1
|
Davis JL, Kennedy C, McMahon CL, Keegan L, Clerkin S, Treacy NJ, Hoban AE, Kelly Y, Brougham DF, Crean J, Murphy KJ. Cocaine perturbs neurodevelopment and increases neuroinflammation in a prenatal cerebral organoid model. Transl Psychiatry 2025; 15:94. [PMID: 40140359 PMCID: PMC11947122 DOI: 10.1038/s41398-025-03315-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/17/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Prenatal exposure to cocaine causes abnormalities in foetal brain development, which are linked to later development of anxiety, depression and cognitive dysfunction. Previous studies in rodent models have indicated that prenatal cocaine exposure affects proliferation, differentiation and connectivity of neural cell types. Here, using cerebral organoids derived from the human iPSC cell line HPSI1213i-babk_2, we investigated cocaine-induced changes of the gene expression regulatory landscape at an early developmental time point, leveraging recent advances in single cell RNA-seq and single cell ATAC-seq. iPSC-cerebral organoids replicated well-established cocaine responses observed in vivo and provided additional information about the cell-type specific regulation of gene expression following cocaine exposure. Cocaine altered gene expression patterns, in part through epigenetic landscape remodelling, and revealed disordered neural plasticity mechanisms in the cerebral organoids. Perturbed neurodevelopmental cellular signalling and an inflammatory-like activation of astrocyte populations were also evident following cocaine exposure. The combination of altered neuroplasticity, neurodevelopment and neuroinflammatory signalling suggests cocaine exposure can mediate substantial disruption of normal development and maturation of the brain. These findings offer new insights into the cellular mechanism underlying the adverse effects of cocaine exposure on neurodevelopment and point to the possible pathomechanisms of later neuropsychiatric disturbances.
Collapse
Affiliation(s)
- Jessica L Davis
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ciaran Kennedy
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ciara L McMahon
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Louise Keegan
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Shane Clerkin
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niall J Treacy
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alan E Hoban
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yazeed Kelly
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - John Crean
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Keith J Murphy
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Borruto AM, Calpe-López C, Spanagel R, Bernardi RE. Conditional deletion of the AMPA-GluA1 and NMDA-GluN1 receptor subunit genes in midbrain D1 neurons does not alter cocaine reward in mice. Neuropharmacology 2024; 258:110081. [PMID: 39002853 DOI: 10.1016/j.neuropharm.2024.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Synaptic plasticity in the mesolimbic dopamine (DA) system contributes to the neural adaptations underlying addictive behaviors and relapse. However, the specific behavioral relevance of glutamatergic excitatory drive onto dopamine D1 receptor (D1R)-expressing neurons in mediating the reinforcing effect of cocaine remains unclear. Here, we investigated how midbrain AMPAR and NMDAR function modulate cocaine reward-related behavior using mutant mouse lines lacking the glutamate receptor genes Gria1 or Grin1 in D1R-expressing neurons (GluA1D1CreERT2 or GluN1D1CreERT2, respectively). We found that conditional genetic deletion of either GluA1 or GluN1 within this neuronal sub-population did not impact the ability of acute cocaine injection to increase intracranial self-stimulation (ICSS) ratio or reduced brain reward threshold compared to littermate controls. Additionally, our data demonstrate that deletion of GluA1 and GluN1 receptor subunits within D1R-expressing neurons did not affect cocaine reinforcement in an operant self-administration paradigm, as mutant mice showed comparable cocaine responses and intake to controls. Given the pivotal role of glutamate receptors in mediating relapse behavior, we further explored the impact of genetic deletion of AMPAR and NMDAR onto D1R-expressing neurons on cue-induced reinstatement following extinction. Surprisingly, deletion of AMPAR and NMDAR onto these neurons did not impair cue-induced reinstatement of cocaine-seeking behavior. These findings suggest that glutamatergic activity via NMDAR and AMPAR in D1R-expressing neurons may not exclusively mediate the reinforcing effects of cocaine and cue-induced reinstatement.
Collapse
MESH Headings
- Animals
- Cocaine/pharmacology
- Cocaine/administration & dosage
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Reward
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Mice
- Self Administration
- Male
- Mesencephalon/metabolism
- Mesencephalon/drug effects
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Neurons/metabolism
- Neurons/drug effects
- Mice, Knockout
- Dopamine Uptake Inhibitors/pharmacology
- Mice, Inbred C57BL
- Reinforcement, Psychology
- Nerve Tissue Proteins
Collapse
Affiliation(s)
- Anna Maria Borruto
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Claudia Calpe-López
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; German Center for Mental Health (DZPG), Partner Site Mannheim, Heidelberg, Ulm, Germany
| | - Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
3
|
Tavakoli NS, Malone SG, Anderson TL, Neeley RE, Asadipooya A, Bardo MT, Ortinski PI. Astrocyte Ca 2+ in the dorsal striatum suppresses neuronal activity to oppose cue-induced reinstatement of cocaine seeking. Front Cell Neurosci 2024; 18:1347491. [PMID: 39280793 PMCID: PMC11393831 DOI: 10.3389/fncel.2024.1347491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Recent literature supports a prominent role for astrocytes in regulation of drug-seeking behaviors. The dorsal striatum, specifically, is known to play a role in reward processing with neuronal activity that can be influenced by astrocyte Ca2+. However, the manner in which Ca2+ in dorsal striatum astrocytes impacts neuronal signaling after exposure to self-administered cocaine remains unclear. We addressed this question following over-expression of the Ca2+ extrusion pump, hPMCA2w/b, in dorsal striatum astrocytes and the Ca2+ indicator, GCaMP6f, in dorsal striatum neurons of rats that were trained to self-administer cocaine. Following extinction of cocaine-seeking behavior, the rats over-expressing hMPCA2w/b showed a significant increase in cue-induced reinstatement of cocaine seeking. Suppression of astrocyte Ca2+ increased the amplitude of neuronal Ca2+ transients in brain slices, but only after cocaine self-administration. This was accompanied by decreased duration of neuronal Ca2+ events in the cocaine group and no changes in Ca2+ event frequency. Acute administration of cocaine to brain slices decreased amplitude of neuronal Ca2+ in both the control and cocaine self-administration groups regardless of hPMCA2w/b expression. These results indicated that astrocyte Ca2+ control over neuronal Ca2+ transients was enhanced by cocaine self-administration experience, although sensitivity to acutely applied cocaine remained comparable across all groups. To explore this further, we found that neither the hMPCA2w/b expression nor the cocaine self-administration experience altered regulation of neuronal Ca2+ events by NPS-2143, a Ca2+ sensing receptor (CaSR) antagonist, suggesting that plasticity of neuronal signaling after hPMCA2w/b over-expression was unlikely to result from elevated extracellular Ca2+. We conclude that astrocyte Ca2+ in the dorsal striatum impacts neurons via cell-intrinsic mechanisms (e.g., gliotransmission, metabolic coupling, etc.) and impacts long-term neuronal plasticity after cocaine self-administration differently from neuronal response to acute cocaine. Overall, astrocyte Ca2+ influences neuronal output in the dorsal striatum to promote resistance to cue-induced reinstatement of cocaine seeking.
