1
|
Suzuki M, Hattori Y, Saito T, Harada Y. Pond Assay for the Sensory Systems of Caenorhabditis elegans: A Novel Anesthesia-Free Method Enabling Detection of Responses to Extremely Low Chemical Concentrations. BIOLOGY 2022; 11:biology11020335. [PMID: 35205201 PMCID: PMC8868598 DOI: 10.3390/biology11020335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary We propose a pond assay for the sensory systems (PASS) of Caenorhabditis elegans as a novel method of behavioral analysis. In PASS, the test solution is injected into a recess(es) formed on agar and the response of C. elegans to its odor and/or taste is examined. Once C. elegans individuals fall into recesses (ponds) filled with liquid, they cannot return to the solid medium. In this way, the animals are trapped with certainty without the use of anesthesia. The anesthesia used to keep animals in the attractant area in conventional chemotaxis assays is no longer required, allowing pure evaluation of the response to specific substances. Furthermore, the test itself can be greatly streamlined because the preparation can be completed simply by providing a recess(es) and filling the liquid. The present paper reports the detailed method and effectiveness of the novel PASS through a series of chemotaxis assays. By using the PASS method, we found that the olfactory system of C. elegans accurately senses odors even at extremely low concentrations lower than the previously known detection threshold. This method can be applied to biosensor technology that uses C. elegans to detect chemical substances present at extremely low concentrations in environmental samples and biological samples with high sensitivity. Abstract Chemotaxis in the nematode Caenorhabditis elegans has basically been examined using conventional assay methods. Although these can be problematic, for example, in their use of anesthesia, the method has never been improved. We propose a pond assay for the sensory systems (PASS) of C. elegans as a novel population-based method of behavioral analysis. The test solution is injected into a recess(es) formed on agar and the response of C. elegans to its odor and/or taste is examined. Once C. elegans individuals fall into recesses (ponds) filled with liquid, they cannot return to a solid medium. In this way, the animals are trapped with certainty without the use of anesthesia. The anesthesia used to keep animals in the attractant area in conventional chemotaxis assays is no longer required, allowing pure evaluation of the attractant or repellent response to specific substances. Furthermore, the assay itself can be greatly streamlined because the preparation can be completed simply by providing a recess(es) and filling the liquid. The present paper reports the detailed method and effectiveness of the novel PASS.
Collapse
Affiliation(s)
- Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki 370-1292, Gunma, Japan;
- Correspondence: ; Tel.: +81-(0)27-346-9542; Fax: +81-(0)27-346-9353
| | - Yuya Hattori
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki 370-1292, Gunma, Japan;
| | - Toshiyuki Saito
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Chiba, Japan;
| | - Yoshinobu Harada
- Human Resources Development Center, National Institutes for Quantum Science and Technology (QST-CHRD), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Chiba, Japan;
| |
Collapse
|
2
|
Dan X, Wechter N, Gray S, Mohanty JG, Croteau DL, Bohr VA. Olfactory dysfunction in aging and neurodegenerative diseases. Ageing Res Rev 2021; 70:101416. [PMID: 34325072 PMCID: PMC8373788 DOI: 10.1016/j.arr.2021.101416] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
Alterations in olfactory functions are proposed to be early biomarkers for neurodegeneration. Many neurodegenerative diseases are age-related, including two of the most common, Parkinson's disease (PD) and Alzheimer's disease (AD). The establishment of biomarkers that promote early risk identification is critical for the implementation of early treatment to postpone or avert pathological development. Olfactory dysfunction (OD) is seen in 90% of early-stage PD patients and 85% of patients with early-stage AD, which makes it an attractive biomarker for early diagnosis of these diseases. Here, we systematically review widely applied smelling tests available for humans as well as olfaction assessments performed in some animal models and the relationships between OD and normal aging, PD, AD, and other conditions. The utility of OD as a biomarker for neurodegenerative disease diagnosis and future research directions are also discussed.
Collapse
Affiliation(s)
- Xiuli Dan
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Noah Wechter
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Samuel Gray
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Joy G Mohanty
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
3
|
Karpenko S, Wolf S, Lafaye J, Le Goc G, Panier T, Bormuth V, Candelier R, Debrégeas G. From behavior to circuit modeling of light-seeking navigation in zebrafish larvae. eLife 2020; 9:52882. [PMID: 31895038 PMCID: PMC6989119 DOI: 10.7554/elife.52882] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/02/2020] [Indexed: 01/18/2023] Open
Abstract
Bridging brain-scale circuit dynamics and organism-scale behavior is a central challenge in neuroscience. It requires the concurrent development of minimal behavioral and neural circuit models that can quantitatively capture basic sensorimotor operations. Here, we focus on light-seeking navigation in zebrafish larvae. Using a virtual reality assay, we first characterize how motor and visual stimulation sequences govern the selection of discrete swim-bout events that subserve the fish navigation in the presence of a distant light source. These mechanisms are combined into a comprehensive Markov-chain model of navigation that quantitatively predicts the stationary distribution of the fish’s body orientation under any given illumination profile. We then map this behavioral description onto a neuronal model of the ARTR, a small neural circuit involved in the orientation-selection of swim bouts. We demonstrate that this visually-biased decision-making circuit can capture the statistics of both spontaneous and contrast-driven navigation. All animals with the ability to move use sensory signals to help them navigate towards areas that seem better than their current location. Such areas might contain desirable things like food and mates, or they might allow an animal to escape from threats such as predators. But how the brain gives rise to this navigation behavior is unclear. Karpenko et al. have now obtained insights into the underlying mechanism by studying a behavior in zebrafish larvae called phototaxis. Phototaxis is the tendency to move in response to light. The advantage of using zebrafish larvae to study this behavior is that their brains are small and semi-transparent. This makes it possible to record the activity of almost every neuron. As a result, an individual’s brain activity can be mapped on to their behavior more precisely than in most other species. To probe how visual cues influence fish behavior, Karpenko et al. exposed individual fish to a carefully controlled virtual light source and then tracked their movements with a camera. The fish used two strategies to move towards the light. They selected their next movement based partly on the difference in the amount of light reaching each of their eyes, and partly on the change in overall brightness with each swim movement. Karpenko et al. used this information to build a numerical model of fish phototaxis, and to show how a simple brain circuit could generate this behavior. Species whose brains differ in size and structure may nevertheless develop similar strategies to perform similar tasks. By quantifying a generic behavior in a simple animal model, this study could provide insights into comparable behaviors in other species. In addition, the study suggests a simple mechanism for how animals select actions on the basis of sensory signals, which may also be relevant to other species and other tasks.
