1
|
Tsuboi A, Yoshihara S. Arx revisited: involved in the development of GABAergic interneurons. Front Cell Dev Biol 2025; 13:1563515. [PMID: 40226590 PMCID: PMC11985837 DOI: 10.3389/fcell.2025.1563515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
The aristaless-related homeobox (Arx) transcription factor, located on the X chromosome, has been implicated in a wide range of neurological disorders, including intellectual disability and epilepsy, as well as diabetes and pancreatic developmental disorders. In the mouse brain, Arx is expressed not only in the olfactory bulb (OB) and cerebral cortex progenitor cells but also in these gamma-aminobutyric acid (GABA)-releasing interneurons. In the initial study, constitutive Arx knockout (KO) mice showed aberrant migration and a reduction in GABAergic interneurons in the neonatal OB. However, constitutive Arx KO mice with perinatal lethality preclude further analysis in adolescent or adult mice. To overcome this, Arx-floxed mice have been crossed with Cre driver mice to generate conditional KO mice with selective Arx deletion in distinct interneuron progenitors. These studies have identified Arx as a key transcriptional regulator involved in the generation, fate determination, and migration of cortical interneurons. This review focuses on the critical role of Arx in the development of progenitor cells and the migration of interneurons in the mouse OB and cerebral cortex, and discusses differences in Arx mutant-based abnormality between mouse mutants and human patients.
Collapse
Affiliation(s)
- Akio Tsuboi
- Department of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Seiich Yoshihara
- Laboratory for Molecular Biology of Neural Systems, Medical Research Center, Nara Medical University, Kashihara, Japan
| |
Collapse
|
2
|
Sakelaris B, Riecke H. Adult Neurogenesis Reconciles Flexibility and Stability of Olfactory Perceptual Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583153. [PMID: 38737721 PMCID: PMC11087939 DOI: 10.1101/2024.03.03.583153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
In brain regions featuring ongoing plasticity, the task of quickly encoding new information without overwriting old memories presents a significant challenge. In the rodent olfactory bulb, which is renowned for substantial structural plasticity driven by adult neurogenesis and persistent turnover of dendritic spines, we show that by synergistically combining both types of plasticity this flexibility-stability dilemma can be overcome. To do so, we develop a computational model for structural plasticity in the olfactory bulb and show that it is the maturation process of adult-born neurons that enables the bulb to learn quickly and forget slowly. Particularly important are the transient enhancement of the plasticity, excitability, and susceptibility to apoptosis that characterizes young neurons. The model captures many experimental observations and makes a number of testable predictions. Overall, it identifies memory consolidation as an important role of adult neurogenesis in olfaction and exemplifies how the brain can maintain stable memories despite ongoing extensive neurogenesis and synaptic plasticity.
Collapse
Affiliation(s)
- Bennet Sakelaris
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
| | - Hermann Riecke
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
3
|
Dejou J, Mandairon N, Didier A. Olfactory neurogenesis plays different parts at successive stages of life, implications for mental health. Front Neural Circuits 2024; 18:1467203. [PMID: 39175668 PMCID: PMC11338910 DOI: 10.3389/fncir.2024.1467203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
The olfactory bulb is a unique site of continuous neurogenesis, primarily generating inhibitory interneurons, a process that begins at birth and extends through infancy and adulthood. This review examines the characteristics of olfactory bulb neurogenesis, focusing on granule cells, the most numerous interneurons, and how their age and maturation affect their function. Adult-born granule cells, while immature, contribute to the experience-dependent plasticity of the olfactory circuit by enabling structural and functional synaptic changes. In contrast, granule cells born early in life form the foundational elements of the olfactory bulb circuit, potentially facilitating innate olfactory information processing. The implications of these neonatal cells on early life olfactory memory and their impact on adult perception, particularly in response to aversive events and susceptibility to emotional disorders, warrant further investigation.
Collapse
Affiliation(s)
- Jules Dejou
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, France
| | - Nathalie Mandairon
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, France
| | - Anne Didier
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
4
|
Tsuboi A. A specific olfactory bulb interneuron subtype Tpbg/5T4 generated at embryonic and neonatal stages. Front Neural Circuits 2024; 18:1427378. [PMID: 38933598 PMCID: PMC11203798 DOI: 10.3389/fncir.2024.1427378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Various mammals have shown that sensory stimulation plays a crucial role in regulating the development of diverse structures, such as the olfactory bulb (OB), cerebral cortex, hippocampus, and retina. In the OB, the dendritic development of excitatory projection neurons like mitral/tufted cells is influenced by olfactory experiences. Odor stimulation is also essential for the dendritic development of inhibitory OB interneurons, such as granule and periglomerular cells, which are continuously produced in the ventricular-subventricular zone throughout life. Based on the morphological and molecular features, OB interneurons are classified into several subtypes. The role for each interneuron subtype in the control of olfactory behavior remains poorly understood due to lack of each specific marker. Among the several OB interneuron subtypes, a specific granule cell subtype, which expresses the oncofetal trophoblast glycoprotein (Tpbg or 5T4) gene, has been reported to be required for odor detection and discrimination behavior. This review will primarily focus on elucidating the contribution of different granule cell subtypes, including the Tpbg/5T4 subtype, to olfactory processing and behavior during the embryonic and adult stages.
Collapse
Affiliation(s)
- Akio Tsuboi
- Graduate School of Pharmaceutical Sciences, Osaka University, Toyonaka, Japan
| |
Collapse
|
5
|
Kwon OH, Choe J, Kim D, Kim S, Moon C. Sensory Stimulation-dependent Npas4 Expression in the Olfactory Bulb during Early Postnatal Development. Exp Neurobiol 2024; 33:77-98. [PMID: 38724478 PMCID: PMC11089401 DOI: 10.5607/en23037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 05/15/2024] Open
Abstract
The development of the olfactory system is influenced by sensory inputs, and it maintains neuronal generation and plasticity throughout the lifespan. The olfactory bulb contains a higher proportion of interneurons than other brain regions, particularly during the early postnatal period of neurogenesis. Although the relationship between sensory stimulation and olfactory bulb development during the postnatal period has been well studied, the molecular mechanisms have yet to be identified. In this study, we used western blotting and immunohistochemistry to analyze the expression of the transcription factor Npas4, a neuron-specific immediate-early gene that acts as a developmental regulator in many brain regions. We found that Npas4 is highly expressed in olfactory bulb interneurons during the early postnatal stages and gradually decreases toward the late postnatal stages. Npas4 expression was observed in all olfactory bulb layers, including the rostral migratory stream, where newborn neurons are generated and migrate to the olfactory bulb. Under sensory deprivation, the olfactory bulb size and the number of olfactory bulb interneurons were reduced. Furthermore, Npas4 expression and the expression of putative Npas4 downstream molecules were decreased. Collectively, these findings indicate that Npas4 expression induced by sensory input plays a role in the formation of neural circuits with excitatory mitral/tufted cells by regulating the survival of olfactory bulb interneurons during the early stages of postnatal development.
Collapse
Affiliation(s)
- Oh-Hoon Kwon
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jiyun Choe
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Dokyeong Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Sunghwan Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Cheil Moon
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
6
|
Bao S, Romero JM, Belfort BD, Arenkiel BR. Signaling mechanisms underlying activity-dependent integration of adult-born neurons in the mouse olfactory bulb. Genesis 2024; 62:e23595. [PMID: 38553878 PMCID: PMC10987073 DOI: 10.1002/dvg.23595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Adult neurogenesis has fascinated the field of neuroscience for decades given the prospects of harnessing mechanisms that facilitate the rewiring and/or replacement of adult brain tissue. The subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle are the two main areas in the brain that exhibit ongoing neurogenesis. Of these, adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and continued circuit integration within adult brain tissue. This review focuses on some of the recognized molecular and signaling mechanisms underlying activity-dependent adult-born neuron development. Notably, olfactory activity and behavioral states contribute to adult-born neuron plasticity through sensory and centrifugal inputs, in which calcium-dependent transcriptional programs, local translation, and neuropeptide signaling play important roles. This review also highlights areas of needed continued investigation to better understand the remarkable phenomenon of adult-born neuron integration.
