitive impairment is unknown. In this study, we investigated the effects of abemaciclib mesylate on cognitive function and Aβ/tau pathology and found that abemaciclib mesylate improved spatial and recognition memory by regulating the dendritic spine number and neuroinflammatory responses in 5xFAD mice, an Aβ-overexpressing model of AD. Abemaciclib mesylate also inhibited Aβ accumulation by enhancing the activity and protein levels of the Aβ-degrading enzyme neprilysin and the α-secretase ADAM17 and decreasing the protein level of the γ-secretase PS-1 in young and aged 5xFAD mice. Importantly, abemaciclib mesylate suppressed tau phosphorylation in 5xFAD mice and tau-overexpressing PS19 mice by reducing DYRK1A and/or p-GSK3β levels. In wild-type (WT) mice injected with lipopolysaccharide (LPS), abemaciclib mesylate rescued spatial and recognition memory and restored dendritic spine number. In addition, abemaciclib mesylate downregulated LPS-induced microglial/astrocytic activation and proinflammatory cytokine levels in WT mice. In BV2 microglial cells and primary astrocytes, abemaciclib mesylate suppressed LPS-mediated proinflammatory cytokine levels by downregulating AKT/STAT3 signaling. Taken together, our results support repurposing the anticancer drug, CDK4/6 inhibitor abemaciclib mesylate as a multitarget therapeutic for AD pathologies.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Daegu, the Republic of Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Daegu, the Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, the Republic of Korea.
| |
Collapse
|
39
|
Depolarization and Hyperexcitability of Cortical Motor Neurons after Spinal Cord Injury Associates with Reduced HCN Channel Activity. Int J Mol Sci 2023; 24:ijms24054715. [PMID: 36902146 PMCID: PMC10003573 DOI: 10.3390/ijms24054715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
A spinal cord injury (SCI) damages the axonal projections of neurons residing in the neocortex. This axotomy changes cortical excitability and results in dysfunctional activity and output of infragranular cortical layers. Thus, addressing cortical pathophysiology after SCI will be instrumental in promoting recovery. However, the cellular and molecular mechanisms of cortical dysfunction after SCI are poorly resolved. In this study, we determined that the principal neurons of the primary motor cortex layer V (M1LV), those suffering from axotomy upon SCI, become hyperexcitable following injury. Therefore, we questioned the role of hyperpolarization cyclic nucleotide gated channels (HCN channels) in this context. Patch clamp experiments on axotomized M1LV neurons and acute pharmacological manipulation of HCN channels allowed us to resolve a dysfunctional mechanism controlling intrinsic neuronal excitability one week after SCI. Some axotomized M1LV neurons became excessively depolarized. In those cells, the HCN channels were less active and less relevant to control neuronal excitability because the membrane potential exceeded the window of HCN channel activation. Care should be taken when manipulating HCN channels pharmacologically after SCI. Even though the dysfunction of HCN channels partakes in the pathophysiology of axotomized M1LV neurons, their dysfunctional contribution varies remarkably between neurons and combines with other pathophysiological mechanisms.
Collapse
|
40
|
Myokines may target accelerated cognitive aging in people with spinal cord injury: A systematic and topical review. Neurosci Biobehav Rev 2023; 146:105065. [PMID: 36716905 DOI: 10.1016/j.neubiorev.2023.105065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
Persons with spinal cord injury (SCI) can suffer accelerated cognitive aging, even when correcting for mood and concomitant traumatic brain injury. Studies in healthy older adults have shown that myokines (i.e. factors released from muscle tissue during exercise) may improve brain health and cognitive function. Myokines may target chronic neuroinflammation, which is considered part of the mechanism of cognitive decline both in healthy older adults and SCI. An empty systematic review, registered in PROSPERO (CRD42022335873), was conducted as proof of the lack of current research on this topic in people with SCI. Pubmed, Embase, Cochrane and Web of Science were searched, resulting in 387 articles. None were considered eligible for full text screening. Hence, the effect of myokines on cognitive function following SCI warrants further investigation. An in-depth narrative review on the mechanism of SCI-related cognitive aging and the myokine-cognition link was added to substantiate our hypothetical framework. Readers are fully updated on the potential role of exercise as a treatment strategy against cognitive aging in persons with SCI.