Collapse
Affiliation(s)
- Navid S Tavakoli
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Samantha G Malone
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Tanner L Anderson
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Ryson E Neeley
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Artin Asadipooya
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Pavel I Ortinski
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Gao Z, Winhusen TJ, Gorenflo M, Ghitza UE, Davis PB, Kaelber DC, Xu R. Repurposing ketamine to treat cocaine use disorder: integration of artificial intelligence-based prediction, expert evaluation, clinical corroboration and mechanism of action analyses. Addiction 2023; 118:1307-1319. [PMID: 36792381 PMCID: PMC10631254 DOI: 10.1111/add.16168] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND AND AIMS Cocaine use disorder (CUD) is a significant public health issue for which there is no Food and Drug Administration (FDA) approved medication. Drug repurposing looks for new cost-effective uses of approved drugs. This study presents an integrated strategy to identify repurposed FDA-approved drugs for CUD treatment. DESIGN Our drug repurposing strategy combines artificial intelligence (AI)-based drug prediction, expert panel review, clinical corroboration and mechanisms of action analysis being implemented in the National Drug Abuse Treatment Clinical Trials Network (CTN). Based on AI-based prediction and expert knowledge, ketamine was ranked as the top candidate for clinical corroboration via electronic health record (EHR) evaluation of CUD patient cohorts prescribed ketamine for anesthesia or depression compared with matched controls who received non-ketamine anesthesia or antidepressants/midazolam. Genetic and pathway enrichment analyses were performed to understand ketamine's potential mechanisms of action in the context of CUD. SETTING The study utilized TriNetX to access EHRs from more than 90 million patients world-wide. Genetic- and functional-level analyses used DisGeNet, Search Tool for Interactions of Chemicals and Kyoto Encyclopedia of Genes and Genomes databases. PARTICIPANTS A total of 7742 CUD patients who received anesthesia (3871 ketamine-exposed and 3871 anesthetic-controlled) and 7910 CUD patients with depression (3955 ketamine-exposed and 3955 antidepressant-controlled) were identified after propensity score-matching. MEASUREMENTS EHR analysis outcome was a CUD remission diagnosis within 1 year of drug prescription. FINDINGS Patients with CUD prescribed ketamine for anesthesia displayed a significantly higher rate of CUD remission compared with matched individuals prescribed other anesthetics [hazard ratio (HR) = 1.98, 95% confidence interval (CI) = 1.42-2.78]. Similarly, CUD patients prescribed ketamine for depression evidenced a significantly higher CUD remission ratio compared with matched patients prescribed antidepressants or midazolam (HR = 4.39, 95% CI = 2.89-6.68). The mechanism of action analysis revealed that ketamine directly targets multiple CUD-associated genes (BDNF, CNR1, DRD2, GABRA2, GABRB3, GAD1, OPRK1, OPRM1, SLC6A3, SLC6A4) and pathways implicated in neuroactive ligand-receptor interaction, cAMP signaling and cocaine abuse/dependence. CONCLUSIONS Ketamine appears to be a potential repurposed drug for treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Zhenxiang Gao
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - T. John Winhusen
- Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Maria Gorenflo
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Udi E. Ghitza
- Center for the Clinical Trials Network (CCTN), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Pamela B. Davis
- Center for Community Health Integration, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David C. Kaelber
- Center for Clinical Informatics Research and Education, The Metro Health System, Cleveland, OH, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
5
|
Xiong S, Xiao H, Sun M, Liu Y, Gao L, Xu K, Liang H, Jiang N, Lin Y, Chang L, Wu H, Zhu D, Luo C. Glutamate-releasing BEST1 channel is a new target for neuroprotection against ischemic stroke with wide time window. Acta Pharm Sin B 2023; 13:3008-3026. [PMID: 37521872 PMCID: PMC10372917 DOI: 10.1016/j.apsb.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 08/01/2023] Open
Abstract
Many efforts have been made to understand excitotoxicity and develop neuroprotectants for the therapy of ischemic stroke. The narrow treatment time window is still to be solved. Given that the ischemic core expanded over days, treatment with an extended time window is anticipated. Bestrophin 1 (BEST1) belongs to a bestrophin family of calcium-activated chloride channels. We revealed an increase in neuronal BEST1 expression and function within the peri-infarct from 8 to 48 h after ischemic stroke in mice. Interfering the protein expression or inhibiting the channel function of BEST1 by genetic manipulation displayed neuroprotective effects and improved motor functional deficits. Using electrophysiological recordings, we demonstrated that extrasynaptic glutamate release through BEST1 channel resulted in delayed excitotoxicity. Finally, we confirmed the therapeutic efficacy of pharmacological inhibition of BEST1 during 6-72 h post-ischemia in rodents. This delayed treatment prevented the expansion of infarct volume and the exacerbation of neurological functions. Our study identifies the glutamate-releasing BEST1 channel as a potential therapeutic target against ischemic stroke with a wide time window.
Collapse
Affiliation(s)
- Shuai Xiong
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hui Xiao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Meng Sun
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yunjie Liu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ling Gao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ke Xu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Haiying Liang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Nan Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuhui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Haiyin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Dongya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Chunxia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
6
|
Gangal H, Xie X, Huang Z, Cheng Y, Wang X, Lu J, Zhuang X, Essoh A, Huang Y, Chen R, Smith LN, Smith RJ, Wang J. Drug reinforcement impairs cognitive flexibility by inhibiting striatal cholinergic neurons. Nat Commun 2023; 14:3886. [PMID: 37391566 PMCID: PMC10313783 DOI: 10.1038/s41467-023-39623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Addictive substance use impairs cognitive flexibility, with unclear underlying mechanisms. The reinforcement of substance use is mediated by the striatal direct-pathway medium spiny neurons (dMSNs) that project to the substantia nigra pars reticulata (SNr). Cognitive flexibility is mediated by striatal cholinergic interneurons (CINs), which receive extensive striatal inhibition. Here, we hypothesized that increased dMSN activity induced by substance use inhibits CINs, reducing cognitive flexibility. We found that cocaine administration in rodents caused long-lasting potentiation of local inhibitory dMSN-to-CIN transmission and decreased CIN firing in the dorsomedial striatum (DMS), a brain region critical for cognitive flexibility. Moreover, chemogenetic and time-locked optogenetic inhibition of DMS CINs suppressed flexibility of goal-directed behavior in instrumental reversal learning tasks. Notably, rabies-mediated tracing and physiological studies showed that SNr-projecting dMSNs, which mediate reinforcement, sent axonal collaterals to inhibit DMS CINs, which mediate flexibility. Our findings demonstrate that the local inhibitory dMSN-to-CIN circuit mediates the reinforcement-induced deficits in cognitive flexibility.
Collapse
Affiliation(s)
- Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yifeng Cheng
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jiayi Lu
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xiaowen Zhuang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Amanda Essoh
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yufei Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Rachel J Smith
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Pasierski M, Kołba W, Szulczyk B. Guanfacine inhibits interictal epileptiform events and sodium currents in prefrontal cortex pyramidal neurons. Pharmacol Rep 2023; 75:331-341. [PMID: 36800106 DOI: 10.1007/s43440-023-00458-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Guanfacine (an alpha-2A receptor agonist) is a commonly used drug with recognized efficacy in the treatment of attention deficit hyperactivity disorder (ADHD). This study aimed to assess the effects of guanfacine on short-lasting (interictal) epileptiform discharges in cortical neurons. Moreover, we assessed the effects of guanfacine on voltage-gated sodium currents. METHODS We conducted patch-clamp recordings in prefrontal cortex pyramidal neurons obtained from young rats. Interictal epileptiform events were evoked in cortical slices in a zero magnesium proepileptic extracellular solution with an elevated concentration of potassium ions. RESULTS Interictal epileptiform discharges were spontaneous depolarisations, which triggered action potentials. Guanfacine (10 and 100 µM) inhibited the frequency of epileptiform discharges. The effect of guanfacine on interictal events persisted in the presence of alpha-2 adrenergic receptor antagonist idazoxan. The tested drug inhibited neuronal excitability. Tonic NMDA currents were not influenced by guanfacine. Recordings from dispersed neurons showed that the tested drug (10 and 100 µM) inhibited persistent and fast inactivating voltage-gated sodium currents. CONCLUSIONS This study shows that guanfacine inhibits interictal discharges in cortical neurons independently of alpha-2A adrenergic receptors. This effect may be mediated by voltage-gated sodium currents. Inhibition of interictal activity by guanfacine may be of clinical importance because interictal events often occur in patients with ADHD and may contribute to symptoms of this disease.