Collapse
Affiliation(s)
- Sophia Karpenko
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France.,Université Paris Sciences et Lettres, Paris, France
| | - Sebastien Wolf
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS UMR 8023 & PSL Research, Paris, France.,Institut de Biologie de l'Ecole Normale Supérieure, CNRS, INSERM, UMR 8197 & PSL Research, Paris, France
| | - Julie Lafaye
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Guillaume Le Goc
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Thomas Panier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Volker Bormuth
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Raphaël Candelier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Georges Debrégeas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| |
Collapse
|
4
|
Itskovits E, Ruach R, Kazakov A, Zaslaver A. Concerted pulsatile and graded neural dynamics enables efficient chemotaxis in C. elegans. Nat Commun 2018; 9:2866. [PMID: 30030432 PMCID: PMC6054637 DOI: 10.1038/s41467-018-05151-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 05/17/2018] [Indexed: 11/29/2022] Open
Abstract
The ability of animals to effectively locate and navigate toward food sources is central for survival. Here, using C. elegans nematodes, we reveal the neural mechanism underlying efficient navigation in chemical gradients. This mechanism relies on the activity of two types of chemosensory neurons: one (AWA) coding gradients via stochastic pulsatile dynamics, and the second (AWCON) coding the gradients deterministically in a graded manner. The pulsatile dynamics of the AWA neuron adapts to the magnitude of the gradient derivative, allowing animals to take trajectories better oriented toward the target. The robust response of AWCON to negative derivatives promotes immediate turns, thus alleviating the costs incurred by erroneous turns dictated by the AWA neuron. This mechanism empowers an efficient navigation strategy that outperforms the classical biased-random walk strategy. This general mechanism thus may be applicable to other sensory modalities for efficient gradient-based navigation. Finding one’s way to a food source along a complex gradient is central to survival for many animals. Here, the authors report that in C. elegans, the distinct response dynamics of two sensory neurons to odor gradients can support a navigation model more efficient than the biased-random walk.
Collapse
Affiliation(s)
- Eyal Itskovits
- Department of Genetics, The Silberman Institute of Life Science, Edmond J. Safra Campus, the Hebrew University of Jerusalem, Jerusalem, Israel.,School of Computer Science and Engineering, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rotem Ruach
- Department of Genetics, The Silberman Institute of Life Science, Edmond J. Safra Campus, the Hebrew University of Jerusalem, Jerusalem, Israel.,School of Computer Science and Engineering, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander Kazakov
- Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alon Zaslaver
- Department of Genetics, The Silberman Institute of Life Science, Edmond J. Safra Campus, the Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
5
|
Wang L, Sato H, Satoh Y, Tomioka M, Kunitomo H, Iino Y. A Gustatory Neural Circuit of Caenorhabditis elegans Generates Memory-Dependent Behaviors in Na + Chemotaxis. J Neurosci 2017; 37:2097-2111. [PMID: 28126744 PMCID: PMC6705685 DOI: 10.1523/jneurosci.1774-16.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/29/2016] [Accepted: 01/13/2017] [Indexed: 01/09/2023] Open
Abstract
Animals show various behaviors in response to environmental chemicals. These behaviors are often plastic depending on previous experiences. Caenorhabditis elegans, which has highly developed chemosensory system with a limited number of sensory neurons, is an ideal model for analyzing the role of each neuron in innate and learned behaviors. Here, we report a new type of memory-dependent behavioral plasticity in Na+ chemotaxis generated by the left member of bilateral gustatory neuron pair ASE (ASEL neuron). When worms were cultivated in the presence of Na+, they showed positive chemotaxis toward Na+, but when cultivated under Na+-free conditions, they showed no preference regarding Na+ concentration. Both channelrhodopsin-2 (ChR2) activation with blue light and up-steps of Na+ concentration activated ASEL only after cultivation with Na+, as judged by increase in intracellular Ca2+ Under cultivation conditions with Na+, photoactivation of ASEL caused activation of its downstream interneurons AIY and AIA, which stimulate forward locomotion, and inhibition of its downstream interneuron AIB, which inhibits the turning/reversal behavior, and overall drove worms toward higher Na+ concentrations. We also found that the Gq signaling pathway and the neurotransmitter glutamate are both involved in the behavioral response generated by ASEL.SIGNIFICANCE STATEMENT Animals have acquired various types of behavioral plasticity during their long evolutionary history. Caenorhabditis elegans prefers odors associated with food, but plastically changes its behavioral response according to previous experience. Here, we report a new type of behavioral response generated by a single gustatory sensory neuron, the ASE-left (ASEL) neuron. ASEL did not respond to photostimulation or upsteps of Na+ concentration when worms were cultivated in Na+-free conditions; however, when worms were cultivated with Na+, ASEL responded and inhibited AIB to avoid turning and stimulated AIY and AIA to promote forward locomotion, which collectively drove worms toward higher Na+ concentrations. Glutamate and the Gq signaling pathway are essential for driving worms toward higher Na+ concentrations.
Collapse
Affiliation(s)
- Lifang Wang
- Department of Biological Sciences, Graduate School of Science, and
| | - Hirofumi Sato
- Department of Biological Sciences, Graduate School of Science, and
| | - Yohsuke Satoh
- Department of Biological Sciences, Graduate School of Science, and
| | - Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, and
| | | | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, and
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
6
|
Short term memory of Caenorhabditis elegans against bacterial pathogens involves CREB transcription factor. Immunobiology 2016; 222:684-692. [PMID: 28069295 DOI: 10.1016/j.imbio.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 11/24/2022]
Abstract
One of the key issues pertaining to the control of memory is to respond to a consistently changing environment or microbial niche present in it. Human cyclic AMP response element binding protein (CREB) transcription factor which plays a crucial role in memory has a homolog in C. elegans, crh-1. crh-1 appears to influence memory processes to certain extent by habituation of the host to a particular environment. The discrimination between the pathogen and a non-pathogen is essential for C. elegans in a microbial niche which determines its survival. Training the nematodes in the presence of a virulent pathogen (S. aureus) and an opportunistic pathogen (P. mirabilis) separately exhibits a different behavioural paradigm. This appears to be dependent on the CREB transcription factor. Here we show that C. elegans homolog crh-1 helps in memory response for a short term against the interacting pathogens. Following conditioning of the nematodes to S. aureus and P. mirabilis, the wild type nematodes exhibited a positive response towards the respective pathogens which diminished slowly after 2h. By contrast, the crh-1 deficient nematodes had a defective memory post conditioning. The molecular data reinforces the importance of crh-1 gene in retaining the memory of nematode. Our results also suggest that involvement of neurotransmitters play a crucial role in modulating the memory of the nematode with the assistance of CREB. Therefore, we elucidate that CREB is responsible for the short term memory response in C. elegans against bacterial pathogens.
Collapse
|
7
|
Dunn TW, Mu Y, Narayan S, Randlett O, Naumann EA, Yang CT, Schier AF, Freeman J, Engert F, Ahrens MB. Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion. eLife 2016; 5:e12741. [PMID: 27003593 PMCID: PMC4841782 DOI: 10.7554/elife.12741] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/09/2016] [Indexed: 12/18/2022] Open
Abstract
In the absence of salient sensory cues to guide behavior, animals must still execute sequences of motor actions in order to forage and explore. How such successive motor actions are coordinated to form global locomotion trajectories is unknown. We mapped the structure of larval zebrafish swim trajectories in homogeneous environments and found that trajectories were characterized by alternating sequences of repeated turns to the left and to the right. Using whole-brain light-sheet imaging, we identified activity relating to the behavior in specific neural populations that we termed the anterior rhombencephalic turning region (ARTR). ARTR perturbations biased swim direction and reduced the dependence of turn direction on turn history, indicating that the ARTR is part of a network generating the temporal correlations in turn direction. We also find suggestive evidence for ARTR mutual inhibition and ARTR projections to premotor neurons. Finally, simulations suggest the observed turn sequences may underlie efficient exploration of local environments.
