1
|
Bengl D, Koparir A, Prastyo WE, Remmele C, Dittrich M, Flandin S, Shehata-Dieler W, Grimm C, Haaf T, Hofrichter MAH. Whole-genome sequencing, as a powerful diagnostic tool in hearing loss, reveals novel variants in PTPRQ missed by whole-exome sequencing. BMC Med Genomics 2025; 18:59. [PMID: 40165225 PMCID: PMC11956499 DOI: 10.1186/s12920-025-02122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND/OBJECTIVES Hearing loss (HL) is one of the most common congenital disorders, affecting 1-2 in 1,000 newborns. Modern genetic diagnostics using large gene panels and/or whole exome analysis (WES) can identify disease-causing mutations in 25-50 % of patients, with higher solve rates in individuals with earlier onset. RESULTS Here, we used whole-genome sequencing (WGS) to reanalyze 14 index patients/families who remained without genetic diagnosis by WES. We were able to identify the genetic cause of HL in 6 families ( ∼ 43 %). Two families were diagnosed with DFNB84A caused by compound heterozygous recessive mutations in PTPRQ. Three of the four underlying variants, including a structural variant, a deep intronic variant, and a splice variant, escaped detection by WES. Minigene assays confirmed the pathogenicity of the intronic and the splice variants. In addition, we used protein 3D structure prediction and rigid ligand docking to study the pathogenicity of variants that escape nonsense-mediated decay. CONCLUSION In our study, we present four novel variants in PTPRQ, three of which were detected only by WGS. To our knowledge, we report here the first pathogenic deep intronic PTPRQ variant causing HL. Our results suggest that the mutational spectrum of PTPRQ is not well covered by standard WES and that PTPRQ-associated hearing loss may be more frequent than previously thought. WGS provides an additional layer of information in the diagnostics of HL.
Collapse
Affiliation(s)
- Daniel Bengl
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
| | - Asuman Koparir
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany.
| | - Wahyu Eka Prastyo
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
| | - Christian Remmele
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
- Center for Rare Diseases, University Clinics, Josef-Schneider-Straße 2, Würzburg, 97080, Bavaria, Germany
- Bavarian Genomes Network for Rare Diseases, Technical University of Munich, Trogerstraße 32, Munich, 81675, Bavaria, Germany
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
- Department of Bioinformatics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
| | - Sophie Flandin
- Department of Otorhinolaryngology, Comprehensive Hearing Center, Würzburg University Hospital, Josef-Schneider-Straße 11, Würzburg, 97080, Bavaria, Germany
| | - Waafa Shehata-Dieler
- Department of Otorhinolaryngology, Comprehensive Hearing Center, Würzburg University Hospital, Josef-Schneider-Straße 11, Würzburg, 97080, Bavaria, Germany
| | - Clemens Grimm
- Chair of Biochemistry, Theodor-Boveri-Institute at the Biocentre University of Würzburg, Am Hubland, Würzburg, 97074, Bavaria, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
| | - Michaela A H Hofrichter
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
| |
Collapse
|
2
|
Giese APJ, Weng WH, Kindt KS, Chang HHV, Montgomery JS, Ratzan EM, Beirl AJ, Aponte Rivera R, Lotthammer JM, Walujkar S, Foster MP, Zobeiri OA, Holt JR, Riazuddin S, Cullen KE, Sotomayor M, Ahmed ZM. Complexes of vertebrate TMC1/2 and CIB2/3 proteins form hair-cell mechanotransduction cation channels. eLife 2025; 12:RP89719. [PMID: 39773557 PMCID: PMC11709434 DOI: 10.7554/elife.89719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here, we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line. Our AlphaFold 2 models suggest that vertebrate CIB proteins can simultaneously interact with at least two cytoplasmic domains of TMC1 and TMC2 as validated using nuclear magnetic resonance spectroscopy of TMC1 fragments interacting with CIB2 and CIB3. Molecular dynamics simulations of TMC1/2 complexes with CIB2/3 predict that TMCs are structurally stabilized by CIB proteins to form cation channels. Overall, our work demonstrates that intact CIB2/3 and TMC1/2 complexes are integral to hair-cell MET function in vertebrate mechanosensory epithelia.
