1
|
Ubri CE, Farrugia AM, Cohen AS. Mild Traumatic Brain Injury Impairs Fear Extinction and Network Excitability in the Infralimbic Cortex. J Neurotrauma 2025. [PMID: 40401451 DOI: 10.1089/neu.2025.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and disability, with mild TBI (concussions) representing over 80% of cases. Although often considered benign, mild TBI is associated with persistent neuropsychiatric conditions, including post-traumatic stress disorder, anxiety, and depression. A hallmark of these conditions is impaired fear extinction (FE), the process by which learned fear responses are inhibited in safe contexts. This dysfunction contributes to maladaptive fear expression and is linked to altered neurocircuitry, particularly in the infralimbic cortex (IL), a key region in FE. Despite extensive evidence of impaired FE in patients with mild TBI and animal models, the specific mechanisms underlying this deficit remain poorly understood. This study aimed to address this gap by combining cued-FE behavior, local field potential recordings, and whole-cell patch-clamp techniques to investigate how mild TBI affects IL network activity and excitability in a mouse model of TBI. Our results demonstrate that mild lateral fluid percussion injury significantly impairs FE memory, as evidenced by an elevated cued-fear response during extinction testing 10 days post-injury. Field potential recordings revealed decreased activation of the IL network in both layers II/III and V, which was consistent with the observed behavioral deficits. Further analysis of synaptic physiology revealed an imbalance in excitatory and inhibitory neurotransmission (E/I imbalance) in the IL, characterized by reduced excitatory input and enhanced inhibitory input to neurons in both layers. Moreover, intrinsic excitability was altered in IL neurons after mild TBI. This study provides novel insights into how mild TBI disrupts the neurocircuitry underlying FE, specifically by suppressing IL excitability. These results highlight the importance of understanding the mechanistic disruptions in IL activity for developing therapeutic strategies to address fear-based disorders in patients with mild TBI.
Collapse
Affiliation(s)
- Catherine E Ubri
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anthony M Farrugia
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Akiva S Cohen
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Chen J, Fang Z, Zhang X, Zheng Y, Chen Z. How Fear Memory is Updated: From Reconsolidation to Extinction? Neurosci Bull 2025:10.1007/s12264-025-01367-7. [PMID: 40205305 DOI: 10.1007/s12264-025-01367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/21/2024] [Indexed: 04/11/2025] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder caused by traumatic past experiences, rooted in the neurocircuits of fear memory formation. Memory processes include encoding, storing, and recalling to forgetting, suggesting the potential to erase fear memories through timely interventions. Conventional strategies such as medications or electroconvulsive therapy often fail to provide permanent relief and come with significant side-effects. This review explores how fear memory may be erased, particularly focusing on the mnemonic phases of reconsolidation and extinction. Reconsolidation strengthens memory, while extinction weakens it. Interfering with memory reconsolidation could diminish the fear response. Alternatively, the extinction of acquired memory could reduce the fear memory response. This review summarizes experimental animal models of PTSD, examines the nature and epidemiology of reconsolidation to extinction, and discusses current behavioral therapy aimed at transforming fear memories to treat PTSD. In sum, understanding how fear memory updates holds significant promise for PTSD treatment.
Collapse
Affiliation(s)
- Jiahui Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhuowen Fang
- Zhejiang Key Laboratory of Neuropsychopharmacology, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaolan Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhong Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
3
|
Quiñones-Labernik P, Blocklinger KL, Bruce MR, Ferri SL. Excess neonatal testosterone causes male-specific social and fear memory deficits in wild-type mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.18.562939. [PMID: 37905064 PMCID: PMC10614869 DOI: 10.1101/2023.10.18.562939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Neurodevelopmental disorders disproportionately affect males compared to females. The biological mechanisms of this male susceptibility or female protection have not been identified. There is evidence that fetal/neonatal gonadal hormones, which play a pivotal role in many aspects of development, may contribute. Here, we investigate the effects of excess testosterone during a critical period of sex-specific brain organization on social approach and fear learning behaviors in C57BL/6J wild-type mice. Male, but not female, mice treated with testosterone on the day of birth (PN0) exhibited decreased social approach as juveniles and decreased contextual fear memory as adults, compared to vehicle-treated controls. These deficits were not driven by anxiety-like behavior or changes in locomotion or body weight. Mice treated with the same dose of testosterone on postnatal day 18 (PN18), which is outside of the critical period of brain masculinization, did not demonstrate impairments compared to the vehicle group. These findings indicate that excess testosterone during a critical period of early development, but not shortly after, induces long-term deficits relevant to the male sex bias in neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | | | - Sarah L Ferri
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
4
|
Aukema RJ, Petrie GN, Matarasso AK, Baglot SL, Molina LA, Füzesi T, Kadhim S, Nastase AS, Rodriguez Reyes I, Bains JS, Morena M, Bruchas MR, Hill MN. Identification of a stress-responsive subregion of the basolateral amygdala in male rats. Neuropsychopharmacology 2024; 49:1989-1999. [PMID: 39117904 PMCID: PMC11480132 DOI: 10.1038/s41386-024-01927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
The basolateral amygdala (BLA) is reliably activated by psychological stress and hyperactive in conditions of pathological stress or trauma; however, subsets of BLA neurons are also readily activated by rewarding stimuli and can suppress fear and avoidance behaviours. The BLA is highly heterogeneous anatomically, exhibiting continuous molecular and connectivity gradients throughout the entire structure. A critical gap remains in understanding the anatomical specificity of amygdala subregions, circuits, and cell types explicitly activated by acute stress and how they are dynamically activated throughout stimulus exposure. Using a combination of topographical mapping for the activity-responsive protein FOS and fiber photometry to measure calcium transients in real-time, we sought to characterize the spatial and temporal patterns of BLA activation in response to a range of novel stressors (shock, swim, restraint, predator odour) and non-aversive, but novel stimuli (crackers, citral odour). We report four main findings: (1) the BLA exhibits clear spatial activation gradients in response to novel stimuli throughout the medial-lateral and dorsal-ventral axes, with aversive stimuli strongly biasing activation towards medial aspects of the BLA; (2) novel stimuli elicit distinct temporal activation patterns, with stressful stimuli exhibiting particularly enhanced or prolonged temporal activation patterns; (3) changes in BLA activity are associated with changes in behavioural state; and (4) norepinephrine enhances stress-induced activation of BLA neurons via the ß-noradrenergic receptor. Moving forward, it will be imperative to combine our understanding of activation gradients with molecular and circuit-specificity.
Collapse
Affiliation(s)
- Robert J Aukema
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Avi K Matarasso
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Samantha L Baglot
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Leonardo A Molina
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Sandra Kadhim
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Itzel Rodriguez Reyes
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Jaideep S Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Maria Morena
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, 00185, Italy
- Neuropsychopharmacology Unit, European Center for Brain Research, Santa Lucia Foundation, Rome, 00143, Italy
| | - Michael R Bruchas
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Psychiatry, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
5
|
Foilb AR, Taylor-Yeremeeva EM, Schmidt BD, Ressler KJ, Carlezon WA. Acute sleep disruption reduces fear memories in male and female mice. Neuropsychopharmacology 2024; 50:401-409. [PMID: 39198581 PMCID: PMC11631974 DOI: 10.1038/s41386-024-01978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Sleep problems are a prominent feature of mental health conditions including post-traumatic stress disorder (PTSD). Despite its potential importance, the role of sleep in the development of and/or recovery from trauma-related illnesses is not understood. Interestingly, there are reports that sleep disruption immediately after a traumatic experience can reduce fear memories, an effect that could be utilized therapeutically in humans. While the mechanisms of this effect are not completely understood, one possible explanation for these findings is that immediate sleep disruption interferes with consolidation of fear memories, rendering them weaker and more sensitive to intervention. Here, we allowed fear-conditioned mice to sleep immediately after fear conditioning during a time frame (18 h) that includes and extends beyond periods typically associated with memory consolidation before subjecting them to 6-h of sleep disruption. Mice exposed to this delayed regimen showed dramatic reductions in fear during tests conducted immediately after sleep disruption, as well as 24 h later. This sleep disruption regimen also increased levels of mRNA encoding brain-derived neurotrophic factor (BDNF), a molecule implicated in neuroplasticity, in the basolateral amygdala (BLA), a brain area implicated in fear and its extinction. These findings raise the possibility that the effects of our delayed sleep disruption regimen are not due to disruption of memory consolidation, but instead are caused by BDNF-mediated neuroadaptations within the BLA that actively suppress expression of fear. Treatments that safely reduce expression of fear memories would have considerable therapeutic potential in the treatment of conditions triggered by trauma.
Collapse
Affiliation(s)
- Allison R Foilb
- Department of Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Elisa M Taylor-Yeremeeva
- Department of Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Brett D Schmidt
- Department of Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - William A Carlezon
- Department of Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
6
|
Aukema RJ, Petrie GN, Baglot SL, Gilpin NW, Hill MN. Acute stress activates basolateral amygdala neurons expressing corticotropin-releasing hormone receptor type 1 (CRHR1): Topographical distribution and projection-specific activation in male and female rats. Neurobiol Stress 2024; 33:100694. [PMID: 39634490 PMCID: PMC11615582 DOI: 10.1016/j.ynstr.2024.100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Although the basolateral amygdala (BLA) and corticotropin releasing hormone receptor type I (CRHR1) signaling are both central to the stress response, the spatial and circuit-specific distribution of CRHR1 have not been identified in the BLA at a high resolution. We used transgenic male and female CRHR1-Cre-tdTomato rats to topographically map the distribution of BLACRHR1 neurons and identify whether they are activated by acute stress. Additionally, we used the BLA circuits projecting to the central amygdala (CeA) and nucleus accumbens (NAc) as a model to test circuit-specific expression of CRHR1 in the BLA. We established several key findings. First, CRHR1 had the strongest expression in the lateral amygdala and in caudal portions of the BLA. Second, acute restraint stress increased FOS expression of CRHR1 neurons, and stress-induced activation was particularly strong in medial subregions of the BLA. Third, stress significantly increased FOS expression on BLA-NAc, but not BLA-CeA projectors, and BLA-NAc activation was more robust in males than females. Finally, CRHR1 was expressed on a subset of BLA-CeA and BLA-NAc projection neurons. Collectively, this expands our understanding of BLA molecular- and circuit-specific activation patterns following acute stress.
