1
|
Chakraborty S, Mishra A, Choudhuri A, Bhaumik T, Sengupta R. Leveraging the redundancy of S-denitrosylases in response to S-nitrosylation of caspases: Experimental strategies and beyond. Nitric Oxide 2024; 149:18-31. [PMID: 38823434 DOI: 10.1016/j.niox.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Redox-based protein posttranslational modifications, such as S-nitrosylation of critical, active site cysteine thiols have garnered significant clinical attention and research interest, reasoning for one of the crucial biological implications of reactive messenger molecule, nitric oxide in the cellular repertoire. The stringency of the S-(de)nitrosylation-based redox switch governs the activity and contribution of several susceptible enzymes in signal transduction processes and diverse pathophysiological settings, thus establishing it as a transient yet reasonable, and regulated mechanism of NO adduction and release. Notably, endogenous proteases like cytosolic and mitochondrial caspases with a molecular weight ranging from 33 to 55 kDa are susceptible to performing this biochemistry in the presence of major oxidoreductases, which further unveils the enormous redox-mediated regulational control of caspases in the etiology of diseases. In addition to advancing the progress of the current state of understanding of 'redox biochemistry' in the field of medicine and enriching the existing dynamic S-nitrosoproteome, this review stands as a testament to an unprecedented shift in the underpinnings for redundancy and redox relay between the major redoxin/antioxidant systems, fine-tuning of which can command the apoptotic control of caspases at the face of nitro-oxidative stress. These intricate functional overlaps and cellular backups, supported rationally by kinetically favorable reaction mechanisms suggest the physiological relevance of identifying and involving such cognate substrates for cellular S-denitrosylases that can shed light on the bigger picture of extensively proposing targeted therapies and redox-based drug designing to potentially alleviate the side effects of NOx/ROS in disease pathogenesis.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Tamal Bhaumik
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
2
|
Halawani D, Wang Y, Ramakrishnan A, Estill M, He X, Shen L, Friedel RH, Zou H. Circadian clock regulator Bmal1 gates axon regeneration via Tet3 epigenetics in mouse sensory neurons. Nat Commun 2023; 14:5165. [PMID: 37620297 PMCID: PMC10449865 DOI: 10.1038/s41467-023-40816-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Axon regeneration of dorsal root ganglia (DRG) neurons after peripheral axotomy involves reconfiguration of gene regulatory circuits to establish regenerative gene programs. However, the underlying mechanisms remain unclear. Here, through an unbiased survey, we show that the binding motif of Bmal1, a central transcription factor of the circadian clock, is enriched in differentially hydroxymethylated regions (DhMRs) of mouse DRG after peripheral lesion. By applying conditional deletion of Bmal1 in neurons, in vitro and in vivo neurite outgrowth assays, as well as transcriptomic profiling, we demonstrate that Bmal1 inhibits axon regeneration, in part through a functional link with the epigenetic factor Tet3. Mechanistically, we reveal that Bmal1 acts as a gatekeeper of neuroepigenetic responses to axonal injury by limiting Tet3 expression and restricting 5hmC modifications. Bmal1-regulated genes not only concern axon growth, but also stress responses and energy homeostasis. Furthermore, we uncover an epigenetic rhythm of diurnal oscillation of Tet3 and 5hmC levels in DRG neurons, corresponding to time-of-day effect on axon growth potential. Collectively, our studies demonstrate that targeting Bmal1 enhances axon regeneration.
Collapse
Affiliation(s)
- Dalia Halawani
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiqun Wang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Department of Orthopedics, Xi'an International Medical Center Hospital, Xi'an, China
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Kilgas S, Ramadan K. Inhibitors of the ATPase p97/VCP: From basic research to clinical applications. Cell Chem Biol 2023; 30:3-21. [PMID: 36640759 DOI: 10.1016/j.chembiol.2022.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/13/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Protein homeostasis deficiencies underlie various cancers and neurodegenerative diseases. The ubiquitin-proteasome system (UPS) and autophagy are responsible for most of the protein degradation in mammalian cells and, therefore, represent attractive targets for cancer therapy and that of neurodegenerative diseases. The ATPase p97, also known as VCP, is a central component of the UPS that extracts and disassembles its substrates from various cellular locations and also regulates different steps in autophagy. Several UPS- and autophagy-targeting drugs are in clinical trials. In this review, we focus on the development of various p97 inhibitors, including the ATPase inhibitors CB-5083 and CB-5339, which reached clinical trials by demonstrating effective anti-tumor activity across various tumor models, providing an effective alternative to targeting protein degradation for cancer therapy. Here, we provide an overview of how different p97 inhibitors have evolved over time both as basic research tools and effective UPS-targeting cancer therapies in the clinic.
Collapse
Affiliation(s)
- Susan Kilgas
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Kristijan Ramadan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
4
|
Flores J, Fillion ML, LeBlanc AC. Caspase-1 inhibition improves cognition without significantly altering amyloid and inflammation in aged Alzheimer disease mice. Cell Death Dis 2022; 13:864. [PMID: 36220815 PMCID: PMC9553979 DOI: 10.1038/s41419-022-05290-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022]
Abstract
Human genetic and animal model studies indicate that brain microglial inflammation is a primary driver of cognitive impairment in Alzheimer Disease (AD). Inflammasome-activated Caspase-1 (Casp1) is associated with both AD microglial inflammation and neuronal degeneration. In mice, Casp1 genetic ablation or VX-765 small molecule inhibition of Casp1 given at onset of cognitive deficits strongly supports the association between microglial inflammation and cognitive impairment. Here, VX-765 significantly improved episodic and spatial memory impairment eight months after the onset of cognitive impairment in aged AD mice with significant amyloid beta peptide (Aβ) accumulation and microglial inflammation. Unexpectedly, while cognitive improvement was associated with dendritic spine density and hippocampal synaptophysin level recovery, VX-765 only slightly decreased Aβ deposition and did not alter biochemically-measured Aβ levels. Furthermore, increased hippocampal Iba1+-microglia, GFAP+-astrocytes, IL-1β, and TNF-α levels were unaltered by VX-765. These results support the hypothesis that neuronal degeneration, not Aβ or microglial inflammation, drives cognitive impairment in AD.
Collapse
Affiliation(s)
- Joseph Flores
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research at Jewish General Hospital, Montréal, QC Canada
| | - Marie-Lyne Fillion
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research at Jewish General Hospital, Montréal, QC Canada
| | - Andréa C. LeBlanc
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research at Jewish General Hospital, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montréal, QC Canada
| |
Collapse
|
5
|
Therapeutic potential of Nlrp1 inflammasome, Caspase-1, or Caspase-6 against Alzheimer disease cognitive impairment. Cell Death Differ 2022; 29:657-669. [PMID: 34625662 PMCID: PMC8901623 DOI: 10.1038/s41418-021-00881-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
The sequential activation of Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing protein 1 (Nlrp1) inflammasome, Caspase-1 (Casp1), and Caspase-6 (Casp6) is implicated in primary human neuron cultures and Alzheimer Disease (AD) neurodegeneration. To validate the Nlrp1-Casp1-Casp6 pathway in vivo, the APPSwedish/Indiana J20 AD transgenic mouse model was generated on either a Nlrp1, Casp1 or Casp6 null genetic background and mice were studied at 4-5 months of age. Episodic memory deficits assessed with novel object recognition were normalized by genetic ablation of Nlrp1, Casp1, or Casp6 in J20 mice. Spatial learning deficits, assessed with the Barnes Maze, were normalized in genetically ablated J20, whereas memory recall was normalized in J20/Casp1-/- and J20/Casp6-/-, and improved in J20/Nlrp1-/- mice. Hippocampal CA1 dendritic spine density of the mushroom subtype was reduced in J20, and normalized in genetically ablated J20 mice. Reduced J20 hippocampal dentate gyrus and CA3 synaptophysin levels were normalized in genetically ablated J20. Increased Iba1+-microglia in the hippocampus and cortex of J20 brains were normalized by Casp1 and Casp6 ablation and reduced by Nlrp1 ablation. Increased pro-inflammatory cytokines, TNF-α and CXCL1, in the J20 hippocampus were normalized by Nlrp1 or Casp1 genetic ablation. CXCL1 was also normalized by Casp6 genetic ablation. IFN-γ was increased and total amyloid β peptide was decreased in genetically ablated Nlrp1, Casp1 or Casp6 J20 hippocampi. We conclude that Nlrp1, Casp1, or Casp6 are implicated in AD-related cognitive impairment, inflammation, and amyloidogenesis. These results indicate that Nlrp1, Casp1, and Casp6 represent rational therapeutic targets against cognitive impairment and inflammation in AD.