Collapse
Affiliation(s)
- Michał Pasierski
- Department of Pharmacodynamics, The Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Weronika Kołba
- Department of Pharmacodynamics, The Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Bartłomiej Szulczyk
- Department of Pharmacodynamics, The Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| |
Collapse
|
8
|
Swinford-Jackson SE, Huffman PJ, Knouse MC, Thomas AS, Rich MT, Mankame S, Worobey SJ, Sarmiento M, Coleman A, Pierce RC. High frequency DBS-like optogenetic stimulation of nucleus accumbens dopamine D2 receptor-containing neurons attenuates cocaine reinstatement in male rats. Neuropsychopharmacology 2023; 48:459-467. [PMID: 36446928 PMCID: PMC9852282 DOI: 10.1038/s41386-022-01495-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/30/2022]
Abstract
Previous work indicated that deep brain stimulation (DBS) of the nucleus accumbens shell in male rats attenuated reinstatement of cocaine seeking, an animal model of craving. However, the potential differential impact of DBS on specific populations of neurons to drive the suppression of cocaine seeking is unknown. Medium spiny neurons in the nucleus accumbens are differentiated by expression of dopamine D1 receptors (D1DRs) or D2DRs, activation of which promotes or inhibits cocaine-related behaviors, respectively. The advent of transgenic rat lines expressing Cre recombinase selectively in D1DR-containing or D2DR-containing neurons, when coupled with Cre-dependent virally mediated gene transfer of channelrhodopsin (ChR2), enabled mimicry of DBS in a selective subpopulation of neurons during complex tasks. We tested the hypothesis that high frequency DBS-like optogenetic stimulation of D1DR-containing neurons in the accumbens shell would potentiate, whereas stimulation of D2DR-containing neurons in the accumbens shell would attenuate, cocaine-primed reinstatement of cocaine seeking. Results indicated that high frequency, DBS-like optogenetic stimulation of D2DR-containing neurons attenuated reinstatement of cocaine seeking in male rats, whereas DBS-like stimulation of D1DR-containing neurons did not alter cocaine-primed reinstatement. Surprisingly, DBS-like optogenetic stimulation did not alter reinstatement of cocaine seeking in female rats. In rats which only expressed eYFP, intra-accumbens optogenetic stimulation did not alter cocaine reinstatement, indicating that the effect of DBS-like stimulation to attenuate cocaine reinstatement is mediated specifically by ChR2 rather than by prolonged light delivery. These results suggest that DBS of the accumbens may attenuate cocaine-primed reinstatement in male rats through the selective manipulation of D2DR-containing neurons.
Collapse
Affiliation(s)
- Sarah E Swinford-Jackson
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA.
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Phillip J Huffman
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Melissa C Knouse
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA
| | - Arthur S Thomas
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew T Rich
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA
| | - Sharvari Mankame
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA
| | - Samantha J Worobey
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA
| | - Mateo Sarmiento
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ayanna Coleman
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - R Christopher Pierce
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA
- Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA
| |
Collapse
|
9
|
Caffino L, Mottarlini F, Targa G, Verheij MMM, Homberg J, Fumagalli F. Long access to cocaine self-administration dysregulates the glutamate synapse in the nucleus accumbens core of serotonin transporter knockout rats. Br J Pharmacol 2022; 179:4254-4264. [PMID: 33880773 PMCID: PMC9544393 DOI: 10.1111/bph.15496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/15/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE It is well established that the nucleus accumbens and glutamate play a critical role in the motivation to take drugs of abuse. We have previously demonstrated that rats with ablation of the serotonin (5-HT) transporter (SERT-/- rats) show increased cocaine intake reminiscent of compulsivity. EXPERIMENTAL APPROACH By comparing SERT-/- to SERT+/+ rats, we set out to explore whether SERT deletion influences glutamate neurotransmission under control conditions as well as after short access (1 h/session) or long access (6 h/session) to cocaine self-administration. KEY RESULTS Rats were killed at 24 h after the final self-administration session for ex vivo molecular analyses of the glutamate system (vesicular and glial transporters, post-synaptic subunits of NMDA and AMPA receptors and their related scaffolding proteins). Such analyses were undertaken in the nucleus accumbens core. In cocaine-naïve animals, SERT deletion evoked widespread abnormalities in markers of glutamatergic neurotransmission that, overall, indicate a reduction of glutamate signalling. These results suggest that 5-HT is pivotal for the maintenance of accumbal glutamate homeostasis. We also found that SERT deletion altered glutamate homeostasis mainly after long access, but not short access, to cocaine. CONCLUSION AND IMPLICATIONS Our findings reveal that SERT deletion may sensitize the glutamatergic synapses of the nucleus accumbens core to the long access but not short access, intake of cocaine. LINKED ARTICLES This article is part of a themed issue on New discoveries and perspectives in mental and pain disorders. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.17/issuetoc.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and BehaviourRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Judith Homberg
- Department of Cognitive Neuroscience, Division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and BehaviourRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| |
Collapse
|
10
|
Ortinski PI, Reissner KJ, Turner J, Anderson TA, Scimemi A. Control of complex behavior by astrocytes and microglia. Neurosci Biobehav Rev 2022; 137:104651. [PMID: 35367512 PMCID: PMC9119927 DOI: 10.1016/j.neubiorev.2022.104651] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Evidence that glial cells influence behavior has been gaining a steady foothold in scientific literature. Out of the five main subtypes of glial cells in the brain, astrocytes and microglia have received an outsized share of attention with regard to shaping a wide spectrum of behavioral phenomena and there is growing appreciation that the signals intrinsic to these cells as well as their interactions with surrounding neurons reflect behavioral history in a brain region-specific manner. Considerable regional diversity of glial cell phenotypes is beginning to be recognized and may contribute to behavioral outcomes arising from circuit-specific computations within and across discrete brain nuclei. Here, we summarize current knowledge on the impact of astrocyte and microglia activity on behavioral outcomes, with a specific focus on brain areas relevant to higher cognitive control, reward-seeking, and circadian regulation.
Collapse
Affiliation(s)
- P I Ortinski
- Department of Neuroscience, University of Kentucky, USA
| | - K J Reissner
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, USA
| | - J Turner
- Department of Pharmaceutical Sciences, University of Kentucky, USA
| | - T A Anderson
- Department of Neuroscience, University of Kentucky, USA
| | - A Scimemi
- Department of Biology, State University of New York at Albany, USA
| |
Collapse
|
11
|
Menthol exerts TRPM8-independent antiepileptic effects in prefrontal cortex pyramidal neurons. Brain Res 2022; 1783:147847. [DOI: 10.1016/j.brainres.2022.147847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/03/2022] [Accepted: 02/23/2022] [Indexed: 11/22/2022]
|
12
|
Sohn S, Kim S, Yang JH, Choe ES. Linking of NMDA receptors and mGluR5 in the nucleus accumbens core to repeated cocaine-induced 50-kHz ultrasonic vocalization in rats. Addict Biol 2022; 27:e13084. [PMID: 34378829 DOI: 10.1111/adb.13084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/26/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
Rats express a positive emotional state by emitting 50-kHz ultrasonic vocalization (USV) calls in response to drug exposure. This study demonstrated the linking of glutamate receptors in the nucleus accumbens (NAc) to vocal expression of 50-kHz USV calls after repeated cocaine administration in freely moving rats. Repeated systemic injections of cocaine (20 mg/kg/day, i.p.) for seven consecutive days increased the number of 50-kHz USV calls. Intra-NAc core infusion of the broad-glutamate receptor antagonist, γDGG (50 nmol/side), decreased the repeated cocaine-induced increase in the number of 50-kHz USV calls. Intra-NAc core infusion of the N-methyl-D-aspartate (NMDA) receptor antagonist, MK801 (2 nmol/side), but not α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or kainic acid receptor antagonist, CNQX disodium salt (2 nmol/side), decreased the number of 50-kHz USV calls that had been elevated by repeated exposure to cocaine. Intra-NAc core infusion of the group I metabotropic glutamate receptor subtype 5 (mGluR5), MPEP (0.5 nmol/side), MTEP (15 nmol/side) and inositol-1,4,5-trisphosphate receptor blocker, xestospongin C (0.004 nmol/side) decreased the cocaine-induced increase in the number of USV calls. These data suggest that the NMDA receptor- and mGluR5-dependent increase in intracellular Ca2+ concentrations in the NAc core is linked to a positive emotional state after repeated exposure to cocaine in rats.