Collapse
Affiliation(s)
- Arnaud PJ Giese
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of MedicineBaltimoreUnited States
| | - Wei-Hsiang Weng
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Biophysics Graduate Program, The Ohio State UniversityColumbusUnited States
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | | | - Jonathan S Montgomery
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Ohio State Biochemistry Program, The Ohio State UniversityColumbusUnited States
| | - Evan M Ratzan
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Alisha J Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Roberto Aponte Rivera
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Jeffrey M Lotthammer
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Biophysics Graduate Program, The Ohio State UniversityColumbusUnited States
- Ohio State Biochemistry Program, The Ohio State UniversityColumbusUnited States
| | - Omid A Zobeiri
- Department of Biomedical Engineering, McGill UniversityMontrealCanada
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of MedicineBaltimoreUnited States
| | - Kathleen E Cullen
- Departments of Biomedical Engineering, Neuroscience, and Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Biophysics Graduate Program, The Ohio State UniversityColumbusUnited States
- Ohio State Biochemistry Program, The Ohio State UniversityColumbusUnited States
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of MedicineBaltimoreUnited States
- Department of Biochemistry and Molecular Biology, University of Maryland School of MedicineBaltimoreUnited States
- Department of Ophthalmology and Visual Sciences, University of Maryland School of MedicineBaltimoreUnited States
| |
Collapse
|
3
|
Giese APJ, Weng WH, Kindt KS, Chang HHV, Montgomery JS, Ratzan EM, Beirl AJ, Rivera RA, Lotthammer JM, Walujkar S, Foster MP, Zobeiri OA, Holt JR, Riazuddin S, Cullen KE, Sotomayor M, Ahmed ZM. Complexes of vertebrate TMC1/2 and CIB2/3 proteins form hair-cell mechanotransduction cation channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.26.542533. [PMID: 37398045 PMCID: PMC10312449 DOI: 10.1101/2023.05.26.542533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line. Our AlphaFold 2 models suggest that vertebrate CIB proteins can simultaneously interact with at least two cytoplasmic domains of TMC1 and TMC2 as validated using nuclear magnetic resonance spectroscopy of TMC1 fragments interacting with CIB2 and CIB3. Molecular dynamics simulations of TMC1/2 complexes with CIB2/3 predict that TMCs are structurally stabilized by CIB proteins to form cation channels. Overall, our work demonstrates that intact CIB2/3 and TMC1/2 complexes are integral to hair-cell MET function in vertebrate mechanosensory epithelia.
Collapse
Affiliation(s)
- Arnaud P J Giese
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wei-Hsiang Weng
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | | | - Jonathan S Montgomery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Evan M Ratzan
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alisha J Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Roberto Aponte Rivera
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey M Lotthammer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathleen E Cullen
- Departments of Biomedical Engineering, Neuroscience, and Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Naffa R, Hegedűs L, Hegedűs T, Tóth S, Papp B, Tordai A, Enyedi Á. Plasma membrane Ca 2+ pump isoform 4 function in cell migration and cancer metastasis. J Physiol 2024; 602:1551-1564. [PMID: 36876504 DOI: 10.1113/jp284179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/02/2023] [Indexed: 03/07/2023] Open
Abstract
The Ca2+ ion is a universal second messenger involved in many vital physiological functions including cell migration and development. To fulfil these tasks the cytosolic Ca2+ concentration is tightly controlled, and this involves an intricate functional balance between a variety of channels and pumps of the Ca2+ signalling machinery. Among these proteins, plasma membrane Ca2+ ATPases (PMCAs) represent the major high-affinity Ca2+ extrusion systems in the cell membrane that are effective in maintaining free Ca2+ concentration at exceedingly low cytosolic levels, which is essential for normal cell function. An imbalance in Ca2+ signalling can have pathogenic consequences including cancer and metastasis. Recent studies have highlighted the role of PMCAs in cancer progression and have shown that a particular variant, PMCA4b, is downregulated in certain cancer types, causing delayed attenuation of the Ca2+ signal. It has also been shown that loss of PMCA4b leads to increased migration and metastasis of melanoma and gastric cancer cells. In contrast, an increased PMCA4 expression has been reported in pancreatic ductal adenocarcinoma that coincided with increased cell migration and shorter patient survival, suggesting distinct roles of PMCA4b in various tumour types and/or different stages of tumour development. The recently discovered interaction of PMCAs with basigin, an extracellular matrix metalloproteinase inducer, may provide further insights into our understanding of the specific roles of PMCA4b in tumour progression and cancer metastasis.