Collapse
|
6
|
Ryder BD, Wydorski PM, Hou Z, Joachimiak LA. Chaperoning shape-shifting tau in disease. Trends Biochem Sci 2022; 47:301-313. [PMID: 35045944 DOI: 10.1016/j.tibs.2021.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023]
Abstract
Many neurodegenerative diseases, including Alzheimer's, originate from the conversion of proteins into pathogenic conformations. The microtubule-associated protein tau converts into β-sheet-rich amyloid conformations, which underlie pathology in over 25 related tauopathies. Structural studies of tau amyloid fibrils isolated from human tauopathy tissues have revealed that tau adopts diverse structural polymorphs, each linked to a different disease. Molecular chaperones play central roles in regulating tau function and amyloid assembly in disease. New data supports the model that chaperones selectively recognize different conformations of tau to limit the accumulation of proteotoxic species. The challenge now is to understand how chaperones influence disease processes across different tauopathies, which will help guide the development of novel conformation-specific diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Bryan D Ryder
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pawel M Wydorski
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiqiang Hou
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
De Marco G, Lomartire A, Manera U, Canosa A, Grassano M, Casale F, Fuda G, Salamone P, Rinaudo MT, Colombatto S, Moglia C, Chiò A, Calvo A. Effects of intracellular calcium accumulation on proteins encoded by the major genes underlying amyotrophic lateral sclerosis. Sci Rep 2022; 12:395. [PMID: 35013445 PMCID: PMC8748718 DOI: 10.1038/s41598-021-04267-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
The aetiology of Amyotrophic Lateral Sclerosis (ALS) is still poorly understood. The discovery of genetic forms of ALS pointed out the mechanisms underlying this pathology, but also showed how complex these mechanisms are. Excitotoxicity is strongly suspected to play a role in ALS pathogenesis. Excitotoxicity is defined as neuron damage due to excessive intake of calcium ions (Ca2+) by the cell. This study aims to find a relationship between the proteins coded by the most relevant genes associated with ALS and intracellular Ca2+ accumulation. In detail, the profile of eight proteins (TDP-43, C9orf72, p62/sequestosome-1, matrin-3, VCP, FUS, SOD1 and profilin-1), was analysed in three different cell types induced to raise their cytoplasmic amount of Ca2+. Intracellular Ca2+ accumulation causes a decrease in the levels of TDP-43, C9orf72, matrin3, VCP, FUS, SOD1 and profilin-1 and an increase in those of p62/sequestosome-1. These events are associated with the proteolytic action of two proteases, calpains and caspases, as well as with the activation of autophagy. Interestingly, Ca2+ appears to both favour and hinder autophagy. Understanding how and why calpain-mediated proteolysis and autophagy, which are physiological processes, become pathological may elucidate the mechanisms responsible for ALS and help discover new therapeutic targets.
Collapse
Affiliation(s)
- Giovanni De Marco
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy. .,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy.
| | - Annarosa Lomartire
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Umberto Manera
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Antonio Canosa
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Maurizio Grassano
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Federico Casale
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Giuseppe Fuda
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Paolina Salamone
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Maria Teresa Rinaudo
- Department of Oncology, University of Turin, via Michelangelo 27/b, 10126, Turin, Italy
| | - Sebastiano Colombatto
- Department of Oncology, University of Turin, via Michelangelo 27/b, 10126, Turin, Italy
| | - Cristina Moglia
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Adriano Chiò
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy.,Neuroscience Institute of Turin (NIT), Via Verdi, 8, 10124, Turin, Italy.,Institute of Cognitive Sciences and Technologies, C.N.R., Via S. Martino della Battaglia, 44, 00185, Rome, Italy
| | - Andrea Calvo
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy.,Neuroscience Institute of Turin (NIT), Via Verdi, 8, 10124, Turin, Italy
| |
Collapse
|
8
|
Islam MI, Nagakannan P, Shcholok T, Contu F, Mai S, Albensi BC, Del Bigio MR, Wang J, Sharoar M, Yan R, Park I, Eftekharpour E. Regulatory role of cathepsin L in induction of nuclear laminopathy in Alzheimer's disease. Aging Cell 2022; 21:e13531. [PMID: 34905652 PMCID: PMC8761039 DOI: 10.1111/acel.13531] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 01/13/2023] Open
Abstract
Experimental and clinical therapies in the field of Alzheimer's disease (AD) have focused on elimination of extracellular amyloid beta aggregates or prevention of cytoplasmic neuronal fibrillary tangles formation, yet these approaches have been generally ineffective. Interruption of nuclear lamina integrity, or laminopathy, is a newly identified concept in AD pathophysiology. Unraveling the molecular players in the induction of nuclear lamina damage may lead to identification of new therapies. Here, using 3xTg and APP/PS1 mouse models of AD, and in vitro model of amyloid beta42 (Aβ42) toxicity in primary neuronal cultures and SH‐SY5Y neuroblastoma cells, we have uncovered a key role for cathepsin L in the induction of nuclear lamina damage. The applicability of our findings to AD pathophysiology was validated in brain autopsy samples from patients. We report that upregulation of cathepsin L is an important process in the induction of nuclear lamina damage, shown by lamin B1 cleavage, and is associated with epigenetic modifications in AD pathophysiology. More importantly, pharmacological targeting and genetic knock out of cathepsin L mitigated Aβ42 induced lamin B1 degradation and downstream structural and molecular changes. Affirming these findings, overexpression of cathepsin L alone was sufficient to induce lamin B1 cleavage. The proteolytic activity of cathepsin L on lamin B1 was confirmed using mass spectrometry. Our research identifies cathepsin L as a newly identified lamin B1 protease and mediator of laminopathy observed in AD. These results uncover a new aspect in the pathophysiology of AD that can be pharmacologically prevented, raising hope for potential therapeutic interventions.
Collapse
Affiliation(s)
- Md Imamul Islam
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB Canada
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
| | - Pandian Nagakannan
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB Canada
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
| | - Tetiana Shcholok
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB Canada
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
| | - Fabio Contu
- Cell Biology Research Institute of Oncology and Hematology CancerCare Manitoba University of Manitoba Winnipeg MB Canada
| | - Sabine Mai
- Cell Biology Research Institute of Oncology and Hematology CancerCare Manitoba University of Manitoba Winnipeg MB Canada
| | - Benedict C Albensi
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
- St Boniface Hospital Albrechtsen Research Centre Winnipeg MB Canada
- Department of Pharmaceutical Sciences College of Pharmacy Nova Southeastern University Fort Lauderdale Florida USA
| | - Marc R. Del Bigio
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
- Department of Pathology Shared Health Manitoba University of Manitoba Winnipeg MB Canada
| | - Jun‐Feng Wang
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
- Department of Pharmacology and Therapeutics University of Manitoba Winnipeg MB Canada
| | - Md Golam Sharoar
- Department of Neuroscience University of Connecticut Health Farmington Connecticut USA
| | - Riqiang Yan
- Department of Neuroscience University of Connecticut Health Farmington Connecticut USA
| | - Il‐Seon Park
- Department of Cellular and Molecular Medicine Chosun University Gwangju South Korea
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB Canada
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
| |
Collapse
|
9
|
Rare CASP6N73T variant associated with hippocampal volume exhibits decreased proteolytic activity, synaptic transmission defect, and neurodegeneration. Sci Rep 2021; 11:12695. [PMID: 34135352 PMCID: PMC8209045 DOI: 10.1038/s41598-021-91367-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/25/2021] [Indexed: 01/22/2023] Open
Abstract
Caspase-6 (Casp6) is implicated in Alzheimer disease (AD) cognitive impairment and pathology. Hippocampal atrophy is associated with cognitive impairment in AD. Here, a rare functional exonic missense CASP6 single nucleotide polymorphism (SNP), causing the substitution of asparagine with threonine at amino acid 73 in Casp6 (Casp6N73T), was associated with hippocampal subfield CA1 volume preservation. Compared to wild type Casp6 (Casp6WT), recombinant Casp6N73T altered Casp6 proteolysis of natural substrates Lamin A/C and α-Tubulin, but did not alter cleavage of the Ac-VEID-AFC Casp6 peptide substrate. Casp6N73T-transfected HEK293T cells showed elevated Casp6 mRNA levels similar to Casp6WT-transfected cells, but, in contrast to Casp6WT, did not accumulate active Casp6 subunits nor show increased Casp6 enzymatic activity. Electrophysiological and morphological assessments showed that Casp6N73T recombinant protein caused less neurofunctional damage and neurodegeneration in hippocampal CA1 pyramidal neurons than Casp6WT. Lastly, CASP6 mRNA levels were increased in several AD brain regions confirming the implication of Casp6 in AD. These studies suggest that the rare Casp6N73T variant may protect against hippocampal atrophy due to its altered catalysis of natural protein substrates and intracellular instability thus leading to less Casp6-mediated damage to neuronal structure and function.