Collapse
Affiliation(s)
- Robert J. Aukema
- Neuroscience Graduate Program, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gavin N. Petrie
- Neuroscience Graduate Program, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Samantha L. Baglot
- Neuroscience Graduate Program, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Nicholas W. Gilpin
- Department of Physiology, Louisiana State University, New Orleans, LA, 70112, USA
| | - Matthew N. Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Departments of Cell Biology & Anatomy and Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
7
|
Li M, Yang XK, Yang J, Li TX, Cui C, Peng X, Lei J, Ren K, Ming J, Zhang P, Tian B. Ketamine ameliorates post-traumatic social avoidance by erasing the traumatic memory encoded in VTA-innervated BLA engram cells. Neuron 2024; 112:3192-3210.e6. [PMID: 39032491 DOI: 10.1016/j.neuron.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/21/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Erasing traumatic memory during memory reconsolidation is a promising retrieval-extinction strategy for post-traumatic stress disorder (PTSD). Here, we developed an acute social defeat stress (SDS) mouse model with short-term and re-exposure-evoked long-term social avoidance. SDS-associated traumatic memories were identified to be stored in basolateral amygdala (BLA) engram cells. A single intraperitoneal administration of subanesthetic-dose ketamine within, but not beyond, the re-exposure time window significantly alleviates SDS-induced social avoidance, which reduces the activity and quantity of reactivated BLA engram cells. Furthermore, activation or inhibition of dopaminergic projections from the ventral tegmental area to the BLA effectively mimics or blocks the therapeutic effect of re-exposure with ketamine and is dopamine D2 receptor dependent. Single-cell RNA sequencing reveals that re-exposure with ketamine triggered significant changes in memory-related pathways in the BLA. Together, our research advances the understanding of how ketamine mitigates PTSD symptoms and offers promising avenues for developing more effective treatments for trauma-related disorders.
Collapse
Affiliation(s)
- Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xue-Ke Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jian Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Tong-Xia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Chi Cui
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiang Peng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jie Lei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kun Ren
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, P.R. China.
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, P.R. China.
| |
Collapse
|
8
|
Yau JOY, Li A, Abdallah L, Lisowksi L, McNally GP. State- and Circuit-Dependent Opponent Processing of Fear. J Neurosci 2024; 44:e0857242024. [PMID: 39060174 PMCID: PMC11411590 DOI: 10.1523/jneurosci.0857-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
The presence of valence coding neurons in the basolateral amygdala (BLA) that form distinct projections to other brain regions implies functional opposition between aversion and reward during learning. However, evidence for opponent interactions in fear learning is sparse and may only be apparent under certain conditions. Here we test this possibility by studying the roles of the BLA→central amygdala (CeA) and BLA→nucleus accumbens (Acb) pathways in fear learning in male rats. First, we assessed the organization of these pathways in the rat brain. BLA→CeA and BLA→Acb pathways were largely segregated in the BLA but shared overlapping molecular profiles. Then we assessed activity of the BLA→CeA and BLA→Acb pathways during two different forms of fear learning-fear learning in a neutral context and fear learning in a reward context. BLA→CeA neurons were robustly recruited by footshock regardless of where fear learning occurred, whereas recruitment of BLA→Acb neurons was state-dependent because footshock only recruited this pathway in a reward context. Finally, we assessed the causal roles of activity in these pathways in fear learning. Photoinhibition of the BLA→CeA pathway during the footshock US impaired fear learning, regardless of where fear learning occurred. In contrast, photoinhibition of the BLA→Acb pathway augmented fear learning, but only in the reward context. Taken together, our findings show circuit- and state-dependent opponent processing of fear. Footshock activity in the BLA→Acb pathway limits how much fear is learned.
Collapse
Affiliation(s)
- Joanna Oi-Yue Yau
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amy Li
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lauren Abdallah
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Leszek Lisowksi
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
- Australian Genome Therapeutics Centre, Children's Medical Research Institute and Sydney Children's Hospitals Network, Westmead, New South Wales 2145, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Szaserów 128 Street, 04-141 Warszawa 44, Poland
| | - Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
9
|
Li DC, Hinton EA, Guo J, Knight KA, Sequeira MK, Wynne ME, Dighe NM, Gourley SL. Social experience in adolescence shapes prefrontal cortex structure and function in adulthood. Mol Psychiatry 2024; 29:2787-2798. [PMID: 38580810 PMCID: PMC11567502 DOI: 10.1038/s41380-024-02540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
During adolescence, the prefrontal cortex (PFC) undergoes dramatic reorganization. PFC development is profoundly influenced by the social environment, disruptions to which may prime the emergence of psychopathology across the lifespan. We investigated the neurobehavioral consequences of isolation experienced in adolescence in mice, and in particular, the long-term consequences that were detectable even despite normalization of the social milieu. Isolation produced biases toward habit-like behavior at the expense of flexible goal seeking, plus anhedonic-like reward deficits. Behavioral phenomena were accompanied by neuronal dendritic spine over-abundance and hyper-excitability in the ventromedial PFC (vmPFC), which was necessary for the expression of isolation-induced habits and sufficient to trigger behavioral inflexibility in socially reared controls. Isolation activated cytoskeletal regulatory pathways otherwise suppressed during adolescence, such that repression of constituent elements prevented long-term isolation-induced neurosequelae. Altogether, our findings unveil an adolescent critical period and multi-model mechanism by which social experiences facilitate prefrontal cortical maturation.
Collapse
Affiliation(s)
- Dan C Li
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Elizabeth A Hinton
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Jidong Guo
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Michelle K Sequeira
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Meghan E Wynne
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Niharika M Dighe
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Shannon L Gourley
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Adomaitis L, Grinbaum A. Neurotechnologies, Ethics, and the Limits of Free Will. Integr Psychol Behav Sci 2024; 58:894-907. [PMID: 38388982 DOI: 10.1007/s12124-024-09830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
This article delves into the implications of neurotechnologies for the philosophical debates surrounding free will and moral responsibility. Tracing the concept from ancient religious and philosophical roots, we discuss how recent neurotechnological advancements (e.g. optogenetics, fMRI and machine learning, predictive diagnostics, et al.) challenge traditional notions of autonomy. Although neurotechnologies aim to enhance autonomy in the strict sense - as self-determination - they risk reducing or changing the broader notion of autonomy, which involves personal authenticity. We also submit that, in a world with an altered or limited concept of free will, humans should still be held accountable for actions executed through their bodies. By examining the dynamic between choice and responsibility, we emphasize the shift in technology ethics, moral philosophy, and the broader legal landscape in response to the advancement of neurotechnologies. By bringing the neurotechnological innovations into the world, neuroscientists not only change the technological landscape but also partake in long-standing moral narratives about freedom, justice, and responsibility.
Collapse
|
11
|
Chelini G, Mirzapourdelavar H, Durning P, Baidoe-Ansah D, Sethi MK, O'Donovan SM, Klengel T, Balasco L, Berciu C, Boyer-Boiteau A, McCullumsmith R, Ressler KJ, Zaia J, Bozzi Y, Dityatev A, Berretta S. Focal clusters of peri-synaptic matrix contribute to activity-dependent plasticity and memory in mice. Cell Rep 2024; 43:114112. [PMID: 38676925 PMCID: PMC11251421 DOI: 10.1016/j.celrep.2024.114112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/09/2023] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
Recent findings show that effective integration of novel information in the brain requires coordinated processes of homo- and heterosynaptic plasticity. In this work, we hypothesize that activity-dependent remodeling of the peri-synaptic extracellular matrix (ECM) contributes to these processes. We show that clusters of the peri-synaptic ECM, recognized by CS56 antibody, emerge in response to sensory stimuli, showing temporal and spatial coincidence with dendritic spine plasticity. Using CS56 co-immunoprecipitation of synaptosomal proteins, we identify several molecules involved in Ca2+ signaling, vesicle cycling, and AMPA-receptor exocytosis, thus suggesting a role in long-term potentiation (LTP). Finally, we show that, in the CA1 hippocampal region, the attenuation of CS56 glycoepitopes, through the depletion of versican as one of its main carriers, impairs LTP and object location memory in mice. These findings show that activity-dependent remodeling of the peri-synaptic ECM regulates the induction and consolidation of LTP, contributing to hippocampal-dependent memory.
Collapse
Affiliation(s)
- Gabriele Chelini
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 Trento, Italy
| | - Hadi Mirzapourdelavar
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, Magdeburg 39120 Saxony-Anhalt, Germany
| | - Peter Durning
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - David Baidoe-Ansah
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, Magdeburg 39120 Saxony-Anhalt, Germany
| | - Manveen K Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sinead M O'Donovan
- Cognitive Disorders Research Laboratory, University of Toledo, Toledo, OH 43606, USA
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Translational Molecular Genomics Laboratory, Mclean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Luigi Balasco
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 Trento, Italy
| | - Cristina Berciu
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Anne Boyer-Boiteau
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Robert McCullumsmith
- Cognitive Disorders Research Laboratory, University of Toledo, Toledo, OH 43606, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA; Neurobiology of Fear Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, MA 02118, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Yuri Bozzi
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 Trento, Italy; CNR Neuroscience Institute Pisa, 56124 Pisa, Italy
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, Magdeburg 39120 Saxony-Anhalt, Germany; Medical Faculty, Otto von Guericke University, Magdeburg 39106 Saxony-Anhalt, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg 39106 Saxony-Anhalt, Germany
| | - Sabina Berretta
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
12
|
Foilb AR, Taylor-Yeremeeva EM, Schmidt BD, Ressler KJ, Carlezon WA. Acute sleep deprivation reduces fear memories in male and female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577985. [PMID: 38766105 PMCID: PMC11100624 DOI: 10.1101/2024.01.30.577985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Sleep problems are a prominent feature of mental health conditions including post-traumatic stress disorder (PTSD). Despite its potential importance, the role of sleep in the development of and/or recovery from trauma-related illnesses is not understood. Interestingly, there are reports that sleep deprivation immediately after a traumatic experience can reduce fear memories, an effect that could be utilized therapeutically in humans. While the mechanisms of this effect are not completely understood, one possible explanation for these findings is that immediate sleep deprivation interferes with consolidation of fear memories, rendering them weaker and more sensitive to intervention. Here, we allowed fear-conditioned mice to sleep immediately after fear conditioning during a time frame (18 hr) that includes and extends beyond periods typically associated with memory consolidation before subjecting them to 6 hr of sleep deprivation. Mice deprived of sleep with this delayed regimen showed dramatic reductions in fear during tests conducted immediately after sleep deprivation, as well as 24 hr later. This sleep deprivation regimen also increased levels of mRNA encoding brain-derived neurotrophic factor (BDNF), a molecule implicated in neuroplasticity, in the basolateral amygdala (BLA), a brain area implicated in fear and its extinction. These findings raise the possibility that the effects of our delayed sleep deprivation regimen are not due to disruption of memory consolidation, but instead are caused by BDNF-mediated neuroadaptations within the BLA that actively suppress expression of fear. Treatments that safely reduce expression of fear memories would have considerable therapeutic potential in the treatment of conditions triggered by trauma.