Collapse
Affiliation(s)
- Suyang Bao
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin D.W. Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Sawada M, Hamaguchi A, Mano N, Yoshida Y, Uemura A, Sawamoto K. PlexinD1 signaling controls domain-specific dendritic development in newborn neurons in the postnatal olfactory bulb. Front Neurosci 2023; 17:1143130. [PMID: 37534039 PMCID: PMC10393276 DOI: 10.3389/fnins.2023.1143130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Newborn neurons show immature bipolar morphology and continue to migrate toward their destinations. After the termination of migration, newborn neurons undergo spatially controlled dendrite formation and change into a complex morphology. The mechanisms of dendritic development of newborn neurons have not been fully understood. Here, we show that in the postnatal olfactory bulb (OB), the Sema3E-PlexinD1 signaling, which maintains bipolar morphology of newborn neurons, also regulates their dendritic development after the termination of migration in a dendritic domain-specific manner. Genetic ablation of Sema3E or PlexinD1 enhanced dendritic branching in the proximal domain of the apical dendrites of OB newborn granule cells, whereas PlexinD1 overexpression suppressed it in a Rho binding domain (RBD)-dependent manner. Furthermore, RhoJ, a small GTPase that directly binds to PlexinD1RBD in vascular endothelial cells, is expressed in migrating and differentiating newborn granule cells in the OB and is also involved in the suppression of proximal branching of their apical dendrites. These results suggest that the Sema3E-PlexinD1-RhoJ axis regulates domain-specific dendrite formation of newborn neurons in the postnatal OB.
Collapse
Affiliation(s)
- Masato Sawada
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Division of Neural Development and Regeneration, National Institute of Physiological Sciences, Okazaki, Japan
| | - Ayato Hamaguchi
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Naomichi Mano
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, NY, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
- Neural Circuit Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Division of Neural Development and Regeneration, National Institute of Physiological Sciences, Okazaki, Japan
| |
Collapse
|
8
|
Trophoblast glycoprotein is a new candidate gene for Parkinson’s disease. NPJ Parkinsons Dis 2021; 7:110. [PMID: 34876581 PMCID: PMC8651753 DOI: 10.1038/s41531-021-00252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/04/2021] [Indexed: 11/08/2022] Open
Abstract
AbstractParkinson’s disease (PD) is a movement disorder caused by progressive degeneration of the midbrain dopaminergic (mDA) neurons in the substantia nigra pars compacta (SNc). Despite intense research efforts over the past decades, the etiology of PD remains largely unknown. Here, we discovered the involvement of trophoblast glycoprotein (Tpbg) in the development of PD-like phenotypes in mice. Tpbg expression was detected in the ventral midbrain during embryonic development and in mDA neurons in adulthood. Genetic ablation of Tpbg resulted in mild degeneration of mDA neurons in aged mice (12–14 months) with behavioral deficits reminiscent of PD symptoms. Through in silico analysis, we predicted potential TPBG-interacting partners whose functions were relevant to PD pathogenesis; this result was substantiated by transcriptomic analysis of the SNc of aged Tpbg knockout mice. These findings suggest that Tpbg is a new candidate gene associated with PD and provide a new insight into PD pathogenesis.
Collapse
|
9
|
Shin J, Pelletier S, Richer L, Pike GB, Gaudet D, Paus T, Pausova Z. Adiposity-related insulin resistance and thickness of the cerebral cortex in middle-aged adults. J Neuroendocrinol 2020; 32:e12921. [PMID: 33340164 PMCID: PMC8132297 DOI: 10.1111/jne.12921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
The thickness of the cerebral cortex decreases with ageing. Recent research suggests that obesity and type 2 diabetes mellitus may accelerate this cortical thinning, and that obesity-related insulin resistance may be a shared mechanistic pathway. Ageing of the cerebral cortex demonstrates sex-specific trajectories, with a gradual shift towards accelerated thinning beginning in midlife. Here, we investigated whether adiposity-related insulin resistance is associated with lower thickness of the human cerebral cortex in a community-based sample of middle-aged adults. We studied 533 adult participants (36-65 years) from the Saguenay Youth Study. Adiposity was assessed with bioimpedance, and insulin resistance was evaluated from a fasting blood sample with the homeostatic model assessment of insulin resistance (HOMA-IR). Associations between adiposity-related insulin resistance (adiposity/IR) and cortical thickness were assessed with linear models, separately in males and females younger or older than 50 years. Potential biological underpinnings were investigated with virtual histology. Adiposity/IR was associated with lower cortical thickness in females older than 50 years but not in males or younger females. The strength of the association varied across the cerebral cortex, with regions of the lateral frontal and parietal cortices and the superior temporal cortex demonstrating most pronounced thinning. Based on virtual histology, adiposity/IR-related cortical thinning may involve neurones, astrocytes, oligodendrocytes and ependymal cells acting so that they lower the cortical potential for synaptogenesis, formation of dendritic spines, production of extracellular matrix and myelination. Adiposity-related insulin resistance is associated with lower cortical thickness in middle-aged women older than 50 years. This aspect of thinning may involve neuronal and glial cells in a way that lowers the capacity of the cerebral cortex for neuronal plasticity and maintenance of myelination.
Collapse
Affiliation(s)
- Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Stephanie Pelletier
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Louis Richer
- Department of Health Sciences, Université du Québec à Chicoutimi, Chicoutimi, Canada
| | - G. Bruce Pike
- Department of Radiology and Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Daniel Gaudet
- Lipidology Unit, Community Genomic Medicine Centre and ECOGENE-21, Department of Medicine, Université de Montréal, Saguenay, Canada
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Tsuboi A. LRR-Containing Oncofetal Trophoblast Glycoprotein 5T4 Shapes Neural Circuits in Olfactory and Visual Systems. Front Mol Neurosci 2020; 13:581018. [PMID: 33192298 PMCID: PMC7655536 DOI: 10.3389/fnmol.2020.581018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2020] [Indexed: 01/19/2023] Open
Abstract
In mammals, the sensory experience can regulate the development of various brain structures, including the cortex, hippocampus, retina, and olfactory bulb (OB). Odor experience-evoked neural activity drives the development of dendrites on excitatory projection neurons in the OB, such as mitral and tufted cells, as well as inhibitory interneurons. OB interneurons are generated continuously in the subventricular zone and differentiate into granule cells (GCs) and periglomerular cells (PGCs). However, it remains unknown what role each type of OB interneuron plays in controlling olfactory behaviors. Recent studies showed that among the various types of OB interneurons, a subtype of GCs expressing oncofetal trophoblast glycoprotein 5T4 is required for simple odor detection and discrimination behaviors. Mouse 5T4 (also known as Tpbg) is a type I membrane glycoprotein whose extracellular domain contains seven leucine-rich repeats (LRRs) sandwiched between characteristic LRR-N and LRR-C regions. Recently, it was found that the developmental expression of 5T4 increases dramatically in the retina just before eye-opening. Single-cell transcriptomics further suggests that 5T4 is involved in the development and maintenance of functional synapses in a subset of retinal interneurons, including rod bipolar cells (RBCs) and amacrine cells (ACs). Collectively, 5T4, expressed in interneurons of the OB and retina, plays a key role in sensory processing in the olfactory and visual systems.