Collapse
Affiliation(s)
- Randa Naffa
- Molecular Biology Research Laboratory, School of Medicine, The University of Jordan, Amman, Jordan
| | - Luca Hegedűs
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, Essen, Germany
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, Budapest, Hungary
| | - Sarolta Tóth
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
| | - Béla Papp
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Paris, France
- Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université de Paris, Paris, France
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, Paris, France
| | - Attila Tordai
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
| | - Ágnes Enyedi
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Beurg M, Schwalbach ET, Fettiplace R. LHFPL5 is a key element in force transmission from the tip link to the hair cell mechanotransducer channel. Proc Natl Acad Sci U S A 2024; 121:e2318270121. [PMID: 38194445 PMCID: PMC10801851 DOI: 10.1073/pnas.2318270121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
During auditory transduction, sound-evoked vibrations of the hair cell stereociliary bundles open mechanotransducer (MET) ion channels via tip links extending from one stereocilium to its neighbor. How tension in the tip link is delivered to the channel is not fully understood. The MET channel comprises a pore-forming subunit, transmembrane channel-like protein (TMC1 or TMC2), aided by several accessory proteins, including LHFPL5 (lipoma HMGIC fusion partner-like 5). We investigated the role of LHFPL5 in transduction by comparing MET channel activation in outer hair cells of Lhfpl5-/- knockout mice with those in Lhfpl5+/- heterozygotes. The 10 to 90 percent working range of transduction in Tmc1+/+; Lhfpl5+/- was 52 nm, from which the single-channel gating force, Z, was evaluated as 0.34 pN. However, in Tmc1+/+; Lhfpl5-/- mice, the working range increased to 123 nm and Z more than halved to 0.13 pN, indicating reduced sensitivity. Tip link tension is thought to activate the channel via a gating spring, whose stiffness is inferred from the stiffness change on tip link destruction. The gating stiffness was ~40 percent of the total bundle stiffness in wild type but was virtually abolished in Lhfpl5-/-, implicating LHFPL5 as a principal component of the gating spring. The mutation Tmc1 p.D569N reduced the LHFPL5 immunolabeling in the stereocilia and like Lhfpl5-/- doubled the MET working range, but other deafness mutations had no effect on the dynamic range. We conclude that tip-link tension is transmitted to the channel primarily via LHFPL5; residual activation without LHFPL5 may occur by direct interaction between PCDH15 and TMC1.
