1
|
Saad H, El Baba B, Tfaily A, Kobeissy F, Gonzalez JG, Refai D, Rodts GR, Mustroph C, Gimbel D, Grossberg J, Barrow DL, Gary MF, Alawieh AM. Complement-dependent neuroinflammation in spinal cord injury: from pathology to therapeutic implications. Neural Regen Res 2025; 20:1324-1335. [PMID: 38845224 PMCID: PMC11624873 DOI: 10.4103/nrr.nrr-d-24-00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/07/2024] [Accepted: 04/29/2024] [Indexed: 07/31/2024] Open
Abstract
Spinal cord injury remains a major cause of disability in young adults, and beyond acute decompression and rehabilitation, there are no pharmacological treatments to limit the progression of injury and optimize recovery in this population. Following the thorough investigation of the complement system in triggering and propagating cerebral neuroinflammation, a similar role for complement in spinal neuroinflammation is a focus of ongoing research. In this work, we survey the current literature investigating the role of complement in spinal cord injury including the sources of complement proteins, triggers of complement activation, and role of effector functions in the pathology. We study relevant data demonstrating the different triggers of complement activation after spinal cord injury including direct binding to cellular debris, and or activation via antibody binding to damage-associated molecular patterns. Several effector functions of complement have been implicated in spinal cord injury, and we critically evaluate recent studies on the dual role of complement anaphylatoxins in spinal cord injury while emphasizing the lack of pathophysiological understanding of the role of opsonins in spinal cord injury. Following this pathophysiological review, we systematically review the different translational approaches used in preclinical models of spinal cord injury and discuss the challenges for future translation into human subjects. This review emphasizes the need for future studies to dissect the roles of different complement pathways in the pathology of spinal cord injury, to evaluate the phases of involvement of opsonins and anaphylatoxins, and to study the role of complement in white matter degeneration and regeneration using translational strategies to supplement genetic models.
Collapse
Affiliation(s)
- Hassan Saad
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Bachar El Baba
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Ali Tfaily
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Firas Kobeissy
- Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Daniel Refai
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Gerald R. Rodts
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Christian Mustroph
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - David Gimbel
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan Grossberg
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel L. Barrow
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew F. Gary
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Ali M. Alawieh
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Tenner AJ, Petrisko TJ. Knowing the enemy: strategic targeting of complement to treat Alzheimer disease. Nat Rev Neurol 2025; 21:250-264. [PMID: 40128350 DOI: 10.1038/s41582-025-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
The complement system protects against infection, positively responds to tissue damage, clears cell debris, directs and modulates the adaptive immune system, and functions in neuronal development, normal synapse elimination and intracellular metabolism. However, complement also has a role in aberrant synaptic pruning and neuroinflammation - processes that lead to a feedforward loop of inflammation, injury and neuronal death that can contribute to neurodegenerative and neurological disorders, including Alzheimer disease. This Review provides justification, largely from preclinical mouse models but also from correlates with human tissue and biomarkers, for targeting specific complement components for therapeutic intervention in Alzheimer disease. We discuss promising strategies to slow the progression of cognitive loss with minimal undesired effects. The diverse interactions and functions of complement system components can influence biological processes in the healthy and diseased brain; here, these functions are described as a prerequisite to selecting appropriate, safe and effective therapeutic targets for translation to the clinic.
Collapse
Affiliation(s)
- Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Tiffany J Petrisko
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Ziabska K, Gewartowska M, Frontczak-Baniewicz M, Sypecka J, Ziemka-Nalecz M. The Impact of the Histone Deacetylase Inhibitor-Sodium Butyrate on Complement-Mediated Synapse Loss in a Rat Model of Neonatal Hypoxia-Ischemia. Mol Neurobiol 2025; 62:5216-5233. [PMID: 39531190 PMCID: PMC11880148 DOI: 10.1007/s12035-024-04591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Perinatal asphyxia is one of the most important causes of morbidity and mortality in newborns. One of the key pathogenic factors in hypoxic-ischemic (HI) brain injury is the inflammatory reaction including complement system activation. Over-activated complement stimulates cells to release inflammatory molecules and is involved in the post-ischemic degradation of synaptic connections. On the other hand, complement is also involved in regenerative processes. The histone deacetylase inhibitor (HDACi)-sodium butyrate (SB)-provides reduction of inflammation by decreasing the expression of the proinflammatory factors. The main purpose of this study was to examine the effect of SB treatment on complement activation and synapse elimination after HI. Neonatal HI was induced in Wistar rats pups by unilateral ligation of the common carotid artery followed by 60-min hypoxia (7.6% O2). SB (300 mg/kg) was administered on a 5-day regimen. Our study has shown decreased levels of synapsin I, synaptophysin, and PSD-95 in the hypoxic-ischemic hemisphere, indicating synaptic loss after neonatal HI. Transmission electron microscopy revealed injury of the synaptic structures in the brain after HI. SB treatment increased the level of the synaptic proteins, improved tissue ultrastructure, and reduced degradation of the synapses. Neonatal HI induced mRNA expression of the complement C1q, C3, C5, and C9, and their receptors C3aR and C5aR. The effect of SB was different depending on the time after induction of hypoxic-ischemic damage. Our study demonstrated that neuroprotective effect of SB may be related to the modulation of complement activity after HI brain injury.
Collapse
Affiliation(s)
- Karolina Ziabska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Street, 02-106, Warsaw, Poland
| | - Magdalena Gewartowska
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Street, 02-106, Warsaw, Poland
| | - Malgorzata Frontczak-Baniewicz
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Street, 02-106, Warsaw, Poland
- Higher School of Engineering and Health in Warsaw, 18 Bitwy Warszawskiej 1920r. Street, 02-366, Warsaw, Poland
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Street, 02-106, Warsaw, Poland
| | - Malgorzata Ziemka-Nalecz
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Street, 02-106, Warsaw, Poland.
| |
Collapse
|
4
|
Das AS, Basu A, Mukhopadhyay R. Ribosomal proteins: the missing piece in the inflammation puzzle? Mol Cell Biochem 2025; 480:785-797. [PMID: 38951378 DOI: 10.1007/s11010-024-05050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
Ribosomal proteins (RPs) are constituents of macromolecular machinery, ribosome that translates genetic information into proteins. Besides ribosomal functions, RPs are now getting appreciated for their 'moonlighting'/extra-ribosomal functions modulating many cellular processes. Accumulating evidence suggests that a number of RPs are involved in inflammation. Though acute inflammation is a part of the innate immune response, uncontrolled inflammation is a driving factor for several chronic inflammatory diseases. An in-depth understanding of inflammation regulation has always been valued for the better management of associated diseases. Hence, this review first outlines the common livelihood of RPs and then provides a comprehensive account of five RPs that significantly contribute to the inflammation process. Finally, we discuss the possible therapeutic uses of RPs against chronic inflammatory diseases.
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, 02912, USA.
| | - Anandita Basu
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
| |
Collapse
|
5
|
Zhu P, Ji W, Li D, Wang F, Sun T, Yang H, Chen S, Zhang W, Jin Y, Duan G. The activation of complement C5a-C5aR1 axis in astrocytes facilitates the neuropathogenesis due to EV-A71 infection by upregulating CXCL1. J Virol 2025; 99:e0151424. [PMID: 39679722 PMCID: PMC11784463 DOI: 10.1128/jvi.01514-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/17/2024] [Indexed: 12/17/2024] Open
Abstract
Enterovirus A71 (EV-A71) is a common small RNA virus that is highly neuroinvasive. Emerging evidence indicates that the complement fragment C5a and its receptor C5aR1 are important drivers of neuroinflammation. However, the potential role of the C5a-C5aR1 axis in EV-A71 encephalitis remains largely elusive. Our previous studies revealed that EV-A71 can infect astrocytes and result in complement activation in vivo. Here, we investigated how complement factors interact with astrocytes to promote a severe inflammatory response upon EV-A71 infection. Our data revealed that EV-A71 infected mainly astrocytes and caused astrocyte activation in the mouse brain, which was further verified in patients with EV-A71 infection and U87-MG cells. Notably, EV-A71 infection led to activation of the C5a-C5aR1 axis in U87-MG cells, and knockdown (siC5aR1) or blockade (PMX53) of C5aR1 significantly suppressed EV-A71-induced astrocyte activation and proinflammatory cytokine (e.g., CXCL1) production. Next, the activation of the C5a-C5aR1 axis in mouse astrocytes was confirmed. Compared with C5aR1 knockout mice, wild-type mice presented more severe symptoms and lower survival rates after EV-A71 infection. C5aR1 deficiency or blockade significantly reduced EV-A71-induced pathological damage and proinflammatory cytokine production in the mouse brain. Importantly, an increased level of soluble C5a was strongly correlated with the severity of symptoms in patients with EV-A71 infection. By using confocal microscopy, primary astrocytes, and human specimens, we observed that the increase in CXCL1 levels resulted mainly from astrocytes. Neutralizing CXCL1 significantly alleviated the neuropathological changes caused by EV-A71 infection, and the production of CXCL1 in astrocytes was regulated by p38 MAPK signaling. Taken together, our findings indicate that the activation of the C5a-C5aR1 axis in astrocytes facilitates the neuropathological changes resulting from EV-A71 infection, emphasizing the potential role of p38 MAPK-mediated CXCL1 production in these alterations. IMPORTANCE Enterovirus A71 (EV-A71) is a common small RNA virus with highly neuroinvasive tendencies. Our previous studies took the view that EV-A71 could infect astrocytes and result in complement activation in vivo. We investigated how complement interacts with astrocytes to promote a severe inflammatory response upon EV-A71 infection in the study. As expected, our data demonstrate that EV-A71 triggers robust activation of the C5a-C5aR1 axis in astrocytes and that knockout or blockade of C5aR1 in animals exposed to lethal doses of EV-A71 significantly enhances survival by diminishing the production of the chemokines CXCL1 and IL-6. In addition, neutralizing CXCL1 significantly alleviates the neuropathogenesis caused by EV-A71 infection. Thus, inhibiting the C5a-C5aR1 axis has emerged as a potential therapeutic strategy to mitigate neural damage caused by EV-A71 infection.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Wang
- Department of Infectious Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Weiguo Zhang
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Department of Infectious Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Behnke V, Wolf A, Hector M, Langmann T. C3aR1-Deletion Delays Retinal Degeneration in a White-Light Damage Mouse Model. Invest Ophthalmol Vis Sci 2025; 66:15. [PMID: 39775695 PMCID: PMC11717133 DOI: 10.1167/iovs.66.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
Purpose In the aging retina, persistent activation of microglia is known to play a key role in retinal degenerative diseases like age-related macular degeneration (AMD). Furthermore, dysregulation of the alternative complement pathway is generally accepted as the main driver for AMD disease progression and microglia are important producers of local complement and are equipped with complement receptors themselves. Here, we investigate the involvement of anaphylatoxin signaling, predominantly on Iba1+ cell activity, in light-induced retinal degeneration as a model for dry AMD, using anaphylatoxin receptor knockout (KO) mice. Methods Bright white light with an intensity of 10,000 lux was applied for 30 minutes to complement component 3a receptor 1 (C3ar1) or complement component 5a receptor 1 (C5ar1) KO and wildtype (WT) mice. Analyses of transcriptome changes and migration activity of Iba1+ cells as well as retinal thickness were performed 4 days after light exposure. Results Full body KO mice of either C3aR1 or C5aR1 were tested, but none led to mitigated migration of Iba1+ cells to the subretinal space or decreased expression of complement factors after light damage compared to WT mice. However, a partial rescue of retinal thickness was shown in C3aR1 KO mice, which was mirrored by significant less membrane attack complex (MAC) occurrence in the outer retina. Conclusions We conclude that deletion of the anaphylatoxin receptor C3aR1 cannot modulate mononuclear phagocytes but diminishes retinal degeneration through interference with the complement pathway and thus decreased MAC assembling. C3aR1-targeted therapy may be considered for patients with dry AMD.