Collapse
|
10
|
Noël A, Foveau B, LeBlanc AC. Caspase-6-cleaved Tau fails to induce Tau hyperphosphorylation and aggregation, neurodegeneration, glial inflammation, and cognitive deficits. Cell Death Dis 2021; 12:227. [PMID: 33649324 PMCID: PMC7921451 DOI: 10.1038/s41419-021-03506-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/09/2023]
Abstract
Active Caspase-6 (Casp6) and Tau cleaved by Casp6 at amino acids 402 (Tau∆D402) and 421 (Tau∆D421) are present in early Alzheimer disease intraneuronal neurofibrillary tangles, which are made primarily of filamentous Tau aggregates. To assess whether Casp6 cleavage of Tau contributes to Tau pathology and Casp6-mediated age-dependent cognitive impairment, we generated transgenic knock-in mouse models that conditionally express full-length human Tau (hTau) 0N4R only (CTO) or together with human Casp6 (hCasp6) (CTC). Region-specific hippocampal and cortical hCasp6 and hTau expression were confirmed with western blot and immunohistochemistry in 2-25-month-old brains. Casp6 activity was confirmed with Tau∆D421 and Tubulin cleaved by Casp6 immunopositivity in 3-25-month-old CTC, but not in CTO, brains. Immunoprecipitated Tau∆D402 was detected in both CTC and CTO brains, but was more abundant in CTC brains. Intraneuronal hippocampal Tau hyperphosphorylation at S202/T205, S422, and T231, and Tau conformational change were absent in both CTC and CTO brains. A slight accumulation of Tau phosphorylated at S396/404 and S202 was observed in Cornu Ammonis 1 (CA1) hippocampal neuron soma of CTC compared to CTO brains. Eighteen-month-old CTC brains showed rare argentophilic deposits that increased by 25 months, whereas CTO brains only displayed them sparsely at 25 months. Tau microtubule binding was equivalent in CTC and CTO hippocampi. Episodic and spatial memory measured with novel object recognition and Barnes maze, respectively, remained normal in 3-25-month-old CTC and CTO mice, in contrast to previously observed impairments in ACL mice expressing equivalent levels of hCasp6 only. Consistently, the CTC and CTO hippocampal CA1 region displayed equivalent dendritic spine density and no glial inflammation. Together, these results reveal that active hCasp6 co-expression with hTau generates Tau cleavage and rare age-dependent argentophilic deposits but fails to induce cognitive deficits, neuroinflammation, and Tau pathology.
Collapse
Affiliation(s)
- Anastasia Noël
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Bénédicte Foveau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Andréa C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
11
|
Flores J, Noël A, Foveau B, Beauchet O, LeBlanc AC. Pre-symptomatic Caspase-1 inhibitor delays cognitive decline in a mouse model of Alzheimer disease and aging. Nat Commun 2020; 11:4571. [PMID: 32917871 PMCID: PMC7486940 DOI: 10.1038/s41467-020-18405-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Early therapeutic interventions are essential to prevent Alzheimer Disease (AD). The association of several inflammation-related genetic markers with AD and the early activation of pro-inflammatory pathways in AD suggest inflammation as a plausible therapeutic target. Inflammatory Caspase-1 has a significant impact on AD-like pathophysiology and Caspase-1 inhibitor, VX-765, reverses cognitive deficits in AD mouse models. Here, a one-month pre-symptomatic treatment of Swedish/Indiana mutant amyloid precursor protein (APPSw/Ind) J20 and wild-type mice with VX-765 delays both APPSw/Ind- and age-induced episodic and spatial memory deficits. VX-765 delays inflammation without considerably affecting soluble and aggregated amyloid beta peptide (Aβ) levels. Episodic memory scores correlate negatively with microglial activation. These results suggest that Caspase-1-mediated inflammation occurs early in the disease and raise hope that VX-765, a previously Food and Drug Administration-approved drug for human CNS clinical trials, may be a useful drug to prevent the onset of cognitive deficits and brain inflammation in AD.
Collapse
Affiliation(s)
- Joseph Flores
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Anastasia Noël
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Bénédicte Foveau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Olivier Beauchet
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Medicine, Division of Geriatric Medicine, Sir Mortimer B. Davis - Jewish General Hospital, Montreal, Quebec, Canada.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Andréa C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Zhou L, Flores J, Noël A, Beauchet O, Sjöström PJ, LeBlanc AC. Methylene blue inhibits Caspase-6 activity, and reverses Caspase-6-induced cognitive impairment and neuroinflammation in aged mice. Acta Neuropathol Commun 2019; 7:210. [PMID: 31843022 PMCID: PMC6915996 DOI: 10.1186/s40478-019-0856-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Activated Caspase-6 (Casp6) is associated with age-dependent cognitive impairment and Alzheimer disease (AD). Mice expressing human Caspase-6 in hippocampal CA1 neurons develop age-dependent cognitive deficits, neurodegeneration and neuroinflammation. This study assessed if methylene blue (MB), a phenothiazine that inhibits caspases, alters Caspase-6-induced neurodegeneration and cognitive impairment in mice. Aged cognitively impaired Casp6-overexpressing mice were treated with methylene blue in drinking water for 1 month. Methylene blue treatment did not alter Caspase-6 levels, assessed by RT-PCR, western blot and immunohistochemistry, but inhibited fluorescently-labelled Caspase-6 activity in acute brain slice intact neurons. Methylene blue treatment rescued Caspase-6-induced episodic and spatial memory deficits measured by novel object recognition and Barnes maze, respectively. Methylene blue improved synaptic function of hippocampal CA1 neurons since theta-burst long-term potentiation (LTP), measured by field excitatory postsynaptic potentials (fEPSPs) in acute brain slices, was successfully induced in the Schaffer collateral-CA1 pathway in methylene blue-treated, but not in vehicle-treated, Caspase-6 mice. Increased neuroinflammation, measured by ionized calcium binding adaptor molecule 1 (Iba1)-positive microglia numbers and subtypes, and glial fibrillary acidic protein (GFAP)-positive astrocytes, were decreased by methylene blue treatment. Therefore, methylene blue reverses Caspase-6-induced cognitive deficits by inhibiting Caspase-6, and Caspase-6-mediated neurodegeneration and neuroinflammation. Our results indicate that Caspase-6-mediated damage is reversible months after the onset of cognitive deficits and suggest that methylene blue could benefit Alzheimer disease patients by reversing Caspase-6-mediated cognitive decline.
Collapse
Affiliation(s)
- Libin Zhou
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street Strathcona Anatomy Building, Montreal, QC H3A 0C7 Canada
| | - Joseph Flores
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
| | - Anastasia Noël
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
| | - Olivier Beauchet
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Medicine, Division of Geriatric Medicine, Sir Mortimer B. Davis - Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - P. Jesper Sjöström
- Centre for Research in Neuroscience, the BRaIN Program, Department of Neurology and Neurosurgery, McGill University, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4 Canada
| | - Andrea C. LeBlanc
- Lady Davis Institute for Medical Research at Jewish General Hospital, 3999 Ch. Côte Ste-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street Strathcona Anatomy Building, Montreal, QC H3A 0C7 Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC H3A 0G4 Canada
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, 3755 ch. Côte Ste-Catherine, Montréal, QC H3T 1E2 Canada
| |
Collapse
|
13
|
Tubeleviciute-Aydin A, Beautrait A, Lynham J, Sharma G, Gorelik A, Deny LJ, Soya N, Lukacs GL, Nagar B, Marinier A, LeBlanc AC. Identification of Allosteric Inhibitors against Active Caspase-6. Sci Rep 2019; 9:5504. [PMID: 30940883 PMCID: PMC6445123 DOI: 10.1038/s41598-019-41930-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/21/2019] [Indexed: 01/04/2023] Open
Abstract
Caspase-6 is a cysteine protease that plays essential roles in programmed cell death, axonal degeneration, and development. The excess neuronal activity of Caspase-6 is associated with Alzheimer disease neuropathology and age-dependent cognitive impairment. Caspase-6 inhibition is a promising strategy to stop early stage neurodegenerative events, yet finding potent and selective Caspase-6 inhibitors has been a challenging task due to the overlapping structural and functional similarities between caspase family members. Here, we investigated how four rare non-synonymous missense single-nucleotide polymorphisms (SNPs), resulting in amino acid substitutions outside human Caspase-6 active site, affect enzyme structure and catalytic efficiency. Three investigated SNPs were found to align with a putative allosteric pocket with low sequence conservation among human caspases. Virtual screening of 57,700 compounds against the putative Caspase-6 allosteric pocket, followed by in vitro testing of the best virtual hits in recombinant human Caspase-6 activity assays identified novel allosteric Caspase-6 inhibitors with IC50 and Ki values ranging from ~2 to 13 µM. This report may pave the way towards the development and optimisation of novel small molecule allosteric Caspase-6 inhibitors and illustrates that functional characterisation of rare natural variants holds promise for the identification of allosteric sites on other therapeutic targets in drug discovery.