Collapse
|
41
|
Quan X, Yu C, Fan Z, Wu T, Qi C, Zhang H, Wu S, Wang X. Hydralazine plays an immunomodulation role of pro-regeneration in a mouse model of spinal cord injury. Exp Neurol 2023; 363:114367. [PMID: 36858281 DOI: 10.1016/j.expneurol.2023.114367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Spinal cord injury (SCI) results in severe motor and sensory dysfunction with no effective therapy. Spinal cord debris (sp) from injured spinal cord evokes secondary SCI continuously. We and other researchers have previously clarified that it is mainly bone marrow derived macrophages (BMDMs) infiltrating in the lesion epicenter to clear sp, rather than local microglia. Unfortunately, the pro-inflammatory phenotype of these infiltrating BMDMs is predominant which impairs wound healing. Hydralazine, as a potent vasodilator and scavenger of acrolein, has protective effects in many diseases. Hydralazine is also confirmed to promote motor function and hypersensitivity in SCI rats through scavenging acrolein. However, few studies have explored the effects of hydralazine on immunomodulation, as well as spontaneous pain and emotional response, the important syndromes in clinical patients. It remains unclear whether hydralazine affects infiltrating BMDMs after SCI. In this study, we targeted BMDMs to explore the influence of hydralazine on immune cells in a mouse model of SCI, and also investigated the contribution of polarized BMDMs to hydralazine-induced neurological function recovery after SCI in male mice. The adult male mice underwent T10 spinal cord compression. The results showed that in addition to improving motor function and hypersensitivity, hydralazine relieved SCI-induced spontaneous pain and emotional response, which is a newly discovered function of hydralazine. Hydralazine inhibited the recruitments of pro-inflammatory BMDMs and educated infiltrated BMDMs to a more reparative phenotype involving in multiple biological processes associated with SCI pathology, including immune/inflammation response, neurogenesis, lipid metabolism, oxidative stress, fibrosis formation, and angiogenesis, etc. As an overall effect, hydralazine-treated BMDMs loaden with sp partially rescued neurological function after SCI. It is concluded that hydralazine plays an immunomodulation role of educating pro-inflammatory BMDMs to a more reparative phenotype; and hydralazine-educated BMDMs contribute to hydralazine-induced improvement of neurological function in SCI mice, which provides support for drug and cell treatment options for SCI therapy.
Collapse
Affiliation(s)
- Xin Quan
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Caiyong Yu
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China; Military Medical Innovation Center, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongmin Fan
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tong Wu
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Chuchu Qi
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Haoying Zhang
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Shengxi Wu
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Xi Wang
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China; The College of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
42
|
Castany S, Bagó-Mas A, Vela JM, Verdú E, Bretová K, Svobodová V, Dubový P, Boadas-Vaello P. Transient Reflexive Pain Responses and Chronic Affective Nonreflexive Pain Responses Associated with Neuroinflammation Processes in Both Spinal and Supraspinal Structures in Spinal Cord-Injured Female Mice. Int J Mol Sci 2023; 24:ijms24021761. [PMID: 36675275 PMCID: PMC9863935 DOI: 10.3390/ijms24021761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Central neuropathic pain is not only characterized by reflexive pain responses, but also emotional or affective nonreflexive pain responses, especially in women. Some pieces of evidence suggest that the activation of the neuroimmune system may be contributing to the manifestation of mood disorders in patients with chronic pain conditions, but the mechanisms that contribute to the development and chronicity of CNP and its associated disorders remain poorly understood. This study aimed to determine whether neuroinflammatory factor over-expression in the spinal cord and supraspinal structures may be associated with reflexive and nonreflexive pain response development from acute SCI phase to 12 weeks post-injury in female mice. The results show that transient reflexive responses were observed during the SCI acute phase associated with transient cytokine overexpression in the spinal cord. In contrast, increased nonreflexive pain responses were observed in the chronic phase associated with cytokine overexpression in supraspinal structures, especially in mPFC. In addition, results revealed that besides cytokines, the mPFC showed an increased glial activation as well as CX3CL1/CX3CR1 upregulation in the neurons, suggesting the contribution of neuron-glia crosstalk in the development of nonreflexive pain responses in the chronic spinal cord injury phase.