Collapse
Affiliation(s)
- Allison R Foilb
- Department of Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Belmont MA, USA
| | - Elisa M Taylor-Yeremeeva
- Department of Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Belmont MA, USA
| | - Brett D Schmidt
- Department of Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Belmont MA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Belmont MA, USA
| | - William A Carlezon
- Department of Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Belmont MA, USA
| |
Collapse
|
13
|
Kietzman HW, Trinoskey-Rice G, Seo EH, Guo J, Gourley SL. Neuronal Ensembles in the Amygdala Allow Social Information to Motivate Later Decisions. J Neurosci 2024; 44:e1848232024. [PMID: 38499360 PMCID: PMC11026342 DOI: 10.1523/jneurosci.1848-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Social experiences carry tremendous weight in our decision-making, even when social partners are not present. To determine mechanisms, we trained female mice to respond for two food reinforcers. Then, one food was paired with a novel conspecific. Mice later favored the conspecific-associated food, even in the absence of the conspecific. Chemogenetically silencing projections from the prelimbic subregion (PL) of the medial prefrontal cortex to the basolateral amygdala (BLA) obstructed this preference while leaving social discrimination intact, indicating that these projections are necessary for socially driven choice. Further, mice that performed the task had greater densities of dendritic spines on excitatory BLA neurons relative to mice that did not. We next induced chemogenetic receptors in cells active during social interactions-when mice were encoding information that impacted later behavior. BLA neurons stimulated by social experience were necessary for mice to later favor rewards associated with social conspecifics but not make other choices. This profile contrasted with that of PL neurons stimulated by social experience, which were necessary for choice behavior in social and nonsocial contexts alike. The PL may convey a generalized signal allowing mice to favor particular rewards, while units in the BLA process more specialized information, together supporting choice motivated by social information.
Collapse
Affiliation(s)
- Henry W Kietzman
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Gracy Trinoskey-Rice
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Esther H Seo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Jidong Guo
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322
| |
Collapse
|
14
|
Zou RX, Gu X, Huang C, Wang HL, Chen XT. Chronic Pb exposure impairs learning and memory abilities by inhibiting excitatory projection neuro-circuit of the hippocampus in mice. Toxicology 2024; 502:153717. [PMID: 38160928 DOI: 10.1016/j.tox.2023.153717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Lead (Pb) is an environmental neurotoxic metal. Chronic Pb exposure causes behavioral changes in humans and rodents, such as dysfunctional learning and memory. Nevertheless, it is not clear whether Pb exposure disrupts the neural circuit. Thus, here we aim at investigating the effects the chronic Pb exposure on neural-behavioral and neural circuits in mice from prenatal to postnatal day (PND) 63. Pregnant mice and their male offspring were treated with Pb (150 ppm) until postnatal day 63. In this study, several behavior tests and Golgi-Cox staining methods were used to assess spatial memory ability and synaptogenesis. Virus-based tracing systems and immunohistochemistry assays were used to test the relevance of chronic Pb exposure with disrupted neural circuits. The behavioral experiments and Golgi-Cox staining results showed that Pb exposure impaired spatial memory and spine density in mice. The virus tracing results revealed that the Entorhinal cortex (EC) neurons could be directly projected to Cornuammonis 1 (CA1) and Dentate gyrus (DG), forming a critical circuit inhibited, in either a direct or indirect way, by Pb invasion. In addition, excitatory neural input from EC(labeled with CaMKII)to CA1 and DG was significantly attenuated by Pb exposure. In conclusion, our data indicated that Pb significantly impaired the excitatory connections from EC to the hippocampus (CA1 and DG), providing a novel neuro-circuitry basis for Pb neurotoxicity.
Collapse
Affiliation(s)
- Rong-Xin Zou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Xiaozhen Gu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Chenqing Huang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Hui-Li Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| | - Xiang-Tao Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, PR China.
| |
Collapse
|
15
|
Weber BL, Nicodemus MM, Hite AK, Spalding IR, Beaver JN, Scrimshaw LR, Kassis SK, Reichert JM, Ford MT, Russell CN, Hallal EM, Gilman TL. Heterotypic Stressors Unmask Behavioral Influences of PMAT Deficiency in Mice. Int J Mol Sci 2023; 24:16494. [PMID: 38003684 PMCID: PMC10671398 DOI: 10.3390/ijms242216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors-fear conditioning and swim stress-in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized that male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map onto any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate that reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - T. Lee Gilman
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
16
|
Weber BL, Nicodemus MM, Hite AK, Spalding IR, Beaver JN, Scrimshaw LR, Kassis SK, Reichert JM, Ford MT, Russell CN, Hallal EM, Gilman TL. Heterotypic stressors unmask behavioral influences of PMAT deficiency in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555632. [PMID: 37693400 PMCID: PMC10491137 DOI: 10.1101/2023.08.30.555632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors - fear conditioning, and swim stress - in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map on to any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.
Collapse
Affiliation(s)
- Brady L Weber
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Marissa M Nicodemus
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Allianna K Hite
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Isabella R Spalding
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Jasmin N Beaver
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Lauren R Scrimshaw
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Sarah K Kassis
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Julie M Reichert
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Matthew T Ford
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Cameron N Russell
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Elayna M Hallal
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - T Lee Gilman
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
17
|
Gunduz-Cinar O, Castillo LI, Xia M, Van Leer E, Brockway ET, Pollack GA, Yasmin F, Bukalo O, Limoges A, Oreizi-Esfahani S, Kondev V, Báldi R, Dong A, Harvey-White J, Cinar R, Kunos G, Li Y, Zweifel LS, Patel S, Holmes A. A cortico-amygdala neural substrate for endocannabinoid modulation of fear extinction. Neuron 2023; 111:3053-3067.e10. [PMID: 37480845 PMCID: PMC10592324 DOI: 10.1016/j.neuron.2023.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Preclinical and clinical studies implicate endocannabinoids (eCBs) in fear extinction, but the underlying neural circuit basis of these actions is unclear. Here, we employed in vivo optogenetics, eCB biosensor imaging, ex vivo electrophysiology, and CRISPR-Cas9 gene editing in mice to examine whether basolateral amygdala (BLA)-projecting medial prefrontal cortex (mPFC) neurons represent a neural substrate for the effects of eCBs on extinction. We found that photoexcitation of mPFC axons in BLA during extinction mobilizes BLA eCBs. eCB biosensor imaging showed that eCBs exhibit a dynamic stimulus-specific pattern of activity at mPFC→BLA neurons that tracks extinction learning. Furthermore, using CRISPR-Cas9-mediated gene editing, we demonstrated that extinction memory formation involves eCB activity at cannabinoid CB1 receptors expressed at vmPFC→BLA synapses. Our findings reveal the temporal characteristics and a neural circuit basis of eCBs' effects on fear extinction and inform efforts to target the eCB system as a therapeutic approach in extinction-deficient neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| | - Laura I Castillo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Maya Xia
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Elise Van Leer
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Emma T Brockway
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Gabrielle A Pollack
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Farhana Yasmin
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Aaron Limoges
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Sarvar Oreizi-Esfahani
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Rita Báldi
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ao Dong
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Judy Harvey-White
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Yulong Li
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Laricchiuta D, Gimenez J, Sciamanna G, Termine A, Fabrizio C, Della Valle F, Caioli S, Saba L, De Bardi M, Balsamo F, Panuccio A, Passarello N, Mattioni A, Bisicchia E, Zona C, Orlando V, Petrosini L. Synaptic and transcriptomic features of cortical and amygdala pyramidal neurons predict inefficient fear extinction. Cell Rep 2023; 42:113066. [PMID: 37656620 DOI: 10.1016/j.celrep.2023.113066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/08/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Fear-related disorders arise from inefficient fear extinction and have immeasurable social and economic costs. Here, we characterize mouse phenotypes that spontaneously show fear-independent behavioral traits predicting adaptive or maladaptive fear extinction. We find that, already before fear conditioning, specific morphological, electrophysiological, and transcriptomic patterns of cortical and amygdala pyramidal neurons predispose to fear-related disorders. Finally, by using an optogenetic approach, we show the possibility to rescue inefficient fear extinction by activating infralimbic pyramidal neurons and to impair fear extinction by activating prelimbic pyramidal neurons.