Collapse
Affiliation(s)
- Akio Tsuboi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
11
|
Kondo K, Kikuta S, Ueha R, Suzukawa K, Yamasoba T. Age-Related Olfactory Dysfunction: Epidemiology, Pathophysiology, and Clinical Management. Front Aging Neurosci 2020; 12:208. [PMID: 32733233 PMCID: PMC7358644 DOI: 10.3389/fnagi.2020.00208] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Like other sensory systems, olfactory function deteriorates with age. Epidemiological studies have revealed that the incidence of olfactory dysfunction increases at the age of 60 and older and males are more affected than females. Moreover, smoking, heavy alcohol use, sinonasal diseases, and Down’s syndrome are associated with an increased incidence of olfactory dysfunction. Although the pathophysiology of olfactory dysfunction in humans remains largely unknown, studies in laboratory animals have demonstrated that both the peripheral and central olfactory nervous systems are affected by aging. Aged olfactory neuroepithelium in the nasal cavity shows the loss of mature olfactory neurons, replacement of olfactory neuroepithelium by respiratory epithelium, and a decrease in basal cell proliferation both in the normal state and after injury. In the central olfactory pathway, a decrease in the turnover of interneurons in the olfactory bulb (OB) and reduced activity in the olfactory cortex under olfactory stimulation is observed. Recently, the association between olfactory impairment and neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), has gained attention. Evidence-based pharmacotherapy to suppress or improve age-related olfactory dysfunction has not yet been established, but preliminary results suggest that olfactory training using odorants may be useful to improve some aspects of age-related olfactory impairment.
Collapse
Affiliation(s)
- Kenji Kondo
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rumi Ueha
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keigo Suzukawa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Deryckere A, Stappers E, Dries R, Peyre E, van den Berghe V, Conidi A, Zampeta FI, Francis A, Bresseleers M, Stryjewska A, Vanlaer R, Maas E, Smal IV, van IJcken WFJ, Grosveld FG, Nguyen L, Huylebroeck D, Seuntjens E. Multifaceted actions of Zeb2 in postnatal neurogenesis from the ventricular-subventricular zone to the olfactory bulb. Development 2020; 147:dev184861. [PMID: 32253238 DOI: 10.1242/dev.184861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/23/2020] [Indexed: 03/01/2024]
Abstract
The transcription factor Zeb2 controls fate specification and subsequent differentiation and maturation of multiple cell types in various embryonic tissues. It binds many protein partners, including activated Smad proteins and the NuRD co-repressor complex. How Zeb2 subdomains support cell differentiation in various contexts has remained elusive. Here, we studied the role of Zeb2 and its domains in neurogenesis and neural differentiation in the young postnatal ventricular-subventricular zone (V-SVZ), in which neural stem cells generate olfactory bulb-destined interneurons. Conditional Zeb2 knockouts and separate acute loss- and gain-of-function approaches indicated that Zeb2 is essential for controlling apoptosis and neuronal differentiation of V-SVZ progenitors before and after birth, and we identified Sox6 as a potential downstream target gene of Zeb2. Zeb2 genetic inactivation impaired the differentiation potential of the V-SVZ niche in a cell-autonomous fashion. We also provide evidence that its normal function in the V-SVZ also involves non-autonomous mechanisms. Additionally, we demonstrate distinct roles for Zeb2 protein-binding domains, suggesting that Zeb2 partners co-determine neuronal output from the mouse V-SVZ in both quantitative and qualitative ways in early postnatal life.
Collapse
Affiliation(s)
- Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
| | - Elke Stappers
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Ruben Dries
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Elise Peyre
- GIGA-Stem Cells and GIGA-Neurosciences, Liège University, Liège 4000, Belgium
| | - Veronique van den Berghe
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
- Department of Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, and MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - F Isabella Zampeta
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Annick Francis
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Marjolein Bresseleers
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Agata Stryjewska
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Ria Vanlaer
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
| | - Elke Maas
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven 3000, Belgium
| | - Ihor V Smal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
- Center for Biomics-Genomics, Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Laurent Nguyen
- GIGA-Stem Cells and GIGA-Neurosciences, Liège University, Liège 4000, Belgium
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
13
|
Kim JY, Choe J, Moon C. Distinct Developmental Features of Olfactory Bulb Interneurons. Mol Cells 2020; 43:215-221. [PMID: 32208366 PMCID: PMC7103883 DOI: 10.14348/molcells.2020.0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 01/20/2023] Open
Abstract
The olfactory bulb (OB) has an extremely higher proportionof interneurons innervating excitatory neurons than otherbrain regions, which is evolutionally conserved across species.Despite the abundance of OB interneurons, little is knownabout the diversification and physiological functions ofOB interneurons compared to cortical interneurons. In thisreview, an overview of the general developmental processof interneurons from the angles of the spatial and temporalspecifications was presented. Then, the distinct featuresshown exclusively in OB interneurons development andmolecular machinery recently identified were discussed.Finally, we proposed an evolutionary meaning for thediversity of OB interneurons.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Jiyun Choe
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Cheil Moon
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology, Daegu 4988, Korea
- Korea Brain Research Institute, Daegu 41062, Korea
| |
Collapse
|
14
|
Wakeham CM, Ren G, Morgans CW. Expression and distribution of trophoblast glycoprotein in the mouse retina. J Comp Neurol 2020; 528:1660-1671. [PMID: 31891182 DOI: 10.1002/cne.24850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 02/03/2023]
Abstract
We recently identified the leucine-rich repeat (LRR) adhesion protein, trophoblast glycoprotein (TPBG), as a novel PKCα-dependent phosphoprotein in retinal rod bipolar cells (RBCs). Since TPBG has not been thoroughly examined in the retina, this study characterizes the localization and expression patterns of TPBG in the developing and adult mouse retina using two antibodies, one against the N-terminal LRR domain and the other against the C-terminal PDZ-interacting motif. Both antibodies labeled RBC dendrites in the outer plexiform layer and axon terminals in the IPL, as well as a putative amacrine cell with their cell bodies in the inner nuclear layer (INL) and a dense layer in the middle of the inner plexiform layer (IPL). In live transfected HEK293 cells, TPBG was localized to the plasma membrane with the N-terminal LRR domain facing the extracellular space. TPBG immunofluorescence in RBCs was strongly altered by the loss of TRPM1 in the adult retina, with significantly less dendritic and axon terminal labeling in TRPM1 knockout compared to wild type, despite no change in total TPBG detected by immunoblotting. During retinal development, TPBG expression increases dramatically just prior to eye opening with a time course closely correlated with that of TRPM1 expression. In the retina, LRR proteins have been implicated in the development and maintenance of functional bipolar cell synapses, and TPBG may play a similar role in RBCs.
Collapse
Affiliation(s)
- Colin M Wakeham
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon
| | - Gaoying Ren
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
15
|
Takahashi Y, Takahashi H, Stern PL, Kirita T, Tsuboi A. Expression of Oncofetal Antigen 5T4 in Murine Taste Papillae. Front Cell Neurosci 2019; 13:343. [PMID: 31417363 PMCID: PMC6685444 DOI: 10.3389/fncel.2019.00343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Multicellular taste buds located within taste papillae on the tongue mediate taste sensation. In taste papillae, taste bud cells (TBCs), such as taste receptor cells and taste precursor cells, and the surrounding lingual epithelium including epithelial progenitors (also called taste stem/progenitor cells) are maintained by continuous cell turnover throughout life. However, it remains unknown how the cells constituting taste buds proliferate and differentiate to maintain taste bud tissue. Based on in situ hybridization (ISH) screening, we demonstrated that the oncofetal antigen 5T4 (also known as trophoblast glycoprotein: TPBG) gene is expressed in the adult mouse tongue. Results: In immunohistochemistry of coronal tongue sections, 5T4 protein was detected at a low level exclusively in the basal part of the lingual epithelium in developing and adult mice, and at a high level particularly in foliate papillae and circumvallate papillae (CVPs). Furthermore, immunohistochemistry of the basal part of CVPs indicated that the proliferation marker PCNA (proliferating cell nuclear antigen) co-localized with 5T4. 5T4 was strongly expressed in Krt5+ epithelial progenitors and Shh+ taste precursor cells, but weakly in mature taste receptor cells. The number of proliferating cells in the CVP was higher in 5T4-knockout mice than in wild-type (WT) mice, while neither cell differentiation nor the size of taste buds differed between these two groups of mice. Notably, X-ray irradiation enhanced cell proliferation more in 5T4-knockout mice than in WT mice. Conclusion: Our results suggest that 5T4, expressed in epithelial progenitors (taste stem/progenitor cells), and taste precursor cells, may influence the maintenance of taste papillae under both normal and injury conditions.