Collapse
Affiliation(s)
- Sílvia Castany
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Catalonia, Spain
| | - Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Catalonia, Spain
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - José Miguel Vela
- WeLab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Catalonia, Spain
| | - Karolina Bretová
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Viktorie Svobodová
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Catalonia, Spain
- Correspondence:
| |
Collapse
|
43
|
Labombarda F, Bellini M. Brain and spinal cord trauma: what we know about the therapeutic potential of insulin growth factor 1 gene therapy. Neural Regen Res 2023; 18:253-257. [PMID: 35900399 PMCID: PMC9396494 DOI: 10.4103/1673-5374.343902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although little attention has been paid to cognitive and emotional dysfunctions observed in patients after spinal cord injury, several reports have described impairments in cognitive abilities. Our group also has contributed significantly to the study of cognitive impairments in a rat model of spinal cord injury. These findings are very significant because they demonstrate that cognitive and mood deficits are not induced by lifestyle changes, drugs of abuse, and combined medication. They are related to changes in brain structures involved in cognition and emotion, such as the hippocampus. Chronic spinal cord injury decreases neurogenesis, enhances glial reactivity leading to hippocampal neuroinflammation, and triggers cognitive deficits. These brain distal abnormalities are recently called tertiary damage. Given that there is no treatment for Tertiary Damage, insulin growth factor 1 gene therapy emerges as a good candidate. Insulin growth factor 1 gene therapy recovers neurogenesis and induces the polarization from pro-inflammatory towards anti-inflammatory microglial phenotypes, which represents a potential strategy to treat the neuroinflammation that supports tertiary damage. Insulin growth factor 1 gene therapy can be extended to other central nervous system pathologies such as traumatic brain injury where the neuroinflammatory component is crucial. Insulin growth factor 1 gene therapy could emerge as a new therapeutic strategy for treating traumatic brain injury and spinal cord injury.
Collapse
|
44
|
Zhao Q, Zhu Y, Ren Y, Yin S, Yu L, Huang R, Song S, Hu X, Zhu R, Cheng L, Xie N. Neurogenesis potential of oligodendrocyte precursor cells from oligospheres and injured spinal cord. Front Cell Neurosci 2022; 16:1049562. [PMID: 36619671 PMCID: PMC9813964 DOI: 10.3389/fncel.2022.1049562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Severe traumatic spinal cord injury (SCI) leads to long-lasting oligodendrocyte death and extensive demyelination in the lesion area. Oligodendrocyte progenitor cells (OPCs) are the reservoir of new mature oligodendrocytes during damaged myelin regeneration, which also have latent potential for neurogenic regeneration and oligospheres formation. Whether oligospheres derived OPCs can differentiate into neurons and the neurogenesis potential of OPCs after SCI remains unclear. In this study, primary OPCs cultures were used to generate oligospheres and detect the differentiation and neurogenesis potential of oligospheres. In vivo, SCI models of juvenile and adult mice were constructed. Combining the single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing (RNA-seq), bioinformatics analysis, immunofluorescence staining, and molecular experiment, we investigated the neurogenesis potential and mechanisms of OPCs in vitro and vivo. We found that OPCs differentiation and oligodendrocyte morphology were significantly different between brain and spinal cord. Intriguingly, we identify a previously undescribed findings that OPCs were involved in oligospheres formation which could further differentiate into neuron-like cells. We also firstly detected the intermediate states of oligodendrocytes and neurons during oligospheres differentiation. Furthermore, we found that OPCs were significantly activated after SCI. Combining scRNA-seq and bulk RNA-seq data from injured spinal cord, we confirmed the neurogenesis potential of OPCs and the activation of endoplasmic reticulum stress after SCI. Inhibition of endoplasmic reticulum stress could effectively attenuate OPCs death. Additionally, we also found that endoplasmic reticulum may regulate the stemness and differentiation of oligospheres. These findings revealed the neurogenesis potential of OPCs from oligospheres and injured spinal cord, which may provide a new source and a potential target for spinal cord repair.