Collapse
MESH Headings
- Animals
- Mice
- Mice, Knockout
- Disease Models, Animal
- Retinal Degeneration/metabolism
- Retinal Degeneration/etiology
- Retinal Degeneration/genetics
- Retinal Degeneration/pathology
- Light/adverse effects
- Mice, Inbred C57BL
- Microglia/metabolism
- Microglia/pathology
- Retina/metabolism
- Retina/pathology
- Retina/radiation effects
- Receptor, Anaphylatoxin C5a/genetics
- Receptor, Anaphylatoxin C5a/metabolism
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Radiation Injuries, Experimental/pathology
- Radiation Injuries, Experimental/metabolism
- Radiation Injuries, Experimental/genetics
- Calcium-Binding Proteins
- Microfilament Proteins
- Receptors, G-Protein-Coupled
Collapse
Affiliation(s)
- Verena Behnke
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Mandy Hector
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| |
Collapse
|
7
|
Zhou Y, Xu T, Zhou Y, Han W, Wu Z, Yang C, Chen X. A review focuses on a neglected and controversial component of SCI: myelin debris. Front Immunol 2024; 15:1436031. [PMID: 39650659 PMCID: PMC11621000 DOI: 10.3389/fimmu.2024.1436031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/22/2024] [Indexed: 12/11/2024] Open
Abstract
Myelin sheath, as the multilayer dense structure enclosing axons in humans and other higher organisms, may rupture due to various injury factors after spinal cord injury, thus producing myelin debris. The myelin debris contains a variety of myelin-associated inhibitors (MAIs) and lipid, all inhibiting the repair after spinal cord injury. Through summary and analysis, the present authors found that the inhibition of myelin debris can be mainly divided into two categories: firstly, the direct inhibition mediated by MAIs; secondly, the indirect inhibition mediated by lipid such as cholesterol. It is worth noting that phagocytes are required in the latter indirect inhibition, such as professional phagocytes (macrophages et al.) and non-professional phagocytes (astrocytes et al.). Moreover, complement and the immune system also participate in the phagocytosis of myelin debris, working together with phagocytes to aggravate spinal cord injury. In conclusion, this paper focuses on the direct and indirect effects of myelin debris on spinal cord injury, aiming to provide new inspiration and reflection for the basic research of spinal cord injury and the conception of related treatment.
Collapse
Affiliation(s)
- Yuchen Zhou
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Tao Xu
- Medical School of Nantong University, Nantong, China
- Department of Orthopedics, Yancheng Dafeng People's Hospital, Yancheng, China
| | - Yiyan Zhou
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Wei Han
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Zhengchao Wu
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Changwei Yang
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Xiaoqing Chen
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
8
|
Cucarian J, Raposo P, Vavrek R, Nguyen A, Nelson B, Monnier P, Torres-Espin A, Fenrich K, Fouad K. No impact of anti-inflammatory medication on inflammation-driven recovery following cervical spinal cord injury in rats. Exp Neurol 2024; 383:115039. [PMID: 39481514 DOI: 10.1016/j.expneurol.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Following spinal cord injury (SCI), inflammation is associated with the exacerbation of damage to spinal tissue. Consequently, managing inflammation during the acute and subacute phases is a common target in SCI treatment. However, inflammation may also induce potential benefits, including the stimulation of neuroplasticity and repair. This positive role of inflammation in spinal cord healing and functional recovery is not fully understood. To address this knowledge gap, we examined the effects of two common anti-inflammatory medications, Diphenhydramine and Methylprednisolone, on the efficacy of rehabilitative motor training on recovery from subacute cervical SCI in adult rats. Training depends critically on neuroplasticity thus if inflammation is a key regulator, we propose that anti-inflammatory drugs will reduce subsequent recovery. Both drugs were administered orally over one month, alongside task-specific reaching and grasping training. After treatment, no substantial changes in motor recovery or lesion size between the treated and control groups were observed. Treated animals also did not show any discernible changes in sensory function or anxiety-like behavior. Taken together, our data indicate that the prolonged use of these anti-inflammatory agents at commonly used doses did not profoundly impact recovery following an SCI. Therefore, considering earlier reports of the benefits of pro-inflammatory stimuli on plasticity, further studies in this area are imperative to elucidate the true impact of treating inflammation and its implications for recovery after spinal cord injuries.
Collapse
Affiliation(s)
- Jaison Cucarian
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
| | - Pamela Raposo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Romana Vavrek
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Antoinette Nguyen
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Brooklynn Nelson
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Philippe Monnier
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Abel Torres-Espin
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada; School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada; Department of Neurological Surgery and Brain and Spinal Injury Center (BASIC), Faculty of Medicine, University of California San Francisco, San Francisco, USA
| | - Keith Fenrich
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
9
|
Cotten A, Jeanneau C, Decherchi P, About I. Complement C5a Implication in Axonal Growth After Injury. Cells 2024; 13:1729. [PMID: 39451247 PMCID: PMC11506376 DOI: 10.3390/cells13201729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Complement C5a protein has been shown to play a major role in tissue regeneration through interaction with its receptor (C5aR) on target cells. Expression of this receptor has been reported in the nervous system which, upon injury, has no treatment to restore the lost functions. This work aimed at investigating the Complement C5a effect on axonal growth after axotomy in vitro. Primary hippocampal neurons were isolated from embryonic Wistar rats. Cell expression of C5aR mRNA was verified by RT-PCR while its membrane expression, localization, and phosphorylation were investigated by immunofluorescence. Then, the effects of C5a on injured axonal growth were investigated using a 3D-printed microfluidic device. Immunofluorescence demonstrated that the primary cultures contained only mature neurons (93%) and astrocytes (7%), but no oligodendrocytes or immature neurons. Immunofluorescence revealed a co-localization of NF-L and C5aR only in the mature neurons where C5a induced the phosphorylation of its receptor. C5a application on injured axons in the microfluidic devices significantly increased both the axonal growth speed and length. Our findings highlight a new role of C5a in regeneration demonstrating an enhancement of axonal growth after axotomy. This may provide a future therapeutic tool in the treatment of central nervous system injury.
Collapse
Affiliation(s)
| | | | | | - Imad About
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France; (A.C.); (C.J.); (P.D.)
| |
Collapse
|
10
|
Saadat A, Pallera H, Lattanzio F, Owens D, Gaines A, Ravi SS, Shah T. Structural and Functional Effects of C5aR1 Antagonism in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. Dev Neurosci 2024; 47:112-126. [PMID: 38797164 PMCID: PMC11965858 DOI: 10.1159/000539506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION The complement response activates upon reperfusion in neonatal hypoxic-ischemic encephalopathy (HIE) and contributes to excessive neuroinflammation and worse outcomes. C5a is a powerful anaphylatoxin central to each of the complement pathways, and its engagement with C5aR1 is directly tied to brain injury and neuronal death. Reasoning C5aR1 antagonism can decrease excessive neuroinflammation and thereby improve neurological and functional outcomes, we tested this hypothesis in a rat model of HIE with PMX205, a small molecule that inhibits C5a-C5aR1 interaction. METHODS Term-equivalent pups (P10-12) were subjected to mild-moderate HIE by Vannucci's method and treated with PMX205. We compared motor and cognitive outcomes with two behavioral tests each (food handling and accelerod; novel object recognition [NOR] and open field) to improve the accuracy of our conclusions. RESULTS Improvements were observed in fine motor function, balance, and exploratory behaviors, but little to no improvement in recognition memory and gross motor function. Lesion area and histological assessments showed robust cortical neuroprotection from treatment but persistent injury to the CA1 region of the hippocampus. Better structural and functional outcomes were seen within 1 day of treatment, suggesting C5aR1 antagonism beyond the latent injury phase may impair recovery. In a dose-response experiment, cerebral area loss from injury was improved only in female rats, suggesting underlying sexual dimorphisms in the complement response. CONCLUSION These results demonstrate proof-of-concept for targeting C5aR1 signaling in neonatal HIE with PMX205 and underscore the role of sex in hypoxic-ischemic injury. INTRODUCTION The complement response activates upon reperfusion in neonatal hypoxic-ischemic encephalopathy (HIE) and contributes to excessive neuroinflammation and worse outcomes. C5a is a powerful anaphylatoxin central to each of the complement pathways, and its engagement with C5aR1 is directly tied to brain injury and neuronal death. Reasoning C5aR1 antagonism can decrease excessive neuroinflammation and thereby improve neurological and functional outcomes, we tested this hypothesis in a rat model of HIE with PMX205, a small molecule that inhibits C5a-C5aR1 interaction. METHODS Term-equivalent pups (P10-12) were subjected to mild-moderate HIE by Vannucci's method and treated with PMX205. We compared motor and cognitive outcomes with two behavioral tests each (food handling and accelerod; novel object recognition [NOR] and open field) to improve the accuracy of our conclusions. RESULTS Improvements were observed in fine motor function, balance, and exploratory behaviors, but little to no improvement in recognition memory and gross motor function. Lesion area and histological assessments showed robust cortical neuroprotection from treatment but persistent injury to the CA1 region of the hippocampus. Better structural and functional outcomes were seen within 1 day of treatment, suggesting C5aR1 antagonism beyond the latent injury phase may impair recovery. In a dose-response experiment, cerebral area loss from injury was improved only in female rats, suggesting underlying sexual dimorphisms in the complement response. CONCLUSION These results demonstrate proof-of-concept for targeting C5aR1 signaling in neonatal HIE with PMX205 and underscore the role of sex in hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Angela Saadat
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Specialty Group, Norfolk, VA, USA
| | - Haree Pallera
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Hospital of the King’s Daughters, Norfolk, VA, USA
| | - Frank Lattanzio
- Neonatal Brain Institute, Norfolk, VA, USA
- Department Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Daley Owens
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Hospital of the King’s Daughters, Norfolk, VA, USA
| | - Amy Gaines
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Hospital of the King’s Daughters, Norfolk, VA, USA
| | - Sai Susmitha Ravi
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Hospital of the King’s Daughters, Norfolk, VA, USA
| | - Tushar Shah
- Neonatal Brain Institute, Norfolk, VA, USA
- Children’s Specialty Group, Norfolk, VA, USA
- Children’s Hospital of the King’s Daughters, Norfolk, VA, USA
| |
Collapse
|
11
|
Junior MSO, Reiche L, Daniele E, Kortebi I, Faiz M, Küry P. Star power: harnessing the reactive astrocyte response to promote remyelination in multiple sclerosis. Neural Regen Res 2024; 19:578-582. [PMID: 37721287 PMCID: PMC10581572 DOI: 10.4103/1673-5374.380879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 09/19/2023] Open
Abstract
Astrocytes are indispensable for central nervous system development and homeostasis. In response to injury and disease, astrocytes are integral to the immunological- and the, albeit limited, repair response. In this review, we will examine some of the functions reactive astrocytes play in the context of multiple sclerosis and related animal models. We will consider the heterogeneity or plasticity of astrocytes and the mechanisms by which they promote or mitigate demyelination. Finally, we will discuss a set of biomedical strategies that can stimulate astrocytes in their promyelinating response.
Collapse
Affiliation(s)
- Markley Silva Oliveira Junior
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Emerson Daniele
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Ines Kortebi
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Maryam Faiz
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Patrick Küry
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
12
|
Eom JA, Jeong JJ, Han SH, Kwon GH, Lee KJ, Gupta H, Sharma SP, Won SM, Oh KK, Yoon SJ, Joung HC, Kim KH, Kim DJ, Suk KT. Gut-microbiota prompt activation of natural killer cell on alcoholic liver disease. Gut Microbes 2023; 15:2281014. [PMID: 37988132 PMCID: PMC10730232 DOI: 10.1080/19490976.2023.2281014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
The liver is rich in innate immune cells, such as natural killer (NK) cells, natural killer T cells, and Kupffer cells associated with the gut microbiome. These immune cells are dysfunctional owing to alcohol consumption. However, there is insufficient data on the association between immune cells and gut microbiome in alcoholic liver disease (ALD). Therefore, the purpose of this study was to evaluate the effects of probiotic strains on NK cells in ALD patients. In total, 125 human blood samples [control (n = 22), alcoholic hepatitis (n = 43), and alcoholic cirrhosis (n = 60]) were collected for flow cytometric analysis. C57BL/6J mice were divided into four groups (normal, EtOH-fed, and 2 EtOH+strain groups [Phocaeicola dorei and Lactobacillus helveticus]). Lymphocytes isolated from mouse livers were analyzed using flow cytometry. The frequency of NK cells increased in patients with alcoholic hepatitis and decreased in patients with alcoholic cirrhosis. The expression of NKp46, an NK cell-activating receptor, was decreased in patients with alcoholic hepatitis and increased in patients with alcoholic cirrhosis compared to that in the control group. The number of cytotoxic CD56dimCD16+ NK cells was significantly reduced in patients with alcoholic cirrhosis. We tested the effect of oral administration P. dorei and L. helveticus in EtOH-fed mice. P. dorei and L. helveticus improved liver inflammation and intestinal barrier damage caused by EtOH supply and increased NK cell activity. Therefore, these observations suggest that the gut microbiome may ameliorate ALD by regulating immune cells.