Collapse
Affiliation(s)
- Maryline Beurg
- Department of Neuroscience, University of WisconsinSchool of Medicine and Public Health, Madison, WI53706
| | - Evan Travis Schwalbach
- Department of Neuroscience, University of WisconsinSchool of Medicine and Public Health, Madison, WI53706
| | - Robert Fettiplace
- Department of Neuroscience, University of WisconsinSchool of Medicine and Public Health, Madison, WI53706
| |
Collapse
|
6
|
Hausrat TJ, Vogl C, Neef J, Schweizer M, Yee BK, Strenzke N, Kneussel M. Monoallelic loss of the F-actin-binding protein radixin facilitates startle reactivity and pre-pulse inhibition in mice. Front Cell Dev Biol 2022; 10:987691. [DOI: 10.3389/fcell.2022.987691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Hearing impairment is one of the most common disorders with a global burden and increasing prevalence in an ever-aging population. Previous research has largely focused on peripheral sensory perception, while the brain circuits of auditory processing and integration remain poorly understood. Mutations in the rdx gene, encoding the F-actin binding protein radixin (Rdx), can induce hearing loss in human patients and homozygous depletion of Rdx causes deafness in mice. However, the precise physiological function of Rdx in hearing and auditory information processing is still ill-defined. Here, we investigated consequences of rdx monoallelic loss in the mouse. Unlike the homozygous (−/−) rdx knockout, which is characterized by the degeneration of actin-based stereocilia and subsequent hearing loss, our analysis of heterozygous (+/−) mutants has revealed a different phenotype. Specifically, monoallelic loss of rdx potentiated the startle reflex in response to acoustic stimulation of increasing intensities, suggesting a gain of function relative to wildtype littermates. The monoallelic loss of the rdx gene also facilitated pre-pulse inhibition of the acoustic startle reflex induced by weak auditory pre-pulse stimuli, indicating a modification to the circuit underlying sensorimotor gating of auditory input. However, the auditory brainstem response (ABR)-based hearing thresholds revealed a mild impairment in peripheral sound perception in rdx (+/-) mice, suggesting minor aberration of stereocilia structural integrity. Taken together, our data suggest a critical role of Rdx in the top-down processing and/or integration of auditory signals, and therefore a novel perspective to uncover further Rdx-mediated mechanisms in central auditory information processing.
Collapse
|
7
|
Krey JF, Liu C, Belyantseva IA, Bateschell M, Dumont RA, Goldsmith J, Chatterjee P, Morrill RS, Fedorov LM, Foster S, Kim J, Nuttall AL, Jones SM, Choi D, Friedman TB, Ricci AJ, Zhao B, Barr-Gillespie PG. ANKRD24 organizes TRIOBP to reinforce stereocilia insertion points. J Cell Biol 2022; 221:e202109134. [PMID: 35175278 PMCID: PMC8859912 DOI: 10.1083/jcb.202109134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 01/04/2023] Open
Abstract
The stereocilia rootlet is a key structure in vertebrate hair cells, anchoring stereocilia firmly into the cell's cuticular plate and protecting them from overstimulation. Using superresolution microscopy, we show that the ankyrin-repeat protein ANKRD24 concentrates at the stereocilia insertion point, forming a ring at the junction between the lower and upper rootlets. Annular ANKRD24 continues into the lower rootlet, where it surrounds and binds TRIOBP-5, which itself bundles rootlet F-actin. TRIOBP-5 is mislocalized in Ankrd24KO/KO hair cells, and ANKRD24 no longer localizes with rootlets in mice lacking TRIOBP-5; exogenous DsRed-TRIOBP-5 restores endogenous ANKRD24 to rootlets in these mice. Ankrd24KO/KO mice show progressive hearing loss and diminished recovery of auditory function after noise damage, as well as increased susceptibility to overstimulation of the hair bundle. We propose that ANKRD24 bridges the apical plasma membrane with the lower rootlet, maintaining a normal distribution of TRIOBP-5. Together with TRIOBP-5, ANKRD24 organizes rootlets to enable hearing with long-term resilience.
Collapse
Affiliation(s)
- Jocelyn F. Krey
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Chang Liu
- Department of Otolaryngology—Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Michael Bateschell
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Rachel A. Dumont
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Jennifer Goldsmith
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Paroma Chatterjee
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Rachel S. Morrill
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Lev M. Fedorov
- Transgenic Mouse Models, University Shared Resources Program, Oregon Health & Science University, Portland, OR
| | - Sarah Foster
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
| | - Jinkyung Kim
- Department of Otolaryngology—Head & Neck Surgery, Stanford University, Stanford, CA
| | - Alfred L. Nuttall
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
| | - Sherri M. Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE
| | - Dongseok Choi
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Anthony J. Ricci
- Department of Otolaryngology—Head & Neck Surgery, Stanford University, Stanford, CA
| | - Bo Zhao
- Department of Otolaryngology—Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Peter G. Barr-Gillespie
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
8
|
Liu S, Wang S, Zou L, Xiong W. Mechanisms in cochlear hair cell mechano-electrical transduction for acquisition of sound frequency and intensity. Cell Mol Life Sci 2021; 78:5083-5094. [PMID: 33871677 PMCID: PMC11072359 DOI: 10.1007/s00018-021-03840-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Sound signals are acquired and digitized in the cochlea by the hair cells that further transmit the coded information to the central auditory pathways. Any defect in hair cell function may induce problems in the auditory system and hearing-based brain function. In the past 2 decades, our understanding of auditory transduction has been substantially deepened because of advances in molecular, structural, and functional studies. Results from these experiments can be perfectly embedded in the previously established profile from anatomical, histological, genetic, and biophysical research. This review aims to summarize the progress on the molecular and cellular mechanisms of the mechano-electrical transduction (MET) channel in the cochlear hair cells, which is involved in the acquisition of sound frequency and intensity-the two major parameters of an acoustic cue. We also discuss recent studies on TMC1, the molecule likely to form the MET channel pore.