Collapse
Affiliation(s)
- Sumin Sohn
- Department of Biological Sciences Pusan National University Busan Republic of Korea
| | - Sunghyun Kim
- Department of Biological Sciences Pusan National University Busan Republic of Korea
| | - Ju Hwan Yang
- Department of Biological Sciences Pusan National University Busan Republic of Korea
| | - Eun Sang Choe
- Department of Biological Sciences Pusan National University Busan Republic of Korea
| |
Collapse
|
13
|
O'Donovan B, Neugornet A, Neogi R, Xia M, Ortinski P. Cocaine experience induces functional adaptations in astrocytes: Implications for synaptic plasticity in the nucleus accumbens shell. Addict Biol 2021; 26:e13042. [PMID: 33864336 DOI: 10.1111/adb.13042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 11/24/2022]
Abstract
Astrocytes have become established as an important regulator of neuronal activity in the brain. Accumulating literature demonstrates that cocaine self-administration in rodent models induces structural changes within astrocytes that may influence their interaction with the surrounding neurons. Here, we provide evidence that cocaine impacts astrocytes at the functional level and alters neuronal sensitivity to astrocyte-derived glutamate. We report that a 14-day period of short access to cocaine (2 h/day) decreases spontaneous astrocytic Ca2+ transients and precipitates changes in astrocyte network activity in the nucleus accumbens shell. This is accompanied by increased prevalence of slow inward currents, a physiological marker of neuronal activation by astrocytic glutamate, in a subset of medium spiny neurons. Within, but not outside, of this subset, we observe an increase in duration and frequency of N-methyl-D-aspartate (NMDA) receptor-mediated synaptic events. Additionally, we find that the link between synaptic NMDA receptor plasticity and neuron sensitivity to astrocytic glutamate is maintained independent of drug exposure and is observed in both cocaine and saline control animals. Imaging analyses of neuronal Ca2+ activity show no effect of cocaine self-administration on individual cells or on neuronal network activity in brain slices. Therefore, our data indicate that cocaine self-administration promotes astrocyte-specific functional changes that can be linked to increased glutamate-mediated coupling with principal neurons in the nucleus accumbens. Such coupling may be spatially restricted as it does not result in a broad impact on network structure of local neuronal circuits.
Collapse
Affiliation(s)
- Bernadette O'Donovan
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
| | - Austin Neugornet
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
| | - Richik Neogi
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
- Integrated Biomedical Sciences University of Kentucky Lexington Kentucky USA
| | - Mengfan Xia
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
| | - Pavel Ortinski
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
| |
Collapse
|
14
|
Smaga I, Wydra K, Suder A, Sanak M, Caffino L, Fumagalli F, Filip M. Enhancement of the GluN2B subunit of glutamatergic NMDA receptors in rat brain areas after cocaine abstinence. J Psychopharmacol 2021; 35:1226-1239. [PMID: 34587833 DOI: 10.1177/02698811211048283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cocaine use disorder is associated with compulsive drug-seeking and drug-taking, whereas relapse may be induced by several factors, including stress, drug-related places, people, and cues. Recent observations strongly support the involvement of the N-methyl-D-aspartate (NMDA) receptors in cocaine use disorders and abstinence, whereas withdrawal in different environments may affect the intensification of relapse. METHODS The aim of this study was to examine the GluN2B subunit expression and its association with the postsynaptic density protein 95 (PSD95) in several brain structures in rats with a history of cocaine self-administration and housed either in an enriched environment or in an isolated condition. Furthermore, a selective antagonist of the GluN2B subunit-CP 101,606 (10 and 20 mg/kg) administered during exposure to cocaine or a drug-associated conditional stimulus (a cue) was used to evaluate seeking behavior in rats. RESULTS In rats previously self-administering cocaine, we observed an increase in the GluN2B expression in the total homogenate from the dorsal hippocampus under both enriched environment and isolation. Cocaine abstinence under isolation conditions increased the GluN2B and GluN2B/PSD95 complex levels in the PSD fraction of the prelimbic cortex in rats previously self-administering cocaine. Administration of CP 101,606 attenuated cue-induced cocaine-seeking behavior only in isolation-housed rats. CONCLUSION In summary, in this study we showed region-specific changes in both the expression of GluN2B subunit and NMDA receptor trafficking during cocaine abstinence under different housing conditions. Furthermore, we showed that the pharmacological blockade of the GluN2B subunit may be useful in attenuating cocaine-seeking behavior.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Agata Suder
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
15
|
Delint-Ramirez I, Segev A, Pavuluri A, Self DW, Kourrich S. Cocaine-Induced Synaptic Redistribution of NMDARs in Striatal Neurons Alters NMDAR-Dependent Signal Transduction. Front Neurosci 2020; 14:698. [PMID: 32760242 PMCID: PMC7371985 DOI: 10.3389/fnins.2020.00698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/09/2020] [Indexed: 11/25/2022] Open
Abstract
The consequence of repeated cocaine exposure and prolonged abstinence on glutamate receptor expression in the nucleus accumbens has been extensively studied. However, the early effects of cocaine on NMDAR signaling remain unknown. NMDAR signaling depends on the subunit composition, subcellular localization, and the interaction with proteins at the postsynaptic density (PSD), where NMDARs and other proteins form supercomplexes that are responsible for the signaling pathways activated by NMDAR-induced Ca2+ influx. Here, we investigated the effect of cocaine on NMDAR subunit composition and subcellular localization after both intraperitoneal non-contingent cocaine and response-contingent intravenous cocaine self-administration in mice. We found that repeated cocaine exposure, regardless of the route or contingency of drug administration, decreases NMDAR interactions with the PSD and synaptic lipid rafts in the accumbens shell and dorsal striatum. We provide evidence that cocaine triggers an early redistribution of NMDARs from synaptic to extrasynaptic sites, and that this adaptation has implications in the activation of downstream signaling pathways. Thus, consistent with a loss of NMDAR function, cocaine-induced ERK phosphorylation is attenuated. Because early NMDAR activity contributes to the initiation of lasting addiction-relevant neuroadaptations, these data may hold clues into cellular mechanisms responsible for the development of cocaine addiction.