Collapse
Affiliation(s)
- Jung A Eom
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Ju Jeong
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Goo Hyun Kwon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Kyeong Jin Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hyun Chae Joung
- Chong Kun Dang Bio Research Institute, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Kyung Hwan Kim
- Chong Kun Dang Bio Research Institute, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
13
|
Zhao Y, Xia Q, Zong H, Wang Y, Dong H, Zhu L, Xia J, Mao Q, Weng Z, Liao W, Xin Z. Bibliometric and visual analysis of spinal cord injury-associated macrophages from 2002 to 2023. Front Neurol 2023; 14:1285908. [PMID: 38073628 PMCID: PMC10703361 DOI: 10.3389/fneur.2023.1285908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) triggers motor, sensory, and autonomic impairments that adversely damage patients' quality of life. Its pathophysiological processes include inflammation, oxidative stress, and apoptosis, although existing treatment options have little success. Macrophages have a vital function in controlling inflammation in SCI, with their M1-type and M2-type macrophages dominating early inflammatory effects and late brain tissue repair and regeneration, respectively. However, there is a dearth of rigorous bibliometric study in this sector to explore its dynamics and trends. This study intends to examine the current status and trends of macrophage usage in SCI using bibliometric methodologies, which may drive novel therapeutic options. METHODS In this study, the Web of Science Core Collection (WOSCC) was utilized to collect publications and reviews on macrophages in SCI from 2002 to 2023. Bibliometrics and visualization analyses were performed by VOSviewer, CiteSpace, the R package "bibliometrix", and online analytic platforms. These analyses covered a variety of aspects, including countries and institutions, authors and co-cited authors, journals and co-cited journals, subject categories, co-cited references, and keyword co-occurrences, in order to provide insights into the research trends and hotspots in this field. RESULTS 1,775 papers were included in the study, comprising 1,528 articles and 247 reviews. Our research analysis demonstrates that the number of relevant studies in this sector is expanding, specifically the number of publications in the United States and China has risen dramatically. However, there are fewer collaborations between institutions in different nations, and international cooperation needs to be reinforced. Among them, Popovich PG became the leader in the field, and significant journals include Experimental Neurology, Journal of Neurotrauma, and Journal of Neuroscience. Research hotspots involve macrophage polarization, microglia, astrocytes, signaling, cytokines, inflammation, and neuroprotection. CONCLUSIONS This analysis gives, for the first time, a comprehensive overview of bibliometric studies on macrophages in SCI over the past 20 years. This study not only gives an extensive picture of the knowledge structure but also indicates trends in the subject. The systematic summarization gives a complete and intuitive understanding of the link between spinal cord damage and macrophages and provides a great reference for future related studies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hui Zong
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyang Wang
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
14
|
Schanzenbacher J, Hendrika Kähler K, Mesler E, Kleingarn M, Marcel Karsten C, Leonard Seiler D. The role of C5a receptors in autoimmunity. Immunobiology 2023; 228:152413. [PMID: 37598588 DOI: 10.1016/j.imbio.2023.152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 08/22/2023]
Abstract
The complement system is an essential component of the innate immune response and plays a vital role in host defense and inflammation. Dysregulation of the complement system, particularly involving the anaphylatoxin C5a and its receptors (C5aR1 and C5aR2), has been linked to several autoimmune diseases, indicating the potential for targeted therapies. C5aR1 and C5aR2 are seven-transmembrane receptors with distinct signaling mechanisms that play both partially overlapping and opposing roles in immunity. Both receptors are expressed on a broad spectrum of immune and non-immune cells and are involved in cellular functions and physiological processes during homeostasis and inflammation. Dysregulated C5a-mediated inflammation contributes to autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, epidermolysis bullosa acquisita, antiphospholipid syndrome, and others. Therefore, targeting C5a or its receptors may yield therapeutic innovations in these autoimmune diseases by reducing the recruitment and activation of immune cells that lead to tissue inflammation and injury, thereby exacerbating the autoimmune response. Clinical trials focused on the inhibition of C5 cleavage or the C5a/C5aR1-axis using small molecules or monoclonal antibodies hold promise for bringing novel treatments for autoimmune diseases into practice. However, given the heterogeneous nature of (systemic) autoimmune diseases, there are still several challenges, such as patient selection, optimal dosing, and treatment duration, that require further investigation and development to realize the full therapeutic potential of C5a receptor inhibition, ideally in the context of a personalized medicine approach. Here, we aim to provide a brief overview of the current knowledge on the function of C5a receptors, the involvement of C5a receptors in autoimmune disorders, the molecular mechanisms underlying C5a receptor-mediated autoimmunity, and the potential for targeted therapies to modulate their activity.
Collapse
Affiliation(s)
- Jovan Schanzenbacher
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja Hendrika Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Evelyn Mesler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | | | - Daniel Leonard Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
15
|
Juul SE, Voldal E, Comstock BA, Massaro AN, Bammler TK, Mayock DE, Heagerty PJ, Wu YW, Numis AL. Association of High-Dose Erythropoietin With Circulating Biomarkers and Neurodevelopmental Outcomes Among Neonates With Hypoxic Ischemic Encephalopathy: A Secondary Analysis of the HEAL Randomized Clinical Trial. JAMA Netw Open 2023; 6:e2322131. [PMID: 37418263 PMCID: PMC10329214 DOI: 10.1001/jamanetworkopen.2023.22131] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023] Open
Abstract
Importance The ability to predict neurodevelopmental impairment (NDI) for infants diagnosed with hypoxic ischemic encephalopathy (HIE) is important for parental guidance and clinical treatment as well as for stratification of patients for future neurotherapeutic studies. Objectives To examine the effect of erythropoietin on plasma inflammatory mediators in infants with moderate or severe HIE and to develop a panel of circulating biomarkers that improves the projection of 2-year NDI over and above the clinical data available at the time of birth. Design, Setting, and Participants This study is a preplanned secondary analysis of prospectively collected data from infants enrolled in the High-Dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) Trial, which tested the efficacy of erythropoietin as an adjunctive neuroprotective therapy to therapeutic hypothermia. The study was conducted at 17 academic sites comprising 23 neonatal intensive care units in the United States between January 25, 2017, and October 9, 2019, with follow-up through October 2022. Overall, 500 infants born at 36 weeks' gestation or later with moderate or severe HIE were included. Intervention Erythropoietin treatment 1000 U/kg/dose on days 1, 2, 3, 4 and 7. Main Outcomes and Measures Plasma erythropoietin was measured in 444 infants (89%) within 24 hours after birth. A subset of 180 infants who had plasma samples available at baseline (day 0/1), day 2, and day 4 after birth and either died or had 2-year Bayley Scales of Infant Development III assessments completed were included in the biomarker analysis. Results The 180 infants included in this substudy had a mean (SD) gestational age of 39.1 (1.5) weeks, and 83 (46%) were female. Infants who received erythropoietin had increased concentrations of erythropoietin at day 2 and day 4 compared with baseline. Erythropoietin treatment did not alter concentrations of other measured biomarkers (eg, difference in interleukin [IL] 6 between groups on day 4: -1.3 pg/mL; 95% CI, -4.8 to 2.0 pg/mL). After adjusting for multiple comparisons, we identified 6 plasma biomarkers (C5a, interleukin [IL] 6, and neuron-specific enolase at baseline; IL-8, tau, and ubiquitin carboxy-terminal hydrolase-L1 at day 4) that significantly improved estimations of death or NDI at 2 years compared with clinical data alone. However, the improvement was only modest, increasing the AUC from 0.73 (95% CI, 0.70-0.75) to 0.79 (95% CI, 0.77-0.81; P = .01), corresponding to a 16% (95% CI, 5%-44%) increase in correct classification of participant risk of death or NDI at 2 years. Conclusions and Relevance In this study, erythropoietin treatment did not reduce biomarkers of neuroinflammation or brain injury in infants with HIE. Circulating biomarkers modestly improved estimation of 2-year outcomes. Trial Registration ClinicalTrials.gov Identifier: NCT02811263.
Collapse
|
16
|
Evans R, Watkins LM, Hawkins K, Santiago G, Demetriou C, Naughton M, Dittmer M, Rees MI, Fitzgerald D, Morgan BP, Neal JW, Howell OW. Complement activation and increased anaphylatoxin receptor expression are associated with cortical grey matter lesions and the compartmentalised inflammatory response of multiple sclerosis. Front Cell Neurosci 2023; 17:1094106. [PMID: 37032838 PMCID: PMC10073739 DOI: 10.3389/fncel.2023.1094106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/07/2023] [Indexed: 04/11/2023] Open
Abstract
Background The extent of cortical pathology is an important determinant of multiple sclerosis (MS) severity. Cortical demyelination and neurodegeneration are related to inflammation of the overlying leptomeninges, a more inflammatory CSF milieu and with parenchymal microglia and astroglia activation. These are all components of the compartmentalised inflammatory response. Compartmentalised inflammation is a feature of progressive MS, which is not targeted by disease modifying therapies. Complement is differentially expressed in the MS CSF and complement, and complement receptors, are associated with demyelination and neurodegeneration. Methods To better understand if complement activation in the leptomeninges is associated with underlying cortical demyelination, inflammation, and microglial activation, we performed a neuropathological study of progressive MS (n = 22, 14 females), neuroinflammatory (n = 8), and non-neurological disease controls (n = 10). We then quantified the relative extent of demyelination, connective tissue inflammation, complement, and complement receptor positive microglia/macrophages. Results Complement was elevated at the leptomeninges, subpial, and within and around vessels of the cortical grey matter. The extent of complement C1q immunoreactivity correlated with connective tissue infiltrates, whilst activation products C4d, Bb, and C3b associated with grey matter demyelination, and C3a receptor 1+ and C5a receptor 1+ microglia/macrophages closely apposed C3b labelled cells. The density of C3a receptor 1+ and C5a receptor 1+ cells was increased at the expanding edge of subpial and leukocortical lesions. C5a receptor 1+ cells expressed TNFα, iNOS and contained puncta immunoreactive for proteolipid protein, neurofilament and synaptophysin, suggesting their involvement in grey matter lesion expansion. Interpretation The presence of products of complement activation at the brain surfaces, their association with the extent of underlying pathology and increased complement anaphylatoxin receptor positive microglia/macrophages at expanding cortical grey matter lesions, could represent a target to modify compartmentalised inflammation and cortical demyelination.
Collapse
Affiliation(s)
- Rhian Evans
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Lewis M. Watkins
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Kristen Hawkins
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Gabriella Santiago
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Constantinos Demetriou
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Michelle Naughton
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Marie Dittmer
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Mark I. Rees
- Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Denise Fitzgerald
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - B. Paul Morgan
- School of Medicine, UK Dementia Research Institute Cardiff and Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - James W. Neal
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Owain W. Howell
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
- *Correspondence: Owain W. Howell,
| |
Collapse
|
17
|
Chen M, Tieng QM, Du J, Edwards SR, Maskey D, Peshtenski E, Reutens D. Effects of C1-INH Treatment on Neurobehavioral Sequelae and Late Seizures After Traumatic Brain Injury in a Mouse Model of Controlled Cortical Impact. Neurotrauma Rep 2023; 4:124-136. [PMID: 36941878 PMCID: PMC10024590 DOI: 10.1089/neur.2022.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
C1 human-derived C1 esterase inhibitor (C1-INH) is a U.S. Food and Drig Administration-approved drug with anti-inflammatory actions. In the present study, we investigated the therapeutic effects of C1-INH on acute and chronic neurobehavioral outcomes and on seizures in the chronic stage in a mouse traumatic brain injury (TBI) model. Adult male CD1 mice were subjected to controlled cortical impact and randomly allocated to receive C1-INH or vehicle solution 1 h post-TBI. Effects of C1-INH treatment on inflammatory responses and brain damage after TBI were examined using the Cytometric Bead Array, C5a enzyme-linked immunosorbent assay, Fluoro-Jade C staining, and Nissl staining. Neurobehavioral outcomes after TBI were assessed with modified neurological severity scores, the rotarod and open field tests, and the active place avoidance task. Video-electroencephalographic monitoring was performed in the 15th and 16th weeks after TBI to document epileptic seizures. We found that C1-INH treatment reduced TNFα expression and alleviated brain damage. Treatment with C1-INH improved neurological functions, increased locomotor activity, alleviated anxiety-like behavior, and exhibited an effect on seizures in the chronic stage after TBI. These findings suggest that C1-INH has beneficial effects on the treatment of TBI.