Collapse
Affiliation(s)
- Timothy W Dunn
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, United States.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Yu Mu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Owen Randlett
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Eva A Naumann
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Chao-Tsung Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Jeremy Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
8
|
Skandari R, Le Bihan N, Manton JH. C. elegans locomotion analysis using algorithmic information theory. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:6485-8. [PMID: 26737778 DOI: 10.1109/embc.2015.7319878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This article investigates the use of algorithmic information theory to analyse C. elegans datasets. The ability of complexity measures to detect similarity in animals' behaviours is demonstrated and their strengths are compared to methods such as histograms. Introduced quantities are illustrated on a couple of real two-dimensional C. elegans datasets to investigate the thermotaxis and chemotaxis behaviours.
Collapse
|
9
|
Gepner R, Mihovilovic Skanata M, Bernat NM, Kaplow M, Gershow M. Computations underlying Drosophila photo-taxis, odor-taxis, and multi-sensory integration. eLife 2015; 4. [PMID: 25945916 PMCID: PMC4466338 DOI: 10.7554/elife.06229] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/05/2015] [Indexed: 12/31/2022] Open
Abstract
To better understand how organisms make decisions on the basis of temporally varying multi-sensory input, we identified computations made by Drosophila larvae responding to visual and optogenetically induced fictive olfactory stimuli. We modeled the larva's navigational decision to initiate turns as the output of a Linear-Nonlinear-Poisson cascade. We used reverse-correlation to fit parameters to this model; the parameterized model predicted larvae's responses to novel stimulus patterns. For multi-modal inputs, we found that larvae linearly combine olfactory and visual signals upstream of the decision to turn. We verified this prediction by measuring larvae's responses to coordinated changes in odor and light. We studied other navigational decisions and found that larvae integrated odor and light according to the same rule in all cases. These results suggest that photo-taxis and odor-taxis are mediated by a shared computational pathway. DOI:http://dx.doi.org/10.7554/eLife.06229.001 Living organisms can sense cues from their surroundings and respond in appropriate ways. For example, animals will often move towards the smell of food or away from potential threats, such as predators. However, it is not fully understood how an animal's nervous system is set up to allow sensory information to control how the animal navigates its environment. It is also not clear how animals ‘decide’ what to do when they receive conflicting information from different senses. Optogenetics is a technique that allows neuroscientists to control the activities of individual nerve cells simply by shining light on to them. Fruit fly larvae have a simple but well-studied nervous system, and they are nearly transparent, so scientists can use optogenetics to activate nerve cells in freely moving larvae. Fruit fly larvae move in a series of forward ‘runs’ and direction-changing ‘turns’ and use sensory cues to decide when to turn, how large of a turn to make, and whether to turn left or right. Gepner, Mihovilovic Skanata et al. used optogenetics to stimulate different combinations of sensory nerve cells in larvae, while tracking the larvae's movements to discover exactly what information they used to make these decisions. An independent study by Hernandez-Nunez et al. also used a similar approach. Fruit fly larvae are attracted towards scents from rotting fruit and are repelled by light—in particular, larvae are most sensitive to blue light but cannot detect red light. Therefore, Gepner, Mihovilovic Skanata et al. could expose the larvae to blue light to activate light-sensing nerve cells as normal, and use red light to activate odor-sensing nerve cells via optogenetics. These experiments showed that larvae changed direction more often when the level of blue light was increased or when the level of red light (which simulated the detection of odors from rotting fruits) was decreased. Analysis of the data from these experiments revealed that larvae essentially assign negative values to the blue light and positive values to the ‘odor-mimicking’ red light. The larvae then use the sum of these two values to dictate their next move. This suggests that navigation in response to both light and odors is supported by the same pathways in a larva's nervous system. The approach of using optogenetics in combination with quantitative analysis, as used in these two independent studies, is now opening the door to a more complete understanding of the connections between the activities of sensory nerve cells and perception and behavior. DOI:http://dx.doi.org/10.7554/eLife.06229.002
Collapse
Affiliation(s)
- Ruben Gepner
- Department of Physics, New York University, New York, United States
| | | | - Natalie M Bernat
- Department of Physics, New York University, New York, United States
| | - Margarita Kaplow
- Center for Neural Science, New York University, New York, United States
| | - Marc Gershow
- Department of Physics, New York University, New York, United States
| |
Collapse
|
10
|
Kunitomo H, Sato H, Iwata R, Satoh Y, Ohno H, Yamada K, Iino Y. Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans. Nat Commun 2014; 4:2210. [PMID: 23887678 DOI: 10.1038/ncomms3210] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/01/2013] [Indexed: 01/31/2023] Open
Abstract
It is poorly understood how sensory systems memorize the intensity of sensory stimulus, compare it with a newly sensed stimulus, and regulate the orientation behaviour based on the memory. Here we report that Caenorhabditis elegans memorizes the environmental salt concentration during cultivation and exhibits a strong behavioural preference for this concentration. The right-sided amphid gustatory neuron known as ASER, senses decreases in salt concentration, and this information is transmitted to the postsynaptic AIB interneurons only in the salt concentration range lower than the cultivation concentration. In this range, animals migrate towards higher concentration by promoting turning behaviour upon decreases in salt concentration. These observations provide a mechanism for adjusting the orientation behaviour based on the memory of sensory stimulus using a simple neural circuit.
Collapse
Affiliation(s)
- Hirofumi Kunitomo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Appleby PA. The role of multiple chemotactic mechanisms in a model of chemotaxis in C. elegans: different mechanisms are specialised for different environments. J Comput Neurosci 2013; 36:339-54. [PMID: 23942985 DOI: 10.1007/s10827-013-0474-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
Unlike simpler organisms, C. elegans possesses several distinct chemosensory pathways and chemotactic mechanisms. These mechanisms and pathways are individually capable of driving chemotaxis in a chemical concentration gradient. However, it is not understood if they are redundant or co-operate in more sophisticated ways. Here we examine the specialisation of different chemotactic mechanisms in a model of chemotaxis to NaCl. We explore the performance of different chemotactic mechanisms in a range of chemical gradients and show that, in the model, far from being redundant, the mechanisms are specialised both for different environments and for distinct features within those environments. We also show that the chemotactic drive mediated by the ASE pathway is not robust to the presence of noise in the chemical gradient. This problem cannot be solved along the ASE pathway without destroying its ability to drive chemotaxis. Instead, we show that robustness to noise can be achieved by introducing a second, much slower NaCl-sensing pathway. This secondary pathway is simpler than the ASE pathway, in the sense that it can respond to either up-steps or down-steps in NaCl but not both, and could correspond to one of several candidates in the literature which we identify and evaluate. This work provides one possible explanation of why there are multiple NaCl sensing pathways and chemotactic mechanisms in C. elegans: rather than being redundant the different pathways and mechanism are specialised both for the characteristics of different environments and for distinct features within a single environment.