Collapse
Affiliation(s)
- Qing Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China,Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yilong Ren
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China,Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Shuai Yin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China,Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Liqun Yu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ruiqi Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Simin Song
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiao Hu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China,Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China,*Correspondence: Rongrong Zhu,
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China,Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China,Liming Cheng,
| | - Ning Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China,Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China,Ning Xie,
| |
Collapse
|
45
|
Aquino GA, Sousa CNS, Medeiros IS, Almeida JC, Cysne Filho FMS, Santos Júnior MA, Vasconcelos SMM. Behavioral alterations, brain oxidative stress, and elevated levels of corticosterone associated with a pressure injury model in male mice. J Basic Clin Physiol Pharmacol 2022; 33:789-801. [PMID: 34390639 DOI: 10.1515/jbcpp-2021-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/17/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Sustained stress can cause physiological disruption in crucial systems like the endocrine, autonomic, and central nervous system. In general, skin damages are physical stress present in hospitalized patients. Also, these pressure injuries lead to pathophysiological mechanisms involved in the neurobiology of mood disorders. Here, we aimed to investigate the behavioral alterations, oxidative stress, and corticosterone levels in the brain areas of mice submitted to the model of pressure injury (PI). METHODS The male mice behaviors were assessed in the open field test (OFT), elevated plus maze test (EPM), tail suspension test (TST), and sucrose preference test (SPT). Then, we isolated the prefrontal cortex (PFC), hippocampus (HP), and striatum (ST) by brain dissection. The nonprotein sulfhydryl groups (NP-SH) and malondialdehyde (MDA) were measured in the brain, and also the plasma corticosterone levels were verified. RESULTS PI model decreased the locomotor activity of animals (p<0.05). Considering the EPM test, the PI group showed a decrease in the open arm activity (p<0.01), and an increase in the closed arm activity (p<0.05). PI group showed an increment in the immobility time (p<0.001), and reduced sucrose consumption (p<0.0001) compared to the control groups. Regarding the oxidative/nitrosative profile, all brain areas from the PI group exhibited a reduction in the NP-SH levels (p<0.0001-p<0.01), and an increase in the MDA level (p<0.001-p<0.01). Moreover, the PI male mice presented increased levels of plasma corticosterone (p<0.05). CONCLUSIONS Our findings suggest that the PI model induces depressive and anxiety-like behaviors. Furthermore, it induces pathophysiological mechanisms like the neurobiology of depression.
Collapse
Affiliation(s)
- Gabriel A Aquino
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Caren N S Sousa
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Ingridy S Medeiros
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Jamily C Almeida
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Francisco M S Cysne Filho
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Manuel A Santos Júnior
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Silvânia M M Vasconcelos
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
46
|
The Proteostasis Network: A Global Therapeutic Target for Neuroprotection after Spinal Cord Injury. Cells 2022; 11:cells11213339. [PMID: 36359735 PMCID: PMC9658791 DOI: 10.3390/cells11213339] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/18/2023] Open
Abstract
Proteostasis (protein homeostasis) is critical for cellular as well as organismal survival. It is strictly regulated by multiple conserved pathways including the ubiquitin-proteasome system, autophagy, the heat shock response, the integrated stress response, and the unfolded protein response. These overlapping proteostasis maintenance modules respond to various forms of cellular stress as well as organismal injury. While proteostasis restoration and ultimately organism survival is the main evolutionary driver of such a regulation, unresolved disruption of proteostasis may engage pro-apoptotic mediators of those pathways to eliminate defective cells. In this review, we discuss proteostasis contributions to the pathogenesis of traumatic spinal cord injury (SCI). Most published reports focused on the role of proteostasis networks in acute/sub-acute tissue damage post-SCI. Those reports reveal a complex picture with cell type- and/or proteostasis mediator-specific effects on loss of neurons and/or glia that often translate into the corresponding modulation of functional recovery. Effects of proteostasis networks on such phenomena as neuro-repair, post-injury plasticity, as well as systemic manifestations of SCI including dysregulation of the immune system, metabolism or cardiovascular function are currently understudied. However, as potential interventions that target the proteostasis networks are expected to impact many cell types across multiple organ systems that are compromised after SCI, such therapies could produce beneficial effects across the wide spectrum of highly variable human SCI.