Collapse
Affiliation(s)
- Yuka Takahashi
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | - Hiroo Takahashi
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Japan
| | - Peter L. Stern
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | - Akio Tsuboi
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
- Laboratory for Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
16
|
Wakeham CM, Wilmarth PA, Cunliffe JM, Klimek JE, Ren G, David LL, Morgans CW. Identification of PKCα-dependent phosphoproteins in mouse retina. J Proteomics 2019; 206:103423. [PMID: 31255707 DOI: 10.1016/j.jprot.2019.103423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022]
Abstract
Adjusting to a wide range of light intensities is an essential feature of retinal rod bipolar cell (RBC) function. While persuasive evidence suggests this modulation involves phosphorylation by protein kinase C-alpha (PKCα), the targets of PKCα phosphorylation in the retina have not been identified. PKCα activity and phosphorylation in RBCs was examined by immunofluorescence confocal microscopy using a conformation-specific PKCα antibody and antibodies to phosphorylated PKC motifs. PKCα activity was dependent on light and expression of TRPM1, and RBC dendrites were the primary sites of light-dependent phosphorylation. PKCα-dependent retinal phosphoproteins were identified using a phosphoproteomics approach to compare total protein and phosphopeptide abundance between phorbol ester-treated wild type and PKCα knockout (PKCα-KO) mouse retinas. Phosphopeptide mass spectrometry identified over 1100 phosphopeptides in mouse retina, with 12 displaying significantly greater phosphorylation in WT compared to PKCα-KO samples. The differentially phosphorylated proteins fall into the following functional groups: cytoskeleton/trafficking (4 proteins), ECM/adhesion (2 proteins), signaling (2 proteins), transcriptional regulation (3 proteins), and homeostasis/metabolism (1 protein). Two strongly differentially expressed phosphoproteins, BORG4 and TPBG, were localized to the synaptic layers of the retina, and may play a role in PKCα-dependent modulation of RBC physiology. Data are available via ProteomeXchange with identifier PXD012906. SIGNIFICANCE: Retinal rod bipolar cells (RBCs), the second-order neurons of the mammalian rod visual pathway, are able to modulate their sensitivity to remain functional across a wide range of light intensities, from starlight to daylight. Evidence suggests that this modulation requires the serine/threonine kinase, PKCα, though the specific mechanism by which PKCα modulates RBC physiology is unknown. This study examined PKCα phosophorylation patterns in mouse rod bipolar cells and then used a phosphoproteomics approach to identify PKCα-dependent phosphoproteins in the mouse retina. A small number of retinal proteins showed significant PKCα-dependent phosphorylation, including BORG4 and TPBG, suggesting a potential contribution to PKCα-dependent modulation of RBC physiology.
Collapse
Affiliation(s)
- Colin M Wakeham
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jennifer M Cunliffe
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR 97239, USA
| | - John E Klimek
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR 97239, USA
| | - Gaoying Ren
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Larry L David
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR 97239, USA; Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Catherine W Morgans
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
17
|
Takahashi H, Yoshihara S, Tsuboi A. The Functional Role of Olfactory Bulb Granule Cell Subtypes Derived From Embryonic and Postnatal Neurogenesis. Front Mol Neurosci 2018; 11:229. [PMID: 30034321 PMCID: PMC6043811 DOI: 10.3389/fnmol.2018.00229] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/12/2018] [Indexed: 02/01/2023] Open
Abstract
It has been shown in a variety of mammalian species that sensory experience can regulate the development of various structures, including the retina, cortex, hippocampus, and olfactory bulb (OB). In the mammalian OB, the development of dendrites in excitatory projection neurons, such as mitral and tufted cells, is well known to be dependent on odor experience. Odor experience is also involved in the development of another OB population, a subset of inhibitory interneurons that are generated in the ventricular-subventricular zone throughout life and differentiate into granule cells (GCs) and periglomerular cells. However, the roles that each type of interneuron plays in the control of olfactory behaviors are incompletely understood. We recently found that among the various types of OB interneurons, a subtype of GCs expressing the oncofetal trophoblast glycoprotein 5T4 gene is required for odor detection and discrimination behaviors. Our results suggest that embryonic-born OB interneurons, including 5T4-positive GCs, play a crucial role in fundamental olfactory responses such as simple odor detection and discrimination behaviors. By contrast, postnatal- and adult-born OB interneurons are important in the learning of more complicated olfactory behaviors. Here, we highlight the subtypes of OB GCs, and discuss their roles in olfactory processing and behavior, with a particular focus on the relative contributions of embryonically and postnatally generated subsets of GCs in rodents.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Kashihara, Japan
| | - Seiichi Yoshihara
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Kashihara, Japan
| | - Akio Tsuboi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Kashihara, Japan.,Laboratory for the Molecular and Cellular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
18
|
POU6f1 Mediates Neuropeptide-Dependent Plasticity in the Adult Brain. J Neurosci 2018; 38:1443-1461. [PMID: 29305536 DOI: 10.1523/jneurosci.1641-17.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/11/2017] [Accepted: 12/21/2017] [Indexed: 01/20/2023] Open
Abstract
The mouse olfactory bulb (OB) features continued, activity-dependent integration of adult-born neurons, providing a robust model with which to examine mechanisms of plasticity in the adult brain. We previously reported that local OB interneurons secrete the neuropeptide corticotropin-releasing hormone (CRH) in an activity-dependent manner onto adult-born granule neurons and that local CRH signaling promotes expression of synaptic machinery in the bulb. This effect is mediated via activation of the CRH receptor 1 (CRHR1), which is developmentally regulated during adult-born neuron maturation. CRHR1 is a GS-protein-coupled receptor that activates CREB-dependent transcription in the presence of CRH. Therefore, we hypothesized that locally secreted CRH activates CRHR1 to initiate circuit plasticity programs. To identify such programs, we profiled gene expression changes associated with CRHR1 activity in adult-born neurons of the OB. Here, we show that CRHR1 activity influences expression of the brain-specific Homeobox-containing transcription factor POU Class 6 Homeobox 1 (POU6f1). To elucidate the contributions of POU6f1 toward activity-dependent circuit remodeling, we targeted CRHR1+ neurons in male and female mice for cell-type-specific manipulation of POU6f1 expression. Whereas loss of POU6f1 in CRHR1+ neurons resulted in reduced dendritic complexity and decreased synaptic connectivity, overexpression of POU6f1 in CRHR1+ neurons promoted dendritic outgrowth and branching and influenced synaptic function. Together, these findings suggest that the transcriptional program directed by POU6f1 downstream of local CRH signaling in adult-born neurons influences circuit dynamics in response to activity-dependent peptide signaling in the adult brain.SIGNIFICANCE STATEMENT Elucidating mechanisms of plasticity in the adult brain is helpful for devising strategies to understand and treat neurodegeneration. Circuit plasticity in the adult mouse olfactory bulb is exemplified by both continued cell integration and synaptogenesis. We previously reported that these processes are influenced by local neuropeptide signaling in an activity-dependent manner. Here, we show that local corticotropin-releasing hormone (CRH) signaling induces dynamic gene expression changes in CRH receptor expressing adult-born neurons, including altered expression of the transcription factor POU6f1 We further show that POU6f1 is necessary for proper dendrite specification and patterning, as well as synapse development and function in adult-born neurons. Together, these findings reveal a novel mechanism by which peptide signaling modulates adult brain circuit plasticity.