Collapse
Affiliation(s)
- Shuang Liu
- School of Life Sciences, Tsinghua University, 1 Qinghuayuan, Beijing, 100084, China
- IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, 1 Qinghuayuan, Beijing, 100084, China
| | - Shufeng Wang
- School of Life Sciences, Tsinghua University, 1 Qinghuayuan, Beijing, 100084, China
- IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, 1 Qinghuayuan, Beijing, 100084, China
| | - Linzhi Zou
- School of Life Sciences, Tsinghua University, 1 Qinghuayuan, Beijing, 100084, China
- IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, 1 Qinghuayuan, Beijing, 100084, China
| | - Wei Xiong
- School of Life Sciences, Tsinghua University, 1 Qinghuayuan, Beijing, 100084, China.
- IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, 1 Qinghuayuan, Beijing, 100084, China.
| |
Collapse
|
9
|
Ukhanov K, Uytingco C, Green W, Zhang L, Schurmans S, Martens JR. INPP5E controls ciliary localization of phospholipids and the odor response in olfactory sensory neurons. J Cell Sci 2021; 135:jcs.258364. [PMID: 33771931 PMCID: PMC8126451 DOI: 10.1242/jcs.258364] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
The lipid composition of the primary cilia membrane is emerging as a critical regulator of cilia formation, maintenance and function. Here, we show that conditional deletion of the phosphoinositide 5′-phosphatase gene Inpp5e, mutation of which is causative of Joubert syndrome, in terminally developed mouse olfactory sensory neurons (OSNs), leads to a dramatic remodeling of ciliary phospholipids that is accompanied by marked elongation of cilia. Phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2], which is normally restricted to the proximal segment redistributed to the entire length of cilia in Inpp5e knockout mice with a reduction in phosphatidylinositol (3,4)-bisphosphate [PI(3,4)P2] and elevation of phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] in the dendritic knob. The redistribution of phosphoinositides impaired odor adaptation, resulting in less efficient recovery and altered inactivation kinetics of the odor-evoked electrical response and the odor-induced elevation of cytoplasmic Ca2+. Gene replacement of Inpp5e through adenoviral expression restored the ciliary localization of PI(4,5)P2 and odor response kinetics in OSNs. Our findings support the role of phosphoinositides as a modulator of the odor response and in ciliary biology of native multi-ciliated OSNs. Summary: Cilia of olfactory sensory neurons have a unique lipid composition. Localization of phospholipids is controlled by the INPP5E phosphatase and is involved in modulation of the odor response.