Collapse
Affiliation(s)
- Agne Tubeleviciute-Aydin
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, Quebec, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 3775 University St., Montreal, Quebec, H3A 2B4, Canada
| | - Alexandre Beautrait
- Institute for Research in Immunology and Cancer, Université de Montréal, 2590, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Jeffrey Lynham
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, Quebec, H3T 1E2, Canada
- Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec, H3A 0C7, Canada
| | - Gyanesh Sharma
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, Quebec, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 3775 University St., Montreal, Quebec, H3A 2B4, Canada
| | - Alexei Gorelik
- Department of Biochemistry, McGill University, 3649 promenade Sir-William-Osler, Montreal, Quebec, H3G 0B1, Canada
| | - Ludovic J Deny
- Institute for Research in Immunology and Cancer, Université de Montréal, 2590, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Naoto Soya
- Department of Physiology and Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec, H3G 1Y6, Canada
| | - Gergely L Lukacs
- Department of Physiology and Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec, H3G 1Y6, Canada
| | - Bhushan Nagar
- Department of Biochemistry, McGill University, 3649 promenade Sir-William-Osler, Montreal, Quebec, H3G 0B1, Canada
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Université de Montréal, 2590, chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Andrea C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, Quebec, H3T 1E2, Canada.
- Department of Neurology and Neurosurgery, McGill University, 3775 University St., Montreal, Quebec, H3A 2B4, Canada.
- Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec, H3A 0C7, Canada.
| |
Collapse
|
14
|
Giaume C, Sáez JC, Song W, Leybaert L, Naus CC. Connexins and pannexins in Alzheimer’s disease. Neurosci Lett 2019; 695:100-105. [DOI: 10.1016/j.neulet.2017.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/14/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022]
|
15
|
Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer's disease mouse model. Nat Commun 2018; 9:3916. [PMID: 30254377 PMCID: PMC6156230 DOI: 10.1038/s41467-018-06449-x] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an intractable progressive neurodegenerative disease characterized by cognitive decline and dementia. An inflammatory neurodegenerative pathway, involving Caspase-1 activation, is associated with human age-dependent cognitive impairment and several classical AD brain pathologies. Here, we show that the nontoxic and blood-brain barrier permeable small molecule Caspase-1 inhibitor VX-765 dose-dependently reverses episodic and spatial memory impairment, and hyperactivity in the J20 mouse model of AD. Cessation of VX-765 results in the reappearance of memory deficits in the mice after 1 month and recommencement of treatment re-establishes normal cognition. VX-765 prevents progressive amyloid beta peptide deposition, reverses brain inflammation, and normalizes synaptophysin protein levels in mouse hippocampus. Consistent with these findings, Caspase-1 null J20 mice are protected from episodic and spatial memory deficits, neuroinflammation and Aβ accumulation. These results provide in vivo proof of concept for Caspase-1 inhibition against AD cognitive deficits and pathologies.
Collapse
|
16
|
Halawani D, Gogonea V, DiDonato JA, Pipich V, Yao P, China A, Topbas C, Vasu K, Arif A, Hazen SL, Fox PL. Structural control of caspase-generated glutamyl-tRNA synthetase by appended noncatalytic WHEP domains. J Biol Chem 2018; 293:8843-8860. [PMID: 29643180 DOI: 10.1074/jbc.m117.807503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 03/26/2018] [Indexed: 02/02/2023] Open
Abstract
Aminoacyl-tRNA synthetases are ubiquitous, evolutionarily conserved enzymes catalyzing the conjugation of amino acids onto cognate tRNAs. During eukaryotic evolution, tRNA synthetases have been the targets of persistent structural modifications. These modifications can be additive, as in the evolutionary acquisition of noncatalytic domains, or subtractive, as in the generation of truncated variants through regulated mechanisms such as proteolytic processing, alternative splicing, or coding region polyadenylation. A unique variant is the human glutamyl-prolyl-tRNA synthetase (EPRS) consisting of two fused synthetases joined by a linker containing three copies of the WHEP domain (termed by its presence in tryptophanyl-, histidyl-, and glutamyl-prolyl-tRNA synthetases). Here, we identify site-selective proteolysis as a mechanism that severs the linkage between the EPRS synthetases in vitro and in vivo Caspase action targeted Asp-929 in the third WHEP domain, thereby separating the two synthetases. Using a neoepitope antibody directed against the newly exposed C terminus, we demonstrate EPRS cleavage at Asp-929 in vitro and in vivo Biochemical and biophysical characterizations of the N-terminally generated EPRS proteoform containing the glutamyl-tRNA synthetase and most of the linker, including two WHEP domains, combined with structural analysis by small-angle neutron scattering, revealed a role for the WHEP domains in modulating conformations of the catalytic core and GSH-S-transferase-C-terminal-like (GST-C) domain. WHEP-driven conformational rearrangement altered GST-C domain interactions and conferred distinct oligomeric states in solution. Collectively, our results reveal long-range conformational changes imposed by the WHEP domains and illustrate how noncatalytic domains can modulate the global structure of tRNA synthetases in complex eukaryotic systems.
Collapse
Affiliation(s)
- Dalia Halawani
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| | - Valentin Gogonea
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and .,the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Joseph A DiDonato
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| | - Vitaliy Pipich
- the Jülich Center for Neutron Science, Outstation at Maier-Leibnitz Zentrum, Forschungszentrum Jülich, GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany, and
| | - Peng Yao
- the Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York 14642
| | - Arnab China
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| | - Celalettin Topbas
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and.,the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Kommireddy Vasu
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| | - Abul Arif
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| | - Stanley L Hazen
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and.,Center for Cardiovascular Diagnostics and Prevention, and Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Paul L Fox
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| |
Collapse
|
17
|
Abstract
The cysteine protease Caspase-6 (Casp6) is a potential therapeutic target of Alzheimer Disease (AD) and age-dependent cognitive impairment. To assess if Casp6 is essential to human health, we investigated the effect of CASP6 variants sequenced from healthy humans on Casp6 activity. Here, we report the effects of two rare Casp6 amino acid polymorphisms, R65W and G66R, on the catalytic function and structure of Casp6. The G66R substitution eliminated and R65W substitution significantly reduced Casp6 catalytic activity through impaired substrate binding. In contrast to wild-type Casp6, both Casp6 variants were unstable and inactive in transfected mammalian cells. In addition, Casp6-G66R acted as a dominant negative inhibitor of wild-type Casp6. The R65W and G66R substitutions caused perturbations in substrate recognition and active site organization as revealed by molecular dynamics simulations. Our results suggest that full Casp6 activity may not be essential for healthy humans and support the use of Casp6 inhibitors against Casp6-dependent neurodegeneration in age-dependent cognitive impairment and AD. Furthermore, this work illustrates that studying natural single amino acid polymorphisms of enzyme drug targets is a promising approach to uncover previously uncharacterized regulatory sites important for enzyme activity.
Collapse
|
18
|
Girling KD, Demers MJ, Laine J, Zhang S, Wang YT, Graham RK. Activation of caspase-6 and cleavage of caspase-6 substrates is an early event in NMDA receptor-mediated excitotoxicity. J Neurosci Res 2017; 96:391-406. [DOI: 10.1002/jnr.24153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Kimberly D. Girling
- University of British Columbia, Brain Research Centre & Department of Medicine; Vancouver British Columbia Canada
| | - Marie-Josee Demers
- Research Centre on Aging, Department Pharmacology and Physiology, Faculty of Medicine and Health Sciences; University of Sherbrooke; Sherbrooke Quebec Canada
| | - Jean Laine
- Research Centre on Aging, Department Pharmacology and Physiology, Faculty of Medicine and Health Sciences; University of Sherbrooke; Sherbrooke Quebec Canada
| | - Shu Zhang
- University of British Columbia, Brain Research Centre & Department of Medicine; Vancouver British Columbia Canada
| | - Yu Tian Wang
- University of British Columbia, Brain Research Centre & Department of Medicine; Vancouver British Columbia Canada
| | - Rona K. Graham
- Research Centre on Aging, Department Pharmacology and Physiology, Faculty of Medicine and Health Sciences; University of Sherbrooke; Sherbrooke Quebec Canada
| |
Collapse
|
19
|
Lee H, Shin EA, Lee JH, Ahn D, Kim CG, Kim JH, Kim SH. Caspase inhibitors: a review of recently patented compounds (2013-2015). Expert Opin Ther Pat 2017; 28:47-59. [DOI: 10.1080/13543776.2017.1378426] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hyemin Lee
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun Ah Shin
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae Hee Lee
- Department of East West Medical Science, Graduate School of East West Medical Science Kyung Hee University, Yongin, South Korea
| | - Deoksoo Ahn
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Chang Geun Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ju-Ha Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung-Hoon Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
20
|
Burnett JC, Lim C, Peyser BD, Samankumara LP, Kovaliov M, Colombo R, Bulfer SL, LaPorte MG, Hermone AR, McGrath CF, Arkin MR, Gussio R, Huryn DM, Wipf P. A threonine turnstile defines a dynamic amphiphilic binding motif in the AAA ATPase p97 allosteric binding site. Org Biomol Chem 2017; 15:4096-4114. [PMID: 28352916 PMCID: PMC5472064 DOI: 10.1039/c7ob00526a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The turnstile motion of two neighboring threonines sets up a dynamic side chain interplay that can accommodate both polar and apolar ligands in a small molecule allosteric protein binding site. A computational model based on SAR data and both X-ray and cryo-EM structures of the AAA ATPase p97 was used to analyze the effects of paired threonines at the inhibitor site. Specifically, the Thr side chain hydroxyl groups form a hydrogen bonding network that readily accommodates small, highly polar ligand substituents. Conversely, diametric rotation of the χ1 torsion by 150-180° orients the side chain β-methyl groups into the binding cleft, creating a hydrophobic pocket that can accommodate small, apolar substituents. This motif was found to be critical for rationalizing the affinities of a structurally focused set of inhibitors of p97 covering a > 2000-fold variation in potencies, with a preference for either small-highly polar or small-apolar groups. The threonine turnstile motif was further validated by a PDB search that identified analogous binding modes in ligand interactions in PKB, as well as by an analysis of NMR structures demonstrating additional gear-like interactions between adjacent Thr pairs. Combined, these data suggest that the threonine turnstile motif may be a general feature of interest in protein binding pockets.