Collapse
|
19
|
The Stem Cell Marker Lgr5 Defines a Subset of Postmitotic Neurons in the Olfactory Bulb. J Neurosci 2017; 37:9403-9414. [PMID: 28847812 DOI: 10.1523/jneurosci.0500-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 01/10/2023] Open
Abstract
Lgr5, leucine-rich repeat-containing G-protein coupled receptor 5, is a bona fide biomarker for stem cells in multiple tissues. Lgr5 is also expressed in the brain, but the identities and properties of these Lgr5+ cells are still elusive. Using an Lgr5-EGFP reporter mouse line, we found that, from early development to adulthood, Lgr5 is highly expressed in the olfactory bulb (OB), an area with ongoing neurogenesis. Immunostaining with stem cell, glial, and neuronal markers reveals that Lgr5 does not label stem cells in the OB but instead labels a heterogeneous population of neurons with preference in certain subtypes. Patch-clamp recordings in OB slices reveal that Lgr5-EGFP+ cells fire action potentials and display spontaneous excitatory postsynaptic events, indicating that these neurons are integrated into OB circuits. Interestingly, R-spondin 3, a potential ligand of Lgr5, is also expressed in the adult OB. Collectively, our data indicate that Lgr5-expressing cells in the OB are fully differentiated neurons and imply distinct roles of Lgr5 and its ligand in postmitotic cells.SIGNIFICANCE STATEMENT Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) is a bona fide stem cell marker in many body organs. Here we report that Lgr5 is also highly expressed in the olfactory bulb (OB), the first relay station in the brain for processing odor information and one of the few neural structures that undergo continuous neurogenesis. Surprisingly, Lgr5 is not expressed in the OB stem cells, but instead in a few subtypes of terminally differentiated neurons, which are incorporated into the OB circuit. This study reveals that Lgr5+ cells in the brain represent a nonstem cell lineage, implying distinct roles of Lgr5 in postmitotic neurons.
Collapse
|
20
|
Postnatal Odor Exposure Increases the Strength of Interglomerular Lateral Inhibition onto Olfactory Bulb Tufted Cells. J Neurosci 2017; 36:12321-12327. [PMID: 27927952 DOI: 10.1523/jneurosci.1991-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/21/2022] Open
Abstract
Lateral inhibition between pairs of olfactory bulb (OB) mitral cells (MCs) and tufted cells (TCs) is linked to a variety of computations including gain control, decorrelation, and gamma-frequency synchronization. Differential effects of lateral inhibition onto MCs and TCs via distinct lateral inhibitory circuits are one of several recently described circuit-level differences between MCs and TCs that allow each to encode separate olfactory features in parallel. Here, using acute OB slices from mice, we tested whether lateral inhibition is affected by prior odor exposure and if these effects differ between MCs and TCs. We found that early postnatal odor exposure to the M72 glomerulus ligand acetophenone increased the strength of interglomerular lateral inhibition onto TCs, but not MCs, when the M72 glomerulus was stimulated. These increases were specific to exposure to M72 ligands because exposure to hexanal did not increase the strength of M72-mediated lateral inhibition. Therefore, early life experiences may be an important factor shaping TC odor responses. SIGNIFICANCE STATEMENT Responses of olfactory (OB) bulb mitral cells (MCs) and tufted cells (TCs) are known to depend on prior odor exposure, yet the specific circuit mechanisms underlying these experience-dependent changes are unknown. Here, we show that odor exposure alters one particular circuit element, interglomerular lateral inhibition, which is known to be critical for a variety of OB computations. Early postnatal odor exposure to acetophenone, a ligand of M72 olfactory sensory neurons, increases the strength of M72-mediated lateral inhibition onto TCs, but not MCs, that project to nearby glomeruli. These findings add to a growing list of differences between MCs and TCs suggesting that that these two cell types play distinct roles in odor coding.
Collapse
|
21
|
A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors. J Neurosci 2017; 36:8210-27. [PMID: 27488640 DOI: 10.1523/jneurosci.2783-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/04/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Neural circuits that undergo reorganization by newborn interneurons in the olfactory bulb (OB) are necessary for odor detection and discrimination, olfactory memory, and innate olfactory responses, including predator avoidance and sexual behaviors. The OB possesses many interneurons, including various types of granule cells (GCs); however, the contribution that each type of interneuron makes to olfactory behavioral control remains unknown. Here, we investigated the in vivo functional role of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic arborization of 5T4-expressing GCs (5T4 GCs), the level of which is reduced in the OB of 5T4 knock-out (KO) mice. Electrophysiological recordings with acute OB slices indicated that external tufted cells (ETCs) can be divided into two types, bursting and nonbursting. Optogenetic stimulation of 5T4 GCs revealed their connection to both bursting and nonbursting ETCs, as well as to mitral cells (MCs). Interestingly, nonbursting ETCs received fewer inhibitory inputs from GCs in 5T4 KO mice than from those in wild-type (WT) mice, whereas bursting ETCs and MCs received similar inputs in both mice. Furthermore, 5T4 GCs received significantly fewer excitatory inputs in 5T4 KO mice. Remarkably, in olfactory behavior tests, 5T4 KO mice had higher odor detection thresholds than the WT, as well as defects in odor discrimination learning. Therefore, the loss of 5T4 attenuates inhibitory inputs from 5T4 GCs to nonbursting ETCs and excitatory inputs to 5T4 GCs, contributing to disturbances in olfactory behavior. Our novel findings suggest that, among the various types of OB interneurons, the 5T4 GC subtype is required for odor detection and discrimination behaviors. SIGNIFICANCE STATEMENT Neuronal circuits in the brain include glutamatergic principal neurons and GABAergic interneurons. Although the latter is a minority cell type, they are vital for normal brain function because they regulate the activity of principal neurons. If interneuron function is impaired, brain function may be damaged, leading to behavior disorder. The olfactory bulb (OB) possesses various types of interneurons, including granule cells (GCs); however, the contribution that each type of interneuron makes to the control of olfactory behavior remains unknown. Here, we analyzed electrophysiologically and behaviorally the function of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic branching in OB GCs. We found that, among the various types of OB interneuron, the 5T4 GC subtype is required for odor detection and odor discrimination behaviors.
Collapse
|
22
|
Jun GR, Chung J, Mez J, Barber R, Beecham GW, Bennett DA, Buxbaum JD, Byrd GS, Carrasquillo MM, Crane PK, Cruchaga C, De Jager P, Ertekin-Taner N, Evans D, Fallin MD, Foroud TM, Friedland RP, Goate AM, Graff-Radford NR, Hendrie H, Hall KS, Hamilton-Nelson KL, Inzelberg R, Kamboh MI, Kauwe JSK, Kukull WA, Kunkle BW, Kuwano R, Larson EB, Logue MW, Manly JJ, Martin ER, Montine TJ, Mukherjee S, Naj A, Reiman EM, Reitz C, Sherva R, St George-Hyslop PH, Thornton T, Younkin SG, Vardarajan BN, Wang LS, Wendlund JR, Winslow AR, Haines J, Mayeux R, Pericak-Vance MA, Schellenberg G, Lunetta KL, Farrer LA. Transethnic genome-wide scan identifies novel Alzheimer's disease loci. Alzheimers Dement 2017; 13:727-738. [PMID: 28183528 PMCID: PMC5496797 DOI: 10.1016/j.jalz.2016.12.012] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/28/2016] [Accepted: 12/28/2016] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Genetic loci for Alzheimer's disease (AD) have been identified in whites of European ancestry, but the genetic architecture of AD among other populations is less understood. METHODS We conducted a transethnic genome-wide association study (GWAS) for late-onset AD in Stage 1 sample including whites of European Ancestry, African-Americans, Japanese, and Israeli-Arabs assembled by the Alzheimer's Disease Genetics Consortium. Suggestive results from Stage 1 from novel loci were followed up using summarized results in the International Genomics Alzheimer's Project GWAS dataset. RESULTS Genome-wide significant (GWS) associations in single-nucleotide polymorphism (SNP)-based tests (P < 5 × 10-8) were identified for SNPs in PFDN1/HBEGF, USP6NL/ECHDC3, and BZRAP1-AS1 and for the interaction of the (apolipoprotein E) APOE ε4 allele with NFIC SNP. We also obtained GWS evidence (P < 2.7 × 10-6) for gene-based association in the total sample with a novel locus, TPBG (P = 1.8 × 10-6). DISCUSSION Our findings highlight the value of transethnic studies for identifying novel AD susceptibility loci.