Collapse
Affiliation(s)
- Kirill Ukhanov
- University of Florida, Department of Pharmacology and Therapeutics, Gainesville, FL 32603, USA.,University of Florida, Center for Smell and Taste, FL 32610-0267, USA
| | - Cedric Uytingco
- University of Florida, Department of Pharmacology and Therapeutics, Gainesville, FL 32603, USA
| | - Warren Green
- University of Florida, Department of Pharmacology and Therapeutics, Gainesville, FL 32603, USA
| | - Lian Zhang
- University of Florida, Department of Pharmacology and Therapeutics, Gainesville, FL 32603, USA.,University of Florida, Center for Smell and Taste, FL 32610-0267, USA
| | - Stephane Schurmans
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, University of Liège, Liège, Belgium
| | - Jeffrey R Martens
- University of Florida, Department of Pharmacology and Therapeutics, Gainesville, FL 32603, USA.,University of Florida, Center for Smell and Taste, FL 32610-0267, USA
| |
Collapse
|
10
|
Effertz T, Moser T, Oliver D. Recent advances in cochlear hair cell nanophysiology: subcellular compartmentalization of electrical signaling in compact sensory cells. Fac Rev 2021; 9:24. [PMID: 33659956 PMCID: PMC7886071 DOI: 10.12703/r/9-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years, genetics, physiology, and structural biology have advanced into the molecular details of the sensory physiology of auditory hair cells. Inner hair cells (IHCs) and outer hair cells (OHCs) mediate two key functions: active amplification and non-linear compression of cochlear vibrations by OHCs and sound encoding by IHCs at their afferent synapses with the spiral ganglion neurons. OHCs and IHCs share some molecular physiology, e.g. mechanotransduction at the apical hair bundles, ribbon-type presynaptic active zones, and ionic conductances in the basolateral membrane. Unique features enabling their specific function include prestin-based electromotility of OHCs and indefatigable transmitter release at the highest known rates by ribbon-type IHC active zones. Despite their compact morphology, the molecular machineries that either generate electrical signals or are driven by these signals are essentially all segregated into local subcellular structures. This review provides a brief account on recent insights into the molecular physiology of cochlear hair cells with a specific focus on organization into membrane domains.
Collapse
Affiliation(s)
- Thomas Effertz
- InnerEarLab, Department of Otorhinolaryngology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099 Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Dominik Oliver
- Institute for Physiology and Pathophysiology, Philipps University, Deutschhausstraße 2, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, GRK 2213, Philipps University, Marburg, Germany
| |
Collapse
|
11
|
Radixin modulates the function of outer hair cell stereocilia. Commun Biol 2020; 3:792. [PMID: 33361775 PMCID: PMC7758333 DOI: 10.1038/s42003-020-01506-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/18/2020] [Indexed: 01/07/2023] Open
Abstract
The stereocilia of the inner ear sensory cells contain the actin-binding protein radixin, encoded by RDX. Radixin is important for hearing but remains functionally obscure. To determine how radixin influences hearing sensitivity, we used a custom rapid imaging technique to visualize stereocilia motion while measuring electrical potential amplitudes during acoustic stimulation. Radixin inhibition decreased sound-evoked electrical potentials. Other functional measures, including electrically induced sensory cell motility and sound-evoked stereocilia deflections, showed a minor amplitude increase. These unique functional alterations demonstrate radixin as necessary for conversion of sound into electrical signals at acoustic rates. We identified patients with RDX variants with normal hearing at birth who showed rapidly deteriorating hearing during the first months of life. This may be overlooked by newborn hearing screening and explained by multiple disturbances in postnatal sensory cells. We conclude radixin is necessary for ensuring normal conversion of sound to electrical signals in the inner ear. Sonal Prasad et al. identify several mutations in the radixin (RDX) gene that are associated with early-life hearing loss. Using a guinea pig model, they propose that radixin helps convert sound into electrical signals in the mature inner ear.