Collapse
Affiliation(s)
| | | | - Giuseppe Sciamanna
- IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | | | | | - Francesco Della Valle
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Luana Saba
- University of Campus Biomedico, 00128 Rome, Italy
| | | | - Francesca Balsamo
- IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Department of Human Sciences, Guglielmo Marconi University, 00166 Rome, Italy
| | - Anna Panuccio
- IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Department of Psychology, University Sapienza of Rome, 00185 Rome, Italy
| | - Noemi Passarello
- IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Department of Humanities, Federico II University of Naples, 80138 Naples, Italy
| | | | | | - Cristina Zona
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia.
| | | |
Collapse
|
19
|
Veres JM, Fekete Z, Müller K, Andrasi T, Rovira-Esteban L, Barabas B, Papp OI, Hajos N. Fear learning and aversive stimuli differentially change excitatory synaptic transmission in perisomatic inhibitory cells of the basal amygdala. Front Cell Neurosci 2023; 17:1120338. [PMID: 37731462 PMCID: PMC10507864 DOI: 10.3389/fncel.2023.1120338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Inhibitory circuits in the basal amygdala (BA) have been shown to play a crucial role in associative fear learning. How the excitatory synaptic inputs received by BA GABAergic interneurons are influenced by memory formation, a network parameter that may contribute to learning processes, is still largely unknown. Here, we investigated the features of excitatory synaptic transmission received by the three types of perisomatic inhibitory interneurons upon cue-dependent fear conditioning and aversive stimulus and tone presentations without association. Acute slices were prepared from transgenic mice: one group received tone presentation only (conditioned stimulus, CS group), the second group was challenged by mild electrical shocks unpaired with the CS (unsigned unconditioned stimulus, unsigned US group) and the third group was presented with the CS paired with the US (signed US group). We found that excitatory synaptic inputs (miniature excitatory postsynaptic currents, mEPSCs) recorded in distinct interneuron types in the BA showed plastic changes with different patterns. Parvalbumin (PV) basket cells in the unsigned US and signed US group received mEPSCs with reduced amplitude and rate in comparison to the only CS group. Coupling the US and CS in the signed US group caused a slight increase in the amplitude of the events in comparison to the unsigned US group, where the association of CS and US does not take place. Excitatory synaptic inputs onto cholecystokinin (CCK) basket cells showed a markedly different change from PV basket cells in these behavioral paradigms: only the decay time was significantly faster in the unsigned US group compared to the only CS group, whereas the amplitude of mEPSCs increased in the signed US group compared to the only CS group. Excitatory synaptic inputs received by PV axo-axonic cells showed the least difference in the three behavioral paradigm: the only significant change was that the rate of mEPSCs increased in the signed US group when compared to the only CS group. These results collectively show that associative learning and aversive stimuli unpaired with CS cause different changes in excitatory synaptic transmission in BA perisomatic interneuron types, supporting the hypothesis that they play distinct roles in the BA network operations upon pain information processing and fear memory formation.
Collapse
Affiliation(s)
- Judit M. Veres
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Fekete
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Kinga Müller
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Tibor Andrasi
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
| | - Laura Rovira-Esteban
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
| | - Bence Barabas
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Orsolya I. Papp
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
| | - Norbert Hajos
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
- The Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, IN, United States
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
20
|
Svalina MN, Rio CACD, Kushner JK, Levy A, Baca SM, Guthman EM, Opendak M, Sullivan RM, Restrepo D, Huntsman MM. Basolateral Amygdala Hyperexcitability Is Associated with Precocious Developmental Emergence of Fear-Learning in Fragile X Syndrome. J Neurosci 2022; 42:7294-7308. [PMID: 35970562 PMCID: PMC9512574 DOI: 10.1523/jneurosci.1776-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
Fragile X Syndrome is a neurodevelopmental disorder and the most common monogenic cause of intellectual disability, autism spectrum disorders, and anxiety disorders. Loss of fragile x mental retardation protein results in disruptions of synaptic development during a critical period of circuit formation in the BLA. However, it is unknown how these alterations impact microcircuit development and function. Using a combination of electrophysiologic and behavioral approaches in both male (Fmr1-/y) and female (Fmr1-/-) mice, we demonstrate that principal neurons in the Fmr1KO BLA exhibit hyperexcitability during a sensitive period in amygdala development. This hyperexcitability contributes to increased excitatory gain in fear-learning circuits. Further, synaptic plasticity is enhanced in the BLA of Fmr1KO mice. Behavioral correlation demonstrates that fear-learning emerges precociously in the Fmr1KO mouse. Early life 4,5,6,7-tetrahydroisoxazolo [5,4-c]pyridin-3ol intervention ameliorates fear-learning in Fmr1KO mice. These results suggest that critical period plasticity in the amygdala of the Fmr1KO mouse may be shifted to earlier developmental time points.SIGNIFICANCE STATEMENT In these studies, we identify early developmental alterations in principal neurons in the Fragile X syndrome BLA. We show that, as early as P14, excitability and feedforward excitation, and synaptic plasticity are enhanced in Fmr1KO lateral amygdala. This correlates with precocious emergence of fear-learning in the Fmr1KO mouse. Early life 4,5,6,7-tetrahydroisoxazolo [5,4-c]pyridin-3ol intervention restores critical period plasticity in WT mice and ameliorates fear-learning in the Fmr1KO mouse.
Collapse
Affiliation(s)
- Matthew N Svalina
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Christian A Cea-Del Rio
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- CIBAP, Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile 9170201
| | - J Keenan Kushner
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Abigail Levy
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Serapio M Baca
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - E Mae Guthman
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York 10962
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, 10016
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York 10962
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, 10016
| | - Diego Restrepo
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Molly M Huntsman
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
21
|
Ressler KJ, Berretta S, Bolshakov VY, Rosso IM, Meloni EG, Rauch SL, Carlezon WA. Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits. Nat Rev Neurol 2022; 18:273-288. [PMID: 35352034 PMCID: PMC9682920 DOI: 10.1038/s41582-022-00635-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a maladaptive and debilitating psychiatric disorder, characterized by re-experiencing, avoidance, negative emotions and thoughts, and hyperarousal in the months and years following exposure to severe trauma. PTSD has a prevalence of approximately 6-8% in the general population, although this can increase to 25% among groups who have experienced severe psychological trauma, such as combat veterans, refugees and victims of assault. The risk of developing PTSD in the aftermath of severe trauma is determined by multiple factors, including genetics - at least 30-40% of the risk of PTSD is heritable - and past history, for example, prior adult and childhood trauma. Many of the primary symptoms of PTSD, including hyperarousal and sleep dysregulation, are increasingly understood through translational neuroscience. In addition, a large amount of evidence suggests that PTSD can be viewed, at least in part, as a disorder that involves dysregulation of normal fear processes. The neural circuitry underlying fear and threat-related behaviour and learning in mammals, including the amygdala-hippocampus-medial prefrontal cortex circuit, is among the most well-understood in behavioural neuroscience. Furthermore, the study of threat-responding and its underlying circuitry has led to rapid progress in understanding learning and memory processes. By combining molecular-genetic approaches with a translational, mechanistic knowledge of fear circuitry, transformational advances in the conceptual framework, diagnosis and treatment of PTSD are possible. In this Review, we describe the clinical features and current treatments for PTSD, examine the neurobiology of symptom domains, highlight genomic advances and discuss translational approaches to understanding mechanisms and identifying new treatments and interventions for this devastating syndrome.
Collapse
Affiliation(s)
- Kerry J Ressler
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sabina Berretta
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Vadim Y Bolshakov
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabelle M Rosso
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward G Meloni
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott L Rauch
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - William A Carlezon
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Impact of stress on inhibitory neuronal circuits, our tribute to Bruce McEwen. Neurobiol Stress 2022; 19:100460. [PMID: 35734023 PMCID: PMC9207718 DOI: 10.1016/j.ynstr.2022.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
This manuscript is dedicated to the memory of Bruce S. McEwen, to commemorate the impact he had on how we understand stress and neuronal plasticity, and the profound influence he exerted on our scientific careers. The focus of this review is the impact of stressors on inhibitory circuits, particularly those of the limbic system, but we also consider other regions affected by these adverse experiences. We revise the effects of acute and chronic stress during different stages of development and lifespan, taking into account the influence of the sex of the animals. We review first the influence of stress on the physiology of inhibitory neurons and on the expression of molecules related directly to GABAergic neurotransmission, and then focus on specific interneuron subpopulations, particularly on parvalbumin and somatostatin expressing cells. Then we analyze the effects of stress on molecules and structures related to the plasticity of inhibitory neurons: the polysialylated form of the neural cell adhesion molecule and perineuronal nets. Finally, we review the potential of antidepressants or environmental manipulations to revert the effects of stress on inhibitory circuits.
Collapse
|
23
|
Pesarico AP, Carceller H, Guirado R, Coviello S, Nacher J. Long term effects of 24-h-restraint stress on the connectivity and structure of interneurons in the basolateral amygdala. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110512. [PMID: 35066055 DOI: 10.1016/j.pnpbp.2022.110512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
The effects of intense stressors can last a long time and may lead to the development of psychiatric disorders, including posttraumatic stress disorder. The basolateral amygdala (BLA) plays a critical role in these diseases and is extremely sensitive to stress. Here, we explored in male and female mice the long-term (35 days) impact of a 24-h restraint stress on BLA circuitry. We used Thy1-YFP mice to discriminate 2 subpopulations of excitatory neurons, which participate in "Fear-On" (Thy1-) and "Fear-Off" (Thy1+) circuits. The stress decreased the density of parvalbumin (PV) + inhibitory neurons in both sexes but did not alter their dendritic complexity. We also analyzed the perisomatic input of basket interneurons on Thy1+ and Thy1- neurons, finding sex dependent effects. In males, we did not find alterations in the density of PV+ puncta or in that of cannabinoid receptor 1 (CB1R) + puncta from cholecystokinin+ basket cells. By contrast, in females we found increased the density of PV+ puncta on Thy1+ neurons and reduced on the Thy1- neurons. This adverse experience also reduced in the long term the density of CB1R+ puncta both on Thy1+ and Thy1- cells in females. The expression of the activity marker FosB was not altered in PV+ interneurons and in Thy1+ neurons of stressed animals. The density of perineuronal nets, a specialized region of the extracellular matrix, which covers particularly PV+ interneurons and regulates their connectivity, was increased by stress in male mice. Our findings indicate that a single stressful event can produce long-term alterations in the inhibitory circuits of the BLA, especially on PV+ neurons and their plasticity, and that there is a differential impact depending on the sex and the fear-related circuits involved.