Collapse
Affiliation(s)
- Gyungah R Jun
- Neurogenetics and Integrated Genomics, Andover Innovative Medicines Institute, Eisai Inc, Andover, MA, USA; Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine, Boston, MA, USA
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine, Boston, MA, USA
| | - Jesse Mez
- Department of Neurology, Boston University Schools of Medicine, Boston, MA, USA
| | - Robert Barber
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Gary W Beecham
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - David A Bennett
- Department of Neurological Sciences and Rush Alzheimer's Disease Center, Chicago, IL, USA
| | - Joseph D Buxbaum
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA; Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Goldie S Byrd
- Department of Biology, North Carolina A&T State University, Greensboro, NC, USA
| | | | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Carlos Cruchaga
- Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of Medicine, St Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Philip De Jager
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Department of Neurology & Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | | | - Denis Evans
- Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - M Danielle Fallin
- Department of Mental Health, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tatiana M Foroud
- Department of Medical & Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | | | - Alison M Goate
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
| | | | - Hugh Hendrie
- Department of Psychiatry, Indiana University, Indianapolis, IN, USA; Regenstrief Institute, Inc, Indianapolis, IN, USA
| | - Kathleen S Hall
- Regenstrief Institute, Inc, Indianapolis, IN, USA; Department of Medicine, Indiana University, Indianapolis, IN, USA
| | | | - Rivka Inzelberg
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - M Ilyas Kamboh
- University of Pittsburgh Alzheimer's Disease Research Center and Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Walter A Kukull
- Department of Epidemiology, University of Washington, Seattle, WA, USA; National Alzheimer's Coordinating Center, University of Washington, Seattle, WA, USA
| | - Brian W Kunkle
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Ryozo Kuwano
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Eric B Larson
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Group Health, Group Health Research Institute, Seattle, WA, USA
| | - Mark W Logue
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine, Boston, MA, USA; Department of Neurological Sciences and Rush Alzheimer's Disease Center, Chicago, IL, USA; National Center for PTSD, Behavioral Science Division, Boston VA Healthcare System, Boston, MA, USA
| | - Jennifer J Manly
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Eden R Martin
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | | | | | - Adam Naj
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eric M Reiman
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA; Department of Psychiatry, University of Arizona, Phoenix, AZ, USA; Banner Alzheimer's Institute, Phoenix, AZ, USA; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Christiane Reitz
- The Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Department of Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Richard Sherva
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine, Boston, MA, USA
| | - Peter H St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada; Cambridge Institute for Medical Research and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Timothy Thornton
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Badri N Vardarajan
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Li-San Wang
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Jens R Wendlund
- PharmaTherapeutics Clinical Research, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Ashley R Winslow
- PharmaTherapeutics Clinical Research, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Jonathan Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Department of Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | | - Kathryn L Lunetta
- Department of Biostatistics, Boston University Schools of Public Health, Boston, MA, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine, Boston, MA, USA; Department of Neurology, Boston University Schools of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University Schools of Public Health, Boston, MA, USA; Department of Ophthalmology, Boston University Schools of Medicine, Boston, MA, USA; Department of Epidemiology, Boston University Schools of Public Health, Boston, MA, USA.
| |
Collapse
|
23
|
Ravi N, Sanchez-Guardado L, Lois C, Kelsch W. Determination of the connectivity of newborn neurons in mammalian olfactory circuits. Cell Mol Life Sci 2017; 74:849-867. [PMID: 27695873 PMCID: PMC11107630 DOI: 10.1007/s00018-016-2367-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/24/2016] [Accepted: 09/13/2016] [Indexed: 12/24/2022]
Abstract
The mammalian olfactory bulb is a forebrain structure just one synapse downstream from the olfactory sensory neurons and performs the complex computations of sensory inputs. The formation of this sensory circuit is shaped through activity-dependent and cell-intrinsic mechanisms. Recent studies have revealed that cell-type specific connectivity and the organization of synapses in dendritic compartments are determined through cell-intrinsic programs already preset in progenitor cells. These progenitor programs give rise to subpopulations within a neuron type that have distinct synaptic organizations. The intrinsically determined formation of distinct synaptic organizations requires factors from contacting cells that match the cell-intrinsic programs. While certain genes control wiring within the newly generated neurons, other regulatory genes provide intercellular signals and are only expressed in neurons that will form contacts with the newly generated cells. Here, the olfactory system has provided a useful model circuit to reveal the factors regulating assembly of the highly structured connectivity in mammals.
Collapse
Affiliation(s)
- Namasivayam Ravi
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Luis Sanchez-Guardado
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
| | - Wolfgang Kelsch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
24
|
Belnoue L, Malvaut S, Ladevèze E, Abrous DN, Koehl M. Plasticity in the olfactory bulb of the maternal mouse is prevented by gestational stress. Sci Rep 2016; 6:37615. [PMID: 27886228 PMCID: PMC5122868 DOI: 10.1038/srep37615] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/01/2016] [Indexed: 01/04/2023] Open
Abstract
Maternal stress is associated with an altered mother-infant relationship that endangers offspring development, leading to emotional/behavioral problems. However, little research has investigated the stress-induced alterations of the maternal brain that could underlie such a disruption of mother-infant bonding. Olfactory cues play an extensive role in the coordination of mother-infant interactions, suggesting that motherhood may be associated to enhanced olfactory performances, and that this effect may be abolished by maternal stress. To test this hypothesis, we analyzed the impact of motherhood under normal conditions or after gestational stress on olfactory functions in C57BL/6 J mice. We report that gestational stress alters maternal behavior and prevents both mothers' ability to discriminate pup odors and motherhood-induced enhancement in odor memory. We investigated adult bulbar neurogenesis as a potential mechanism of the enhanced olfactory function in mothers and found that motherhood was associated with an increased complexity of the dendritic tree of newborn neurons. This motherhood-evoked remodeling was totally prevented by gestational stress. Altogether, our results may thus provide insight into the neural changes that could contribute to altered maternal behavior in stressed mothers.
Collapse
Affiliation(s)
- Laure Belnoue
- INSERM U1215, Magendie Neurocenter, Neurogenesis and Pathophysiology group, 146 rue Léo Saignat, Bordeaux-33077, France
- Université de Bordeaux, Bordeaux-33077, France
| | - Sarah Malvaut
- INSERM U1215, Magendie Neurocenter, Neurogenesis and Pathophysiology group, 146 rue Léo Saignat, Bordeaux-33077, France
- Université de Bordeaux, Bordeaux-33077, France
| | - Elodie Ladevèze
- INSERM U1215, Magendie Neurocenter, Neurogenesis and Pathophysiology group, 146 rue Léo Saignat, Bordeaux-33077, France
- Université de Bordeaux, Bordeaux-33077, France
| | - Djoher Nora Abrous
- INSERM U1215, Magendie Neurocenter, Neurogenesis and Pathophysiology group, 146 rue Léo Saignat, Bordeaux-33077, France
- Université de Bordeaux, Bordeaux-33077, France
| | - Muriel Koehl
- INSERM U1215, Magendie Neurocenter, Neurogenesis and Pathophysiology group, 146 rue Léo Saignat, Bordeaux-33077, France
- Université de Bordeaux, Bordeaux-33077, France
| |
Collapse
|
25
|
Akita T, Kumada T, Yoshihara SI, Egea J, Yamagishi S. Ion channels, guidance molecules, intracellular signaling and transcription factors regulating nervous and vascular system development. J Physiol Sci 2016; 66:175-88. [PMID: 26507418 PMCID: PMC4752580 DOI: 10.1007/s12576-015-0416-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/13/2023]
Abstract
Our sophisticated thoughts and behaviors are based on the miraculous development of our complex nervous network system, in which many different types of proteins and signaling cascades are regulated in a temporally and spatially ordered manner. Here we review our recent attempts to grasp the principles of nervous system development in terms of general cellular phenomena and molecules, such as volume-regulated anion channels, intracellular Ca(2+) and cyclic nucleotide signaling, the Npas4 transcription factor and the FLRT family of axon guidance molecules. We also present an example illustrating that the same FLRT family may regulate the development of vascular networks as well. The aim of this review is to open up new vistas for understanding the intricacy of nervous and vascular system development.