Collapse
Affiliation(s)
- Peter A Appleby
- Kroto Research Institute, University of Sheffield, Sheffield, UK,
| |
Collapse
|
12
|
Latorre R, Levi R, Varona P. Transformation of context-dependent sensory dynamics into motor behavior. PLoS Comput Biol 2013; 9:e1002908. [PMID: 23459114 PMCID: PMC3572992 DOI: 10.1371/journal.pcbi.1002908] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 12/19/2012] [Indexed: 11/24/2022] Open
Abstract
The intrinsic dynamics of sensory networks play an important role in the sensory-motor transformation. In this paper we use conductance based models and electrophysiological recordings to address the study of the dual role of a sensory network to organize two behavioral context-dependent motor programs in the mollusk Clione limacina. We show that: (i) a winner take-all dynamics in the gravimetric sensory network model drives the typical repetitive rhythm in the wing central pattern generator (CPG) during routine swimming; (ii) the winnerless competition dynamics of the same sensory network organizes the irregular pattern observed in the wing CPG during hunting behavior. Our model also shows that although the timing of the activity is irregular, the sequence of the switching among the sensory cells is preserved whenever the same set of neurons are activated in a given time window. These activation phase locks in the sensory signals are transformed into specific events in the motor activity. The activation phase locks can play an important role in motor coordination driven by the intrinsic dynamics of a multifunctional sensory organ. How sensory information is transformed into effective motor action is one of the most fundamental questions in neuroscience. As this question is difficult to assess experimentally, biophysical models of sensory, central and motor systems contribute to understand the information processing mechanisms involved in this transformation. Biophysical models can be informed by electrophysiological data in those situations where it is possible to record neural activity at all stages of sensory-motor processing. In this paper we use this approach to describe the dual dynamics of a multifunctional sensory organ in the mollusk Clione limacina and its transformation into two different motor programs. Our experimental and modeling results indicate that the sensory signals are modified to fit the changing behavioral context, and they are readily interpreted by the rest of the nervous system to produce the correct motor output.
Collapse
Affiliation(s)
- Roberto Latorre
- Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | |
Collapse
|
13
|
|
14
|
Liu P, Mao D, Martin RJ, Dong L. An integrated fiber-optic microfluidic device for detection of muscular force generation of microscopic nematodes. LAB ON A CHIP 2012; 12:3458-3466. [PMID: 22824814 PMCID: PMC3438457 DOI: 10.1039/c2lc40459a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper reports development of an integrated fiber-optic microfluidic device for measuring muscular force of small nematode worms with high sensitivity, high data reliability, and simple device structure. A moving nematode worm squeezed through multiple detection points (DPs) created between a thinned single mode fiber (SMF) cantilever and a sine-wave channel with open troughs. The SMF cantilever was deflected by the normal force imposed by the worm, reducing optical coupling from the SMF to a receiving multimode fiber (MMF). Thus, multiple force data could be obtained for the worm-SMF contacts to verify with each other, improving data reliability. A noise equivalent displacement of the SMF cantilever was 0.28 μm and a noise equivalent force of the device was 143 nN. We demonstrated the workability of the device to detect muscular normal forces of the parasitic nematodes Oesophagotomum dentatum L3 larvae on the SMF cantilever. Also, we used this technique to measure force responses of levamisole-sensitive (SENS) and resistant (LERV) O. dentatum isolates in response to different doses of the anthelmintic drug, levamisole. The results showed that both of the isolates generated a larger muscular normal force when exposed to a higher concentration of levamisole. We also noticed muscular force phenotype differences between the SENS and LERV worms: the SENS muscles were more sensitive to levamisole than the LERV muscles. The ability to quantify the muscular forces of small nematode worms will provide a new approach for screening mutants at single animal resolution. Also, the ability to resolve small differences in muscular forces in different environmental conditions will facilitate phenotyping different isolates of nematodes. Thus, the present technology can potentially benefit and advance the current whole animal assays.
Collapse
Affiliation(s)
- Peng Liu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, USA. Fax: 1-515-294-8432; Tel: 1-515-294-0388
| | - Depeng Mao
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, USA. Fax: 1-515-294-8432; Tel: 1-515-294-0388
| | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Liang Dong
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, USA. Fax: 1-515-294-8432; Tel: 1-515-294-0388
| |
Collapse
|
15
|
Appleby PA. A model of chemotaxis and associative learning in C. elegans. BIOLOGICAL CYBERNETICS 2012; 106:373-387. [PMID: 22824944 DOI: 10.1007/s00422-012-0504-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 06/25/2012] [Indexed: 06/01/2023]
Abstract
The nematode C. elegans has attracted a great deal of interest from the neuroscience community due to the simplicity of its nervous system, which in the hermaphrodite is composed of just 302 neurons. C. elegans is known to engage in a number of sophisticated behaviours such as chemo- and thermotaxis. Experimental work has shown that these behaviours can be modified by experience and that C. elegans is capable of associative learning. In this paper, we focus on the chemotactic response of C. elegans to sodium chloride mediated by the ASE sensory neurons. We construct a biophysical model of the ASEL and ASER neurons that captures the time course of the ASE responses in response to up- and down-steps in NaCl concentration. We use this model to show that the time course of the ASE responses provide sufficient temporal resolution to successfully drive chemotaxis in C. elegans via steering, pirouettes and control of final turn angle. We show that these different locomotion strategies are individually capable of driving chemotaxis and that by working together they produce the best chemotactic response. We find that there is a separation into upward and downward drives mediated by the left and right ASE neurons. We show that the connectivity from ASEL and ASER must be of opposite polarity and that ASER, and the concomitant ability to sense when the worm is moving down the gradient, is more important for chemotaxis than ASEL, findings that are consistent with existing modelling studies in the literature. Finally, we examine associative learning in the network and show that experimental data can be explained by changes that occur at either the synaptic or sensory neuron level, the choice of which has distinct consequences for network function.
Collapse
Affiliation(s)
- Peter A Appleby
- Kroto Research Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
16
|
Chung K, Zhan M, Srinivasan J, Sternberg PW, Gong E, Schroeder FC, Lu H. Microfluidic chamber arrays for whole-organism behavior-based chemical screening. LAB ON A CHIP 2011; 11:3689-3697. [PMID: 21935539 PMCID: PMC3924777 DOI: 10.1039/c1lc20400a] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The nematode Caenorhabditis elegans is an important model organism in genetic research and drug screening because of its relative simplicity, ease of maintenance, amenability to simple genetic manipulation, and relevance to human biology. However, their small size and mobility make nematodes difficult to physically manipulate, particularly with spatial and temporal precision. We have developed a microfluidic device to overcome these challenges and enable fast behavior-based chemical screening in C. elegans. The key components of this easy-to-use device allow rapid loading and housing of C. elegans in a chamber array for chemical screening. A simple two-step loading process enables simultaneous loading of a large number of animals within a few minutes without using any expensive/active off-chip components. In addition, chemicals can be precisely delivered to the worms and exchanged with high temporal precision. To demonstrate this feature and the ability to measure time dependent responses to chemicals, we characterize the transient response of worms exposed to different concentrations of anesthetics. We then use the device to study the effect of chemical signals from hermaphrodite worms on male behavior. The ability of the device to maintain a large number of free moving animals in one field of view over a long period of time permits us to demonstrate an increase in the incidence of a specific behavior in males subjected to worm-conditioned medium. Because our device allows monitoring of a large number of worms with single-animal resolution, we envision that this platform will greatly expedite chemical screening in C. elegans.