Collapse
Affiliation(s)
- Min Chen
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Quang M. Tieng
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Jiaxin Du
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Stephen R. Edwards
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Dhiraj Maskey
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Emil Peshtenski
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - David Reutens
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
- Address correspondence to: David Reutens, MD, Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
18
|
Zhen-Gang L, Fan Y, Jingwei S, Pengyu C, Shengman Y, Bo-Yin Z. Revisiting the immune landscape post spinal cord injury: More than black and white. Front Aging Neurosci 2022; 14:963539. [PMID: 36570540 PMCID: PMC9768195 DOI: 10.3389/fnagi.2022.963539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) induced catastrophic neurological disability is currently incurable, especially in elderly patients. Due to the limited axon regeneration capacity and hostile microenvironment in the lesion site, essential neural network reconstruction remains challenging. Owing to the blood-spinal cord barrier (BSCB) created immune cells and cytokines isolation, the immune elements were incorrectly recognized as innocent bystanders during the SCI pathological process traditionally. Emerging evidence demonstrated that the central nervous system (CNS) is an "immunological quiescent" rather than "immune privileged" area, and the CNS-associated immune response played mixed roles which dedicate beneficial and detrimental contributions throughout the SCI process. Consequently, coordinating double-edged immunomodulation is vital to promote tissue repair and neurological recovery post-SCI. The comprehensive exploration and understanding of the immune landscape post-SCI are essential in establishing new avenues for further basic and clinical studies. In this context, this review summarizes the recent significant breakthroughs in key aspects of SCI-related immunomodulation, including innate and adaptive immune response, immune organ changes, and holistic immune status modification. Moreover, the currently existing immune-oriented therapies for SCI will be outlined.
Collapse
Affiliation(s)
- Liu Zhen-Gang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Fan
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shi Jingwei
- Department of Laboratory Medicine Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang Pengyu
- Radiotherapy Department, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yu Shengman
- School of Laboratory Medicine, Beihua University, Jilin, China
| | - Zhang Bo-Yin
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Zhang Bo-Yin
| |
Collapse
|
19
|
Gabrili JJM, Villas-Boas IM, Pidde G, Squaiella-Baptistão CC, Woodruff TM, Tambourgi DV. Complement System Inhibition Modulates the Inflammation Induced by the Venom of Premolis semirufa, an Amazon Rainforest Moth Caterpillar. Int J Mol Sci 2022; 23:13333. [PMID: 36362117 PMCID: PMC9658021 DOI: 10.3390/ijms232113333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
The caterpillar of the Premolis semirufa moth, commonly called Pararama, is found in the Brazilian Amazon region. Contact with the hairs can cause a chronic inflammatory reaction, termed "pararamosis". To date, there is still no specific treatment for pararamosis. In this study, we used a whole human blood model to evaluate the involvement of the complement in the proinflammatory effects of P. semirufa hair extract, as well as the anti-inflammatory potential of complement inhibitors in this process. After treatment of blood samples with the P. semirufa hair extract, there was a significant increase in the generation of soluble terminal complement complex (sTCC) and anaphylatoxins (C3a, C4a, and C5a), as well as the production of the cytokines TNF-α and IL-17 and the chemokines IL-8, RANTES, MIG, MCP-1, and IP-10. The inhibition of C3 with compstatin significantly decreased IL-17, IL-8, RANTES, and MCP-1 production. However, the use of the C5aR1 antagonist PMX205 promoted a reduction in the production of IL-8 and RANTES. Moreover, compstatin decreased CD11b, C5aR1, and TLR2 expression induced by P. semirufa hair extract in granulocytes and CD11b, TLR4, and TLR2 in monocytes. When we incubated vascular endothelial cells with extract-treated human plasma, there was an increase in IL-8 and MCP-1 production, and compstatin was able to decrease the production of these chemokines. C5aR1 antagonism also decreased the production of MCP-1 in endothelial cells. Thus, these results indicate that the extract of the Pararama bristles activates the complement system and that this action contributes to the production of cytokines and chemokines, modulation of the expression of surface markers in leukocytes, and activation of endothelial cells.
Collapse
Affiliation(s)
- Joel J. M. Gabrili
- Immunochemistry Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil
| | | | - Giselle Pidde
- Immunochemistry Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil
| | | | - Trent M. Woodruff
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
20
|
Fella E, Papacharalambous R, Kynigopoulos D, Ioannou M, Derua R, Christodoulou C, Stylianou M, Karaiskos C, Kagiava A, Petroula G, Pierides C, Kyriakou M, Koumas L, Costeas P, Panayiotou E. Pharmacological activation of the C5a receptor leads to stimulation of the β-adrenergic receptor and alleviates cognitive impairment in a murine model of familial Alzheimer’s disease. Front Immunol 2022; 13:947071. [PMID: 36091045 PMCID: PMC9462583 DOI: 10.3389/fimmu.2022.947071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease of the brain causing either familial or sporadic dementia. We have previously administered the modified C5a receptor agonist (EP67) for a short period to a transgenic mouse model of AD (5XFAD) and have observed not only reduction in β-amyloid deposition and gliosis but also improvement in cognitive impairment. Inquiring, however, on the effects of EP67 in an already heavily burdened animal, thus representing a more realistic scenario, we treated 6-month-old 5XFAD mice for a period of 14 weeks. We recorded a significant decrease in both fibrillar and pre-fibrillar β-amyloid as well as remarkable amelioration of cognitive impairment. Following proteomic analysis and pathway association, we postulate that these events are triggered through the upregulation of β-adrenergic and GABAergic signaling. In summary, our results reveal how inflammatory responses can be employed in inducing tangible phenotype improvements even in advanced stages of AD.
Collapse
Affiliation(s)
- Eleni Fella
- Neuropathology Department, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Demos Kynigopoulos
- Neuropathology Department, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Ioannou
- Neuropathology Department, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Myrto Stylianou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christos Karaiskos
- Neuroscience Department, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Department, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Gerasimou Petroula
- Molecular Haematology-Oncology, The Karaiskakio Foundation, Nicosia, Cyprus
| | - Chryso Pierides
- The Center for the Study of Haematological Malignancies, Nicosia, Cyprus
| | - Maria Kyriakou
- The Center for the Study of Haematological Malignancies, Nicosia, Cyprus
| | - Laura Koumas
- The Center for the Study of Haematological Malignancies, Nicosia, Cyprus
- Cellular Pathology-Immunology, The Karaiskakio Foundation, Nicosia, Cyprus
| | - Paul Costeas
- Molecular Haematology-Oncology, The Karaiskakio Foundation, Nicosia, Cyprus
- The Center for the Study of Haematological Malignancies, Nicosia, Cyprus
- Cyprus Cancer Research Institute, Nicosia, Cyprus
| | - Elena Panayiotou
- Neuropathology Department, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- *Correspondence: Elena Panayiotou,
| |
Collapse
|
21
|
Xu W, Kumar V, Cui CS, Li XX, Whittaker AK, Xu ZP, Smith MT, Woodruff TM, Han FY. Success in navigating hurdles to oral delivery of a bioactive peptide complement antagonist through use of nanoparticles to increase bioavailability and in vivo efficacy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weizhi Xu
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Queensland QLD Australia
| | - Vinod Kumar
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
| | - Cedric S. Cui
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
| | - Xaria X. Li
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Queensland QLD Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Queensland QLD Australia
| | - Maree T. Smith
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
| | - Felicity Y Han
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Queensland QLD Australia
| |
Collapse
|
22
|
Chio JCT, Punjani N, Hejrati N, Zavvarian MM, Hong J, Fehlings MG. Extracellular Matrix and Oxidative Stress Following Traumatic Spinal Cord Injury: Physiological and Pathophysiological Roles and Opportunities for Therapeutic Intervention. Antioxid Redox Signal 2022; 37:184-207. [PMID: 34465134 DOI: 10.1089/ars.2021.0120] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Traumatic spinal cord injury (SCI) causes significant disruption to neuronal, glial, vascular, and extracellular elements. The spinal cord extracellular matrix (ECM) comprises structural and communication proteins that are involved in reparative and regenerative processes after SCI. In the healthy spinal cord, the ECM helps maintain spinal cord homeostasis. After SCI, the damaged ECM limits plasticity and contributes to inflammation through the expression of damage-associated molecules such as proteoglycans. Recent Advances: Considerable insights have been gained by characterizing the origins of the gliotic and fibrotic scars, which not only reduce the spread of injury but also limit neuroregeneration. These properties likely limit the success of therapies used to treat patients with SCI. The ECM, which is a major contributor to the scars and normal physiological functions of the spinal cord, represents an exciting therapeutic target to enhance recovery post-SCI. Critical Issue: Various ECM-based preclinical therapies have been developed. These include disrupting scar components, inhibiting activity of ECM metalloproteinases, and maintaining iron homeostasis. Biomaterials have also been explored. However, the majority of these treatments have not experienced successful clinical translation. This could be due to the ECM and scars' polarizing roles. Future Directions: This review surveys the complexity involved in spinal ECM modifications, discusses new ECM-based combinatorial strategies, and explores the biomaterials evaluated in clinical trials, which hope to introduce new treatments that enhance recovery after SCI. These topics will incorporate oxidative species, which are both beneficial and harmful in reparative and regenerative processes after SCI, and not often assessed in pertinent literature. Antioxid. Redox Signal. 37, 184-207.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Nayaab Punjani
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Nader Hejrati
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Mohammad-Masoud Zavvarian
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - James Hong
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery and Spine Program, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Van Broeckhoven J, Erens C, Sommer D, Scheijen E, Sanchez S, Vidal PM, Dooley D, Van Breedam E, Quarta A, Ponsaerts P, Hendrix S, Lemmens S. Macrophage-based delivery of interleukin-13 improves functional and histopathological outcomes following spinal cord injury. J Neuroinflammation 2022; 19:102. [PMID: 35488301 PMCID: PMC9052547 DOI: 10.1186/s12974-022-02458-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) elicits a robust neuroinflammatory reaction which, in turn, exacerbates the initial mechanical damage. Pivotal players orchestrating this response are macrophages (Mφs) and microglia. After SCI, the inflammatory environment is dominated by pro-inflammatory Mφs/microglia, which contribute to secondary cell death and prevent regeneration. Therefore, reprogramming Mφ/microglia towards a more anti-inflammatory and potentially neuroprotective phenotype has gained substantial therapeutic interest in recent years. Interleukin-13 (IL-13) is a potent inducer of such an anti-inflammatory phenotype. In this study, we used genetically modified Mφs as carriers to continuously secrete IL-13 (IL-13 Mφs) at the lesion site. METHODS Mφs were genetically modified to secrete IL-13 (IL-13 Mφs) and were phenotypically characterized using qPCR, western blot, and ELISA. To analyze the therapeutic potential, the IL-13 Mφs were intraspinally injected at the perilesional area after hemisection SCI in female mice. Functional recovery and histopathological improvements were evaluated using the Basso Mouse Scale score and immunohistochemistry. Neuroprotective effects of IL-13 were investigated using different cell viability assays in murine and human neuroblastoma cell lines, human neurospheroids, as well as murine organotypic brain slice cultures. RESULTS In contrast to Mφs prestimulated with recombinant IL-13, perilesional transplantation of IL-13 Mφs promoted functional recovery following SCI in mice. This improvement was accompanied by reduced lesion size and demyelinated area. The local anti-inflammatory shift induced by IL-13 Mφs resulted in reduced neuronal death and fewer contacts between dystrophic axons and Mφs/microglia, suggesting suppression of axonal dieback. Using IL-4Rα-deficient mice, we show that IL-13 signaling is required for these beneficial effects. Whereas direct neuroprotective effects of IL-13 on murine and human neuroblastoma cell lines or human neurospheroid cultures were absent, IL-13 rescued murine organotypic brain slices from cell death, probably by indirectly modulating the Mφ/microglia responses. CONCLUSIONS Collectively, our data suggest that the IL-13-induced anti-inflammatory Mφ/microglia phenotype can preserve neuronal tissue and ameliorate axonal dieback, thereby promoting recovery after SCI.