Collapse
Affiliation(s)
- James C. Burnett
- Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, United States
| | - Chaemin Lim
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Brian D. Peyser
- Frederick National Laboratory for Cancer Research, Developmental Therapeutics Program, P.O. Box B, Frederick, MD 21702, United States
| | - Lalith P. Samankumara
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Marina Kovaliov
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Raffaele Colombo
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Stacie L. Bulfer
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA 94158, United States
| | - Matthew G. LaPorte
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Ann R. Hermone
- Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, United States
| | - Connor F. McGrath
- Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, United States
| | - Michelle R. Arkin
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA 94158, United States
| | - Rick Gussio
- Frederick National Laboratory for Cancer Research, Developmental Therapeutics Program, P.O. Box B, Frederick, MD 21702, United States
| | - Donna M. Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Peter Wipf
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
21
|
Pakavathkumar P, Noël A, Lecrux C, Tubeleviciute-Aydin A, Hamel E, Ahlfors JE, LeBlanc AC. Caspase vinyl sulfone small molecule inhibitors prevent axonal degeneration in human neurons and reverse cognitive impairment in Caspase-6-overexpressing mice. Mol Neurodegener 2017; 12:22. [PMID: 28241839 PMCID: PMC5329948 DOI: 10.1186/s13024-017-0166-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The activation of the aspartate-specific cysteinyl protease, Caspase-6, is proposed as an early pathogenic event of Alzheimer disease (AD) and Huntington's disease. Caspase-6 inhibitors could be useful against these neurodegenerative diseases but most Caspase-6 inhibitors have been exclusively studied in vitro or show acute liver toxicity in humans. Here, we assessed vinyl sulfone small molecule peptide caspase inhibitors for potential use in vivo. METHODS The IC50 of NWL vinyl sulfone small molecule caspase inhibitors were determined on Caspase-1 to 10, and Caspase-6-transfected human colon carcinoma HCT116 cells. Inhibition of Caspase-6-mediated axonal degeneration was assessed in serum-deprived or amyloid precursor protein-transfected primary human CNS neurons. Cellular toxicity was measured by phase contrast microscopy, mitochondrial and lactate dehydrogenase colorimetric activity assays, or flow cytometry. Caspase inhibition was measured by fluorogenic activity assays, fluorescence microscopy, and western blot analyses. The effect of inhibitors on age-dependent cognitive deficits in Caspase-6 transgenic mice was assessed by the novel object recognition task. Liquid chromatography coupled to tandem mass spectrometry assessed the blood-brain barrier permeability of inhibitors in Caspase-6 mice. RESULTS Vinyl sulfone NWL-117 caspase inhibitor has a higher selectivity against Caspase-6, -4, -8, -9, and -10 whereas NWL-154 has higher selectivity against Caspase-6, -8, and -10. The half-maximal inhibitory concentrations (IC50) of NWL-117 and NWL-154 is 192 nM and 100 nM against Caspase-6 in vitro, and 4.82 μM and 3.63 μM in Caspase-6-transfected HCT116 cells, respectively. NWL inhibitors are not toxic to HCT116 cells or to human primary neurons. NWL-117 and NWL-154 inhibit serum deprivation-induced Caspase-6 activity and prevent amyloid precursor protein-mediated neurite degeneration in human primary CNS neurons. NWL-117 crosses the blood brain barrier and reverses age-dependent episodic memory deficits in Caspase-6 mice. CONCLUSIONS NWL peptidic vinyl methyl sulfone inhibitors are potent, non-toxic, blood-brain barrier permeable, and irreversible caspase inhibitors with neuroprotective effects in HCT116 cells, in primary human CNS neurons, and in Caspase-6 mice. These results highlight the therapeutic potential of vinyl sulfone inhibitors as caspase inhibitors against neurodegenerative diseases and sanction additional work to improve their selectivity against different caspases.
Collapse
Affiliation(s)
- Prateep Pakavathkumar
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada
| | - Anastasia Noël
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada
| | - Clotilde Lecrux
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Agne Tubeleviciute-Aydin
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jan-Eric Ahlfors
- New World Laboratories, 500 Boulevard Cartier Ouest, Laval, QC, H7V 5B7, Canada
| | - Andrea C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada.
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada.
- Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, 3755 ch. Côte Ste-Catherine, Montréal, QC, H3T 1E2, Canada.
| |
Collapse
|
22
|
Cecarini V, Bonfili L, Cuccioloni M, Mozzicafreddo M, Angeletti M, Keller JN, Eleuteri AM. The fine-tuning of proteolytic pathways in Alzheimer's disease. Cell Mol Life Sci 2016; 73:3433-51. [PMID: 27120560 PMCID: PMC11108445 DOI: 10.1007/s00018-016-2238-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/31/2016] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
Abstract
Several integrated proteolytic systems contribute to the maintenance of cellular homeostasis through the continuous removal of misfolded, aggregated or oxidized proteins and damaged organelles. Among these systems, the proteasome and autophagy play the major role in protein quality control, which is a fundamental issue in non-proliferative cells such as neurons. Disturbances in the functionality of these two pathways are frequently observed in neurodegenerative diseases, like Alzheimer's disease, and reflect the accumulation of protease-resistant, deleterious protein aggregates. In this review, we explored the sophisticated crosstalk between the ubiquitin-proteasome system and autophagy in the removal of the harmful structures that characterize Alzheimer's disease neurons. We also dissected the role of the numerous shuttle factors and chaperones that, directly or indirectly interacting with ubiquitin and LC3, are used for cargo selection and delivery to one pathway or the other.
Collapse
Affiliation(s)
- Valentina Cecarini
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy.
| | - Laura Bonfili
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Massimiliano Cuccioloni
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Matteo Mozzicafreddo
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Mauro Angeletti
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Jeffrey N Keller
- Pennington Biomedical Research Centre, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Anna Maria Eleuteri
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| |
Collapse
|
23
|
Riechers SP, Butland S, Deng Y, Skotte N, Ehrnhoefer DE, Russ J, Laine J, Laroche M, Pouladi MA, Wanker EE, Hayden MR, Graham RK. Interactome network analysis identifies multiple caspase-6 interactors involved in the pathogenesis of HD. Hum Mol Genet 2016; 25:1600-18. [DOI: 10.1093/hmg/ddw036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/05/2016] [Indexed: 11/14/2022] Open
|
24
|
Early-onset Alzheimers and cortical vision impairment in a woman with valosin-containing protein disease associated with 2 APOE ε4/APOE ε4 genotype. Alzheimer Dis Assoc Disord 2015; 29:90-3. [PMID: 23715207 DOI: 10.1097/wad.0b013e318298e54f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hereditary inclusion body myopathy is a heterogeneous group of disorders characterized by rimmed vacuoles and by the presence of filamentous cytoplasmic and intranuclear inclusions. Inclusion body myopathy with Paget disease of bone and frontotemporal dementia is a progressive autosomal dominant disorder associated with a mutation in valosin-containing protein (VCP) with typical onset of symptoms in the 30s. APOE [Latin Small Letter Open E]4 is a major risk factor for late-onset Alzheimer disease, a progressive neurodegenerative disorder that affects memory, thinking, behavior, and emotion as a result of the excessive buildup and decreased clearance of β-amyloid proteins resulting in the appearance of neuritic plaques and neurofibrillary tangles. In conclusion, we report a unique patient with an APOE [Latin Small Letter Open E]4/APOE [Latin Small Letter Open E]4 genotype and atypical VCP disease associated with early Alzheimer disease and severe vision impairment. Future studies will elucidate the interaction of VCP mutations and APOE [Latin Small Letter Open E]4 alleles in understanding common mechanisms in AD and VCP disease.