Collapse
|
47
|
Liu J, Wang S, Chen Z, Wu R, Yu H, Yang S, Xu J, Guo Y, Ding Y, Li G, Zeng X, Ma Y, Gong Y, Wu C, Zhang L, Zeng Y, Lai B. Therapeutic mechanism of transcranial iTBS on nerve regeneration and functional recovery in rats with complete spinal cord transection.. [DOI: 10.21203/rs.3.rs-2026215/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract
Background: After spinal cord transection injury, the inflammatory microenvironment formed in the injury site and the cascade of secondary injury results in limited regeneration of injured axons and the apoptosis of neurons in the sensorimotor cortex (SMC). It is crucial to reverse these adverse processes for the recovery of voluntary movement. In this study, transcranial intermittent theta-burst stimulation (iTBS) was used for the treatment of complete spinal cord transection in rats. The mechanism of transcranial iTBS as a new non-invasive neural regulation paradigm in promoting axonal regeneration and motor function repair was explored.
Methods: Rats from the iTBS group were treated with transcranial iTBS 72h after spinal cord injury (SCI). Each rat was received behavioral testing. Inflammation, neuronal apoptosis, neuroprotective effect, regeneration and synaptic plasticity were measured by immunofluorescence staining, western blotting and mRNA sequencing 2 or 4w after SCI. Each rat was received anterograde tracings in the SMC or the long descending propriospinal neurons and tested for motor evoked potentials. Regeneration of corticospinal tract (CST) and 5-hydroxytryptamine (5-HT) nerve fibers were detected eight weeks after SCI.
Results: Compared with the control group and the sham iTBS group, rats of the iTBS group showed reduced inflammatory responses and neuronal apoptosis in the SMC two weeks after treatment. After four weeks, the neuroimmune microenvironment at the injury site was improved, and neuroprotective effects were seen to promote axonal regeneration and synaptic plasticity. Significantly, eight weeks after treatment, transcranial iTBS also increased the regeneration of CST, 5-HT nerve fibers, and the long descending propriospinal tract (LDPT). Moreover, motor evoked potentials and hindlimb motor function were significantly improved at eight weeks.
Conclusions: Collectively, our results verified that iTBS has the potential to provide neuroprotective effects at early injury stages and pro-regeneration effects related to the 1) CST–5-HT; 2) CST–LDPT; and 3) CST–5-HT–LDPT descending motor pathways and revealed the relationships among neural pathway activation, neuroimmune regulation, neuroprotection, and axonal regeneration, as well as the interaction network of key genes. The proposed non-invasive transcranial iTBS treatment is expected to provide a serviceable practical and theoretical support for spinal cord injury.