Collapse
Affiliation(s)
- Kwanghun Chung
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr, NW, Atlanta, GA, 30332-0100, USA
| | - Mei Zhan
- Interdisciplinary Program of Bioengineering, Georgia Institute of Technology, 311 Ferst Dr, NW, Atlanta, GA, 30332-0100, USA
| | - Jagan Srinivasan
- MC156-29, Biology Division, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA
| | - Paul W. Sternberg
- MC156-29, Biology Division, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA
| | - Emily Gong
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr, NW, Atlanta, GA, 30332-0100, USA
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr, NW, Atlanta, GA, 30332-0100, USA
- Interdisciplinary Program of Bioengineering, Georgia Institute of Technology, 311 Ferst Dr, NW, Atlanta, GA, 30332-0100, USA
- ; Fax: +1-404-894-8473; Tel: +1-404-894-8473
| |
Collapse
|
17
|
Carr JA, Parashar A, Gibson R, Robertson AP, Martin RJ, Pandey S. A microfluidic platform for high-sensitivity, real-time drug screening on C. elegans and parasitic nematodes. LAB ON A CHIP 2011; 11:2385-2396. [PMID: 21647497 PMCID: PMC3645292 DOI: 10.1039/c1lc20170k] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This paper describes a new microfluidic platform for screening drugs and their dose response on the locomotion behavior of free living nematodes and parasitic nematodes. The system offers a higher sensitivity drug screening chip which employs a combination of existing and newly developed methods. Real-time observation of the entire drug application process (i.e. the innate pre-exposure locomotion, the transient response during drug exposure and the time-resolved, post-exposure behavior) at a single worm resolution is made possible. The chip enables the monitoring of four nematode parameters (number of worms responsive, number of worms leaving the drug well, average worm velocity and time until unresponsiveness). Each parameter generates an inherently different dose response; allowing for a higher resolution when screening for resistance. We expect this worm chip could be used as a robust cross species, cross drug platform. Existing nematode motility and migration assays do not offer this level of sophistication. The device comprises two principal components: behavioral microchannels to study nematode motility and a drug well for administering the dose and observing drug effects as a function of exposure time. The drug screening experiment can be described by three main steps: (i) 'pre-exposure study'- worms are inserted into the behavioral channels and their locomotion is characterized, (ii) 'dose exposure'- worms are guided from the behavioral microchannels into the drug well and held for a predefined time, during which time their transient response to the dose is characterized and (iii) 'post-exposure study'- worms are guided back into the behavioral microchannels where their locomotion (i.e. their time-resolved response to the dose) is characterized and compared to pre-exposure motility. The direction of nematodes' movement is reliably controlled by the application of an electric field within a defined range. Control experiments (e.g. in the absence of any drug) confirm that the applied electric fields do not affect the worms' motility or viability. We demonstrate the workability of the microfluidic platform on free living Caenorhabditis elegans (wild-type N2 and levamisole resistant ZZ15 lev-8) and parasitic Oesophagotomum dentatum (levamisole-sensitive, SENS and levamisole-resistant, LEVR) using levamisole (a well-studied anthelmintic) as the test drug. The proposed scheme of drug screening on a microfluidic device is expected to significantly improve the resolution, sensitivity and data throughput of in vivo testing, while offering new details on the transient and time-resolved exposure effects of new and existing anthelmintics.
Collapse
Affiliation(s)
- John A. Carr
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, U.S.A
| | - Archana Parashar
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, U.S.A
| | - Richard Gibson
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, U.S.A
| | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, U.S.A
| | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, U.S.A
| | - Santosh Pandey
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, U.S.A
| |
Collapse
|
18
|
Albrecht DR, Bargmann CI. High-content behavioral analysis of Caenorhabditis elegans in precise spatiotemporal chemical environments. Nat Methods 2011; 8:599-605. [PMID: 21666667 PMCID: PMC3152576 DOI: 10.1038/nmeth.1630] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/06/2011] [Indexed: 01/19/2023]
Abstract
To gain a quantitative understanding of chemosensory behaviors, it is desirable to present many animals with repeatable, well-defined chemical stimuli. To that end, we describe a microfluidic system to analyze Caenorhabditis elegans behavior in defined temporal and spatial stimulus patterns. A 2 × 2 cm2 structured arena allowed C. elegans to perform crawling locomotion in a controlled liquid environment. We characterized behavioral responses to attractive odors with three stimulus patterns: temporal pulses, spatial stripes, and a linear concentration gradient, all delivered in the fluid phase to eliminate variability associated with air-fluid transitions. Different stimulus configurations preferentially revealed turning dynamics in a biased random walk, directed orientation into an odor stripe, and speed regulation by odor. We identified both expected and unexpected responses in wild-type animals and sensory mutants by quantifying dozens of behavioral parameters. The devices are inexpensive, easy to fabricate, reusable, and suitable for delivering any liquid-borne stimulus.
Collapse
Affiliation(s)
- Dirk R Albrecht
- Howard Hughes Medical Institute and Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, USA.
| | | |
Collapse
|
19
|
Parashar A, Lycke R, Carr JA, Pandey S. Amplitude-modulated sinusoidal microchannels for observing adaptability in C. elegans locomotion. BIOMICROFLUIDICS 2011; 5:24112. [PMID: 21772935 PMCID: PMC3138794 DOI: 10.1063/1.3604391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/03/2011] [Indexed: 02/05/2023]
Abstract
In this paper, we present a movement-based assay to observe adaptability in Caenorhabditis elegans locomotion behavior. The assay comprises a series of sinusoidal microchannels with a fixed wavelength and modulating (increasing or decreasing) amplitude. The channel width is comparable to the body diameter of the organism. Worms are allowed to enter the channel from the input port and migrate toward the output port. Within channel sections that closely match the worm's natural undulations, the worm movement is relatively quick and steady. As the channel amplitude increases or decreases along the device, the worm faces difficulty in generating the propulsive thrust, begins to slow down and eventually fails to move forward. A set of locomotion parameters (i.e., average forward velocity, number and duration of stops, range of contact angle, and cut-off region) is defined for worm locomotion in modulated sinusoidal channels and extracted from the recorded videos. The device is tested on wild-type C. elegans (N2) and two mutants (lev-8 and unc-38). We anticipate this passive, movement-based assay can be used to screen nematodes showing difference in locomotion phenotype.