Collapse
Affiliation(s)
- Ana Paula Pesarico
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Hector Carceller
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| | - Ramón Guirado
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Simona Coviello
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain.
| |
Collapse
|
24
|
Al Mamun A, Ngwa C, Qi S, Honarpisheh P, Datar S, Sharmeen R, Xu Y, McCullough LD, Liu F. Neuronal CD200 Signaling Is Protective in the Acute Phase of Ischemic Stroke. Stroke 2021; 52:3362-3373. [PMID: 34353112 DOI: 10.1161/strokeaha.120.032374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE CD200 (cluster of differentiation 200), a highly glycosylated protein primarily expressed on neurons in the central nervous system, binds with its receptor CD200R to form an endogenous inhibitory signal against immune responses. However, little is known about the effect of neuronal CD200 signaling in cerebral ischemia. The aim of this study was to investigate how neuronal CD200 signaling impacts poststroke inflammation and the ischemic injury. METHODS CD200 tma1lf/fl:Thy1CreER mice were treated with tamoxifen to induce conditional gene knockout (ICKO) of neuronal CD200. The mice were subjected to a 60-minute transient middle cerebral artery occlusion. Stroke outcomes, apoptotic cell death, immune cell infiltration, microglia activation, and other inflammatory profiles were evaluated at 3 and 7 days after stroke. RESULTS Infarct volumes were significantly larger, and behavioral deficits more severe in ICKO versus control mice at 3 days after middle cerebral artery occlusion. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay also revealed a significant increase in apoptotic neuronal death in CD200 ICKO mice. An enhancement in lymphocytic infiltration and microglial proinflammatory responses were revealed by flow cytometry at 3 and 7 days after stroke in ICKO mice, accompanied by an increased microglial phagocytosis activity. Plasma proinflammatory cytokine (TNFα [tumor necrosis factor alpha] and IL [interleukin]-1β) levels significantly increased at 3 days, and IL-1β/IL-6 levels increased at 7 days in ICKO versus control animals. ICKO led to significantly lower baseline level of CD200 both in brain and plasma. CONCLUSIONS Neuronal CD200 inhibits proinflammatory responses and is protective against stroke injury.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston
| | - Conelius Ngwa
- Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston
| | - Shaohua Qi
- Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston
| | - Pedram Honarpisheh
- Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston
| | - Saumil Datar
- Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston
| | - Romana Sharmeen
- Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston
| | - Yan Xu
- Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston
| | - Louise D McCullough
- Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston
| | - Fudong Liu
- Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston
| |
Collapse
|
25
|
Memories are not written in stone: Re-writing fear memories by means of non-invasive brain stimulation and optogenetic manipulations. Neurosci Biobehav Rev 2021; 127:334-352. [PMID: 33964307 DOI: 10.1016/j.neubiorev.2021.04.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022]
Abstract
The acquisition of fear associative memory requires brain processes of coordinated neural activity within the amygdala, prefrontal cortex (PFC), hippocampus, thalamus and brainstem. After fear consolidation, a suppression of fear memory in the absence of danger is crucial to permit adaptive coping behavior. Acquisition and maintenance of fear extinction critically depend on amygdala-PFC projections. The robust correspondence between the brain networks encompassed cortical and subcortical hubs involved into fear processing in humans and in other species underscores the potential utility of comparing the modulation of brain circuitry in humans and animals, as a crucial step to inform the comprehension of fear mechanisms and the development of treatments for fear-related disorders. The present review is aimed at providing a comprehensive description of the literature on recent clinical and experimental researches regarding the noninvasive brain stimulation and optogenetics. These innovative manipulations applied over specific hubs of fear matrix during fear acquisition, consolidation, reconsolidation and extinction allow an accurate characterization of specific brain circuits and their peculiar interaction within the specific fear processing.
Collapse
|
26
|
Iordanova MD, Yau JOY, McDannald MA, Corbit LH. Neural substrates of appetitive and aversive prediction error. Neurosci Biobehav Rev 2021; 123:337-351. [PMID: 33453307 PMCID: PMC7933120 DOI: 10.1016/j.neubiorev.2020.10.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Prediction error, defined by the discrepancy between real and expected outcomes, lies at the core of associative learning. Behavioural investigations have provided evidence that prediction error up- and down-regulates associative relationships, and allocates attention to stimuli to enable learning. These behavioural advances have recently been followed by investigations into the neurobiological substrates of prediction error. In the present paper, we review neuroscience data obtained using causal and recording neural methods from a variety of key behavioural designs. We explore the neurobiology of both appetitive (reward) and aversive (fear) prediction error with a focus on the mesolimbic dopamine system, the amygdala, ventrolateral periaqueductal gray, hippocampus, cortex and locus coeruleus noradrenaline. New questions and avenues for research are considered.
Collapse
Affiliation(s)
- Mihaela D Iordanova
- Department of Psychology/Centre for Studies in Behavioral Neurobiology, Concordia University, 7141 Sherbrooke St, Montreal, QC, H4B 1R6, Canada.
| | - Joanna Oi-Yue Yau
- School of Psychology, The University of New South Wales, UNSW Sydney, NSW, 2052, Australia.
| | - Michael A McDannald
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Avenue, 514 McGuinn Hall, Chestnut Hill, MA, 02467, USA.
| | - Laura H Corbit
- Departments of Psychology and Cell and Systems Biology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| |
Collapse
|
27
|
Laricchiuta D, Sciamanna G, Gimenez J, Termine A, Fabrizio C, Caioli S, Balsamo F, Panuccio A, De Bardi M, Saba L, Passarello N, Cutuli D, Mattioni A, Zona C, Orlando V, Petrosini L. Optogenetic Stimulation of Prelimbic Pyramidal Neurons Maintains Fear Memories and Modulates Amygdala Pyramidal Neuron Transcriptome. Int J Mol Sci 2021; 22:ijms22020810. [PMID: 33467450 PMCID: PMC7830910 DOI: 10.3390/ijms22020810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Fear extinction requires coordinated neural activity within the amygdala and medial prefrontal cortex (mPFC). Any behavior has a transcriptomic signature that is modified by environmental experiences, and specific genes are involved in functional plasticity and synaptic wiring during fear extinction. Here, we investigated the effects of optogenetic manipulations of prelimbic (PrL) pyramidal neurons and amygdala gene expression to analyze the specific transcriptional pathways associated to adaptive and maladaptive fear extinction. To this aim, transgenic mice were (or not) fear-conditioned and during the extinction phase they received optogenetic (or sham) stimulations over photo-activable PrL pyramidal neurons. At the end of behavioral testing, electrophysiological (neural cellular excitability and Excitatory Post-Synaptic Currents) and morphological (spinogenesis) correlates were evaluated in the PrL pyramidal neurons. Furthermore, transcriptomic cell-specific RNA-analyses (differential gene expression profiling and functional enrichment analyses) were performed in amygdala pyramidal neurons. Our results show that the optogenetic activation of PrL pyramidal neurons in fear-conditioned mice induces fear extinction deficits, reflected in an increase of cellular excitability, excitatory neurotransmission, and spinogenesis of PrL pyramidal neurons, and associated to strong modifications of the transcriptome of amygdala pyramidal neurons. Understanding the electrophysiological, morphological, and transcriptomic architecture of fear extinction may facilitate the comprehension of fear-related disorders.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Correspondence:
| | - Giuseppe Sciamanna
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Juliette Gimenez
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Andrea Termine
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Carlo Fabrizio
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Francesca Balsamo
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Anna Panuccio
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Psychology, University “Sapienza” of Rome, 00185 Rome, Italy
| | - Marco De Bardi
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Luana Saba
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Noemi Passarello
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Debora Cutuli
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Psychology, University “Sapienza” of Rome, 00185 Rome, Italy
| | - Anna Mattioni
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Cristina Zona
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Valerio Orlando
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Laura Petrosini
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| |
Collapse
|
28
|
Organizational principles of amygdalar input-output neuronal circuits. Mol Psychiatry 2021; 26:7118-7129. [PMID: 34400771 PMCID: PMC8873025 DOI: 10.1038/s41380-021-01262-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
The amygdala, one of the most studied brain structures, integrates brain-wide heterogeneous inputs and governs multidimensional outputs to control diverse behaviors central to survival, yet how amygdalar input-output neuronal circuits are organized remains unclear. Using a simplified cell-type- and projection-specific retrograde transsynaptic tracing technique, we scrutinized brain-wide afferent inputs of four major output neuronal groups in the amygdalar basolateral complex (BLA) that project to the bed nucleus of the stria terminals (BNST), ventral hippocampus (vHPC), medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), respectively. Brain-wide input-output quantitative analysis unveils that BLA efferent neurons receive a diverse array of afferents with varied input weights and predominant contextual representation. Notably, the afferents received by BNST-, vHPC-, mPFC- and NAc-projecting BLA neurons exhibit virtually identical origins and input weights. These results indicate that the organization of amygdalar BLA input-output neuronal circuits follows the input-dependent and output-independent principles, ideal for integrating brain-wide diverse afferent stimuli to control parallel efferent actions. The data provide the objective basis for improving the virtual reality exposure therapy for anxiety disorders and validate the simplified cell-type- and projection-specific retrograde transsynaptic tracing method.
Collapse
|
29
|
Wang GH, Chou P, Hsueh SW, Yang YC, Kuo CC. Glutamate transmission rather than cellular pacemaking propels excitatory-inhibitory resonance for ictogenesis in amygdala. Neurobiol Dis 2020; 148:105188. [PMID: 33221531 DOI: 10.1016/j.nbd.2020.105188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
Epileptic seizures are automatic, excessive, and synchronized neuronal activities originating from many brain regions especially the amygdala, the allocortices and neocortices. This may reflect a shared principle for network organization and signaling in these telencephalic structures. In theory, the automaticity of epileptic discharges may stem from spontaneously active "oscillator" neurons equipped with intrinsic pacemaking conductances, or from a group of synaptically-connected collaborating "resonator" neurons. In the basolateral amygdalar (BLA) network of pyramidal-inhibitory (PN-IN) neuronal resonators, we demonstrated that rhythmogenic currents are provided by glutamatergic rather than the classic intrinsic or cellular pacemaking conductances (namely the h currents). The excitatory output of glutamatergic neurons such as PNs presumably propels a novel network-based "relay burst mode" of discharges especially in INs, which precondition PNs into a state prone to burst discharges and thus further glutamate release. Also, selective activation of unilateral PNs, but never INs, readily drives bilateral BLA networks into reverberating discharges which are fully synchronized with the behavioral manifestations of seizures (e.g. muscle contractions). Seizures originating in BLA and/or the other structures with similar PN-IN networks thus could be viewed as glutamate-triggered erroneous network oscillations that are normally responsible for information relay.
Collapse
Affiliation(s)
- Guan-Hsun Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Medical Education, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Ping Chou
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Wei Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan.