Collapse
Affiliation(s)
- Ilse Delint-Ramirez
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Amir Segev
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Asha Pavuluri
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David W Self
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Saïd Kourrich
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Département des Sciences Biologiques-CERMO-FC, Université du Québec à Montréal, Montreal, QC, Canada
| |
Collapse
|
16
|
Smaga I, Sanak M, Filip M. Cocaine-induced Changes in the Expression of NMDA Receptor Subunits. Curr Neuropharmacol 2020; 17:1039-1055. [PMID: 31204625 PMCID: PMC7052821 DOI: 10.2174/1570159x17666190617101726] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 11/28/2022] Open
Abstract
Cocaine use disorder is manifested by repeated cycles of drug seeking and drug taking. Cocaine exposure causes synaptic transmission in the brain to exhibit persistent changes, which are poorly understood, while the pharmacotherapy of this disease has not been determined. Multiple potential mechanisms have been indicated to be involved in the etiology of co-caine use disorder. The glutamatergic system, especially N-methyl-D-aspartate (NMDA) receptors, may play a role in sever-al physiological processes (synaptic plasticity, learning and memory) and in the pathogenesis of cocaine use disorder. The composition of the NMDA receptor subunits changes after contingent and noncontingent cocaine administration and after drug abstinence in a region-specific and time-dependent manner, as well as depending on the different protocols used for co-caine administration. Changes in the expression of NMDA receptor subunits may underlie the transition from cocaine abuse to dependence, as well as the transition from cocaine dependence to cocaine withdrawal. In this paper, we summarize the cur-rent knowledge regarding neuroadaptations within NMDA receptor subunits and scaffolding proteins observed following voluntary and passive cocaine intake, as well as the effects of NMDA receptor antagonists on cocaine-induced behavioral changes during cocaine seeking and relapse.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Internal Medicine, Jagiellonian University Medical College, Skawińska 8, PL 31-066 Kraków, Poland.,Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Skawińska 8, PL 31-066 Kraków, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
17
|
Higher ambient synaptic glutamate at inhibitory versus excitatory neurons differentially impacts NMDA receptor activity. Nat Commun 2018; 9:4000. [PMID: 30275542 PMCID: PMC6167324 DOI: 10.1038/s41467-018-06512-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/31/2018] [Indexed: 01/28/2023] Open
Abstract
Selective disruption of synaptic drive to inhibitory neurons could contribute to the pathophysiology of various brain disorders. We have previously identified a GluN2A-selective positive allosteric modulator, GNE-8324, that selectively enhances N-methyl-d-aspartate receptor (NMDAR)-mediated synaptic responses in inhibitory but not excitatory neurons. Here, we demonstrate that differences in NMDAR subunit composition do not underlie this selective potentiation. Rather, a higher ambient glutamate level in the synaptic cleft of excitatory synapses on inhibitory neurons is a key factor. We show that increasing expression of glutamate transporter 1 (GLT-1) eliminates GNE-8324 potentiation in inhibitory neurons, while decreasing GLT-1 activity enables potentiation in excitatory neurons. Our results reveal an unsuspected difference between excitatory synapses onto different neuronal types, and a more prominent activation of synaptic NMDARs by ambient glutamate in inhibitory than excitatory neurons. This difference has implications for tonic NMDAR activity/signaling and the selective modulation of inhibitory neuron activity to treat brain disorders. Inhibitory interneurons play important roles in brain circuits and in several neuropsychiatric disorders. Here, the authors show that excitatory synapses onto interneurons vs. excitatory neurons differ in their ambient synaptic glutamate level, a finding with important implications for selective pharmacological targeting of inhibitory neuron NMDA receptors.
Collapse
|
18
|
Galloway A, Adeluyi A, O'Donovan B, Fisher ML, Rao CN, Critchfield P, Sajish M, Turner JR, Ortinski PI. Dopamine Triggers CTCF-Dependent Morphological and Genomic Remodeling of Astrocytes. J Neurosci 2018; 38:4846-4858. [PMID: 29712779 PMCID: PMC5966792 DOI: 10.1523/jneurosci.3349-17.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/29/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023] Open
Abstract
Dopamine is critical for processing of reward and etiology of drug addiction. Astrocytes throughout the brain express dopamine receptors, but consequences of astrocytic dopamine receptor signaling are not well established. We found that extracellular dopamine triggered rapid concentration-dependent stellation of astrocytic processes that was not a result of dopamine oxidation but instead relied on both cAMP-dependent and cAMP-independent dopamine receptor signaling. This was accompanied by reduced duration and increased frequency of astrocytic Ca2+ transients, but little effect on astrocytic voltage-gated potassium channel currents. To isolate possible mechanisms underlying these structural and functional changes, we used whole-genome RNA sequencing and found prominent dopamine-induced enrichment of genes containing the CCCTC-binding factor (CTCF) motif, suggesting involvement of chromatin restructuring in the nucleus. CTCF binding to promoter sites bidirectionally regulates gene transcription and depends on activation of poly-ADP-ribose polymerase 1 (PARP1). Accordingly, antagonism of PARP1 occluded dopamine-induced changes, whereas a PARP1 agonist facilitated dopamine-induced changes on its own. These results indicate that astrocyte response to elevated dopamine involves PARP1-mediated CTCF genomic restructuring and concerted expression of gene networks. Our findings propose epigenetic regulation of chromatin landscape as a critical factor in the rapid astrocyte response to dopamine.SIGNIFICANCE STATEMENT Although dopamine is widely recognized for its role in modulating neuronal responses both in healthy and disease states, little is known about dopamine effects at non-neuronal cells in the brain. To address this gap, we performed whole-genome sequencing of astrocytes exposed to elevated extracellular dopamine and combined it with evaluation of effects on astrocyte morphology and function. We demonstrate a temporally dynamic pattern of genomic plasticity that triggers pronounced changes in astrocyte morphology and function. We further show that this plasticity depends on activation of genes sensitive to DNA-binding protein CTCF. Our results propose that a broad pattern of astrocyte responses to dopamine specifically relies on CTCF-dependent gene networks.
Collapse
Affiliation(s)
- Ashley Galloway
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29209
- Integrated Program in Biomedical Sciences, University of South Carolina, Columbia, South Carolina 29209, and
| | - Adewale Adeluyi
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208
| | - Bernadette O'Donovan
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29209
| | - Miranda L Fisher
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208
| | - Peyton Critchfield
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29209
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208
| | - Jill R Turner
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208
| | - Pavel I Ortinski
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29209,
| |
Collapse
|
19
|
Guercio LA, Hofmann ME, Swinford-Jackson SE, Sigman JS, Wimmer ME, Dell'Acqua ML, Schmidt HD, Pierce RC. A-Kinase Anchoring Protein 150 (AKAP150) Promotes Cocaine Reinstatement by Increasing AMPA Receptor Transmission in the Accumbens Shell. Neuropsychopharmacology 2018; 43:1395-1404. [PMID: 29317777 PMCID: PMC5916366 DOI: 10.1038/npp.2017.297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 11/08/2022]
Abstract
Previous work indicated that activation of D1-like dopamine receptors (D1DRs) in the nucleus accumbens shell promoted cocaine seeking through a process involving the activation of PKA and GluA1-containing AMPA receptors (AMPARs). A-kinase anchoring proteins (AKAPs) localize PKA to AMPARs leading to enhanced phosphorylation of GluA1. AKAP150, the most well-characterized isoform, plays an important role in several forms of neuronal plasticity. However, its involvement in drug addiction has been minimally explored. Here we examine the role of AKAP150 in cocaine reinstatement, an animal model of relapse. We show that blockade of PKA binding to AKAPs in the nucleus accumbens shell of Sprague-Dawley rats attenuates reinstatement induced by either cocaine or a D1DR agonist. Moreover, this effect is specific to AKAP150, as viral overexpression of a PKA-binding deficient mutant of AKAP150 also impairs cocaine reinstatement. This viral-mediated attenuation of cocaine reinstatement was accompanied by decreased phosphorylation of GluA1-containing AMPARs and attenuated AMPAR eEPSCs. Collectively, these results suggest that AKAP150 facilitates the reinstatement of cocaine-seeking behavior by amplifying D1DR/PKA-dependent AMPA transmission in the nucleus accumbens.