Collapse
Affiliation(s)
- Jialin Liu
- Shengjing Hospital affiliated to China Medical University
| | - Shuai Wang
- The First Affiliated Hospital of Sun Yat-sen University,Guangzhou
| | - Zhenghong Chen
- The First Affiliated Hospital of Sun Yat-sen University,Guangzhou
| | | | | | | | | | | | | | - Ge Li
- Guangdong Academy of Medical Science
| | | | - Yuanhuan Ma
- Guangzhou Institute of Clinical Medicine, South China University of Technology
| | - Yulai Gong
- Sichuan Provincial Rehabilitation Hospital
| | | | - Lixin Zhang
- Shengjing Hospital affiliated to China Medical University
| | | | | |
Collapse
|
48
|
Adeel M, Lin BS, Chen HC, Lai CH, Liou JC, Wu CW, Chan WP, Peng CW. Motor Neuroplastic Effects of a Novel Paired Stimulation Technology in an Incomplete Spinal Cord Injury Animal Model. Int J Mol Sci 2022; 23:ijms23169447. [PMID: 36012710 PMCID: PMC9409074 DOI: 10.3390/ijms23169447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Paired stimulation of the brain and spinal cord can remodel the central nervous tissue circuitry in an animal model to induce motor neuroplasticity. The effects of simultaneous stimulation vary according to the extent and severity of spinal cord injury. Therefore, our study aimed to determine the significant effects on an incomplete SCI rat brain and spinal cord through 3 min and 20 min stimulations after 4 weeks of intervention. Thirty-three Sprague Dawley rats were classified into six groups: (1) normal, (2) sham, (3) iTBS/tsDCS, (4) iTBS/ts-iTBS, (5) rTMS/tsDCS, and (6) rTMS/ts-iTBS. Paired stimulation of the brain cortex and spinal cord thoracic (T10) level was applied simultaneously for 3−20 min. The motor evoked potential (MEP) and Basso, Beattie, and Bresnahan (BBB) scores were recorded after every week of intervention for four weeks along with wheel training for 20 min. Three-minute stimulation with the iTBS/tsDCS intervention induced a significant (p < 0.050 *) increase in MEP after week 2 and week 4 treatments, while 3 min iTBS/ts-iTBS significantly improved MEP (p < 0.050 *) only after the week 3 intervention. The 20 min rTMS/ts-iTBS intervention showed a significant change only in post_5 min after week 4. The BBB score also changed significantly in all groups except for the 20 min rTMS/tsDCS intervention. iTBS/tsDCS and rTMS/ts-iTBS interventions induce neuroplasticity in an incomplete SCI animal model by significantly changing electrophysiological (MEP) and locomotion (BBB) outcomes.
Collapse
Affiliation(s)
- Muhammad Adeel
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 237, Taiwan
| | - Bor-Shing Lin
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 237, Taiwan
| | - Hung-Chou Chen
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Chien-Hung Lai
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Jian-Chiun Liou
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Wei Wu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Wing P. Chan
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel./Fax: +886-2-2736-1661 (ext. 3070)
| |
Collapse
|
49
|
Kalkhoran AK, Alipour MR, Jafarzadehgharehziaaddin M, Zangbar HS, Shahabi P. Intersection of hippocampus and spinal cord: a focus on the hippocampal alpha-synuclein accumulation, dopaminergic receptors, neurogenesis, and cognitive function following spinal cord injury in male rats. BMC Neurosci 2022; 23:44. [PMID: 35820831 PMCID: PMC9277791 DOI: 10.1186/s12868-022-00729-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022] Open
Abstract
Background Following Spinal Cord Injury (SCI), innumerable inflammatory and degenerative fluctuations appear in the injured site, and even remotely in manifold areas of the brain. Howbeit, inflammatory, degenerative, and oscillatory changes of motor cortices have been demonstrated to be due to SCI, according to recent studies confirming the involvement of cognitive areas of the brain, such as hippocampus and prefrontal cortex. Therefore, addressing SCI induced cognitive complications via different sights can be contributory in the treatment approaches. Results Herein, we used 16 male Wistar rats (Sham = 8, SCI = 8). Immunohistochemical results revealed that spinal cord contusion significantly increases the accumulation of alpha-synuclein and decreases the expression of Doublecortin (DCX) in the hippocampal regions like Cornu Ammonis1 (CA1) and Dentate Gyrus (DG). Theses degenerative manifestations were parallel with a low expression of Achaete-Scute Family BHLH Transcription Factor 1 (ASCL1), SRY (sex determining region Y)-box 2 (SOX2), and dopaminergic receptors (D1 and D5). Additionally, based on the TUNEL assay analysis, SCI significantly increased the number of apoptotic cells in the CA1 and DG regions. Cognitive function of the animals was assessed, using the O-X maze and Novel Object Recognition (NORT); the obtained findings indicted that after SCI, hippocampal neurodegeneration significantly coincides with the impairment of learning, memory and recognition capability of the injured animals. Conclusions Based on the obtained findings, herein SCI reduces neurogenesis, decreases the expression of D1 and D5, and increases apoptosis in the hippocampus, which are all associated with cognitive function deficits. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Ahad Karimzadeh Kalkhoran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, East Azarbayjan, Iran
| | - Mohammad Reza Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, East Azarbayjan, Iran
| | | | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azarbayjan, Iran.