Collapse
Affiliation(s)
- Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Céline Erens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Daniela Sommer
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Elle Scheijen
- Department of Neurosciences, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Selien Sanchez
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Pia M Vidal
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, 4090541, Concepción, Chile
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular & Biomedical Research University College Dublin, Belfield, Dublin 4, Ireland
| | - Elise Van Breedam
- Laboratory of Experimental Hematology, University of Antwerp, 2610, Wilrijk, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Alessandra Quarta
- Laboratory of Experimental Hematology, University of Antwerp, 2610, Wilrijk, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, University of Antwerp, 2610, Wilrijk, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium. .,Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Stefanie Lemmens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| |
Collapse
|
24
|
Simpson JD, Ray A, Koehler M, Mohammed D, Alsteens D. Atomic force microscopy applied to interrogate nanoscale cellular chemistry and supramolecular bond dynamics for biomedical applications. Chem Commun (Camb) 2022; 58:5072-5087. [PMID: 35315846 DOI: 10.1039/d1cc07200e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding biological interactions at a molecular level grants valuable information relevant to improving medical treatments and outcomes. Among the suite of technologies available, Atomic Force Microscopy (AFM) is unique in its ability to quantitatively probe forces and receptor-ligand interactions in real-time. The ability to assess the formation of supramolecular bonds and intermediates in real-time on surfaces and living cells generates important information relevant to understanding biological phenomena. Combining AFM with fluorescence-based techniques allows for an unprecedented level of insight not only concerning the formation and rupture of bonds, but understanding medically relevant interactions at a molecular level. As the ability of AFM to probe cells and more complex models improves, being able to assess binding kinetics, chemical topographies, and garner spectroscopic information will likely become key to developing further improvements in fields such as cancer, nanomaterials, and virology. The rapid response to the COVID-19 crisis, producing information regarding not just receptor affinities, but also strain-dependent efficacy of neutralizing nanobodies, demonstrates just how viable and integral to the pre-clinical development of information AFM techniques are in this era of medicine.
Collapse
Affiliation(s)
- Joshua D Simpson
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Danahe Mohammed
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| |
Collapse
|
25
|
Jenkner S, O'Hare Doig R. Complementing Neuroregeneration: Deciphering the Role of Neuro-Immune Interactions in CNS Repair. J Neurosci 2022; 42:2850-2852. [PMID: 35387879 PMCID: PMC8985858 DOI: 10.1523/jneurosci.2196-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/02/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Sandra Jenkner
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Ryan O'Hare Doig
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
26
|
Shibata R, Nagoshi N, Kajikawa K, Ito S, Shibata S, Shindo T, Khazaei M, Nori S, Kohyama J, Fehlings MG, Matsumoto M, Nakamura M, Okano H. Administration of C5a receptor antagonist improves the efficacy of human iPSCs-derived NS/PC transplantation in the acute phase of spinal cord injury. J Neurotrauma 2022; 39:667-682. [PMID: 35196890 DOI: 10.1089/neu.2021.0225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human-induced pluripotent stem cell-derived neural stem/progenitor cell (hiPSC-NS/PCs) transplantation during the acute phase of spinal cord injury (SCI) is not effective due to the inflammatory response occurring immediately after SCI, which negatively impacts transplanted cell survival. Therefore, we chose to study the powerful chemoattractant complement C5a as a method to generate a more favorable transplantation environment. We hypothesized that suppression of the inflammatory response immediately after SCI by C5a receptor antagonist (C5aRA) would improve the efficacy of hiPSC-NS/PCs transplantation for acute phase SCI. Here, we evaluated the influence of C5aRA on the inflammatory reaction during the acute phase after SCI, and observed significant reductions in several inflammatory cytokines, macrophages, neutrophils and apoptotic markers. Next, we divided the SCI mice into 4 groups: i) Phosphate-buffered saline (PBS) only, ii) C5aRA only, iii) PBS + transplantation (PBS+TP), and iv) C5aRA + transplantation (C5aRA+TP). Immediately after SCI, C5aRA or PBS was injected once a day for 4 consecutive days, followed by hiPSC-NS/PC transplantation or PBS into the lesion epicenter on day 4. The C5aRA+TP group had better functional improvement as compared to the PBS only group. The C5aRA+TP group also had a significantly higher cell survival rate compared to the PBS+TP group. This study demonstrates that administration of C5aRA can suppress the inflammatory response during the acute phase of SCI, while improving the survival rate of transplanted hiPSC-NS/PCs as well as enhancing motor functional restoration. hiPSC-NS/PC transplantation with C5aRA is a promising treatment during the acute injury phase for SCI patients.
Collapse
Affiliation(s)
- Reo Shibata
- Keio University School of Medicine, Orthopaedics Surgery, Shinjuku-ku, Japan.,Keio University School of Medicine, Physiology, Shinjuku-ku, Japan;
| | - Narihito Nagoshi
- Keio University School of Medicine, Orthopaedics Surgery, Shinjuku-ku, Japan;
| | - Keita Kajikawa
- Keio University School of Medicine, Orthopaedics Surgery, Shinjuku-ku, Japan;
| | - Shuhei Ito
- Keio University School of Medicine, Orthopaedics Surgery, Shinjuku-ku, Japan;
| | - Shinsuke Shibata
- Keio University School of Medicine, Electron Microscope Laboratory, Shinjuku-ku, Tokyo, Japan.,Graduate School of Medical and Dental Sciences, Niigata University, Division of Microscopic Anatomy, Niigata, Japan;
| | - Tomoko Shindo
- Keio University School of Medicine, Electron Microscope Laboratory, Shinjuku-ku, Tokyo, Japan;
| | - Mohamad Khazaei
- University Health Network, Division of Genetics and Development, Toronto Western Research Institute, Krembil Neuroscience Program, Toronto, Ontario, Canada;
| | - Satoshi Nori
- Keio University School of Medicine, Orthopaedics Surgery, Shinjuku-ku, Japan;
| | - Jun Kohyama
- Keio University School of Medicine, Physiology, Shinjuku-ku, Japan;
| | - Michael G Fehlings
- University Health Network, Division of Genetics and Development, Toronto Western Research Institute, Krembil Neuroscience Program, Toronto, Ontario, Canada;
| | - Morio Matsumoto
- Keio University School of Medicine, Orthopaedics Surgery, Shinjuku-ku, Japan;
| | - Masaya Nakamura
- Keio University School of Medicine, Orthopaedics Surgery, Shinjuku-ku, Japan;
| | - Hideyuki Okano
- Keio University School of Medicine, Physiology, Shinjuku-ku, Japan;
| |
Collapse
|
27
|
NogoA-expressing astrocytes limit peripheral macrophage infiltration after ischemic brain injury in primates. Nat Commun 2021; 12:6906. [PMID: 34824275 PMCID: PMC8617297 DOI: 10.1038/s41467-021-27245-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 11/05/2021] [Indexed: 11/08/2022] Open
Abstract
Astrocytes play critical roles after brain injury, but their precise function is poorly defined. Utilizing single-nuclei transcriptomics to characterize astrocytes after ischemic stroke in the visual cortex of the marmoset monkey, we observed nearly complete segregation between stroke and control astrocyte clusters. Screening for the top 30 differentially expressed genes that might limit stroke recovery, we discovered that a majority of astrocytes expressed RTN4A/ NogoA, a neurite-outgrowth inhibitory protein previously only associated with oligodendrocytes. NogoA upregulation on reactive astrocytes post-stroke was significant in both the marmoset and human brain, whereas only a marginal change was observed in mice. We determined that NogoA mediated an anti-inflammatory response which likely contributes to limiting the infiltration of peripheral macrophages into the surviving parenchyma.
Collapse
|
28
|
Gorman DM, Li XX, Lee JD, Fung JN, Cui CS, Lee HS, Rolfe BE, Woodruff TM, Clark RJ. Development of Potent and Selective Agonists for Complement C5a Receptor 1 with In Vivo Activity. J Med Chem 2021; 64:16598-16608. [PMID: 34762432 DOI: 10.1021/acs.jmedchem.1c01174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anaphylatoxin C5a is a complement peptide associated with immune-related disorders. C5a binds with equal potency to two GPCRs, C5aR1 and C5aR2. Multiple C5a peptide agonists have been developed to interrogate the C5a receptor function but none show selectivity for C5aR1. To address these limitations, we developed potent and stable peptide C5aR1 agonists that display no C5aR2 activity and over 1000-fold selectivity for C5aR1 over C3aR. This includes BM213, which induces C5aR1-mediated calcium mobilization and pERK1/2 signaling but not β-arrestin recruitment, and BM221, which exhibits no signaling bias. Both ligands are functionally similar to C5a in human macrophage cytokine release assays and in a murine in vivo neutrophil mobilization assay. BM213 showed antitumor activity in a mouse model of mammary carcinoma. We anticipate that these C5aR1-selective agonists will be useful research tools to investigate C5aR1 function.
Collapse
Affiliation(s)
- Declan M Gorman
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xaria X Li
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jenny N Fung
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cedric S Cui
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Han Siean Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Barbara E Rolfe
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
29
|
Shi Y, Jin Y, Li X, Chen C, Zhang Z, Liu X, Deng Y, Fan X, Wang C. C5aR1 Mediates the Progression of Inflammatory Responses in the Brain of Rats in the Early Stage after Ischemia and Reperfusion. ACS Chem Neurosci 2021; 12:3994-4006. [PMID: 34637270 DOI: 10.1021/acschemneuro.1c00244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
C5a receptor 1 (C5aR1) can induce a strong inflammatory response to an injury. Targeting C5aR1 has emerged as a novel anti-inflammatory therapeutic method. However, the role of C5aR1 in cerebral ischemia and reperfusion (I/R) injury and the definitive mechanism have not been elucidated clearly. Here, we determined whether C5aR1 signaling was essential to the post-ischemic inflammation and brain injury and whether it is a valid target for therapeutic blockade by using soluble receptor antagonist PMX53 in the early stage after I/R injury. In an in vitro model (oxygen and glucose deprivation and reperfusion, OGD/R) and in vivo model (middle cerebral artery occlusion and reperfusion, MCAO/R) of I/R, the neuronal cells of rats showed significantly up-regulated gene expression of C5aR1, and a notable inflammatory response was demonstrated with elevated tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6. Inhibition of C5aR1 by PMX53 treatment significantly reduced cell injury and inflammation and promoted brain function recovery. Further mechanism studies showed that inhibiting C5aR1 by PMX53 protected the rats from MCAO/R injury, decreased cell inflammation, and apoptosis via inhibiting the TLR4 and NF-κB signaling pathway and reducing the production of TNF-α, IL-1β, and IL-6 in MCAO/R rats. In addition, manipulation of the C5aR1 gene expression in vitro displayed that the inflammatory cascade signals including TLR4, TNF-α, IL-1β, and IL-6 were coincidently regulated with the regulation of C5aR1 expression levels. Thus, our results demonstrated a pathogenic role for C5aR1 in the progression of brain injury and inflammation response following I/R injury. Our study clearly demonstrated that C5aR1 inhibition might be an effective treatment strategy for ischemic stroke.
Collapse
Affiliation(s)
- Yunwei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Ying Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Xing Li
- Department of ICU, No. 1 People’s Hospital of Yancheng City, The Fourth Affiliated Hospital of Nantong University, Yancheng 224000, Jiangsu, China
| | - Chen Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Zhihong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Yijun Deng
- Department of ICU, No. 1 People’s Hospital of Yancheng City, The Fourth Affiliated Hospital of Nantong University, Yancheng 224000, Jiangsu, China
| | - Xingjuan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
30
|
Peterson SL, Li Y, Sun CJ, Wong KA, Leung KS, de Lima S, Hanovice NJ, Yuki K, Stevens B, Benowitz LI. Retinal Ganglion Cell Axon Regeneration Requires Complement and Myeloid Cell Activity within the Optic Nerve. J Neurosci 2021; 41:8508-8531. [PMID: 34417332 PMCID: PMC8513703 DOI: 10.1523/jneurosci.0555-21.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Axon regenerative failure in the mature CNS contributes to functional deficits following many traumatic injuries, ischemic injuries, and neurodegenerative diseases. The complement cascade of the innate immune system responds to pathogen threat through inflammatory cell activation, pathogen opsonization, and pathogen lysis, and complement is also involved in CNS development, neuroplasticity, injury, and disease. Here, we investigated the involvement of the classical complement cascade and microglia/monocytes in CNS repair using the mouse optic nerve injury (ONI) model, in which axons arising from retinal ganglion cells (RGCs) are disrupted. We report that central complement C3 protein and mRNA, classical complement C1q protein and mRNA, and microglia/monocyte phagocytic complement receptor CR3 all increase in response to ONI, especially within the optic nerve itself. Importantly, genetic deletion of C1q, C3, or CR3 attenuates RGC axon regeneration induced by several distinct methods, with minimal effects on RGC survival. Local injections of C1q function-blocking antibody revealed that complement acts primarily within the optic nerve, not retina, to support regeneration. Moreover, C1q opsonizes and CR3+ microglia/monocytes phagocytose growth-inhibitory myelin debris after ONI, a likely mechanism through which complement and myeloid cells support axon regeneration. Collectively, these results indicate that local optic nerve complement-myeloid phagocytic signaling is required for CNS axon regrowth, emphasizing the axonal compartment and highlighting a beneficial neuroimmune role for complement and microglia/monocytes in CNS repair.SIGNIFICANCE STATEMENT Despite the importance of achieving axon regeneration after CNS injury and the inevitability of inflammation after such injury, the contributions of complement and microglia to CNS axon regeneration are largely unknown. Whereas inflammation is commonly thought to exacerbate the effects of CNS injury, we find that complement proteins C1q and C3 and microglia/monocyte phagocytic complement receptor CR3 are each required for retinal ganglion cell axon regeneration through the injured mouse optic nerve. Also, whereas studies of optic nerve regeneration generally focus on the retina, we show that the regeneration-relevant role of complement and microglia/monocytes likely involves myelin phagocytosis within the optic nerve. Thus, our results point to the importance of the innate immune response for CNS repair.