Collapse
Affiliation(s)
- Leonardo A Guercio
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mackenzie E Hofmann
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Swinford-Jackson
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia S Sigman
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathieu E Wimmer
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Heath D Schmidt
- Department for Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - R Christopher Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Hearing M, Graziane N, Dong Y, Thomas MJ. Opioid and Psychostimulant Plasticity: Targeting Overlap in Nucleus Accumbens Glutamate Signaling. Trends Pharmacol Sci 2018; 39:276-294. [PMID: 29338873 DOI: 10.1016/j.tips.2017.12.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/11/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Commonalities in addictive behavior, such as craving, stimuli-driven drug seeking, and a high propensity for relapse following abstinence, have pushed for a unified theory of addiction that encompasses most abused substances. This unitary theory has recently been challenged - citing distinctions in structural neural plasticity, biochemical signaling, and neural circuitry to argue that addiction to opioids and psychostimulants is behaviorally and neurobiologically distinct. Recent more selective examination of drug-induced plasticity has highlighted that these two drug classes promote an overall reward circuitry signaling overlap through modifying excitatory synapses in the nucleus accumbens - a key constituent of the reward system. We discuss adaptations in presynaptic/postsynaptic and extrasynaptic glutamate signaling produced by opioids and psychostimulants, and their relevance to circuit remodeling and addiction-related behavior - arguing that these core neural adaptations are important targets for developing pharmacotherapies to treat addiction to multiple drugs.
Collapse
Affiliation(s)
- Matthew Hearing
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | - Nicholas Graziane
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA; Departments of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yan Dong
- Departments of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mark J Thomas
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Extracellular Glutamate in the Nucleus Accumbens Is Nanomolar in Both Synaptic and Non-synaptic Compartments. Cell Rep 2017; 18:2576-2583. [PMID: 28297662 DOI: 10.1016/j.celrep.2017.02.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/26/2017] [Accepted: 02/15/2017] [Indexed: 12/25/2022] Open
Abstract
In the CNS, glutamate is both phasically and tonically released into the extracellular space and must be removed by excitatory amino acid transporters (EAATs) to prevent excitotoxic accumulation. There remains uncertainty, however, regarding the functional steady-state concentration, with estimates ranging from tens of nanomolar to tens of micromolar. Efforts to reconcile these disparate values have led to a hypothesis that the extracellular space comprises distinct compartments in which basal glutamate concentrations are maintained independently. We used electrophysiology and two-photon Ca2+ imaging to test this hypothesis in the nucleus accumbens (NAc), where it has been proposed that micromolar extracellular glutamate is necessary for normal function. We found that the average concentration of synaptic glutamate is nanomolar, in agreement with previous electrophysiological estimates. Furthermore, this held true when glutamate uptake was inhibited, indicating that extracellular glutamate is not compartmentalized by EAATs.
Collapse
|
22
|
Hopf FW. Do specific NMDA receptor subunits act as gateways for addictive behaviors? GENES BRAIN AND BEHAVIOR 2016; 16:118-138. [PMID: 27706932 DOI: 10.1111/gbb.12348] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 12/19/2022]
Abstract
Addiction to alcohol and drugs is a major social and economic problem, and there is considerable interest in understanding the molecular mechanisms that promote addictive drives. A number of proteins have been identified that contribute to expression of addictive behaviors. NMDA receptors (NMDARs), a subclass of ionotropic glutamate receptors, have been of particular interest because their physiological properties make them an attractive candidate for gating induction of synaptic plasticity, a molecular change thought to mediate learning and memory. NMDARs are generally inactive at the hyperpolarized resting potentials of many neurons. However, given sufficient depolarization, NMDARs are activated and exhibit long-lasting currents with significant calcium permeability. Also, in addition to stimulating neurons by direct depolarization, NMDARs and their calcium signaling can allow strong and/or synchronized inputs to produce long-term changes in other molecules (such as AMPA-type glutamate receptors) which can last from days to years, binding internal and external stimuli in a long-term memory trace. Such memories could allow salient drug-related stimuli to exert strong control over future behaviors and thus promote addictive drives. Finally, NMDARs may themselves undergo plasticity, which can alter subsequent neuronal stimulation and/or the ability to induce plasticity. This review will address recent and past findings suggesting that NMDAR activity promotes drug- and alcohol-related behaviors, with a particular focus on GluN2B subunits as possible central regulators of many addictive behaviors, as well as newer studies examining the importance of non-canonical NMDAR subunits and endogenous NMDAR cofactors.
Collapse
Affiliation(s)
- F W Hopf
- Alcohol and Addiction Research Group, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Joffe ME, Grueter BA. Cocaine Experience Enhances Thalamo-Accumbens N-Methyl-D-Aspartate Receptor Function. Biol Psychiatry 2016; 80:671-681. [PMID: 27209241 PMCID: PMC5050082 DOI: 10.1016/j.biopsych.2016.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/17/2016] [Accepted: 04/01/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Excitatory synaptic transmission in the nucleus accumbens (NAc) is a key biological substrate underlying behavioral responses to psychostimulants and susceptibility to relapse. Studies have demonstrated that cocaine induces changes in glutamatergic signaling at distinct inputs to the NAc. However, consequences of cocaine experience on synaptic transmission from the midline nuclei of the thalamus (mThal) to the NAc have yet to be reported. METHODS To examine synapses from specific NAc core inputs, we recorded light-evoked excitatory postsynaptic currents following viral-mediated expression of channelrhodopsin-2 in the mThal, prefrontal cortex (PFC), or basolateral amygdala from acute brain slices. To identify NAc medium spiny neuron subtypes, we used mice expressing tdTomato driven by the promoter for dopamine receptor subtype 1 (D1). We recorded N-methyl-D-aspartate receptor (NMDAR) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) properties to evaluate synaptic adaptations induced by cocaine experience, a 5-day cocaine exposure followed by 2 weeks of abstinence. RESULTS Excitatory inputs to the NAc core displayed differential NMDAR properties, and cocaine experience uniquely altered AMPAR and NMDAR properties at mThal-D1(+), mThal-D1(-), and PFC-D1(+) synapses, but not at PFC-D1(-) synapses. Finally, at mThal-D1(+) synapses, cocaine enhanced GluN2C/D function and NMDAR-dependent synaptic plasticity. CONCLUSIONS Our results identify contrasting cocaine-induced AMPAR and NMDAR modifications at mThal-NAc and PFC-NAc core synapses. These changes include an enhancement of NMDAR function and plasticity at mThal-D1(+) synapses. Incorporation of GluN2C/D-containing NMDARs most likely underlies these phenomena and represents a potential therapeutic target for psychostimulant use disorders.
Collapse
Affiliation(s)
- Max E Joffe
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brad A Grueter
- Department ofAnesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee; Department ofPsychiatry, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
24
|
Zhou L, Andersen H, Arreola AC, Turner JR, Ortinski PI. Behavioral History of Withdrawal Influences Regulation of Cocaine Seeking by Glutamate Re-Uptake. PLoS One 2016; 11:e0163784. [PMID: 27685834 PMCID: PMC5042528 DOI: 10.1371/journal.pone.0163784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/14/2016] [Indexed: 11/17/2022] Open
Abstract
Withdrawal from cocaine regulates expression of distinct glutamate re-uptake transporters in the nucleus accumbens (NAc). In this study, we examined the cumulative effect of glutamate re-uptake by multiple excitatory amino acid transporters (EAATs) on drug-seeking at two different stages of withdrawal from self-administered cocaine. Rats were trained on fixed ratio 1 (FR1), progressing to FR5 schedule of reinforcement. After one day of withdrawal, microinfusion of a broad non-transportable EAAT antagonist, DL-threo-beta-benzyloxyaspartate (DL-TBOA), into the NAc shell dose-dependently attenuated self-administration of cocaine. Sucrose self-administration was not affected by DL-TBOA, indicating an effect specific to reinforcing properties of cocaine. The attenuating effect on cocaine seeking was not due to suppression of locomotor response, as DL-TBOA was found to transiently increase spontaneous locomotor activity. Previous studies have established a role for EAAT2-mediated re-uptake on reinstatement of cocaine seeking following extended withdrawal and extinction training. We found that blockade of NAc shell EAATs did not affect cocaine-primed reinstatement of cocaine seeking. These results indicate that behavioral history of withdrawal influences the effect of re-uptake mediated glutamate clearance on cocaine seeking. Dynamic regulation of glutamate availability by re-uptake mechanisms may impact other glutamate signaling pathways to account for such differences.