Collapse
|
25
|
Waldron-Roby E, Hoerauf J, Arbez N, Zhu S, Kulcsar K, Ross CA. Sox11 Reduces Caspase-6 Cleavage and Activity. PLoS One 2015; 10:e0141439. [PMID: 26505998 PMCID: PMC4624725 DOI: 10.1371/journal.pone.0141439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/08/2015] [Indexed: 11/18/2022] Open
Abstract
The apoptotic cascade is an orchestrated event, whose final stages are mediated by effector caspases. Regulatory binding proteins have been identified for caspases such as caspase-3, -7, -8, and -9. Many of these proteins belong to the inhibitor of apoptosis (IAP) family. By contrast, caspase-6 is not believed to be influenced by IAPs, and little is known about its regulation. We therefore performed a yeast-two-hybrid screen using a constitutively inactive form of caspase-6 for bait in order to identify novel regulators of caspase-6 activity. Sox11 was identified as a potential caspase-6 interacting protein. Sox11 was capable of dramatically reducing caspase-6 activity, as well as preventing caspase-6 self- cleavage. Several regions, including amino acids 117-214 and 362-395 within sox11 as well as a nuclear localization signal (NLS) all contributed to the reduction in caspase-6 activity. Furthermore, sox11 was also capable of decreasing other effector caspase activity but not initiator caspases -8 and -9. The ability of sox11 to reduce effector caspase activity was also reflected in its capacity to reduce cell death following toxic insult. Interestingly, other sox proteins also had the ability to reduce caspase-6 activity but to a lesser extent than sox11.
Collapse
Affiliation(s)
- Elaine Waldron-Roby
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
| | - Janine Hoerauf
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
| | - Shanshan Zhu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
| | - Kirsten Kulcsar
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
- Department of Pharmacology, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD, 21287, United States of America
- * E-mail:
| |
Collapse
|
26
|
Hyttinen JM, Amadio M, Viiri J, Pascale A, Salminen A, Kaarniranta K. Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases. Ageing Res Rev 2014; 18:16-28. [PMID: 25062811 DOI: 10.1016/j.arr.2014.07.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/02/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022]
Abstract
Processing of misfolded proteins is important in order for the cell to maintain its normal functioning and homeostasis. Three systems control the quality of proteins: chaperone-mediated refolding, proteasomal degradation of ubiquitinated proteins, and finally, when the two others fail, aggrephagy, as selective form of autophagy, degrades ubiquitin-labelled aggregated cargos. In this route misfolded proteins gradually form larger aggregates, aggresomes and they eventually become double membrane-wrapped organelles called autophagosomes, which become degraded when they fuse to lysosomes, for reuse by the cell. The stages, the main molecules participating in the process, and the regulation of aggrephagy are discussed here, as is the role of protein aggregation in protein accumulation diseases. In particular, we emphasize that both Alzheimer's disease and age-related macular degeneration, two of the most common pathologies in the aged, are characterized by altered protein clearance and deposits. Based on the hypothesis that manipulations of autophagy may be potentially useful in these and other aggregation-related diseases, we will discuss some promising therapeutic strategies to counteract protein aggregates-induced cellular toxicity.
Collapse
|
27
|
Wang XJ, Cao Q, Zhang Y, Su XD. Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2014; 55:553-72. [PMID: 25340928 DOI: 10.1146/annurev-pharmtox-010814-124414] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is classified as an apoptotic effector, and it mediates nuclear shrinkage during apoptosis, but it possesses unique activation and regulation mechanisms that differ from those of other effector caspases. Furthermore, increasing evidence has shown that caspase-6 is highly involved in axon degeneration and neurodegenerative diseases, such as Huntington's disease and Alzheimer's disease. Cleavage at the caspase-6 site in mutated huntingtin protein is a prerequisite for the development of the characteristic behavioral and neuropathological features of Huntington's disease. Active caspase-6 is present in early stages of Alzheimer's disease, and caspase-6 activity is associated with the disease's pathological lesions. In this review, we discuss the evidence relevant to the role of caspase-6 in neurodegenerative diseases and summarize its activation and regulation mechanisms. In doing so, we provide new insight about potential therapeutic approaches that incorporate the modulation of caspase-6 function for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- State Key Laboratory of Protein and Plant Gene Research and
| | | | | | | |
Collapse
|
28
|
Gene expression profiling in tibial muscular dystrophy reveals unfolded protein response and altered autophagy. PLoS One 2014; 9:e90819. [PMID: 24618559 PMCID: PMC3949689 DOI: 10.1371/journal.pone.0090819] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022] Open
Abstract
Tibial muscular dystrophy (TMD) is a late onset, autosomal dominant distal myopathy that results from mutations in the two last domains of titin. The cascade of molecular events leading from the causative Titin mutations to the preterm death of muscle cells in TMD is largely unknown. In this study we examined the mRNA and protein changes associated with the myopathology of TMD. To identify these components we performed gene expression profiling using muscle biopsies from TMD patients and healthy controls. The profiling results were confirmed through quantitative real-time PCR and protein level analysis. One of the pathways identified was activation of endoplasmic reticulum (ER) stress response. ER stress activates the unfolded protein response (UPR) pathway. UPR activation was supported by elevation of the marker genes HSPA5, ERN1 and the UPR specific XBP1 splice form. However, UPR activation appears to be insufficient to correct the protein abnormalities causing its activation because degenerative TMD muscle fibres show an increase in ubiquitinated protein inclusions. Abnormalities of VCP-associated degradation pathways are also suggested by the presence of proteolytic VCP fragments in western blotting, and VCP's accumulation within rimmed vacuoles in TMD muscle fibres together with p62 and LC3B positive autophagosomes. Thus, pathways controlling turnover and degradation, including autophagy, are distorted and lead to degeneration and loss of muscle fibres.
Collapse
|
29
|
Fennell LM, Fleming JV. Differential processing of mammalian L-histidine decarboxylase enzymes. Biochem Biophys Res Commun 2014; 445:304-9. [PMID: 24508257 DOI: 10.1016/j.bbrc.2014.01.178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 01/28/2014] [Indexed: 11/19/2022]
Abstract
In the mammalian species studied so far, the L-histidine decarboxylase (HDC) enzyme responsible for histamine biosynthesis has been shown to undergo post-translational processing. The processing is best characterized for the mouse enzyme, where di-asparate DD motifs mediate the production of active ~55 and ~60 kDa isoforms from the ~74 kDa precursor in a caspase-9 dependent manner. The identification of conserved di-aspartate motifs at similar locations in the rat and human HDC protein sequences has led to proposals that these may represent important processing sites in these species also. Here we used transfected Cos7 cells to demonstrate that the rat and human HDC proteins undergo differential processing compared to each other, and found no evidence to suggest that conserved di-aspartate motifs are required absolutely for processing in this cell type. Instead we identified SKD and EEAPD motifs that are important for caspase-6 dependent production of ~54 and ~59 kDa isoforms in the rat and human proteins, respectively. The addition of staurosporine, which is known to pharmacologically activate caspase enzymes, increased processing of the human HDC protein. We propose that caspase-dependent processing is a conserved feature of mammalian HDC enzymes, but that proteolysis may involve different enzymes and occur at diverse sites and sequences.
Collapse
Affiliation(s)
- Lilian M Fennell
- School of Biochemistry and Cell Biology, School of Pharmacy, and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - John V Fleming
- School of Biochemistry and Cell Biology, School of Pharmacy, and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland.
| |
Collapse
|
30
|
Caspase-6 activity in the CA1 region of the hippocampus induces age-dependent memory impairment. Cell Death Differ 2014; 21:696-706. [PMID: 24413155 DOI: 10.1038/cdd.2013.194] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 12/11/2022] Open
Abstract
Active Caspase-6 is abundant in the neuropil threads, neuritic plaques and neurofibrillary tangles of Alzheimer disease brains. However, its contribution to the pathophysiology of Alzheimer disease is unclear. Here, we show that higher levels of Caspase-6 activity in the CA1 region of aged human hippocampi correlate with lower cognitive performance. To determine whether Caspase-6 activity, in the absence of plaques and tangles, is sufficient to cause memory deficits, we generated a transgenic knock-in mouse that expresses a self-activated form of human Caspase-6 in the CA1. This Caspase-6 mouse develops age-dependent spatial and episodic memory impairment. Caspase-6 induces neuronal degeneration and inflammation. We conclude that Caspase-6 activation in mouse CA1 neurons is sufficient to induce neuronal degeneration and age-dependent memory impairment. These results indicate that Caspase-6 activity in CA1 could be responsible for the lower cognitive performance of aged humans. Consequently, preventing or inhibiting Caspase-6 activity in the aged may provide an efficient novel therapeutic approach against Alzheimer disease.