Collapse
Affiliation(s)
- Sheri L Peterson
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Yiqing Li
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong China, 510060
| | - Christina J Sun
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Kimberly A Wong
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kylie S Leung
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Silmara de Lima
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Nicholas J Hanovice
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kenya Yuki
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, and
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142
| | - Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
31
|
Sapio MR, Kim JJ, Loydpierson AJ, Maric D, Goto T, Vazquez FA, Dougherty MK, Narasimhan R, Muhly WT, Iadarola MJ, Mannes AJ. The Persistent Pain Transcriptome: Identification of Cells and Molecules Activated by Hyperalgesia. THE JOURNAL OF PAIN 2021; 22:1146-1179. [PMID: 33892151 PMCID: PMC9441406 DOI: 10.1016/j.jpain.2021.03.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022]
Abstract
During persistent pain, the dorsal spinal cord responds to painful inputs from the site of injury, but the molecular modulatory processes have not been comprehensively examined. Using transcriptomics and multiplex in situ hybridization, we identified the most highly regulated receptors and signaling molecules in rat dorsal spinal cord in peripheral inflammatory and post-surgical incisional pain models. We examined a time course of the response including acute (2 hours) and longer term (2 day) time points after peripheral injury representing the early onset and instantiation of hyperalgesic processes. From this analysis, we identify a key population of superficial dorsal spinal cord neurons marked by somatotopic upregulation of the opioid neuropeptide precursor prodynorphin, and 2 receptors: the neurokinin 1 receptor, and anaplastic lymphoma kinase. These alterations occur specifically in the glutamatergic subpopulation of superficial dynorphinergic neurons. In addition to specific neuronal gene regulation, both models showed induction of broad transcriptional signatures for tissue remodeling, synaptic rearrangement, and immune signaling defined by complement and interferon induction. These signatures were predominantly induced ipsilateral to tissue injury, implying linkage to primary afferent drive. We present a comprehensive set of gene regulatory events across 2 models that can be targeted for the development of non-opioid analgesics. PERSPECTIVE: The deadly impact of the opioid crisis and the need to replace morphine and other opioids in clinical practice is well recognized. Embedded within this research is an overarching goal of obtaining foundational knowledge from transcriptomics to search for non-opioid analgesic targets. Developing such analgesics would address unmet clinical needs.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Jenny J Kim
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Amelia J Loydpierson
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, NIH, Bethesda, Maryland
| | - Taichi Goto
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland; National Institute of Nursing Research, Symptom Management Branch, NIH, Bethesda, Maryland; Japan Society for the Promotion of Science Overseas Research Fellowship, Tokyo, Japan
| | - Fernando A Vazquez
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Mary K Dougherty
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Radhika Narasimhan
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Wallis T Muhly
- National Institute of Nursing Research, Symptom Management Branch, NIH, Bethesda, Maryland; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael J Iadarola
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland.
| | - Andrew J Mannes
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| |
Collapse
|
32
|
Han FY, Xu W, Kumar V, Cui CS, Li X, Jiang X, Woodruff TM, Whittaker AK, Smith MT. Optimisation of a Microfluidic Method for the Delivery of a Small Peptide. Pharmaceutics 2021; 13:1505. [PMID: 34575581 PMCID: PMC8468767 DOI: 10.3390/pharmaceutics13091505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/28/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Peptides hold promise as therapeutics, as they have high bioactivity and specificity, good aqueous solubility, and low toxicity. However, they typically suffer from short circulation half-lives in the body. To address this issue, here, we have developed a method for encapsulation of an innate-immune targeted hexapeptide into nanoparticles using safe non-toxic FDA-approved materials. Peptide-loaded nanoparticles were formulated using a two-stage microfluidic chip. Microfluidic-related factors (i.e., flow rate, organic solvent, theoretical drug loading, PLGA type, and concentration) that may potentially influence the nanoparticle properties were systematically investigated using dynamic light scattering and transmission electron microscopy. The pharmacokinetic (PK) profile and biodistribution of the optimised nanoparticles were assessed in mice. Peptide-loaded lipid shell-PLGA core nanoparticles with designated size (~400 nm) and a sustained in vitro release profile were further characterized in vivo. In the form of nanoparticles, the elimination half-life of the encapsulated peptide was extended significantly compared with the peptide alone and resulted in a much higher distribution into the lung. These novel nanoparticles with lipid shells have considerable potential for increasing the circulation half-life and improving the biodistribution of therapeutic peptides to improve their clinical utility, including peptides aimed at treating lung-related diseases.
Collapse
Affiliation(s)
- Felicity Y. Han
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (W.X.); (V.K.); (C.S.C.); (X.L.); (T.M.W.); (M.T.S.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Weizhi Xu
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (W.X.); (V.K.); (C.S.C.); (X.L.); (T.M.W.); (M.T.S.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Vinod Kumar
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (W.X.); (V.K.); (C.S.C.); (X.L.); (T.M.W.); (M.T.S.)
| | - Cedric S. Cui
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (W.X.); (V.K.); (C.S.C.); (X.L.); (T.M.W.); (M.T.S.)
| | - Xaria Li
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (W.X.); (V.K.); (C.S.C.); (X.L.); (T.M.W.); (M.T.S.)
| | - Xingyu Jiang
- National Center for Nanoscience and Technology, Beijing 100190, China;
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Trent M. Woodruff
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (W.X.); (V.K.); (C.S.C.); (X.L.); (T.M.W.); (M.T.S.)
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia;
- ARC Centre of Excellence in Convergent Bio Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maree T. Smith
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (W.X.); (V.K.); (C.S.C.); (X.L.); (T.M.W.); (M.T.S.)
| |
Collapse
|
33
|
Wen Y, Shen F, Wu H. Role of C5a and C5aR in doxorubicin-induced cardiomyocyte senescence. Exp Ther Med 2021; 22:1114. [PMID: 34504568 PMCID: PMC8383765 DOI: 10.3892/etm.2021.10548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/11/2021] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin (DOX) is an efficacious antineoplastic drug; however, its use is limited due to its cardiotoxicity. Cardiomyocyte senescence is considered to be a key factor in the development of DOX-related cardiomyopathy. Complement component 5a (C5a) and the C5a receptor (C5aR) have been reported to play a key role in the process of cellular senescence. However, to the best of our knowledge, the exact role of C5a and C5aR in cellular senescence in the heart remains largely unknown. Reverse transcription-quantitative (RT-q)PCR and western blot assays were used to analyze the expression levels of C5a and C5aR in H9c2 embryonic rat cardiomyocytes and AC16 human cardiomyocyte-like cells. The cells were treated with DOX and a C5aR antagonist (C5aRA). The expression of TNF-α and IFN-γ was determined using ELISA and western blotting. The levels of reactive oxygen species (ROS) were also measured using ELISA. Cellular senescence was determined using senescence-associated β-galactosidase (SA-β-gal) staining and by analyzing the protein expression levels of p53, p16, p21 and insulin-like growth factor-binding protein 3 (IGFBP3). The expression levels of C5a and C5aR were found to be upregulated during the DOX-induced senescence of H9c2 and AC16 cardiomyocytes. Treatment with C5aRA downregulated TNF-α and IFN-γ expression, in addition to ROS levels. Furthermore, C5aRA prevented DOX-induced cellular senescence and decreased the levels of positive SA-β-gal staining in H9c2 and AC16 cardiomyocytes, in addition to downregulating the expression levels of p53, p16, p21 and IGFBP3. C5aRA also increased the telomere length and telomerase activity in H9c2 and AC16 cardiomyocytes following DOX stimulation. In conclusion, the findings of the present study indicated that C5a and C5aR may play a key role in cardiomyocyte senescence, and treatment with C5aRA may be an effective method for preventing DOX-induced cardiomyocyte aging.
Collapse
Affiliation(s)
- Yahui Wen
- Medical Care Ward, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Feiyan Shen
- Department of Cardiology, QingPu District Central Hospital, Shanghai 201700, P.R. China
| | - Haibin Wu
- Department of Outpatients, Shenzhen Traditional Chinese Medicine Hospital, Guangdong Shenzhen Health Management Center, Shenzhen, Guangdong 518033, P.R. China
| |
Collapse
|
34
|
Anaphylatoxin receptor promiscuity for commonly used complement C5a peptide agonists. Int Immunopharmacol 2021; 100:108074. [PMID: 34454293 DOI: 10.1016/j.intimp.2021.108074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Abstract
The complement system is an essential component of innate immunity. Its activation generates the effector cleavage proteins, anaphylatoxins C3a and C5a, that exert activity by interacting with three structurally related seven-transmembrane receptors. C3a activates C3aR, whilst C5a interacts with both C5aR1 and C5aR2 with equal potency. Of the three receptors, C5aR1 in particular is considered the most functionally potent inflammatory driver and has been the major target for pharmacological development. Multiple peptidic C5a agonists have been developed to target C5aR1, with the full agonists EP54 (YSFKPMPLaR) and EP67 (YSFKDMP(MeL)aR), and the partial agonist C028 (C5apep, NMe-FKPdChaChadR) being the most commonly utilised in research. Recent studies have indicated that small complement peptide ligands may lack selectivity amongst the three anaphylatoxin receptors, however this has not been uniformly confirmed for these commonly used C5a agonists. In the present study, we therefore characterised the pharmacological activity of EP54, EP67, and C5apep at human C5aR1, C5aR2 and C3aR, by conducting signalling assays in transfected cell lines, and in human primary macrophages. Our results revealed that none of the compounds tested were selective for human C5aR1. Both EP54 and EP67 were potent, full C3aR agonists, and EP54 and C5apep potently and partially activated human C5aR2. Therefore, we caution against the usage of these ligands, particularly EP54 and EP67, as C5a surrogates in C5a/ C5aR research.
Collapse
|
35
|
IgM Immunoglobulin Influences Recovery after Cervical Spinal Cord Injury by Modulating the IgG Autoantibody Response. eNeuro 2021; 8:ENEURO.0491-19.2021. [PMID: 34413082 PMCID: PMC8431822 DOI: 10.1523/eneuro.0491-19.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) results in the development of detrimental autoantibodies against the lesioned spinal cord. IgM immunoglobulin maintains homeostasis against IgG-autoantibody responses, but its effect on SCI recovery remains unknown. In the present study we investigated the role of IgM immunoglobulin in influencing recovery after SCI. To this end, we induced cervical SCI at the C6/C7 level in mice that lacked secreted IgM immunoglobulin [IgM-knock-out (KO)] and their wild-type (WT) littermate controls. Overall, the absence of secretory IgM resulted in worse outcomes as compared with WT mice with SCI. At two weeks after injury, IgM-KO mice had significantly more IgG antibodies, which fixed the complement system, in the injured spinal cord parenchyma. In addition to these findings, IgM-KO mice had more parenchymal T-lymphocytes as well as CD11b+ microglia/macrophages, which co-localized with myelin. At 10 weeks after injury, IgM-KO mice showed significant impairment in neurobehavioral recovery, such as deteriorated coordination, reduced hindlimb swing speed and print area. These neurobehavioral detriments were coupled with increased lesional tissue and myelin loss. Taken together, this study provides the first evidence for the importance of IgM immunoglobulin in modulating recovery after SCI and suggests that modulating IgM could be a novel therapeutic approach to enhance recovery after SCI.