Collapse
Affiliation(s)
- Luyi Zhou
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States of America.,South Carolina College of Pharmacy, Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, United States of America
| | - Haley Andersen
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States of America
| | - Adrian C Arreola
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Jill R Turner
- South Carolina College of Pharmacy, Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, United States of America
| | - Pavel I Ortinski
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States of America
| |
Collapse
|
25
|
White SL, Ortinski PI, Friedman SH, Zhang L, Neve RL, Kalb RG, Schmidt HD, Pierce RC. A Critical Role for the GluA1 Accessory Protein, SAP97, in Cocaine Seeking. Neuropsychopharmacology 2016; 41:736-50. [PMID: 26149358 PMCID: PMC4707820 DOI: 10.1038/npp.2015.199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 06/05/2015] [Accepted: 06/06/2015] [Indexed: 01/05/2023]
Abstract
A growing body of evidence indicates that the transport of GluA1 subunit-containing calcium-permeable AMPA receptors (CP-AMPARs) to synapses in subregions of the nucleus accumbens promotes cocaine seeking. Consistent with these findings, the present results show that administration of the CP-AMPAR antagonist, Naspm, into the caudal lateral core or caudal medial shell of the nucleus accumbens attenuated cocaine priming-induced reinstatement of drug seeking. Moreover, viral-mediated overexpression of 'pore dead' GluA1 subunits (via herpes simplex virus (HSV) GluA1-Q582E) in the lateral core or medial shell attenuated the reinstatement of cocaine seeking. The overexpression of wild-type GluA1 subunits (via HSV GluA1-WT) in the medial shell, but not the lateral core, enhanced the reinstatement of cocaine seeking. These results indicate that activation of GluA1-containing AMPARs in subregions of the nucleus accumbens reinstates cocaine seeking. SAP97 and 4.1N are proteins involved in GluA1 trafficking to and stabilization in synapses; SAP97-GluA1 interactions also influence dendritic growth. We next examined potential roles of SAP97 and 4.1N in cocaine seeking. Viral-mediated expression of a microRNA that reduces SAP97 protein expression (HSV miSAP97) in the medial accumbens shell attenuated cocaine seeking. In contrast, a virus that overexpressed a dominant-negative form of a 4.1N C-terminal domain (HSV 4.1N-CTD), which prevents endogenous 4.1N binding to GluA1 subunits, had no effect on cocaine seeking. These results indicate that the GluA1 subunit accessory protein SAP97 may represent a novel target for pharmacotherapeutic intervention in the treatment of cocaine craving.
Collapse
Affiliation(s)
- Samantha L White
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Pavel I Ortinski
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Shayna H Friedman
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lei Zhang
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center 814, Philadelphia, PA, USA
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research at the Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert G Kalb
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center 814, Philadelphia, PA, USA
| | - Heath D Schmidt
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - R Christopher Pierce
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
D'Souza MS. Glutamatergic transmission in drug reward: implications for drug addiction. Front Neurosci 2015; 9:404. [PMID: 26594139 PMCID: PMC4633516 DOI: 10.3389/fnins.2015.00404] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022] Open
Abstract
Individuals addicted to drugs of abuse such as alcohol, nicotine, cocaine, and heroin are a significant burden on healthcare systems all over the world. The positive reinforcing (rewarding) effects of the above mentioned drugs play a major role in the initiation and maintenance of the drug-taking habit. Thus, understanding the neurochemical mechanisms underlying the reinforcing effects of drugs of abuse is critical to reducing the burden of drug addiction in society. Over the last two decades, there has been an increasing focus on the role of the excitatory neurotransmitter glutamate in drug addiction. In this review, pharmacological and genetic evidence supporting the role of glutamate in mediating the rewarding effects of the above described drugs of abuse will be discussed. Further, the review will discuss the role of glutamate transmission in two complex heterogeneous brain regions, namely the nucleus accumbens (NAcc) and the ventral tegmental area (VTA), which mediate the rewarding effects of drugs of abuse. In addition, several medications approved by the Food and Drug Administration that act by blocking glutamate transmission will be discussed in the context of drug reward. Finally, this review will discuss future studies needed to address currently unanswered gaps in knowledge, which will further elucidate the role of glutamate in the rewarding effects of drugs of abuse.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University Ada, OH, USA
| |
Collapse
|
27
|
Papouin T, Oliet SHR. Organization, control and function of extrasynaptic NMDA receptors. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130601. [PMID: 25225095 DOI: 10.1098/rstb.2013.0601] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
N-methyl D-aspartate receptors (NMDARs) exist in different forms owing to multiple combinations of subunits that can assemble into a functional receptor. In addition, they are located not only at synapses but also at extrasynaptic sites. There has been intense speculation over the past decade about whether specific NMDAR subtypes and/or locations are responsible for inducing synaptic plasticity and excitotoxicity. Here, we review the latest findings on the organization, subunit composition and endogenous control of NMDARs at extrasynaptic sites and consider their putative functions. Because astrocytes are capable of controlling NMDARs through the release of gliotransmitters, we also discuss the role of the glial environment in regulating the activity of these receptors.
Collapse
Affiliation(s)
- Thomas Papouin
- Neuroscience Department, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stéphane H R Oliet
- Neurocentre Magendie, Inserm U862, Bordeaux, France Université de Bordeaux, Bordeaux, France
| |
Collapse
|
28
|
Kervern M, Silvestre de Ferron B, Alaux-Cantin S, Fedorenko O, Antol J, Naassila M, Pierrefiche O. Aberrant NMDA-dependent LTD after perinatal ethanol exposure in young adult rat hippocampus. Hippocampus 2015; 25:912-23. [PMID: 25581546 DOI: 10.1002/hipo.22414] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2015] [Indexed: 12/29/2022]
Abstract
Irreversible cognitive deficits induced by ethanol exposure during fetal life have been ascribed to a lower NMDA-dependent synaptic long-term potentiation (LTP) in the hippocampus. Whether NMDA-dependent long-term depression (LTD) may also play a critical role in those deficits remains unknown. Here, we show that in vitro LTD induced with paired-pulse low frequency stimulation is enhanced in CA1 hippocampus field of young adult rats exposed to ethanol during brain development. Furthermore, single pulse low frequency stimulation, ineffective at this age (LFS600), induced LTD after ethanol exposure accompanied with a stronger response than controls during LFS600, thus revealing an aberrant form of activity-dependent plasticity at this age. Blocking NMDA receptor or GluN2B containing NMDA receptor prevented both the stronger response during LFS600 and LTD whereas Zinc, an antagonist of GluN2A containing NMDA receptor, was ineffective on both responses. In addition, LFS600-induced LTD was revealed in controls only with a reduced-Mg(2+) medium. In whole dissected hippocampus CA1 field, perinatal ethanol exposure increased GluN2B subunit expression in the synaptic compartment whereas GluN2A was unaltered. Using pharmacological tools, we suggest that LFS600 LTD was of synaptic origin. Altogether, we describe a new mechanism by which ethanol exposure during fetal life induces a long-term alteration of synaptic plasticity involving NMDA receptors, leading to an aberrant LTD. We suggest this effect of ethanol may reflect a delayed maturation of the synapse and that aberrant LTD may also participates to long-lasting cognitive deficits in fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olivier Pierrefiche
- INSERM ERi 24 - GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, C.U.R.S., UPJV, Amiens, France
| |
Collapse
|
29
|
Surmeier DJ, Graves SM, Shen W. Dopaminergic modulation of striatal networks in health and Parkinson's disease. Curr Opin Neurobiol 2014; 29:109-17. [PMID: 25058111 DOI: 10.1016/j.conb.2014.07.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/23/2014] [Accepted: 07/02/2014] [Indexed: 01/11/2023]
Abstract
In the last couple of years, there have been significant advances in our understanding of how dopamine modulates striatal circuits underlying goal-directed behaviors and how therapeutic interventions intended to normalize disordered dopaminergic signaling can go awry. This review summarizes some of the advances in this field with a translational focus on Parkinson's disease.