Collapse
|
31
|
Proteomic analysis of the effect of acupuncture on the suppression of kainic Acid-induced neuronal destruction in mouse hippocampus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:436315. [PMID: 23970931 PMCID: PMC3736462 DOI: 10.1155/2013/436315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/07/2013] [Accepted: 06/26/2013] [Indexed: 11/17/2022]
Abstract
Kainic acid (KA) is a neurotoxin that induces epileptic seizures and excitotoxicity in the hippocampus. Acupuncture is frequently used as an alternative therapy for epilepsy, and it has been known to protect hippocampal neurons against KA toxicity. Using proteomic analysis, we investigated protein expression changes in the hippocampus following acupuncture stimulation at HT8. Eight-week-old male C57BL/6 mice (20-25 g) received acupuncture treatment at HT8 acupoint bilaterally once a day for 3 days and were then administered KA (30 mg/kg) intraperitoneally. Twenty-four hours after KA injection, neuronal survival and astrocyte activation in the hippocampus were measured, and protein expression in the hippocampus was identified by 2-dimensional electrophoresis. Acupuncture stimulation at HT8 suppressed KA-induced neuronal death and astrocyte activation in the hippocampus. We identified the changes in the expression of 11 proteins by KA or acupuncture stimulation at HT8 and found that acupuncture stimulation at HT8 normalized the expression of dihydropyrimidinase-related protein 2 and upregulated the expression of transcriptional activator protein pur-alpha, serine/threonine-protein phosphatase 5, and T-complex protein 1 subunit alpha, which are related to the survival of neurons. These results suggest that acupuncture stimulation at HT8 changes protein expression profiles in the hippocampus in favor of neuronal survival in KA-treated mice.
Collapse
|
32
|
LeBlanc AC. Caspase-6 as a novel early target in the treatment of Alzheimer's disease. Eur J Neurosci 2013; 37:2005-18. [DOI: 10.1111/ejn.12250] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/01/2013] [Accepted: 04/06/2013] [Indexed: 12/16/2022]
|
33
|
Franz A, Ackermann L, Hoppe T. Create and preserve: proteostasis in development and aging is governed by Cdc48/p97/VCP. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:205-15. [PMID: 23583830 DOI: 10.1016/j.bbamcr.2013.03.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/08/2013] [Accepted: 03/25/2013] [Indexed: 12/24/2022]
Abstract
The AAA-ATPase Cdc48 (also called p97 or VCP) acts as a key regulator in proteolytic pathways, coordinating recruitment and targeting of substrate proteins to the 26S proteasome or lysosomal degradation. However, in contrast to the well-known function in ubiquitin-dependent cellular processes, the physiological relevance of Cdc48 in organismic development and maintenance of protein homeostasis is less understood. Therefore, studies on multicellular model organisms help to decipher how Cdc48-dependent proteolysis is regulated in time and space to meet developmental requirements. Given the importance of developmental regulation and tissue maintenance, defects in Cdc48 activity have been linked to several human pathologies including protein aggregation diseases. Thus, addressing the underlying disease mechanisms not only contributes to our understanding on the organism-wide function of Cdc48 but also facilitates the design of specific medical therapies. In this review, we will portray the role of Cdc48 in the context of multicellular organisms, pointing out its importance for developmental processes, tissue surveillance, and disease prevention. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- André Franz
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | | | | |
Collapse
|
34
|
Ramcharitar J, Afonso VM, Albrecht S, Bennett DA, LeBlanc AC. Caspase-6 activity predicts lower episodic memory ability in aged individuals. Neurobiol Aging 2013; 34:1815-24. [PMID: 23402898 DOI: 10.1016/j.neurobiolaging.2013.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 02/07/2023]
Abstract
Caspase-6 (Casp6), a cysteinyl protease that induces axonal degeneration, is activated early in Alzheimer Disease (AD) brains. To determine whether Casp6 activation is responsible for early cognitive impairment, we investigated the abundance of Casp6 activity, paired helical filament-1 (PHF-1) phosphorylated Tau and amyloid beta peptide (Aβ) pathology by immunohistochemistry in the hippocampal formation of aged non-cognitively impaired (NCI) individuals. Casp6 activity was restricted to the entorhinal cortex (ERC) and CA1 regions of the hippocampus. Pathology scores were then correlated with cognitive scores obtained within 1 year of death. Regression analyses revealed that ERC and CA1 Casp6 activity were the main contributor to lower episodic memory performance, whereas ERC PHF-1 pathology predicted lower semantic and working memory performance. Aβ did not correlate with any of the cognitive tests. Because Casp6 activity and PHF-1 pathology are intimately associated with AD pathology and memory decline is an early event in AD, we conclude that Casp6 activity and PHF-1 immunoreactivity in ERC identifies aged individuals at risk for developing AD.
Collapse
Affiliation(s)
- Jasmine Ramcharitar
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
35
|
Shukla V, Skuntz S, Pant HC. Deregulated Cdk5 activity is involved in inducing Alzheimer's disease. Arch Med Res 2012; 43:655-62. [PMID: 23142263 DOI: 10.1016/j.arcmed.2012.10.015] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/22/2012] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD), the most devastating chronic neurodegenerative disease in adults, causes dementia and eventually, death of the affected individuals. Clinically, AD is characterized as late-onset, age-dependent cognitive decline due to loss of neurons in cortex and hippocampus. The pathologic corollary of these symptoms is the formation of senile plaques and neurofibrillary tangles. Senile plaques are formed due to accumulation of oligomeric amyloid beta (Aβ) forming plaques. This occurs due to the amyloidogenic processing of the amyloid precursor protein (APP) by various secretases. On the other hand, neurofibrillary tangles are formed due to hyperphosphorylation of cytoskeleton proteins like tau and neurofilament. Both are hyperphosphorylated by cyclin-dependent kinase-5 (Cdk5) and are part of the paired helical filament (PHF), an integral part of neurofibrillary tangles. Unlike other cyclin-dependent kinases, Cdk5 plays a very important role in the neuronal development. Cdk5 gets activated by its neuronal activators p35 and p39. Upon stress, p35 and p39 are cleaved by calpain resulting in truncated products as p25 and p29. Association of Cdk5/p25 is longer and uncontrolled causing aberrant hyperphosphorylation of various substrates of Cdk5 like APP, tau and neurofilament, leading to neurodegenerative pathology like AD. Additionally recent evidence has shown increased levels of p25, Aβ, hyperactivity of Cdk5, phosphorylated tau and neurofilament in human AD brains. This review briefly describes the above-mentioned aspects of involvement of Cdk5 in the pathology of AD and at the end summarizes the advances in Cdk5 as a therapeutic target.
Collapse
Affiliation(s)
- Varsha Shukla
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
36
|
Bennett DA, Schneider JA, Arvanitakis Z, Wilson RS. Overview and findings from the religious orders study. Curr Alzheimer Res 2012; 9:628-45. [PMID: 22471860 PMCID: PMC3409291 DOI: 10.2174/156720512801322573] [Citation(s) in RCA: 512] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 12/27/2011] [Accepted: 01/12/2012] [Indexed: 12/22/2022]
Abstract
UNLABELLED The Religious Orders Study is a longitudinal clinical-pathologic cohort study of aging and Alzheimer's disease (AD). In this manuscript, we summarize the study methods including the study design and describe the clinical evaluation, assessment of risk factors, collection of ante-mortem biological specimens, brain autopsy and collection of selected postmortem data. THE RESULTS (1) review the relation of neuropathologic indices to clinical diagnoses and cognition proximate to death; (2) examine the relation of risk factors to clinical outcomes; (3) examine the relation of risk factors to measures of neuropathology; and (4) summarize additional study findings. We then discuss and contextualize the study findings.
Collapse
Affiliation(s)
- David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S. Paulina, Suite 1028, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
37
|
Dynamic flexibility of the ATPase p97 is important for its interprotomer motion transmission. Proc Natl Acad Sci U S A 2012; 109:9792-7. [PMID: 22675116 DOI: 10.1073/pnas.1205853109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hexameric protein p97, a very abundant type II AAA ATPase (ATPase associated with various cellular activities), is involved in a diverse range of cellular functions. During its ATPase cycle p97 functions as an ATP motor, converting the chemical energy released upon hydrolysis of ATP to ADP into mechanical work, which is then directed toward the proteins that serve as substrates. A key question in this process is: How is the nucleotide-induced motion transmitted from the C-terminal ATPase domain (the D2 domain) of p97 to the distant N-terminal substrate-processing domain? We have previously reported the surprising finding that motion transmission between the two ATPase domains (the D2 and D1 domains) is mediated by the D1-D2 linker region of its neighboring protomer. In this study we report efforts to better understand this process. Our findings suggest that the amino acid sequence containing Gly-Gly that is located at the C terminus of the D1-D2 linker functions as a pivoting point that allows the dynamic movement of the D1-D2 linker. Furthermore, we found that locking the D1-D2 linker to the D2 domain by introducing disulfide bonds significantly impaired the motion-transmission process. These results support our previous model for interprotomer motion transmission, and provide more detailed information on how the motion transmission between the two ATPase domains of p97 is relayed by the flexible movement of the D1-D2 linker from its neighboring protomer.