Collapse
Affiliation(s)
- Tenpei Akita
- Department of Neurophysiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Tatsuro Kumada
- Department of Occupational Therapy, Faculty of Health and Medical Sciences, Tokoha University, 1230 Miyakoda-cho, Kita-ku, Hamamatsu, Shizuoka, 431-2102, Japan
| | - Sei-ichi Yoshihara
- Laboratory for Molecular Biology of Neural System, Advanced Medical Research Center, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Joaquim Egea
- Molecular and Developmental Neurobiology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, 25198, Lleida, Spain
| | - Satoru Yamagishi
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
26
|
Yoshihara SI, Takahashi H, Tsuboi A. Molecular Mechanisms Regulating the Dendritic Development of Newborn Olfactory Bulb Interneurons in a Sensory Experience-Dependent Manner. Front Neurosci 2016; 9:514. [PMID: 26793053 PMCID: PMC4709855 DOI: 10.3389/fnins.2015.00514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 12/02/2022] Open
Abstract
Inhibitory interneurons in the olfactory bulb are generated continuously throughout life in the subventricular zone and differentiate into periglomerular and granule cells. Neural circuits that undergo reorganization by newborn olfactory bulb interneurons are necessary for odor detection, odor discrimination, olfactory memory, and innate olfactory responses. Although sensory experience has been shown to regulate development in a variety of species and in various structures, including the retina, cortex, and hippocampus, little is known about how sensory experience regulates the dendritic development of newborn olfactory bulb interneurons. Recent studies revealed that the 5T4 oncofetal trophoblast glycoprotein and the neuronal Per/Arnt/Sim domain protein 4 (Npas4) transcription factor regulate dendritic branching and dendritic spine formation, respectively, in olfactory bulb interneurons. Here, we summarize the molecular mechanisms that underlie the sensory input-dependent development of newborn interneurons and the formation of functional neural circuitry in the olfactory bulb.
Collapse
Affiliation(s)
- Sei-Ichi Yoshihara
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| | - Hiroo Takahashi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| | - Akio Tsuboi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| |
Collapse
|
27
|
Abstract
The circuitry of the olfactory bulb contains a precise anatomical map that links isofunctional regions within each olfactory bulb. This intrabulbar map forms perinatally and undergoes activity-dependent refinement during the first postnatal weeks. Although this map retains its plasticity throughout adulthood, its organization is remarkably stable despite the addition of millions of new neurons to this circuit. Here we show that the continuous supply of new neuroblasts from the subventricular zone is necessary for both the restoration and maintenance of this precise central circuit. Using pharmacogenetic methods to conditionally ablate adult neurogenesis in transgenic mice, we find that the influx of neuroblasts is required for recovery of intrabulbar map precision after disruption due to sensory block. We further demonstrate that eliminating adult-born interneurons in naive animals leads to an expansion of tufted cell axons that is identical to the changes caused by sensory block, thus revealing an essential role for new neurons in circuit maintenance under baseline conditions. These findings show, for the first time, that inhibiting adult neurogenesis alters the circuitry of projection neurons in brain regions that receive new interneurons and points to a critical role for adult-born neurons in stabilizing a brain circuit that exhibits high levels of plasticity.
Collapse
|
28
|
Hu G, Leal M, Lin Q, Affolter T, Sapra P, Bates B, Damelin M. Phenotype of TPBG Gene Replacement in the Mouse and Impact on the Pharmacokinetics of an Antibody-Drug Conjugate. Mol Pharm 2014; 12:1730-7. [PMID: 25423493 DOI: 10.1021/mp5006323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of predictive preclinical models in drug discovery is critical for compound selection, optimization, preclinical to clinical translation, and strategic decision-making. Trophoblast glycoprotein (TPBG), also known as 5T4, is the therapeutic target of several anticancer agents currently in clinical development, largely due to its high expression in tumors and low expression in normal adult tissues. In this study, mice were engineered to express human TPBG under endogenous regulatory sequences by replacement of the murine Tpbg coding sequence. The gene replacement was considered functional since the hTPBG knockin (hTPBG-KI) mice did not exhibit clinical observations or histopathological phenotypes that are associated with Tpbg gene deletion, except in rare instances. The expression of hTPBG in certain epithelial cell types and in different microregions of the brain and spinal cord was consistent with previously reported phenotypes and expression patterns. In pharmacokinetic studies, the exposure of a clinical-stage anti-TPBG antibody-drug conjugate (ADC), A1mcMMAF, was lower in hTPBG-KI versus wild-type animals, which was evidence of target-related increased clearance in hTPBG-KI mice. Thus, the hTPBG-KI mice constitute an improved system for pharmacology studies with current and future TPBG-targeted therapies and can generate more precise pharmacokinetic and pharmacodynamic data. In general the strategy of employing gene replacement to improve pharmacokinetic assessments should be broadly applicable to the discovery and development of ADCs and other biotherapeutics.
Collapse
Affiliation(s)
| | - Mauricio Leal
- §Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Pearl River, New York 10965, United States
| | - Qingcong Lin
- ∥Global Biotherapeutic Technologies, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | | | - Puja Sapra
- #Oncology Research Unit, Pfizer Inc., Pearl River, New York 10965, United States
| | - Brian Bates
- ∥Global Biotherapeutic Technologies, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Marc Damelin
- #Oncology Research Unit, Pfizer Inc., Pearl River, New York 10965, United States
| |
Collapse
|
29
|
Nagayama S, Homma R, Imamura F. Neuronal organization of olfactory bulb circuits. Front Neural Circuits 2014; 8:98. [PMID: 25232305 PMCID: PMC4153298 DOI: 10.3389/fncir.2014.00098] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022] Open
Abstract
Olfactory sensory neurons extend their axons solely to the olfactory bulb, which is dedicated to odor information processing. The olfactory bulb is divided into multiple layers, with different types of neurons found in each of the layers. Therefore, neurons in the olfactory bulb have conventionally been categorized based on the layers in which their cell bodies are found; namely, juxtaglomerular cells in the glomerular layer, tufted cells in the external plexiform layer, mitral cells in the mitral cell layer, and granule cells in the granule cell layer. More recently, numerous studies have revealed the heterogeneous nature of each of these cell types, allowing them to be further divided into subclasses based on differences in morphological, molecular, and electrophysiological properties. In addition, technical developments and advances have resulted in an increasing number of studies regarding cell types other than the conventionally categorized ones described above, including short-axon cells and adult-generated interneurons. Thus, the expanding diversity of cells in the olfactory bulb is now being acknowledged. However, our current understanding of olfactory bulb neuronal circuits is mostly based on the conventional and simplest classification of cell types. Few studies have taken neuronal diversity into account for understanding the function of the neuronal circuits in this region of the brain. This oversight may contribute to the roadblocks in developing more precise and accurate models of olfactory neuronal networks. The purpose of this review is therefore to discuss the expanse of existing work on neuronal diversity in the olfactory bulb up to this point, so as to provide an overall picture of the olfactory bulb circuit.