Collapse
Affiliation(s)
- D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Steven M Graves
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weixing Shen
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
30
|
D'Ascenzo M, Podda MV, Grassi C. The role of D-serine as co-agonist of NMDA receptors in the nucleus accumbens: relevance to cocaine addiction. Front Synaptic Neurosci 2014; 6:16. [PMID: 25076900 PMCID: PMC4100571 DOI: 10.3389/fnsyn.2014.00016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/29/2014] [Indexed: 12/20/2022] Open
Abstract
Cocaine addiction is characterized by compulsive drug use despite adverse consequences and high rate of relapse during periods of abstinence. Increasing consensus suggests that addiction to drugs of abuse usurps learning and memory mechanisms normally related to natural rewards, ultimately producing long-lasting neuroadaptations in the mesocorticolimbic system. This system, formed in part by the ventral tegmental area and nucleus accumbens (NAc), has a central role in the development and expression of addictive behaviors. In addition to a broad spectrum of changes that affect morphology and function of NAc excitatory circuits in cocaine–treated animals, impaired N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity is a typical feature. D-serine, a D-amino acid that has been found at high levels in mammalian brain, binds with high affinity the co-agonist site of NMDAR and mediates, along with glutamate, several important processes including synaptic plasticity. Here we review recent literature focusing on cocaine-induced impairment in synaptic plasticity mechanisms in the NAc and on the fundamental role of D-serine as co-agonist of NMDAR in functional and dysfunctional synaptic plasticity within this nucleus. The emerging picture is that reduced D-serine levels play a crucial role in synaptic plasticity relevant to cocaine addiction. This finding opens new perspectives for therapeutic approaches to treat this addictive state.
Collapse
Affiliation(s)
- Marcello D'Ascenzo
- Institute of Human Physiology, Medical School, Universitá Cattolica "S. Cuore" Rome, Italy
| | - Maria Vittoria Podda
- Institute of Human Physiology, Medical School, Universitá Cattolica "S. Cuore" Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Universitá Cattolica "S. Cuore" Rome, Italy
| |
Collapse
|
31
|
de Bartolomeis A, Buonaguro EF, Iasevoli F, Tomasetti C. The emerging role of dopamine-glutamate interaction and of the postsynaptic density in bipolar disorder pathophysiology: Implications for treatment. J Psychopharmacol 2014; 28:505-26. [PMID: 24554693 DOI: 10.1177/0269881114523864] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aberrant synaptic plasticity, originating from abnormalities in dopamine and/or glutamate transduction pathways, may contribute to the complex clinical manifestations of bipolar disorder (BD). Dopamine and glutamate systems cross-talk at multiple levels, such as at the postsynaptic density (PSD). The PSD is a structural and functional protein mesh implicated in dopamine and glutamate-mediated synaptic plasticity. Proteins at PSD have been demonstrated to be involved in mood disorders pathophysiology and to be modulated by antipsychotics and mood stabilizers. On the other side, post-receptor effectors such as protein kinase B (Akt), glycogen synthase kinase-3 (GSK-3) and the extracellular signal-regulated kinase (Erk), which are implicated in both molecular abnormalities and treatment of BD, may interact with PSD proteins, and participate in the interplay of the dopamine-glutamate signalling pathway. In this review, we describe emerging evidence on the molecular cross-talk between dopamine and glutamate signalling in BD pathophysiology and pharmacological treatment, mainly focusing on dysfunctions in PSD molecules. We also aim to discuss future therapeutic strategies that could selectively target the PSD-mediated signalling cascade at the crossroads of dopamine-glutamate neurotransmission.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| |
Collapse
|
32
|
Disruption of glutamate receptor-interacting protein in nucleus accumbens enhances vulnerability to cocaine relapse. Neuropsychopharmacology 2014; 39:759-69. [PMID: 24126453 PMCID: PMC3895254 DOI: 10.1038/npp.2013.265] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/19/2013] [Accepted: 09/26/2013] [Indexed: 12/25/2022]
Abstract
Trafficking and stabilization of AMPA receptors at synapses in response to cocaine exposure is thought to be critical for expression of cocaine addiction and relapse. Glutamate receptor-interacting protein (GRIP) is a neuronal scaffolding protein that stabilizes GluA2 AMPARs at synapses but its role in cocaine addiction has not been examined. The current study demonstrates that conditional deletion of GRIP within the nucleus accumbens potentiates cue-induced reinstatement of cocaine seeking without affecting operant learning, locomotor activity, or reinstatement of natural reward seeking. This is the first study to demonstrate a role for accumbal GRIP in behavior. Electrophysiological recordings revealed increased rectification of AMPAR-mediated currents in the nucleus accumbens and increased AMPAR sensitivity to the GluA2-lacking AMPAR antagonist, 1-naphthylacetyl spermine, indicative of an increased contribution of GluA2-lacking calcium-permeable AMPARs. In addition, accumbal GRIP deletion was associated with blunted long-term depression, similar to what is seen following cocaine self-administration. Taken together, these results indicate that GRIP may modulate addictive phenotypes through its regulation of synaptic AMPARs by controlling their subunit composition and susceptibility to LTD. These effects are associated with changes in vulnerability to cocaine relapse and highlight GRIP as a novel target for the development of cocaine addiction therapeutics.
Collapse
|
33
|
Cocaine-induced changes in NMDA receptor signaling. Mol Neurobiol 2014; 50:494-506. [PMID: 24445951 DOI: 10.1007/s12035-014-8636-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/02/2014] [Indexed: 01/27/2023]
Abstract
Addictive states are often thought to rely on lasting modification of signaling at relevant synapses. A long-standing theory posits that activity at N-methyl-D-aspartate receptors (NMDARs) is a critical component of long-term synaptic plasticity in many brain areas. Indeed, NMDAR signaling has been found to play a role in the etiology of addictive states, in particular, following cocaine exposure. However, no consensus is apparent with respect to the specific effects of cocaine exposure on NMDARs. Part of the difficulty lies in the fact that NMDARs interact extensively with multiple membrane proteins and intracellular signaling cascades. This allows for highly heterogeneous patterns of NMDAR regulation by cocaine in distinct brain regions and at distinct synapses. The picture is further complicated by findings that cocaine effects on NMDARs are sensitive to the behavioral history of cocaine exposure such as the mode of cocaine administration. This review provides a summary of evidence for cocaine-induced changes in NMDAR expression, cocaine-induced alterations in NMDAR function, and cocaine effects on NMDAR control of intracellular signaling cascades.
Collapse
|