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
30
|
McCullough KM, Chatzinakos C, Hartmann J, Missig G, Neve RL, Fenster RJ, Carlezon WA, Daskalakis NP, Ressler KJ. Genome-wide translational profiling of amygdala Crh-expressing neurons reveals role for CREB in fear extinction learning. Nat Commun 2020; 11:5180. [PMID: 33057013 PMCID: PMC7560654 DOI: 10.1038/s41467-020-18985-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Fear and extinction learning are adaptive processes caused by molecular changes in specific neural circuits. Neurons expressing the corticotropin-releasing hormone gene (Crh) in central amygdala (CeA) are implicated in threat regulation, yet little is known of cell type-specific gene pathways mediating adaptive learning. We translationally profiled the transcriptome of CeA Crh-expressing cells (Crh neurons) after fear conditioning or extinction in mice using translating ribosome affinity purification (TRAP) and RNAseq. Differential gene expression and co-expression network analyses identified diverse networks activated or inhibited by fear vs extinction. Upstream regulator analysis demonstrated that extinction associates with reduced CREB expression, and viral vector-induced increased CREB expression in Crh neurons increased fear expression and inhibited extinction. These findings suggest that CREB, within CeA Crh neurons, may function as a molecular switch that regulates expression of fear and its extinction. Cell-type specific translational analyses may suggest targets useful for understanding and treating stress-related psychiatric illness.
Collapse
Affiliation(s)
- Kenneth M McCullough
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Chris Chatzinakos
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Jakob Hartmann
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Galen Missig
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Rachael L Neve
- Gene Transfer Core, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Robert J Fenster
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - William A Carlezon
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Nikolaos P Daskalakis
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| | - Kerry J Ressler
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
31
|
Levitan D, Liu C, Yang T, Shima Y, Lin JY, Wachutka J, Marrero Y, Ali Marandi Ghoddousi R, da Veiga Beltrame E, Richter TA, Katz DB, Nelson SB. Deletion of Stk11 and Fos in mouse BLA projection neurons alters intrinsic excitability and impairs formation of long-term aversive memory. eLife 2020; 9:e61036. [PMID: 32779566 PMCID: PMC7445010 DOI: 10.7554/elife.61036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Conditioned taste aversion (CTA) is a form of one-trial learning dependent on basolateral amygdala projection neurons (BLApn). Its underlying cellular and molecular mechanisms remain poorly understood. RNAseq from BLApn identified changes in multiple candidate learning-related transcripts including the expected immediate early gene Fos and Stk11, a master kinase of the AMP-related kinase pathway with important roles in growth, metabolism and development, but not previously implicated in learning. Deletion of Stk11 in BLApn blocked memory prior to training, but not following it and increased neuronal excitability. Conversely, BLApn had reduced excitability following CTA. BLApn knockout of a second learning-related gene, Fos, also increased excitability and impaired learning. Independently increasing BLApn excitability chemogenetically during CTA also impaired memory. STK11 and C-FOS activation were independent of one another. These data suggest key roles for Stk11 and Fos in CTA long-term memory formation, dependent at least partly through convergent action on BLApn intrinsic excitability.
Collapse
Affiliation(s)
- David Levitan
- Departments of Biology, Brandeis UniversityWalthamUnited States
| | - Chenghao Liu
- Departments of Biology, Brandeis UniversityWalthamUnited States
| | - Tracy Yang
- Departments of Biology, Brandeis UniversityWalthamUnited States
| | - Yasuyuki Shima
- Departments of Biology, Brandeis UniversityWalthamUnited States
| | - Jian-You Lin
- Departments of Psychology, Brandeis UniversityWalthamUnited States
- Volen Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Joseph Wachutka
- Departments of Psychology, Brandeis UniversityWalthamUnited States
| | - Yasmin Marrero
- Departments of Psychology, Brandeis UniversityWalthamUnited States
| | | | | | - Troy A Richter
- Departments of Biology, Brandeis UniversityWalthamUnited States
| | - Donald B Katz
- Departments of Psychology, Brandeis UniversityWalthamUnited States
- Volen Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Sacha B Nelson
- Departments of Biology, Brandeis UniversityWalthamUnited States
- Volen Center for Complex Systems, Brandeis UniversityWalthamUnited States
| |
Collapse
|
32
|
Pan HQ, Zhang WH, Liao CZ, He Y, Xiao ZM, Qin X, Liu WZ, Wang N, Zou JX, Liu XX, Pan BX. Chronic Stress Oppositely Regulates Tonic Inhibition in Thy1-Expressing and Non-expressing Neurons in Amygdala. Front Neurosci 2020; 14:299. [PMID: 32362809 PMCID: PMC7180173 DOI: 10.3389/fnins.2020.00299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic or prolonged exposure to stress ranks among the most important socioenvironmental factors contributing to the development of neuropsychiatric diseases, a process generally associated with loss of inhibitory tone in amygdala. Recent studies have identified distinct neuronal circuits within the basolateral amygdala (BLA) engaged in different emotional processes. However, the potential circuit involved in stress-induced dysregulation of inhibitory tones in BLA remains elusive. Here, a transgenic mouse model expressing yellow fluorescent protein under control of the Thy1 promoter was used to differentiate subpopulations of projection neurons (PNs) within the BLA. We observed that the tonic inhibition in amygdala neurons expressing and not expressing Thy1 (Thy1+/-) was oppositely regulated by chronic social defeat stress (CSDS). In unstressed control mice, the tonic inhibitory currents were significantly stronger in Thy1- PNs than their Thy1+ counterparts. CSDS markedly reduced the currents in Thy1- projection neurons (PNs), but increased that in Thy1+ ones. By contrast, CSDS failed to affect both the phasic A-type γ-aminobutyric acid receptor (GABAAR) currents and GABABR currents in these two PN populations. Moreover, chronic corticosterone administration was sufficient to mimic the effect of CSDS on the tonic inhibition of Thy1+ and Thy1- PNs. As a consequence, the suppression of tonic GABAAR currents on the excitability of Thy1- PNs was weakened by CSDS, but enhanced in Thy1+ PNs. The differential regulation of chronic stress on the tonic inhibition in Thy1+ and Thy1- neurons may orchestrate cell-specific adaptation of amygdala neurons to chronic stress.
Collapse
Affiliation(s)
- Han-Qing Pan
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang, China.,Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Wen-Hua Zhang
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang, China.,Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Cai-Zhi Liao
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang, China.,Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Ye He
- Center for Medical Experiments, Nanchang University, Nanchang, China
| | - Zhi-Ming Xiao
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Xia Qin
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang, China.,Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Wei-Zhu Liu
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang, China.,Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Na Wang
- Department of Physiology, Mudanjiang Medical University, Mudanjiang, China
| | - Jia-Xin Zou
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang, China.,Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Xiao-Xuan Liu
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang, China.,Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Bing-Xing Pan
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang, China.,Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
33
|
Yang J, Zhan XZ, Malola J, Li ZY, Pawar JS, Zhang HT, Zha ZG. The multiple roles of Thy-1 in cell differentiation and regeneration. Differentiation 2020; 113:38-48. [PMID: 32403041 DOI: 10.1016/j.diff.2020.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/17/2022]
Abstract
Thy-1 is a 25-37 kDa glycophosphatidylinositol (GPI)-anchored cell surface protein that was discovered more than 50 years ago. Recent findings have suggested that Thy-1 is expressed on thymocytes, mesenchymal stem cells (MSCs), cancer stem cells, hematopoietic stem cells, fibroblasts, myofibroblasts, endothelial cells, neuronal smooth muscle cells, and pan T cells. Thy-1 plays vital roles in cell migration, adhesion, differentiation, transdifferentiation, apoptosis, mechanotransduction, and cell division, which in turn are involved in tumor development, pulmonary fibrosis, neurite outgrowth, and T cell activation. Studies have increasingly indicated a significant role of Thy-1 in cell differentiation and regeneration. However, despite recent research, many questions remain regarding the roles of Thy-1 in cell differentiation and regeneration. This review aimed to summarize the roles of Thy-1 in cell differentiation and regeneration. Furthermore, since Thy-1 is an outer leaflet membrane protein anchored by GPI, we attempted to address how Thy-1 regulates intracellular pathways through cis and trans signals. Due to the complexity and mystery surrounding the issue, we also summarized the Thy-1-related pathways in different biological processes, and this might provide novel insights in the field of cell differentiation and regeneration.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-Zhen Zhan
- Department of Stomatology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jonathan Malola
- College of Pharmacy, Purdue University, West Lafayette, 47906, IN, USA
| | - Zhen-Yan Li
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, 47906, IN, USA
| | - Huan-Tian Zhang
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Zhen-Gang Zha
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
34
|
Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, French National Institutes of Health (INSERM) unit 1215, Neurocampus of Bordeaux University, Bordeaux, France
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
35
|
Maddox SA, Hartmann J, Ross RA, Ressler KJ. Deconstructing the Gestalt: Mechanisms of Fear, Threat, and Trauma Memory Encoding. Neuron 2019; 102:60-74. [PMID: 30946827 DOI: 10.1016/j.neuron.2019.03.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/03/2019] [Accepted: 03/12/2019] [Indexed: 01/14/2023]
Abstract
Threat processing is central to understanding debilitating fear- and trauma-related disorders such as posttraumatic stress disorder (PTSD). Progress has been made in understanding the neural circuits underlying the "engram" of threat or fear memory formation that complements a decades-old appreciation of the neurobiology of fear and threat involving hub structures such as the amygdala. In this review, we examine key recent findings, as well as integrate the importance of hormonal and physiological approaches, to provide a broader perspective of how bodily systems engaged in threat responses may interact with amygdala-based circuits in the encoding and updating of threat-related memory. Understanding how trauma-related memories are encoded and updated throughout the brain and the body will ultimately lead to novel biologically-driven approaches for treatment and prevention.