Collapse
|
36
|
The complement cascade in the regulation of neuroinflammation, nociceptive sensitization, and pain. J Biol Chem 2021; 297:101085. [PMID: 34411562 PMCID: PMC8446806 DOI: 10.1016/j.jbc.2021.101085] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023] Open
Abstract
The complement cascade is a key component of the innate immune system that is rapidly recruited through a cascade of enzymatic reactions to enable the recognition and clearance of pathogens and promote tissue repair. Despite its well-understood role in immunology, recent studies have highlighted new and unexpected roles of the complement cascade in neuroimmune interaction and in the regulation of neuronal processes during development, aging, and in disease states. Complement signaling is particularly important in directing neuronal responses to tissue injury, neurotrauma, and nerve lesions. Under physiological conditions, complement-dependent changes in neuronal excitability, synaptic strength, and neurite remodeling promote nerve regeneration, tissue repair, and healing. However, in a variety of pathologies, dysregulation of the complement cascade leads to chronic inflammation, persistent pain, and neural dysfunction. This review describes recent advances in our understanding of the multifaceted cross-communication that takes place between the complement system and neurons. In particular, we focus on the molecular and cellular mechanisms through which complement signaling regulates neuronal excitability and synaptic plasticity in the nociceptive pathways involved in pain processing in both health and disease. Finally, we discuss the future of this rapidly growing field and what we believe to be the significant knowledge gaps that need to be addressed.
Collapse
|
37
|
Chen M, Edwards SR, Reutens DC. Complement in the Development of Post-Traumatic Epilepsy: Prospects for Drug Repurposing. J Neurotrauma 2021; 37:692-705. [PMID: 32000582 DOI: 10.1089/neu.2019.6942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Targeting neuroinflammation is a novel frontier in the prevention and treatment of epilepsy. A substantial body of evidence supports a key role for neuroinflammation in epileptogenesis, the pathological process that leads to the development and progression of spontaneous recurrent epileptic seizures. It is also well recognized that traumatic brain injury (TBI) induces a vigorous neuroinflammatory response and that a significant proportion of patients with TBI suffer from debilitating post-traumatic epilepsy. The complement system is a potent effector of innate immunity and a significant contributor to secondary tissue damage and to epileptogenesis following central nervous system injury. Several therapeutic agents targeting the complement system are already on the market to treat other central nervous system disorders or are well advanced in their development. The purpose of this review is to summarize findings on complement activation in experimental TBI and epilepsy models, highlighting the potential of drug repurposing in the development of therapeutics to ameliorate post-traumatic epileptogenesis.
Collapse
Affiliation(s)
- Min Chen
- Center for Advanced Imaging, University of Queensland, St. Lucia, Queensland, Australia
| | - Stephen R Edwards
- Center for Advanced Imaging, University of Queensland, St. Lucia, Queensland, Australia
| | - David C Reutens
- Center for Advanced Imaging, University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
38
|
Pekna M, Pekny M. The Complement System: A Powerful Modulator and Effector of Astrocyte Function in the Healthy and Diseased Central Nervous System. Cells 2021; 10:cells10071812. [PMID: 34359981 PMCID: PMC8303424 DOI: 10.3390/cells10071812] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The complement system, an effector arm of the innate immune system that plays a critical role in tissue inflammation, the elimination of pathogens and the clearance of dead cells and cell debris, has emerged as a regulator of many processes in the central nervous system, including neural cell genesis and migration, control of synapse number and function, and modulation of glial cell responses. Complement dysfunction has also been put forward as a major contributor to neurological disease. Astrocytes are neuroectoderm-derived glial cells that maintain water and ionic homeostasis, and control cerebral blood flow and multiple aspects of neuronal functioning. By virtue of their expression of soluble as well as membrane-bound complement proteins and receptors, astrocytes are able to both send and receive complement-related signals. Here we review the current understanding of the multiple functions of the complement system in the central nervous system as they pertain to the modulation of astrocyte activity, and how astrocytes use the complement system to affect their environment in the healthy brain and in the context of neurological disease.
Collapse
Affiliation(s)
- Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne 3010, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle 2308, Australia
- Correspondence: ; Tel.: +46-31-786-3581
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden;
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne 3010, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle 2308, Australia
| |
Collapse
|
39
|
Shah TA, Pallera HK, Kaszowski CL, Bass WT, Lattanzio FA. Therapeutic Hypothermia Inhibits the Classical Complement Pathway in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. Front Neurosci 2021; 15:616734. [PMID: 33642979 PMCID: PMC7907466 DOI: 10.3389/fnins.2021.616734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/25/2021] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Complement activation is instrumental in the pathogenesis of Hypoxic-ischemic encephalopathy (HIE), a significant cause of neonatal mortality and disability worldwide. Therapeutic hypothermia (HT), the only available treatment for HIE, only modestly improves outcomes. Complement modulation as a therapeutic adjunct to HT has been considered, but is challenging due to the wide-ranging role of the complement system in neuroinflammation, homeostasis and neurogenesis in the developing brain. We sought to identify potential therapeutic targets by measuring the impact of treatment with HT on complement effector expression in neurons and glia in neonatal HIE, with particular emphasis on the interactions between microglia and C1q. METHODS The Vannucci model was used to induce HIE in term-equivalent rat pups. At P10-12, pups were randomly assigned to three different treatment groups: Sham (control), normothermia (NT), and hypothermia (HT) treatment. Local and systemic complement expression and neuronal apoptosis were measured by ELISA, TUNEL and immunofluorescence labeling, and differences compared between groups. RESULTS Treatment with HT is associated with decreased systemic and microglial expression of C1q, decreased systemic C5a levels, and decreased microglial and neuronal deposition of C3 and C9. The effect of HT on cytokines was variable with decreased expression of pro and anti-inflammatory effectors. HT treatment was associated with decreased C1q binding on cells undergoing apoptosis. CONCLUSION Our data demonstrate the extreme complexity of the immune response in neonatal HIE. We propose modulation of downstream effectors C3a and C5a as a therapeutic adjunct to HT to enhance neuroprotection in the developing brain.
Collapse
Affiliation(s)
- Tushar A. Shah
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
- Children’s Specialty Group, Norfolk, VA, United States
- Children’s Hospital of The King’s Daughters, Norfolk, VA, United States
| | - Haree K. Pallera
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | - William Thomas Bass
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
- Children’s Specialty Group, Norfolk, VA, United States
- Children’s Hospital of The King’s Daughters, Norfolk, VA, United States
| | - Frank A. Lattanzio
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
40
|
Kanmogne M, Klein RS. Neuroprotective versus Neuroinflammatory Roles of Complement: From Development to Disease. Trends Neurosci 2020; 44:97-109. [PMID: 33190930 DOI: 10.1016/j.tins.2020.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Complement proteins are ancient components of innate immunity that have emerged as crucial regulators of neural networks. We discuss these roles in the context of the CNS development, acute CNS viral infections, and post-infectious and noninfectious CNS disorders, with an emphasis on microglia-mediated loss of synapses. Despite extensive examples that implicate classical complement proteins and their receptors in CNS dysfunction, recent data suggest that they exert neuroprotective roles in CNS homeostasis through continued refinement of synaptic connections. Thorough understanding of the mechanisms involved in these processes may lead to novel targets for the treatment of CNS diseases involving aberrant complement-mediated synapse loss.
Collapse
Affiliation(s)
- Marlene Kanmogne
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
41
|
Gillespie ER, Ruitenberg MJ. Neuroinflammation after SCI: Current Insights and Therapeutic Potential of Intravenous Immunoglobulin. J Neurotrauma 2020; 39:320-332. [PMID: 32689880 DOI: 10.1089/neu.2019.6952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic spinal cord injury (SCI) elicits a complex cascade of cellular and molecular inflammatory events. Although certain aspects of the inflammatory response are essential to wound healing and repair, post-SCI inflammation is, on balance, thought to be detrimental to recovery by causing "bystander damage" and the spread of pathology into spared but vulnerable regions of the spinal cord. Much of the research to date has therefore focused on understanding the inflammatory drivers of secondary tissue loss after SCI, to define therapeutic targets and positively modulate this response. Numerous experimental studies have demonstrated that modulation of the inflammatory response to SCI can indeed lead to significant neuroprotection and improved recovery. However, it is now also recognized that broadscale immunosuppression is not necessarily beneficial and may even carry the risk of contributing to the development of serious adverse events. Immune modulation rather than suppression is therefore now considered a more promising approach to target harmful post-traumatic inflammation following a major neurotraumatic event such as SCI. One promising immunomodulatory agent is intravenous immunoglobulin (IVIG), a plasma product that contains mostly immunoglobulin G (IgG) from thousands of healthy donors. IVIG is currently already widely used to treat a range of autoimmune diseases, but recent studies have found that it also holds great promise for treating acute neurological conditions, including SCI. This review provides an overview of the inflammatory response to SCI, immunomodulatory approaches that are currently in clinical trials, proposed mechanisms of action for IVIG therapy, and the putative relevance of these in the context of neurotraumatic events.
Collapse
Affiliation(s)
- Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Trauma, Critical Care, and Recovery, Brisbane Diamantina Health Partners, Brisbane, Australia
| |
Collapse
|
42
|
Wang D, Wang K, Liu Z, Wang Z, Wu H. Valproic acid-labeled chitosan nanoparticles promote recovery of neuronal injury after spinal cord injury. Aging (Albany NY) 2020; 12:8953-8967. [PMID: 32463791 PMCID: PMC7288920 DOI: 10.18632/aging.103125] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Chitosan nanoparticles have been recognized as a new type of biomaterials for treatment of spinal cord injury (SCI). To develop a novel treatment method targeted delivery injured spinal cord, valproic acid labeled chitosan nanoparticles (VA-CN) were constructed and evaluated in the treatment of SCI. Our results demonstrated that administration of VA-CN significantly promoted the recovery of the function and tissue repair after SCI. Moreover, we found treatment of VA-CN inhibited the reactive astrocytes after SCI. Furthermore, administration of VA-CN enhanced immunoreactions of neuronal related marker NF160, which suggested that VA-CN could promote the neuroprotective function in rats of SCI. The production of IL-1β, IL-6 and TNF-α were significantly decreased following treatment of VA-CN. Meanwhile, administration of VA-CN effectively improved the blood spinal cord barrier (BSCB) disruption after SCI. Administration of VA-CN could enhance the recovery of neuronal injury, suppress the reactive astrocytes and inflammation, and improve the blood spinal cord barrier disruption after SCI in rats. These results provided a novel and promising therapeutic manner for SCI.
Collapse
Affiliation(s)
- Dimin Wang
- School of Medicine, Zhejiang University, Hangzhou, China.,College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zonglin Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
43
|
3-(4-Bromophenyl)-4-{[3-hydroxy-6-(hydroxymethyl)-4-oxo-4H-pyran-2-yl](m-tolyl)methyl}isoxazol-5(2H)-one. MOLBANK 2020. [DOI: 10.3390/m1135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this communication, the electrochemically induced multicomponent transformation of 3-methylbenzaldehyde, 3-(4-bromophenyl)isoxazol-5(4H)-one and kojic acid in n-PrOH in an undivided cell in the presence of sodium bromide was carefully investigated to give 3-(4-bromophenyl)-4-{[3-hydroxy-6-(hydroxymethyl)-4-oxo-4H-pyran-2-yl](m-tolyl)methyl}isoxa- zol-5(2H)-one in good yield. The structure of the new compound was established by means of elemental analysis, mass-, nuclear magnetic resonance and infrared spectroscopy. Furthermore, its structure was determined and confirmed by X-ray analysis. The synthesized compound is a promising compound for different biomedical applications, and, in particular, for the regulation of inflammatory diseases, as shown by docking studies in this research.
Collapse
|
44
|
Lo MW, Woodruff TM. Complement: Bridging the innate and adaptive immune systems in sterile inflammation. J Leukoc Biol 2020; 108:339-351. [PMID: 32182389 DOI: 10.1002/jlb.3mir0220-270r] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The complement system is a collection of soluble and membrane-bound proteins that together act as a powerful amplifier of the innate and adaptive immune systems. Although its role in infection is well established, complement is becoming increasingly recognized as a key contributor to sterile inflammation, a chronic inflammatory process often associated with noncommunicable diseases. In this context, damaged tissues release danger signals and trigger complement, which acts on a range of leukocytes to augment and bridge the innate and adaptive immune systems. Given the detrimental effect of chronic inflammation, the complement system is therefore well placed as an anti-inflammatory drug target. In this review, we provide a general outline of the sterile activators, effectors, and targets of the complement system and a series of examples (i.e., hypertension, cancer, allograft transplant rejection, and neuroinflammation) that highlight complement's ability to bridge the 2 arms of the immune system.