Collapse
|
38
|
Hyman BT, Yuan J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci 2012; 13:395-406. [PMID: 22595785 DOI: 10.1038/nrn3228] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Caspases are cysteine proteases that mediate apoptosis, which is a form of regulated cell death that effectively and efficiently removes extra and unnecessary cells during development. In the mature nervous system, caspases are not only involved in mediating cell death but also regulatory events that are important for neural functions, such as axon pruning and synapse elimination, which are necessary to refine mature neuronal circuits. Furthermore, caspases can be reactivated to cause cell death as well as non-lethal changes in neurons during numerous pathological processes. Thus, although a global activation of caspases leads to apoptosis, restricted and localized activation may control normal physiology and pathophysiology in living neurons. This Review explores the multiple roles of caspase activity in neurons.
Collapse
Affiliation(s)
- Bradley T Hyman
- Neurology Service, Massachusetts General Hospital, 114 16th Street Charlestown, Massachusetts 01029, USA.
| | | |
Collapse
|
39
|
Interprotomer motion-transmission mechanism for the hexameric AAA ATPase p97. Proc Natl Acad Sci U S A 2012; 109:3737-41. [PMID: 22355145 DOI: 10.1073/pnas.1200255109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multimeric AAA ATPases represent a structurally homologous yet functionally diverse family of proteins. The essential and highly abundant hexameric AAA ATPase p97 is perhaps the best studied AAA protein, playing an essential role in various important cellular activities. During ATP-hydrolysis process, p97 undergoes dramatic conformational changes, and these changes are initiated in the C-terminal ATPase domain and transmitted across the entire length of the molecule to the N-terminal effector domain. However, the detailed mechanism of the motion transmission remains unclear. Here, we report an interprotomer motion-transmission mechanism to explain this process: The nucleotide-dependent motion transmission between the two ATPase domains of one protomer is mediated by its neighboring protomer. This finding reveals a strict requirement for interprotomer coordination of p97 during the motion-transmission process and may shed light on studies of other AAA ATPases.
Collapse
|
40
|
Prudnikov IM, Smirnov AN. Short peptide tools for monitoring caspase and proteasome activities in embryonal and adult rat brain lysates: an approach for the differential identification of proteases. J Biochem 2012; 151:299-316. [PMID: 22228904 DOI: 10.1093/jb/mvs001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The numerous caspase-like activities present in nervous tissue can be investigated with labelled peptides. However, the cross-reactivities of peptides with both proteasomes and caspases complicate the analysis of protease activity. The pharmacological features of substrates and inhibitors specific for either caspases or proteasome caspase-like proteases in rat brain lysates were similar or identical to the profiles of commercially purified proteasome preparations. Caspase inhibitors bind directly to active proteasome centres, thus competing with selective antagonists of proteasomes. Separation of lysates by molecular weight does not separate active caspases from proteasomes because these enzymes co-localize under native electrophoresis. The addition of ATP or its analogues is associated with the differential modulation of proteasomal activity, which also leads to ambiguity in the data. However, induced caspase activity could be successfully differentiated from proteasome activity in embryonal brain lysates with the non-selective caspase inhibitors Z-VAD-FMK and Q-VD-OPh and the proteasome inhibitor AdaAhx(3)L(3)VS that are not cross-reactive. This strategy is proposed for the simultaneous examination of caspases and proteasomes using proteolysis experiments. The present study reveals that all of the caspase-like activities in the tissue lysates of non-injured adult rat brains were related to proteasomal caspase-like activities.
Collapse
Affiliation(s)
- Igor M Prudnikov
- Laboratory of stem cell biology, A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Bogomoletz str., 4, 01024, Kiev, Ukraine.
| | | |
Collapse
|
41
|
Graham RK, Ehrnhoefer DE, Hayden MR. Caspase-6 and neurodegeneration. Trends Neurosci 2011; 34:646-56. [DOI: 10.1016/j.tins.2011.09.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/02/2011] [Accepted: 09/13/2011] [Indexed: 01/10/2023]
|
42
|
Ehrnhoefer DE, Wong BKY, Hayden MR. Convergent pathogenic pathways in Alzheimer's and Huntington's diseases: shared targets for drug development. Nat Rev Drug Discov 2011; 10:853-67. [PMID: 22015920 DOI: 10.1038/nrd3556] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases, exemplified by Alzheimer's disease and Huntington's disease, are characterized by progressive neuropsychiatric dysfunction and loss of specific neuronal subtypes. Although there are differences in the exact sites of pathology, and the clinical profiles of these two conditions only partially overlap, considerable similarities in disease mechanisms and pathogenic pathways can be observed. These shared mechanisms raise the possibility of exploiting common therapeutic targets for drug development. As Huntington's disease has a monogenic cause, it is possible to accurately identify individuals who carry the Huntington's disease mutation but do not yet manifest symptoms. These individuals could act as a model for Alzheimer's disease to test therapeutic interventions that target shared pathogenic pathways.
Collapse
Affiliation(s)
- Dagmar E Ehrnhoefer
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | |
Collapse
|
43
|
Dolan PJ, Jin YN, Hwang W, Johnson GVW. Decreases in valosin-containing protein result in increased levels of tau phosphorylated at Ser262/356. FEBS Lett 2011; 585:3424-9. [PMID: 21983102 DOI: 10.1016/j.febslet.2011.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/16/2011] [Accepted: 09/22/2011] [Indexed: 01/29/2023]
Abstract
VCP/p97 is a multifunctional AAA+-ATPase involved in vesicle fusion, proteasomal degradation, and autophagy. Reported dysfunctions of these processes in Alzheimer disease (AD), along with the linkage of VCP/p97 to inclusion body myopathy with Paget's disease and frontotemporal dementia (IBMPFD) led us to examine the possible linkage of VCP to the AD-relevant protein, tau. VCP levels were reduced in AD brains, but not in the cerebral cortex of an AD mouse model, suggesting that VCP reduction occurs upstream of tau pathology. Genetic reduction of VCP in a primary neuronal model led to increases in the levels of tau phosphorylated at Ser(262/356), indicating that VCP may be involved in regulating post-translational processing of tau in AD, demonstrating a possible functional linkage between tau and VCP.
Collapse
Affiliation(s)
- Philip J Dolan
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | | | | | | |
Collapse
|
44
|
Proteomic identification of hippocampal proteins vulnerable to oxidative stress in excitotoxin-induced acute neuronal injury. Neurobiol Dis 2011; 43:706-14. [PMID: 21669285 DOI: 10.1016/j.nbd.2011.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/02/2011] [Accepted: 05/28/2011] [Indexed: 12/26/2022] Open
Abstract
Excitotoxicity is involved in seizure-induced acute neuronal death, hypoxic-ischemic encephalopathy, and chronic neurodegenerative conditions such as Alzheimer's disease. Although oxidative stress has been implicated in excitotoxicity, the target proteins of oxidative damage during the course of excitotoxic cell death are still unclear. In the present study, we performed 2D-oxyblot analysis and mass spectrometric amino acid sequencing to identify proteins that were vulnerable to oxidative damage in the rat hippocampus during kainic acid (KA)-induced status epilepticus. We first investigated the time course in which oxidative protein damage occurred using immunohistochemistry. Carbonylated proteins, a manifestation of protein oxidation, were detected in hippocampal neurons as early as 3h after KA administration. Immunoreactivity for 8-hydroxy-2'-deoxyguanosine (8-OHdG) was also elevated at the same time point. The increase in oxidative damage to proteins and DNA occurred concomitantly with the early morphological changes in KA-treated rat hippocampus, i.e., changes in chromatin distribution and swelling of rough endoplasmic reticulum and mitochondria, which preceded the appearance of morphological features of neuronal death such as pyknotic nuclei and hypereosinophilic cytoplasm. Proteomic analysis revealed that several hippocampal proteins were consistently carbonylated at this time point, including heat shock 70kDa protein 4, valosin-containing protein, mitochondrial inner membrane protein (mitofilin), α-internexin, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (14-3-3 protein). We propose that oxidative damage to these proteins may be one of the upstream events in the molecular pathway leading to excitotoxic cell death in KA-treated rat hippocampus, and these proteins may be targets of therapeutic intervention for seizure-induced neuronal death.
Collapse
|
45
|
Abstract
Alzheimer's disease (AD), the leading cause of dementia worldwide, is characterized by the accumulation of the β-amyloid peptide (Aβ) within the brain along with hyperphosphorylated and cleaved forms of the microtubule-associated protein tau. Genetic, biochemical, and behavioral research suggest that physiologic generation of the neurotoxic Aβ peptide from sequential amyloid precursor protein (APP) proteolysis is the crucial step in the development of AD. APP is a single-pass transmembrane protein expressed at high levels in the brain and metabolized in a rapid and highly complex fashion by a series of sequential proteases, including the intramembranous γ-secretase complex, which also process other key regulatory molecules. Why Aβ accumulates in the brains of elderly individuals is unclear but could relate to changes in APP metabolism or Aβ elimination. Lessons learned from biochemical and genetic studies of APP processing will be crucial to the development of therapeutic targets to treat AD.
Collapse
|