Collapse
Affiliation(s)
- Archana Parashar
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
20
|
Carr JA, Lycke R, Parashar A, Pandey S. Unidirectional, electrotactic-response valve for Caenorhabditis elegans in microfluidic devices. APPLIED PHYSICS LETTERS 2011; 98. [DOI: 10.1063/1.3570629] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report a nematode electrotactic-response valve (NERV) to control the locomotion of Caenorhabditis elegans (C. elegans) in microfluidic devices. This nonmechanical, unidirectional valve is based on creating a confined region of lateral electric field that is switchable and reversible. We observed that C. elegans do not prefer to pass through this region if the field lines are incident to its forward movement. Upon reaching the boundary of the NERV, the incident worms partially penetrate the field region, pull back, and turn around. The NERV is tested on three C. elegans mutants: wild-type (N2), lev-8, and acr-16.
Collapse
Affiliation(s)
- John A. Carr
- Iowa State University Department of Electrical and Computer Engineering, , Ames, Iowa 50011, USA
| | - Roy Lycke
- Iowa State University Department of Electrical and Computer Engineering, , Ames, Iowa 50011, USA
| | - Archana Parashar
- Iowa State University Department of Electrical and Computer Engineering, , Ames, Iowa 50011, USA
| | - Santosh Pandey
- Iowa State University Department of Electrical and Computer Engineering, , Ames, Iowa 50011, USA
| |
Collapse
|
21
|
The neural network for chemotaxis to tastants in Caenorhabditis elegans is specialized for temporal differentiation. J Neurosci 2009; 29:11904-11. [PMID: 19776276 DOI: 10.1523/jneurosci.0594-09.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chemotaxis in Caenorhabditis elegans depends critically on the rate of change of attractant concentration computed as the worm moves through its environment. This computation depends, in turn, on the neuron class ASE, a left-right pair of pair of chemosensory neurons that is functionally asymmetric such that the left neuron is an on-cell, whereas the right neuron is an off-cell. To determine whether this coding strategy is a general feature of chemosensation in C. elegans, we imaged calcium responses in all chemosensory neurons known or in a position to contribute to chemotaxis to tastants in this organism. This survey revealed one new class of on-cells (ADF) and one new class of off-cells (ASH). Thus, the ASE class is unique in having both an on-cell and an off-cell. We also found that the newly characterized on-cells and off-cells promote runs and turns, respectively, mirroring the pattern reported previously for ASEL and ASER. Our results suggest that the C. elegans chemotaxis network is specialized for the temporal differentiation of chemosensory inputs, as required for chemotaxis.
Collapse
|
22
|
Abstract
Caenorhabditis elegans shows chemotaxis to various odorants and water-soluble chemoattractants such as NaCl. Previous studies described the pirouette mechanism for chemotaxis, in which C. elegans quickly changes the direction of locomotion by using a set of stereotyped behaviors, a pirouette, in response to a decrease in the concentration of the chemical. Here, we report the discovery of a second mechanism for chemotaxis, called the weathervane mechanism. In this strategy animals respond to a spatial gradient of chemoattractant and gradually curve toward higher concentration of the chemical. By computer simulation, we find that both of these mechanisms contribute to chemotaxis and both mechanisms need to act in parallel for efficient chemotaxis. Using laser ablation of individual neurons to examine the underlying neural circuit, we find the ASE sensory neurons and AIZ interneurons are essential for both the pirouette and weathervane mechanisms in chemotaxis to NaCl. Salt-conditioned animals show reversed responses in both of these behaviors, leading to avoidance of NaCl. These results provide a platform for detailed molecular and cellular analyses of chemotaxis and its plasticity in this model organism.
Collapse
|
23
|
Microfluidic switching system for analyzing chemotaxis responses of wortmannin-inhibited HL-60 cells. Biomed Microdevices 2008; 10:499-507. [PMID: 18205049 DOI: 10.1007/s10544-007-9158-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The chemotaxis of phosphoinositide kinase-3 (PI3K)-inhibited differentiated HL-60 cells stably expressing CXCR2 was studied in a microfluidic switching gradient device that can generate stable and well-defined forward and reverse gradients. Wortmannin, a widely used PI3K inhibitor, was added during cell preparation and the experiment process. The studies quantify the chemotaxis gradient and the effects of a change in the direction of a CXCL-8 gradient on cell migration. PI3K-inhibited HL-60 cells migrated more efficiently toward the gradient before gradient switching than after, as measured by the effective chemotactic index. The inhibited HL-60 cells also showed that inadequate polarization, slower response time, and reduced cell populations can follow the gradient change. We observed that the role of PI3K in directing cellular response to gradient reversal was important in cell polarization and directional sensing associated with gradient switching.
Collapse
|
24
|
Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature 2008; 454:114-7. [PMID: 18596810 DOI: 10.1038/nature06927] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 03/20/2008] [Indexed: 11/09/2022]
Abstract
Chemotaxis in Caenorhabditis elegans, like chemotaxis in bacteria, involves a random walk biased by the time derivative of attractant concentration, but how the derivative is computed is unknown. Laser ablations have shown that the strongest deficits in chemotaxis to salts are obtained when the ASE chemosensory neurons (ASEL and ASER) are ablated, indicating that this pair has a dominant role. Although these neurons are left-right homologues anatomically, they exhibit marked asymmetries in gene expression and ion preference. Here, using optical recordings of calcium concentration in ASE neurons in intact animals, we demonstrate an additional asymmetry: ASEL is an ON-cell, stimulated by increases in NaCl concentration, whereas ASER is an OFF-cell, stimulated by decreases in NaCl concentration. Both responses are reliable yet transient, indicating that ASE neurons report changes in concentration rather than absolute levels. Recordings from synaptic and sensory transduction mutants show that the ON-OFF asymmetry is the result of intrinsic differences between ASE neurons. Unilateral activation experiments indicate that the asymmetry extends to the level of behavioural output: ASEL lengthens bouts of forward locomotion (runs) whereas ASER promotes direction changes (turns). Notably, the input and output asymmetries of ASE neurons are precisely those of a simple yet novel neuronal motif for computing the time derivative of chemosensory information, which is the fundamental computation of C. elegans chemotaxis. Evidence for ON and OFF cells in other chemosensory networks suggests that this motif may be common in animals that navigate by taste and smell.
Collapse
|
25
|
Luo L, Gabel CV, Ha HI, Zhang Y, Samuel ADT. Olfactory Behavior of Swimming C. elegans Analyzed by Measuring Motile Responses to Temporal Variations of Odorants. J Neurophysiol 2008; 99:2617-25. [DOI: 10.1152/jn.00053.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caenorhabditis elegans responds to chemical cues using a small number of chemosensory neurons that detect a large variety of molecules in its environment. During chemotaxis, C. elegans biases its migration in spatial chemical gradients by lengthening (/shortening) periods of forward movement when it happens to be moving toward (/away) from preferred locations. In classical assays of chemotactic behavior, a group of crawling worms is placed on an agar plate containing a point source of chemical, the group is allowed to navigate for a period of time, and aggregation of worms near the source is quantified. Here we show that swimming worms exhibit acute motile responses to temporal variations of odor in their surrounding environment, allowing our development of an automated assay of chemotactic behavior with single-animal resolution. By placing individual worms in small microdroplets and quantifying their movements as they respond to the addition and removal of odorized airstreams, we show that the sensorimotor phenotypes of swimming worms (wild-type behavior, the effects of certain mutations, and the effects of laser ablation of specific olfactory neurons) are consistent with aggregation phenotypes previously obtained in crawling assays. The microdroplet swimming assay has certain advantages over crawling assays, including flexibility and precision in defining the stimulus waveform and automated quantification of motor response during stimulus presentation. In this study, we use the microdroplet assay to quantify the temporal dynamics of the olfactory response, the sensitivity to odorant concentration, combinations, and gradients, and the contribution of specific olfactory neurons to overall behavior.