Collapse
Affiliation(s)
- Martin W Lo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
45
|
Astrocytic YAP Promotes the Formation of Glia Scars and Neural Regeneration after Spinal Cord Injury. J Neurosci 2020; 40:2644-2662. [PMID: 32066583 DOI: 10.1523/jneurosci.2229-19.2020] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
Yes-associated protein (YAP) transcriptional coactivator is negatively regulated by the Hippo pathway and functions in controlling the size of multiple organs, such as liver during development. However, it is not clear whether YAP signaling participates in the process of the formation of glia scars after spinal cord injury (SCI). In this study, we found that YAP was upregulated and activated in astrocytes of C57BL/6 male mice after SCI in a Hippo pathway-dependent manner. Conditional knockout (KO) of yap in astrocytes significantly inhibited astrocytic proliferation, impaired the formation of glial scars, inhibited the axonal regeneration, and impaired the behavioral recovery of C57BL/6 male mice after SCI. Mechanistically, the bFGF was upregulated after SCI and induced the activation of YAP through RhoA pathways, thereby promoting the formation of glial scars. Additionally, YAP promoted bFGF-induced proliferation by negatively controlling nuclear distribution of p27Kip1 mediated by CRM1. Finally, bFGF or XMU-MP-1 (an inhibitor of Hippo kinase MST1/2 to activate YAP) injection indeed activated YAP signaling and promoted the formation of glial scars and the functional recovery of mice after SCI. These findings suggest that YAP promotes the formation of glial scars and neural regeneration of mice after SCI, and that the bFGF-RhoA-YAP-p27Kip1 pathway positively regulates astrocytic proliferation after SCI.SIGNIFICANCE STATEMENT Glial scars play critical roles in neuronal regeneration of CNS injury diseases, such as spinal cord injury (SCI). Here, we provide evidence for the function of Yes-associated protein (YAP) in the formation of glial scars after SCI through regulation of astrocyte proliferation. As a downstream of bFGF (which is upregulated after SCI), YAP promotes the proliferation of astrocytes through negatively controlling nuclear distribution of p27Kip1 mediated by CRM1. Activation of YAP by bFGF or XMU-MP-1 injection promotes the formation of glial scar and the functional recovery of mice after SCI. These results suggest that the bFGF-RhoA-YAP-p27Kip1 axis for the formation of glial scars may be a potential therapeutic strategy for SCI patients.
Collapse
|
46
|
Expression of NFIA and NFIB within the murine spinal cord. Gene Expr Patterns 2020; 35:119098. [PMID: 32068188 DOI: 10.1016/j.gep.2020.119098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
The Nuclear factor I proteins comprise a family of transcription factors that are expressed in many developing and mature cell populations, including within the central nervous system. Within the embryonic mouse spinal cord, NFIA and NFIB are expressed by neural progenitor cells lining the central canal, where they act to promote astrocytic and oligodendrocytic lineage specification. Cells lining the mature spinal cord central canal retain characteristics of neural progenitor cells, but the expression of NFIA and NFIB within the mature spinal cord at a cell-type-specific level remains undefined. Here, we investigated where these two transcription factors are expressed within the adult mouse spinal cord. We reveal that both factors are expressed in similar cohorts of mature cells, including ependymal cells, interneurons and motor neurons. We also show robust and widespread expression of NFIA and NFIB within nestin-expressing cells following injury to the spinal cord. Collectively, these data provide a basis to further define what functional role(s) NFIA and NFIB play within the adult spinal cord.
Collapse
|
47
|
Kumar V, Lee JD, Clark RJ, Noakes PG, Taylor SM, Woodruff TM. Preclinical Pharmacokinetics of Complement C5a Receptor Antagonists PMX53 and PMX205 in Mice. ACS OMEGA 2020; 5:2345-2354. [PMID: 32064396 PMCID: PMC7017397 DOI: 10.1021/acsomega.9b03735] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/21/2020] [Indexed: 05/16/2023]
Abstract
The cyclic hexapeptides PMX53 and PMX205 are potent noncompetitive inhibitors of complement C5a receptor 1 (C5aR1). They are widely utilized to study the role of C5aR1 in mouse models, including central nervous system (CNS) disease, and are dosed through a variety of routes of administration. However, a comprehensive pharmacokinetics analysis of these drugs has not been reported. In this study, the blood and CNS pharmacokinetics of PMX53 and PMX205 were performed in mice following intravenous, intraperitoneal, subcutaneous, and oral administration at identical doses. The absorption and distribution of both drugs were rapid and followed a two-compartment model with elimination half-lives of ∼20 min for both compounds. Urinary excretion was the major route of elimination following intravenous dosing with ∼50% of the drug excreted unchanged within the first 12 h. Oral bioavailability of PMX205 was higher than that of PMX53 (23% versus 9%), and PMX205 was also more efficient than PMX53 at entering the intact CNS. In comparison to other routes, subcutaneous administration of PMX205 resulted in high bioavailability (above 90%), as well as prolonged plasma and CNS exposure. Finally, repeated daily oral or subcutaneous administration of PMX205 demonstrated no accumulation of drug in blood, the brain, or the spinal cord, promoting its safety for chronic dosing. These results will be helpful in correlating the desired therapeutic effects of these C5aR1 antagonists with their pharmacokinetic profile. It also suggests that subcutaneous dosing of PMX205 may be an appropriate route of administration for future clinical testing in neurological disease.
Collapse
Affiliation(s)
- Vinod Kumar
- School
of Biomedical Sciences, The University of
Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - John D. Lee
- School
of Biomedical Sciences, The University of
Queensland, St Lucia, Brisbane, QLD 4072, Australia
- University
of Queensland Centre for Clinical Research, the University of Queensland, Brisbane, QLD 4029, Australia
| | - Richard J. Clark
- School
of Biomedical Sciences, The University of
Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Peter G. Noakes
- School
of Biomedical Sciences, The University of
Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Queensland
Brain Institute, the University of Queensland,
St Lucia, Brisbane, QLD 4072, Australia
| | - Stephen M. Taylor
- School
of Biomedical Sciences, The University of
Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Trent M. Woodruff
- School
of Biomedical Sciences, The University of
Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Wesley
Medical Research, The Wesley Hospital, Auchenflower, Brisbane, QLD 4066, Australia
- . Phone: +61-7-336 52924. Fax: +61-7-336-51766
| |
Collapse
|
48
|
van Dijk BJ, Meijers JCM, Kloek AT, Knaup VL, Rinkel GJE, Morgan BP, van der Kamp MJ, Osuka K, Aronica E, Ruigrok YM, van de Beek D, Brouwer M, Pekna M, Hol EM, Vergouwen MDI. Complement C5 Contributes to Brain Injury After Subarachnoid Hemorrhage. Transl Stroke Res 2019; 11:678-688. [PMID: 31811640 PMCID: PMC7340633 DOI: 10.1007/s12975-019-00757-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
Previous studies showed that complement activation is associated with poor functional outcome after aneurysmal subarachnoid hemorrhage (SAH). We investigated whether complement activation is underlying brain injury after aneurysmal SAH (n = 7) and if it is an appropriate treatment target. We investigated complement expression in brain tissue of aneurysmal SAH patients (n = 930) and studied the role of common genetic variants in C3 and C5 genes in outcome. We analyzed plasma levels (n = 229) to identify the functionality of a single nucleotide polymorphism (SNP) associated with outcome. The time course of C5a levels was measured in plasma (n = 31) and CSF (n = 10). In an SAH mouse model, we studied the extent of microglia activation and cell death in wild-type mice, mice lacking the C5a receptor, and in mice treated with C5-specific antibodies (n = 15 per group). Brain sections from aneurysmal SAH patients showed increased presence of complement components C1q and C3/C3b/iC3B compared to controls. The complement component 5 (C5) SNP correlated with C5a plasma levels and poor disease outcome. Serial measurements in CSF revealed that C5a was > 1400-fold increased 1 day after aneurysmal SAH and then gradually decreased. C5a in plasma was 2-fold increased at days 3–10 after aneurysmal SAH. In the SAH mouse model, we observed a ≈ 40% reduction in both microglia activation and cell death in mice lacking the C5a receptor, and in mice treated with C5-specific antibodies. These data show that C5 contributes to brain injury after experimental SAH, and support further study of C5-specific antibodies as novel treatment option to reduce brain injury and improve prognosis after aneurysmal SAH.
Collapse
Affiliation(s)
- Bart J van Dijk
- UMC Utrecht Brain Center, Department of Translational Neurosciences, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands.,UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands
| | - Joost C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands.,Department of Plasma Proteins, Sanquin Research, Plesmanlaan 125, Amsterdam, The Netherlands
| | - Anne T Kloek
- Department of Neurology, Amsterdam Neuroscience, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Veronique L Knaup
- Department of Experimental Vascular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Gabriel J E Rinkel
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands
| | - B Paul Morgan
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff, UK
| | - Marije J van der Kamp
- UMC Utrecht Brain Center, Department of Translational Neurosciences, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands
| | - Koji Osuka
- Department of Neurological Surgery, Aichi Medical University, 1-1 Karimatayazako, Aichi, Japan
| | - Eleonora Aronica
- Department of Neuropathology, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ynte M Ruigrok
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Matthijs Brouwer
- Department of Neurology, Amsterdam Neuroscience, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Marcela Pekna
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 9A, Gothenburg, Sweden
| | - Elly M Hol
- UMC Utrecht Brain Center, Department of Translational Neurosciences, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands.,Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, The Netherlands
| | - Mervyn D I Vergouwen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands.
| |
Collapse
|
49
|
Association of TRAF1/C5 Locus Polymorphisms with Epilepsy and Clinical Traits in Mexican Patients with Neurocysticercosis. Infect Immun 2019; 87:IAI.00347-19. [PMID: 31570557 DOI: 10.1128/iai.00347-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/20/2019] [Indexed: 02/04/2023] Open
Abstract
Neurocysticercosis is caused by the establishment of Taenia solium cysts in the central nervous system. Murine cysticercosis by Taenia crassiceps is a useful model of cysticercosis in which the complement component 5 (C5) has been linked to infection resistance/permissiveness. This work aimed to study the possible relevance for human neurocysticercosis of single nucleotide polymorphisms (SNPs) in the C5-TRAF1 region (rs17611 C/T, rs992670 G/A, rs25681 G/A, rs10818488 A/G, and rs3761847 G/A) in a Mexican population and associated with clinical and radiological traits related to neurocysticercosis severity (cell count in the cerebrospinal fluid [CSF cellularity], parasite location and parasite load in the brain, parasite degenerating stage, and epilepsy). The AG genotype of the rs3761847 SNP showed a tendency to associate with multiple brain parasites, while the CT and GG genotypes of the rs17611 and rs3761847 SNPs, respectively, showed a tendency to associate with low CSF cellularity. The rs3761847 SNP was associated with epilepsy under a dominant model, whereas rs10818488 was associated with CSF cellularity and parasite load under dominant and recessive models, respectively. For haplotypes, C5- and the TRAF1-associated SNPs were, respectively, in strong linkage disequilibrium with each other; thus, these haplotypes were studied independently. For C5 SNPs, carrying the CAA haplotype increases the risk of showing high CSF cellularity 3-fold and the risk of having extraparenchymal parasites 4-fold, two conditions that are related to severe disease. For TRAF1 SNPs, the GA and AG haplotypes were associated with CSF cellularity, and the AG haplotype was associated with epilepsy. Overall, these findings support the clear participation of C5 and TRAF1 in the risk of developing severe neurocysticercosis in the Mexican population.
Collapse
|
50
|
Lee JD, Coulthard LG, Woodruff TM. Complement dysregulation in the central nervous system during development and disease. Semin Immunol 2019; 45:101340. [PMID: 31708347 DOI: 10.1016/j.smim.2019.101340] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
The complement cascade is an important arm of the immune system that plays a key role in protecting the central nervous system (CNS) from infection. Recently, it has also become clear that complement proteins have fundamental roles in the developing and aging CNS that are distinct from their roles in immunity. During neurodevelopment, complement signalling is involved in diverse processes including neural tube closure, neural progenitor proliferation and differentiation, neuronal migration, and synaptic pruning. In acute neurotrauma and ischamic brain injury, complement drives inflammation and neuronal death, but also neuroprotection and regeneration. In diseases of the aging CNS including dementias and motor neuron disease, chronic complement activation is associated with glial activation, and synapse and neuron loss. Proper regulation of complement is thus essential to allow for an appropriately developed CNS and prevention of excessive damage following neurotrauma or during neurodegeneration. This review provides a comprehensive overview of the evidence for functional roles of complement in brain formation, and its dysregulation during acute and chronic disease. We also provide working models for how complement can lead to neurodevelopmental disorders such as schizophrenia and autism, and either protect, or propagate neurodegenerative diseases including Alzheimer's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Liam G Coulthard
- Royal Brisbane and Women's Hospital, Herston, Australia; School of Clinical Medicine, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|