Collapse
Affiliation(s)
- Shin Nagayama
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston Houston, TX, USA
| | - Ryota Homma
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston Houston, TX, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Pennsylvania State University College of Medicine Hershey, PA, USA
| |
Collapse
|
30
|
Yoshihara SI, Takahashi H, Nishimura N, Kinoshita M, Asahina R, Kitsuki M, Tatsumi K, Furukawa-Hibi Y, Hirai H, Nagai T, Yamada K, Tsuboi A. Npas4 Regulates Mdm2 and thus Dcx in Experience-Dependent Dendritic Spine Development of Newborn Olfactory Bulb Interneurons. Cell Rep 2014; 8:843-57. [DOI: 10.1016/j.celrep.2014.06.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 06/05/2014] [Accepted: 06/26/2014] [Indexed: 02/03/2023] Open
|
31
|
Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning. J Neurosci 2014; 34:5788-99. [PMID: 24760839 DOI: 10.1523/jneurosci.0674-14.2014] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The olfactory bulb (OB) is one of the two major loci in the mammalian brain where newborn neurons are constantly integrated into the neural circuit during postnatal life. Newborn neurons are generated from neural stem cells in the subventricular zone (SVZ) of the lateral ventricle and migrate to the OB through the rostral migratory stream. The majority of these newborn neurons differentiate into inhibitory interneurons, such as granule cells and periglomerular cells. It has been reported that prolonged supply of newborn neurons leads to continuous addition/turnover of the interneuronal populations and contributes to functional integrity of the OB circuit. However, it is not still clear how and to what extent postnatal-born neurons contribute to OB neural circuit formation, and the functional role of postnatal neurogenesis in odor-related behaviors remains elusive. To address this question, here by using genetic strategies, we first determined the unique integration mode of newly born interneurons during postnatal development of the mouse OB. We then manipulated these interneuron populations and found that continuous postnatal neurogenesis in the SVZ-OB plays pivotal roles in flexible olfactory associative learning and memory.
Collapse
|
32
|
Neonatal olfactory bulbectomy enhances locomotor activity, exploratory behavior and binding of NMDA receptors in pre-pubertal rats. Neuroscience 2013; 259:84-93. [PMID: 24295633 DOI: 10.1016/j.neuroscience.2013.11.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/20/2013] [Accepted: 11/23/2013] [Indexed: 12/21/2022]
Abstract
In this study, we investigated the effect of neonatal olfactory bulbectomy (nOBX) on behavioral paradigms related to olfaction such as exploratory behavior, locomotor activity in a novel environment and social interaction. We also studied the effect of nOBX on the activity of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors during development. The behavioral effects of nOBX (postnatal day 7, PD7) were investigated in pre- (PD30) and post-pubertal (PD60) Wistar rats. NMDA receptor activity was measured with [(125)I]MK-801 in the brain regions associated with the olfactory circuitry. A significant increase in the novelty-induced locomotion was seen in the pre-pubertal nOBX rats. Although the locomotor effect was less marked than in pre-pubertal rats, the nOBX rats tested post-pubertally failed to habituate to the novel situation as quickly as the sham- and normal- controls. Pre-pubertally, the head-dipping behavior was enhanced in nOBX rats compared with sham-operated and normal controls, while normal exploratory behavior was observed between groups in adulthood. In contrast, social interaction was increased in post-pubertal animals that underwent nOBX. Both pre- and post-pubertal nOBX rats recovered olfaction. Interestingly, pre-pubertal rats showed a significant increase in the [(125)I]MK-801 binding in the piriform cortex, dorsal hippocampus, inner and outer layers of the frontal cortex and outer layer of the cingulate cortex. At post-pubertal age, no significant differences in [(125)I]MK-801 binding were observed between groups at any of the brain regions analyzed. These results suggest that nOBX produces pre-pubertal behavioral disturbances and NMDA receptor changes that are transitory with recovery of olfaction early in adulthood.
Collapse
|
33
|
Kato Y, Kaneko N, Sawada M, Ito K, Arakawa S, Murakami S, Sawamoto K. A subtype-specific critical period for neurogenesis in the postnatal development of mouse olfactory glomeruli. PLoS One 2012; 7:e48431. [PMID: 23133633 PMCID: PMC3486849 DOI: 10.1371/journal.pone.0048431] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/25/2012] [Indexed: 11/25/2022] Open
Abstract
Sensory input is essential for the normal development of sensory centers in the brain, such as the somatosensory, visual, auditory, and olfactory systems. Visual deprivation during a specific developmental stage, called the critical period, results in severe and irreversible functional impairments in the primary visual cortex. Olfactory deprivation in the early postnatal period also causes significant developmental defects in the olfactory bulb, the primary center for olfaction. Olfactory bulb interneurons are continuously generated from neural stem cells in the ventricular-subventricular zone, suggesting that the olfactory system has plasticity even in adulthood. Here, we investigated the effect of transient neonatal olfactory deprivation on the addition of interneurons to the glomerular layer of the adult mouse olfactory bulb. We found that the addition of one subtype of interneurons was persistently inhibited even after reopening the naris. BrdU pulse-chase experiments revealed that the neonatal olfactory deprivation predominantly affected an early phase in the maturation of this neuronal subtype in the olfactory bulb. Subjecting the mice to odor stimulation for 6 weeks after naris reopening resulted in significant recovery from the histological and functional defects caused by the olfactory deprivation. These results suggest that a subtype-specific critical period exists for olfactory bulb neurogenesis, but that this period is less strict and more plastic compared with the critical periods for other systems. This study provides new insights into the mechanisms of postnatal neurogenesis and a biological basis for the therapeutic effect of olfactory training.
Collapse
Affiliation(s)
- Yasuko Kato
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
- Dpartment of Neuro-otolaryngology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Keishi Ito
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Sousuke Arakawa
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Shingo Murakami
- Dpartment of Neuro-otolaryngology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
- * E-mail:
| |
Collapse
|
34
|
Tbr2 deficiency in mitral and tufted cells disrupts excitatory-inhibitory balance of neural circuitry in the mouse olfactory bulb. J Neurosci 2012; 32:8831-44. [PMID: 22745484 DOI: 10.1523/jneurosci.5746-11.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The olfactory bulb (OB) is the first relay station in the brain where odor information from the olfactory epithelium is integrated, processed through its intrinsic neural circuitry, and conveyed to higher olfactory centers. Compared with profound mechanistic insights into olfactory axon wiring from the nose to the OB, little is known about the molecular mechanisms underlying the formation of functional neural circuitry among various types of neurons inside the OB. T-box transcription factor Tbr2 is expressed in various types of glutamatergic excitatory neurons in the brain including the OB projection neurons, mitral and tufted cells. Here we generated conditional knockout mice in which the Tbr2 gene is inactivated specifically in mitral and tufted cells from late embryonic stages. Tbr2 deficiency caused cell-autonomous changes in molecular expression including a compensatory increase of another T-box member, Tbr1, and a concomitant shift of vesicular glutamate transporter (VGluT) subtypes from VGluT1 to VGluT2. Tbr2-deficient mitral and tufted cells also exhibited anatomical abnormalities in their dendritic morphology and projection patterns. Additionally, several non-cell-autonomous phenotypes were observed in parvalbumin-, calbindin-, and 5T4-positive GABAergic interneurons. Furthermore, the number of dendrodendritic reciprocal synapses between mitral/tufted cells and GABAergic interneurons was significantly reduced. Upon stimulation with odorants, larger numbers of mitral and tufted cells were activated in Tbr2 conditional knockout mice. These results suggest that Tbr2 is required for not only the proper differentiation of mitral and tufted cells, but also for the establishment of functional neuronal circuitry in the OB and maintenance of excitatory-inhibitory balance crucial for odor information processing.
Collapse
|