Collapse
|
26
|
Lockery SR, Lawton KJ, Doll JC, Faumont S, Coulthard SM, Thiele TR, Chronis N, McCormick KE, Goodman MB, Pruitt BL. Artificial dirt: microfluidic substrates for nematode neurobiology and behavior. J Neurophysiol 2008; 99:3136-43. [PMID: 18337372 DOI: 10.1152/jn.91327.2007] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
With a nervous system of only 302 neurons, the free-living nematode Caenorhabditis elegans is a powerful experimental organism for neurobiology. However, the laboratory substrate commonly used in C. elegans research, a planar agarose surface, fails to reflect the complexity of this organism's natural environment, complicates stimulus delivery, and is incompatible with high-resolution optophysiology experiments. Here we present a new class of microfluidic devices for C. elegans neurobiology and behavior: agarose-free, micron-scale chambers and channels that allow the animals to crawl as they would on agarose. One such device mimics a moist soil matrix and facilitates rapid delivery of fluid-borne stimuli. A second device consists of sinusoidal channels that can be used to regulate the waveform and trajectory of crawling worms. Both devices are thin and transparent, rendering them compatible with high-resolution microscope objectives for neuronal imaging and optical recording. Together, the new devices are likely to accelerate studies of the neuronal basis of behavior in C. elegans.
Collapse
Affiliation(s)
- S R Lockery
- Department of Biology, University of Oregon, Eugene, Oregon 97403-1210, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 2007; 450:63-70. [PMID: 17972877 DOI: 10.1038/nature06292] [Citation(s) in RCA: 456] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 09/24/2007] [Indexed: 11/09/2022]
|
28
|
Dunn NA, Conery JS, Lockery SR. Circuit motifs for spatial orientation behaviors identified by neural network optimization. J Neurophysiol 2007; 98:888-97. [PMID: 17522174 DOI: 10.1152/jn.00074.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spatial orientation behavior is universal among animals, but its neuronal basis is poorly understood. The main objective of the present study was to identify candidate patterns of neuronal connectivity (motifs) for two widely recognized classes of spatial orientation behaviors: hill climbing, in which the organism seeks the highest point in a spatial gradient, and goal seeking, in which the organism seeks an intermediate point in the gradient. Focusing on simple networks of graded processing neurons characteristic of Caenorhabditis elegans and other nematodes, we used an unbiased optimization algorithm to seek values of neuronal time constants, resting potentials, and synaptic strengths sufficient for each type of behavior. We found many different hill-climbing and goal-seeking networks that performed equally well in the two tasks. Surprisingly, however, each hill-climbing network represented one of just three fundamental circuit motifs, and each goal-seeking network comprised two of these motifs acting in concert. These motifs are likely to inform the search for the real circuits that underlie these behaviors in nematodes and other organisms.
Collapse
Affiliation(s)
- N A Dunn
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | | | | |
Collapse
|
29
|
Sengupta P. Generation and modulation of chemosensory behaviors in C. elegans. Pflugers Arch 2007; 454:721-34. [PMID: 17206445 DOI: 10.1007/s00424-006-0196-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
C. elegans recognizes and discriminates among hundreds of chemical cues using a relatively compact chemosensory nervous system. Chemosensory behaviors are also modulated by prior experience and contextual cues. Because of the facile genetics and genomics possible in this organism, C. elegans provides an excellent system in which to explore the generation of chemosensory behaviors from the level of a single gene to the motor output. This review summarizes the current knowledge on the molecular and neuronal substrates of chemosensory behaviors and chemosensory behavioral plasticity in C. elegans.
Collapse
Affiliation(s)
- Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
30
|
Tomioka M, Adachi T, Suzuki H, Kunitomo H, Schafer WR, Iino Y. The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Neuron 2006; 51:613-25. [PMID: 16950159 DOI: 10.1016/j.neuron.2006.07.024] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 06/23/2006] [Accepted: 07/24/2006] [Indexed: 11/25/2022]
Abstract
The insulin-like signaling pathway is known to regulate fat metabolism, dauer formation, and longevity in Caenorhabditis elegans. Here, we report that this pathway is also involved in salt chemotaxis learning, in which animals previously exposed to a chemoattractive salt under starvation conditions start to show salt avoidance behavior. Mutants of ins-1, daf-2, age-1, pdk-1, and akt-1, which encode the homologs of insulin, insulin/IGF-I receptor, PI 3-kinase, phosphoinositide-dependent kinase, and Akt/PKB, respectively, show severe defects in salt chemotaxis learning. daf-2 and age-1 act in the ASER salt-sensing neuron, and the activity level of the DAF-2/AGE-1 pathway in this neuron determines the extent and orientation of salt chemotaxis. On the other hand, ins-1 acts in AIA interneurons, which receive direct synaptic inputs from sensory neurons and also send synaptic outputs to ASER. These results suggest that INS-1 secreted from AIA interneurons provides feedback to ASER to generate plasticity of chemotaxis.
Collapse
Affiliation(s)
- Masahiro Tomioka
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Pierce-Shimomura JT, Dores M, Lockery SR. Analysis of the effects of turning bias on chemotaxis in C. elegans. ACTA ACUST UNITED AC 2006; 208:4727-33. [PMID: 16326954 DOI: 10.1242/jeb.01933] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
C. elegans advances up a chemical gradient by modulating the probability of occasional large, course-correcting turns called pirouettes. However, it remains uncertain whether C. elegans also uses other behavioral strategies for chemotaxis. Previous observations of the unusual, spiral-shaped chemotaxis tracks made by the bent-head mutant unc-23 point to a different strategy in which the animal continuously makes more subtle course corrections. In the present study we have combined automated tracking of individual animals with computer modeling to test the hypothesis that the pirouette strategy is sufficient on its own to account for the spiral tracks. Tracking experiments showed that the bent-head phenotype causes a strong turning bias and disrupts pirouette execution but does not disrupt pirouette initiation. A computer simulation of disrupted pirouette behavior and turning bias reproduced the spiral tracks of unc-23 chemotaxis behavior, showing that the pirouette strategy is sufficient to account for the mutant phenotype. In addition, the simulation reproduced higher order features of the behavior such as the relationship between the handedness of the spiral and the side to which the head was bent. Our results suggest that the pirouette mechanism is sufficient to account for a diverse range of chemotaxis trajectories.