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, East Azarbayjan, Iran.
| |
Collapse
|
50
|
Boyko AI, Karlina IS, Zavileyskiy LG, Aleshin VA, Artiukhov AV, Kaehne T, Ksenofontov AL, Ryabov SI, Graf AV, Tramonti A, Bunik VI. Delayed Impact of 2-Oxoadipate Dehydrogenase Inhibition on the Rat Brain Metabolism Is Linked to Protein Glutarylation. Front Med (Lausanne) 2022; 9:896263. [PMID: 35721081 PMCID: PMC9198357 DOI: 10.3389/fmed.2022.896263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 12/19/2022] Open
Abstract
Background The DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) oxidizes 2-oxoadipate—a common intermediate of the lysine and tryptophan catabolism. The mostly low and cell-specific flux through these pathways, and similar activities of OADH and ubiquitously expressed 2-oxoglutarate dehydrogenase (OGDH), agree with often asymptomatic phenotypes of heterozygous mutations in the DHTKD1 gene. Nevertheless, OADH/DHTKD1 are linked to impaired insulin sensitivity, cardiovascular disease risks, and Charcot-Marie-Tooth neuropathy. We hypothesize that systemic significance of OADH relies on its generation of glutaryl residues for protein glutarylation. Using pharmacological inhibition of OADH and the animal model of spinal cord injury (SCI), we explore this hypothesis. Methods The weight-drop model of SCI, a single intranasal administration of an OADH-directed inhibitor trimethyl adipoyl phosphonate (TMAP), and quantification of the associated metabolic changes in the rat brain employ established methods. Results The TMAP-induced metabolic changes in the brain of the control, laminectomized (LE) and SCI rats are long-term and (patho)physiology-dependent. Increased glutarylation of the brain proteins, proportional to OADH expression in the control and LE rats, represents a long-term consequence of the OADH inhibition. The proportionality suggests autoglutarylation of OADH, supported by our mass-spectrometric identification of glutarylated K155 and K818 in recombinant human OADH. In SCI rats, TMAP increases glutarylation of the brain proteins more than OADH expression, inducing a strong perturbation in the brain glutathione metabolism. The redox metabolism is not perturbed by TMAP in LE animals, where the inhibition of OADH increases expression of deglutarylase sirtuin 5. The results reveal the glutarylation-imposed control of the brain glutathione metabolism. Glutarylation of the ODP2 subunit of pyruvate dehydrogenase complex at K451 is detected in the rat brain, linking the OADH function to the brain glucose oxidation essential for the redox state. Short-term inhibition of OADH by TMAP administration manifests in increased levels of tryptophan and decreased levels of sirtuins 5 and 3 in the brain. Conclusion Pharmacological inhibition of OADH affects acylation system of the brain, causing long-term, (patho)physiology-dependent changes in the expression of OADH and sirtuin 5, protein glutarylation and glutathione metabolism. The identified glutarylation of ODP2 subunit of pyruvate dehydrogenase complex provides a molecular mechanism of the OADH association with diabetes.
Collapse
Affiliation(s)
- Alexandra I Boyko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Irina S Karlina
- N.V. Sklifosovsky Institute of Clinical Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lev G Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Vasily A Aleshin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Artem V Artiukhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander L Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey I Ryabov
- Russian Cardiology Research and Production Complex, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia V Graf
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Nano-, Bio-, Informational, Cognitive and Socio-Humanistic Sciences and Technologies, Moscow Institute of Physics and Technology, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, Council of National Research, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, Rome, Italy
| | - Victoria I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|