Collapse
Affiliation(s)
- Stephanie A Maddox
- Neurobiology of Fear Laboratory, Division of Depression and Anxiety Disorders, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Jakob Hartmann
- Neurobiology of Fear Laboratory, Division of Depression and Anxiety Disorders, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel A Ross
- Neurobiology of Fear Laboratory, Division of Depression and Anxiety Disorders, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Kerry J Ressler
- Neurobiology of Fear Laboratory, Division of Depression and Anxiety Disorders, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
McAvoy KM, Rajamohamed Sait H, Marsh G, Peterson M, Reynolds TL, Gagnon J, Geisler S, Leach P, Roberts C, Cahir-McFarland E, Ransohoff RM, Crotti A. Cell-autonomous and non-cell autonomous effects of neuronal BIN1 loss in vivo. PLoS One 2019; 14:e0220125. [PMID: 31408457 PMCID: PMC6692034 DOI: 10.1371/journal.pone.0220125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/09/2019] [Indexed: 01/25/2023] Open
Abstract
BIN1 is the most important risk locus for Late Onset Alzheimer’s Disease (LOAD), after ApoE. BIN1 AD-associated SNPs correlate with Tau deposition as well as with brain atrophy. Furthermore, the level of neuronal-specific BIN1 isoform 1 protein is decreased in sporadic AD cases in parallel with neuronal loss, despite an overall increase in BIN1 total mRNA. To address the relationship between reduction of BIN1 and neuronal cell loss in the context of Tau pathology, we knocked-down endogenous murine Bin1 via stereotaxic injection of AAV-Bin1 shRNA in the hippocampus of mice expressing Tau P301S (PS19). We observed a statistically significant reduction in the number of neurons in the hippocampus of mice injected with AAV-Bin1 shRNA in comparison with mice injected with AAV control. To investigate whether neuronal loss is due to deletion of Bin1 selectively in neurons in presence Tau P301S, we bred Bin1flox/flox with Thy1-Cre and subsequently with PS19 mice. Mice lacking neuronal Bin1 and expressing Tau P301S showed increased mortality, without increased neuropathology, when compared to neuronal Bin1 and Tau P301S-expressing mice. The loss of Bin1 isoform 1 resulted in reduced excitability in primary neurons in vitro, reduced neuronal c-fos expression as well as in altered microglia transcriptome in vivo. Taken together, our data suggest that the contribution of genetic variation in BIN1 locus to AD risk could result from a cell-autonomous reduction of neuronal excitability due to Bin1 decrease, exacerbated by the presence of aggregated Tau, coupled with a non-cell autonomous microglia activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Jake Gagnon
- Biogen, Cambridge, MA, United States of America
| | | | | | | | | | - Richard M Ransohoff
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States of America
| | | |
Collapse
|
37
|
Endocannabinoid interactions in the regulation of acquisition of contextual conditioned fear. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:84-91. [PMID: 30458201 DOI: 10.1016/j.pnpbp.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 11/23/2022]
Abstract
Endocannabinoids (eCBs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were shown to be involved in the basis of trauma-induced behavioral changes, particularly contextual conditioned fear, however, their ligand-specific effects and possible interactions are poorly understood. Here we assessed specific eCB effects and interactions on acquisition of contextual conditioned fear employing electric footshocks in a rat model. We selectively increased eCB levels by pharmacological blockade of the degrading enzymes of AEA by URB597 and 2-AG by JZL184 before traumatization either systemically or locally in relevant brain areas, the prelimbic cortex (PrL), ventral hippocampus (vHC) and basolateral amygdala (BLA). Following traumatization, a series of contextual reminders were conducted during which conditioned fear was assessed. While systemic URB597-treatment during traumatization only slightly enhanced the acquisition of contextual conditioned fear, administration of the compound in the PrL and vHC led to the acquisition of stable, lasting conditioned fear, resistant to extinction. These effects of URB597 were blocked by simultaneous administration of JZL184. Similar treatment effects did not occur in the BLA. Treatment effects were not secondary to alterations in locomotor activity or nociception. Our findings suggest that AEA and 2-AG functionally interact in the regulation of acquisition of contextual conditioned fear. AEA signaling in the PrL and vHC is a crucial promoter of fear acquisition while 2-AG potentially modulates this effect. The lack of eCB effects in the BLA suggests functional specificity of eCBs at distinct brain sites.
Collapse
|
38
|
Richter-Levin G, Stork O, Schmidt MV. Animal models of PTSD: a challenge to be met. Mol Psychiatry 2019; 24:1135-1156. [PMID: 30816289 PMCID: PMC6756084 DOI: 10.1038/s41380-018-0272-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
Recent years have seen increased interest in psychopathologies related to trauma exposure. Specifically, there has been a growing awareness to posttraumatic stress disorder (PTSD) in part due to terrorism, climate change-associated natural disasters, the global refugee crisis, and increased violence in overpopulated urban areas. However, notwithstanding the increased awareness to the disorder, the increasing number of patients, and the devastating impact on the lives of patients and their families, the efficacy of available treatments remains limited and highly unsatisfactory. A major scientific effort is therefore devoted to unravel the neural mechanisms underlying PTSD with the aim of paving the way to developing novel or improved treatment approaches and drugs to treat PTSD. One of the major scientific tools used to gain insight into understanding physiological and neuronal mechanisms underlying diseases and for treatment development is the use of animal models of human diseases. While much progress has been made using these models in understanding mechanisms of conditioned fear and fear memory, the gained knowledge has not yet led to better treatment options for PTSD patients. This poor translational outcome has already led some scientists and pharmaceutical companies, who do not in general hold opinions against animal models, to propose that those models should be abandoned. Here, we critically examine aspects of animal models of PTSD that may have contributed to the relative lack of translatability, including the focus on the exposure to trauma, overlooking individual and sex differences, and the contribution of risk factors. Based on findings from recent years, we propose research-based modifications that we believe are required in order to overcome some of the shortcomings of previous practice. These modifications include the usage of animal models of PTSD which incorporate risk factors and of the behavioral profiling analysis of individuals in a sample. These modifications are aimed to address factors such as individual predisposition and resilience, thus taking into consideration the fact that only a fraction of individuals exposed to trauma develop PTSD. We suggest that with an appropriate shift of practice, animal models are not only a valuable tool to enhance our understanding of fear and memory processes, but could serve as effective platforms for understanding PTSD, for PTSD drug development and drug testing.
Collapse
Affiliation(s)
- Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel. .,The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel. .,Psychology Department, University of Haifa, Haifa, Israel.
| | - Oliver Stork
- 0000 0001 1018 4307grid.5807.aDepartment of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany ,grid.452320.2Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Mathias V. Schmidt
- 0000 0000 9497 5095grid.419548.5Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
39
|
Luchkina NV, Bolshakov VY. Diminishing fear: Optogenetic approach toward understanding neural circuits of fear control. Pharmacol Biochem Behav 2018; 174:64-79. [PMID: 28502746 PMCID: PMC5681900 DOI: 10.1016/j.pbb.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/13/2017] [Accepted: 05/10/2017] [Indexed: 02/05/2023]
Abstract
Understanding complex behavioral processes, both learned and innate, requires detailed characterization of the principles governing signal flow in corresponding neural circuits. Previous studies were hampered by the lack of appropriate tools needed to address the complexities of behavior-driving micro- and macrocircuits. The development and implementation of optogenetic methodologies revolutionized the field of behavioral neuroscience, allowing precise spatiotemporal control of specific, genetically defined neuronal populations and their functional connectivity both in vivo and ex vivo, thus providing unprecedented insights into the cellular and network-level mechanisms contributing to behavior. Here, we review recent pioneering advances in behavioral studies with optogenetic tools, focusing on mechanisms of fear-related behavioral processes with an emphasis on approaches which could be used to suppress fear when it is pathologically expressed. We also discuss limitations of these methodologies as well as review new technological developments which could be used in future mechanistic studies of fear behavior.
Collapse
Affiliation(s)
- Natalia V Luchkina
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| |
Collapse
|
40
|
Gilman TL, Dutta S, Adkins JM, Cecil CA, Jasnow AM. Basolateral amygdala Thy1-expressing neurons facilitate the inhibition of contextual fear during consolidation, reconsolidation, and extinction. Neurobiol Learn Mem 2018; 155:498-507. [PMID: 30287384 DOI: 10.1016/j.nlm.2018.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/15/2018] [Accepted: 09/26/2018] [Indexed: 12/29/2022]
Abstract
Disrupted fear inhibition is a characteristic of many anxiety disorders. Investigations into the neural mechanisms responsible for inhibiting fear will improve understanding of the essential circuits involved, and facilitate development of treatments that promote their activity. Within the basolateral amygdala (BLA), Thy1-expressing neuron activity has been characterized by us and others as promoting fear inhibition to discrete fear cues by influencing consolidation of cued fear learning or cued fear extinction. Here, we evaluated how activating BLA Thy1-expressing neurons using DREADDs affected the consolidation, expression, reconsolidation, and extinction of contextual fear. Using an inhibitory avoidance paradigm, our present findings indicate a similar involvement of BLA Thy1-expressing neuron activity in the consolidation and extinction, but not expression, of fear. Importantly, our data also provide the first evidence for involvement of these neurons in inhibiting fear reconsolidation. Therefore, these data enhance our understanding of the roles that Thy1-expressing neurons within the BLA play in inhibiting fear when examining avoidance, in addition to the already established role in Pavlovian fear paradigms. Future investigations should further explore the circuits responsible for these contextual effects modulated by BLA Thy1 neuron activation, and could promulgate development of therapies targeting these neurons and their downstream effectors.
Collapse
Affiliation(s)
- T Lee Gilman
- Department of Psychological Sciences and Brain Health Research Institute, 144 Kent Hall, Kent State University, Kent, OH 44242, USA.
| | - Sohini Dutta
- Department of Psychological Sciences and Brain Health Research Institute, 144 Kent Hall, Kent State University, Kent, OH 44242, USA.
| | - Jordan M Adkins
- Department of Psychological Sciences and Brain Health Research Institute, 144 Kent Hall, Kent State University, Kent, OH 44242, USA.
| | - Cassandra A Cecil
- Department of Psychological Sciences and Brain Health Research Institute, 144 Kent Hall, Kent State University, Kent, OH 44242, USA.
| | - Aaron M Jasnow
- Department of Psychological Sciences and Brain Health Research Institute, 144 Kent Hall, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
41
|
Fenster RJ, Lebois LAM, Ressler KJ, Suh J. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nat Rev Neurosci 2018; 19:535-551. [PMID: 30054570 PMCID: PMC6148363 DOI: 10.1038/s41583-018-0039-7] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a prevalent, debilitating and sometimes deadly consequence of exposure to severe psychological trauma. Although effective treatments exist for some individuals, they are limited. New approaches to intervention, treatment and prevention are therefore much needed. In the past few years, the field has rapidly developed a greater understanding of the dysfunctional brain circuits underlying PTSD, a shift in understanding that has been made possible by technological revolutions that have allowed the observation and perturbation of the macrocircuits and microcircuits thought to underlie PTSD-related symptoms. These advances have allowed us to gain a more translational knowledge of PTSD, have provided further insights into the mechanisms of risk and resilience and offer promising avenues for therapeutic discovery.