Collapse
Affiliation(s)
- Jonathan T Pierce-Shimomura
- Ernest Gallo Clinic and Research Center, Department of Neurology, Programs in Neuroscience and Biomedical Science, University of California, San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA.
| | | | | |
Collapse
|
32
|
Laser literature watch. Photomed Laser Surg 2006; 24:424-53. [PMID: 16875454 DOI: 10.1089/pho.2006.24.424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Ortiz CO, Etchberger JF, Posy SL, Frøkjaer-Jensen C, Lockery S, Honig B, Hobert O. Searching for neuronal left/right asymmetry: genomewide analysis of nematode receptor-type guanylyl cyclases. Genetics 2006; 173:131-49. [PMID: 16547101 PMCID: PMC1461427 DOI: 10.1534/genetics.106.055749] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 03/03/2006] [Indexed: 11/18/2022] Open
Abstract
Functional left/right asymmetry ("laterality") is a fundamental feature of many nervous systems, but only very few molecular correlates to functional laterality are known. At least two classes of chemosensory neurons in the nematode Caenorhabditis elegans are functionally lateralized. The gustatory neurons ASE left (ASEL) and ASE right (ASER) are two bilaterally symmetric neurons that sense distinct chemosensory cues and express a distinct set of four known chemoreceptors of the guanylyl cyclase (gcy) gene family. To examine the extent of lateralization of gcy gene expression patterns in the ASE neurons, we have undertaken a genomewide analysis of all gcy genes. We report the existence of a total of 27 gcy genes encoding receptor-type guanylyl cyclases and of 7 gcy genes encoding soluble guanylyl cyclases in the complete genome sequence of C. elegans. We describe the expression pattern of all previously uncharacterized receptor-type guanylyl cyclases and find them to be highly biased but not exclusively restricted to the nervous system. We find that >41% (11/27) of all receptor-type guanylyl cyclases are expressed in the ASE gustatory neurons and that one-third of all gcy genes (9/27) are expressed in a lateral, left/right asymmetric manner in the ASE neurons. The expression of all laterally expressed gcy genes is under the control of a gene regulatory network composed of several transcription factors and miRNAs. The complement of gcy genes in the related nematode C. briggsae differs from C. elegans as evidenced by differences in chromosomal localization, number of gcy genes, and expression patterns. Differences in gcy expression patterns in the ASE neurons of C. briggsae arise from a difference in cis-regulatory elements and trans-acting factors that control ASE laterality. In sum, our results indicate the existence of a surprising multitude of putative chemoreceptors in the gustatory ASE neurons and suggest the existence of a substantial degree of laterality in gustatory signaling mechanisms in nematodes.
Collapse
Affiliation(s)
- Christopher O Ortiz
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Because of its small and well-characterized nervous system and amenability to genetic manipulation, the nematode Caenorhabditis elegans offers the promise of understanding the mechanisms underlying a whole animal's behavior at the molecular and cellular levels. In fact, this goal was a primary motivation behind the development of C. elegans as an experimental organism 40 years ago. Yet it has proven surprisingly difficult to obtain a mechanistic understanding of how the C. elegans nervous system generates behavior, despite the existence of a 'wiring diagram' that contains a degree of information about neural connectivity unparalleled in any organism. This review describes three types of information--molecular data on cellular neurochemistry, temporal information about neural activity patterns, and behavioral data on the consequences of neural ablation and manipulation--that, along with genetic analysis, may ultimately lead to a complete functional map of the C. elegans nervous system.
Collapse
Affiliation(s)
- William R Schafer
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
35
|
Faumont S, Lockery SR. The Awake Behaving Worm: Simultaneous Imaging of Neuronal Activity and Behavior in Intact Animals at Millimeter Scale. J Neurophysiol 2006; 95:1976-81. [PMID: 16319197 DOI: 10.1152/jn.01050.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genetically encoded optical probes of neuronal activity offer the prospect of simultaneous recordings of neuronal activity and behavior in intact animals. A central problem in simultaneous imaging is that the field of view of the high-power objective required for imaging the neuron is often too small to allow the experimenter to assess the overall behavioral state of the animal. Here we present a method that solves this problem using a microscope with two objectives focused on the preparation: a high-power lens dedicated to imaging the neuron and low-power lens dedicated to imaging the behavior. Images of activity and behavior are acquired simultaneously but separately using different wavelengths of light. The new approach was tested using the cameleon calcium sensor expressed in Caenorhabditis elegans sensory neurons. We show that simultaneous recordings of neuronal activity and behavior are practical in C. elegans and, moreover, that such recordings can reveal subtle, transient correlations between calcium levels and behavior that may be missed in nonsimultaneous recordings. The new method is likely to be useful whenever it would be desirable to record simultaneously at two different spatial resolutions from a single location, or from two different locations in space.
Collapse
Affiliation(s)
- Serge Faumont
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
36
|
Irimia D, Liu SY, Tharp WG, Samadani A, Toner M, Poznansky MC. Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. LAB ON A CHIP 2006; 6:191-8. [PMID: 16450027 PMCID: PMC3763904 DOI: 10.1039/b511877h] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Experimental systems that provide temporal and spatial control of chemical gradients are required for probing into the complex mechanisms of eukaryotic cell chemotaxis. However, no current technique can simultaneously generate stable chemical gradients and allow fast gradient changes. We developed a microfluidic system with microstructured membranes for exposing neutrophils to fast and precise changes between stable, linear gradients of the known chemoattractant Interleukin-8 (IL-8). We observed that rapidly lowering the average concentration of IL-8 within a gradient, while preserving the direction of the gradient, resulted in temporary neutrophil depolarization. Fast reversal of the gradient direction while increasing or decreasing the average concentration also resulted in temporary depolarization. Neutrophils adapted and maintained their directional motility, only when the average gradient concentration was increased and the direction of the gradient preserved. Based on these observations we propose a two-component temporal sensing mechanism that uses variations of chemokine concentration averaged over the entire cell surface and localized at the leading edge, respectively, and directs neutrophil responses to changes in their chemical microenvironment.
Collapse
Affiliation(s)
- Daniel Irimia
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Faumont S, Miller AC, Lockery SR. Chemosensory behavior of semi-restrained Caenorhabditis elegans. ACTA ACUST UNITED AC 2006; 65:171-8. [PMID: 16114028 DOI: 10.1002/neu.20196] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new behavioral assay is described for studying chemosensation in the nematode Caenorhabditis elegans. This assay presents three main characteristics: (1) the worm is restrained by gluing, preserving correlates of identifiable behaviors; (2) the amplitude and time course of the stimulus are controlled by the experimenter; and (3) the behavior is recorded quantitatively. We show that restrained C. elegans display behaviors comparable to those of freely moving worms. Moreover, the chemosensory response of wild-type glued animals to changes in salt concentration is similar to that of freely moving animals. This glued-worm assay was used to reveal new chemosensory deficits of the potassium channel mutant egl-2. We conclude that the glued worm assay can be used to study the chemosensory regulation of C. elegans behavior and how it is affected by neuronal or genetic manipulations.
Collapse
Affiliation(s)
- Serge Faumont
- Institute of Neuroscience, 1254 University of Oregon, Eugene, Oregon 97403, USA
| | | | | |
Collapse
|