Collapse
Affiliation(s)
- Robert J Fenster
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Lauren A M Lebois
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
| | - Junghyup Suh
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
42
|
Neural substrates of fear-induced hypophagia in male and female rats. Brain Struct Funct 2018; 223:2925-2947. [PMID: 29704225 DOI: 10.1007/s00429-018-1668-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 04/19/2018] [Indexed: 12/18/2022]
Abstract
Cessation of eating under fear is an adaptive response that aids survival by prioritizing the expression of defensive behaviors over feeding behavior. However, this response can become maladaptive when persistent. Thus, accurate mediation of the competition between fear and feeding is important in health and disease; yet, the underlying neural substrates are largely unknown. The current study identified brain regions that were recruited when a fear cue inhibited feeding in male and female rats. We used a previously established behavioral paradigm to elicit hypophagia with a conditioned cue for footshocks, and Fos imaging to map activation patterns during this behavior. We found that distinct patterns of recruitment were associated with feeding and fear expression, and that these patterns were similar in males and females except within the medial prefrontal cortex (mPFC). In both sexes, food consumption was associated with activation of cell groups in the central amygdalar nucleus, hypothalamus, and dorsal vagal complex, and exposure to food cues was associated with activation of the anterior basolateral amygdalar nucleus. In contrast, fear expression was associated with activation of the lateral and posterior basomedial amygdalar nuclei. Interestingly, selective recruitment of the mPFC in females, but not in males, was associated with both feeding and freezing behavior, suggesting sex differences in the neuronal processing underlying the competition between feeding and fear. This study provided the first evidence of the neural network mediating fear-induced hypophagia, and important functional activation maps for future interrogation of the underlying neural substrates.
Collapse
|
43
|
Grosso A, Santoni G, Manassero E, Renna A, Sacchetti B. A neuronal basis for fear discrimination in the lateral amygdala. Nat Commun 2018; 9:1214. [PMID: 29572443 PMCID: PMC5865209 DOI: 10.1038/s41467-018-03682-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/02/2018] [Indexed: 01/08/2023] Open
Abstract
In the presence of new stimuli, it is crucial for survival to react with defensive responses in the presence of stimuli that resemble threats but also to not react with defensive behavior in response to new harmless stimuli. Here, we show that in the presence of new uncertain stimuli with sensory features that produce an ambiguous interpretation, discriminative processes engage a subset of excitatory and inhibitory neurons within the lateral amygdala (LA) that are partially different from those engaged by fear processes. Inducing the pharmacogenetic deletion of this neuronal ensemble caused fear generalization but left anxiety-like response, fear memory and extinction processes intact. These data reveal that two opposite neuronal processes account for fear discrimination and generalization within the LA and suggest a potential pathophysiological mechanism for the impaired discrimination that characterizes fear-related disorders. When perceiving new stimuli, organisms need to distinguish between threats versus harmless stimuli. Here, the authors find a set of cells in the lateral amygdala that is required to discriminate or generalize new auditory stimuli based on similarity to previously fear-associate sounds.
Collapse
Affiliation(s)
- Anna Grosso
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125, Turin, Italy
| | - Giulia Santoni
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125, Turin, Italy
| | - Eugenio Manassero
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125, Turin, Italy
| | - Annamaria Renna
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125, Turin, Italy
| | - Benedetto Sacchetti
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125, Turin, Italy. .,National Institute of Neuroscience - Turin, I-10125, Turin, Italy.
| |
Collapse
|
44
|
Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites. Nat Neurosci 2018; 21:353-363. [PMID: 29459763 DOI: 10.1038/s41593-018-0084-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/05/2018] [Indexed: 01/05/2023]
Abstract
CA1 pyramidal neurons are a major output of the hippocampus and encode features of experience that constitute episodic memories. Feature-selective firing of these neurons results from the dendritic integration of inputs from multiple brain regions. While it is known that synchronous activation of spatially clustered inputs can contribute to firing through the generation of dendritic spikes, there is no established mechanism for spatiotemporal synaptic clustering. Here we show that single presynaptic axons form multiple, spatially clustered inputs onto the distal, but not proximal, dendrites of CA1 pyramidal neurons. These compound connections exhibit ultrastructural features indicative of strong synapses and occur much more commonly in entorhinal than in thalamic afferents. Computational simulations revealed that compound connections depolarize dendrites in a biophysically efficient manner, owing to their inherent spatiotemporal clustering. Our results suggest that distinct afferent projections use different connectivity motifs that differentially contribute to dendritic integration.
Collapse
|
45
|
Dobbins DL, Klorig DC, Smith T, Godwin DW. Expression of channelrhodopsin-2 localized within the deep CA1 hippocampal sublayer in the Thy1 line 18 mouse. Brain Res 2018; 1679:179-184. [PMID: 29191773 PMCID: PMC5752121 DOI: 10.1016/j.brainres.2017.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
Optogenetic proteins are powerful tools for advancing our understanding of neural circuitry. However, the precision of optogenetics is dependent in part on the extent to which expression is limited to cells of interest. The Thy1-ChR2 transgenic mouse is commonly used in optogenetic experiments. Although general expression patterns in these animals have been characterized, a detailed evaluation of cell-type specificity is lacking. This information is critical for interpretation of experimental results using these animals. We characterized ChR2 expression under the Thy1promoter in line 18 in comparison to known expression profiles of hippocampal cell types using immunohistochemistry in CA1. ChR2 expression did not colocalize with parvalbumin or calbindin expressing interneurons. However, we found ChR2 expression to be localized in the deep sublayer of CA1 in calbindin-negative pyramidal cells. These findings demonstrate the utility of the Thy1-ChR2-YFP mouse to study the activity and functional role of excitatory neurons located in the deep CA1 pyramidal cell layer.
Collapse
Affiliation(s)
- Dorothy L Dobbins
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - David C Klorig
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Thuy Smith
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dwayne W Godwin
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
46
|
Common Biological Mechanisms of Alcohol Use Disorder and Post-Traumatic Stress Disorder. Alcohol Res 2018; 39:131-145. [PMID: 31198653 PMCID: PMC6561401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are highly comorbid. Although recent clinical studies provide some understanding of biological and subsequent behavioral changes that define each of these disorders, the neurobiological basis of interactions between PTSD and AUD has not been well-understood. In this review, we summarize the relevant animal models that parallel the human conditions, as well as the clinical findings in these disorders, to delineate key gaps in our knowledge and to provide potential clinical strategies for alleviating the comorbid conditions.
Collapse
|
47
|
Guo Y, Wolff FE, Schapiro I, Elstner M, Marazzi M. Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2. Phys Chem Chem Phys 2018; 20:27501-27509. [DOI: 10.1039/c8cp05210g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans-to-cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Franziska E. Wolff
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research
- Institute of Chemistry
- Hebrew University of Jerusalem
- Jerusalem
- Israel
| | - Marcus Elstner
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Marco Marazzi
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| |
Collapse
|
48
|
Abstract
The activity of neural circuits that underpin particular behaviours are one of the most interesting questions in neurobiology today. This understanding will not only lead to a detailed understanding of learning and memory formation, but also provides a platform for the development of novel therapeutic approaches to a range of neurological disorders that afflict humans. Among the different behavioural paradigms, Pavlovian fear conditioning and its extinction are two of the most extensively used to study acquisition, consolidation and retrieval of fear-related memories. The amygdala, medial prefrontal cortex (mPFC) and hippocampus are three regions with extensive bidirectional connections, and play key roles in fear processing. In this chapter, we summarise our current understanding of the structure and physiological role of these three regions in fear learning and extinction.
Collapse
Affiliation(s)
- Roger Marek
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
49
|
Abstract
Progress in clinical and affective neuroscience is redefining psychiatric illness as symptomatic expression of cellular/molecular dysfunctions in specific brain circuits. Post-traumatic stress disorder (PTSD) has been an exemplar of this progress, with improved understanding of neurobiological systems subserving fear learning, salience detection, and emotion regulation explaining much of its phenomenology and neurobiology. However, many features remain unexplained and a parsimonious model that more fully accounts for symptoms and the core neurobiology remains elusive. Contextual processing is a key modulatory function of hippocampal-prefrontal-thalamic circuitry, allowing organisms to disambiguate cues and derive situation-specific meaning from the world. We propose that dysregulation within this context-processing circuit is at the core of PTSD pathophysiology, accounting for much of its phenomenology and most of its biological findings. Understanding core mechanisms like this, and their underlying neural circuits, will sharpen diagnostic precision and understanding of risk factors, enhancing our ability to develop preventive and "personalized" interventions.
Collapse
Affiliation(s)
- Israel Liberzon
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-2700, USA; Mental Health Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, MI 48105, USA.
| | - James L Abelson
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-2700, USA
| |
Collapse
|
50
|
Doenni VM, Song CM, Hill MN, Pittman QJ. Early-life inflammation with LPS delays fear extinction in adult rodents. Brain Behav Immun 2017; 63:176-185. [PMID: 27888073 DOI: 10.1016/j.bbi.2016.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022] Open
Abstract
A large body of evidence has been brought forward connecting developmental immune activation to abnormal fear and anxiety levels. Anxiety disorders have extremely high lifetime prevalence, yet susceptibility factors that contribute to their emergence are poorly understood. In this research we investigated whether an inflammatory insult early in life can alter the response to fear conditioning in adulthood. Fear learning and extinction are important and adaptive behaviors, mediated largely by the amygdala and its interconnectivity with cortico-limbic circuits. Male and female rat pups were given LPS (100μg/kg i.p.) or saline at postnatal day 14; LPS activated cFos expression in the central amygdala 2.5h after exposure, but not the basal or lateral nuclei. When tested in adulthood, acquisition of an auditory cued or contextual learned fear memory was largely unaffected as was the extinction of fear to a conditioned context. However, we detected a deficit in auditory fear extinction in male and female rats that experienced early-life inflammation, such that there is a significant delay in fear extinction processes resulting in more sustained fear behaviors in response to a conditioned cue. This response was specific to extinction training and did not persist into extinction recall. The effect could not be explained by differences in pain threshold (unaltered) or in baseline anxiety, which was elevated in adolescent females only and unaltered in adolescent males and adult males and females. This research provides further evidence for the involvement of the immune system during development in the shaping of fear and anxiety related behaviors.
Collapse
Affiliation(s)
- V M Doenni
- Hotchkiss Brain Institute, Cumming School of Medicine, Mathison Center for Mental Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Neuroscience, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| | - C M Song
- Hotchkiss Brain Institute, Cumming School of Medicine, Mathison Center for Mental Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - M N Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, Mathison Center for Mental Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Q J Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, Mathison Center for Mental Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|