Collapse
|
12
|
Ding D, Jiang H, Salvi R. Cochlear spiral ganglion neuron degeneration following cyclodextrin-induced hearing loss. Hear Res 2020; 400:108125. [PMID: 33302057 DOI: 10.1016/j.heares.2020.108125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 01/12/2023]
Abstract
Because cyclodextrins are capable of removing cholesterol from cell membranes, there is growing interest in using these compounds to treat diseases linked to aberrant cholesterol metabolism. One compound, 2-hydroxypropyl-beta-cyclodextrin (HPβCD), is currently being evaluated as a treatment for Niemann-Pick Type C1 disease, a rare, fatal neurodegenerative disease caused by the buildup of lipids in endosomes and lysosomes. HPβCD can reduce some debilitating symptoms and extend life span, but the therapeutic doses used to treat the disease cause hearing loss. Initial studies in rodents suggested that HPβCD selectively damaged only cochlear outer hair cells during the first week post-treatment. However, our recent in vivo and in vitro studies suggested that the damage could become progressively worse and more extensive over time. To test this hypothesis, we treated rats subcutaneously with 1, 2, 3 or 4 g/kg of HPβCD and waited for 8-weeks to assess the long-term histological consequences. Our new results indicate that the two highest doses of HPβCD caused extensive damage not only to OHC, but also to inner hair cells, pillar cells and other support cells resulting in the collapse and flattening of the sensory epithelium. The 4 g/kg dose destroyed all the outer hair cells and three-fourths of the inner hair cells over the basal two-thirds of the cochlea and more than 85% of the nerve fibers in the habenula perforata and more than 80% of spiral ganglion neurons in the middle of basal turn of the cochlea. The mechanisms that lead to the delayed degeneration of inner hair cells, pillar cells, nerve fibers and spiral ganglion neurons remain poorly understood, but may be related to the loss of trophic support caused by the degeneration of sensory and/or support cells in the organ of Corti. Despite the massive damage to the cochlear sensory epithelium, the blood vessels in the stria vascularis and the vestibular hair cells in the utricle and saccule remained normal.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA.
| |
Collapse
|
13
|
George SS, Steele CR, Ricci AJ. Rat Auditory Inner Hair Cell Mechanotransduction and Stereociliary Membrane Diffusivity Are Similarly Modulated by Calcium. iScience 2020; 23:101773. [PMID: 33294782 PMCID: PMC7689183 DOI: 10.1016/j.isci.2020.101773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/03/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
The lipid bilayer plays a pivotal role in force transmission to many mechanically-gated channels. We developed the technology to monitor membrane diffusivity in order to test the hypothesis positing that Ca2+ regulates open probability (P o) of cochlear hair cell mechanotransduction (MET) channels via the plasma membrane. The stereociliary membrane was more diffusive (9x) than the basolateral membrane. Elevating intracellular Ca2+ buffering or lowering extracellular Ca2+ reduced stereociliary diffusivity and increased MET P o. In contrast, prolonged depolarization increased stereociliary diffusivity and reduced MET P o. No comparable effects were noted for soma measurements. Although MET channels are located in the shorter stereocilia rows, both rows had similar baseline diffusivity and showed similar responses to Ca2+ manipulations and MET channel blocks, suggesting that diffusivity is independent of MET. Together, these data suggest that the stereociliary membrane is a component of a calcium-modulated viscoelastic-like element regulating hair cell mechanotransduction.
Collapse
Affiliation(s)
- Shefin S George
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, 240 Pasteur Drive, Stanford, CA 94305, USA
| | - Charles R Steele
- Department of Mechanical Engineering, Building 520, 440 Escondido Mall, Stanford University, CA 94305, USA
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, 240 Pasteur Drive, Stanford, CA 94305, USA.,Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Ding D, Manohar S, Jiang H, Salvi R. Hydroxypropyl-β-cyclodextrin causes massive damage to the developing auditory and vestibular system. Hear Res 2020; 396:108073. [PMID: 32956992 DOI: 10.1016/j.heares.2020.108073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/03/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
2-hydroxypropyl-β-cyclodextrin (HPβCD), a cholesterol chelator used to treat Niemann-Pick C1 (NPC1) lysosomal storage disease, causes hearing loss in mammals by preferentially destroying outer hair cells. Because cholesterol plays an important role in early neural development, we hypothesized that HPβCD would cause more extensive damage to postnatal cochlear and vestibular structures in than adult rats. This hypothesis was tested by administering HPβCD to adult rats and postnatal day 3 (P3) cochlear and vestibular organ cultures. Adult rats treated with HPβCD developed hearing impairment and outer hair cell loss 3-day post-treatment; damage increased with dose from the high frequency base toward the low-frequency apex. The HPβCD-induced histopathologies were more severe and widespread in cochlear and vestibular cultures at P3 than in adults. HPβCD destroyed both outer and inner hair cells, auditory nerve fibers and spiral ganglion neurons as well as type I and type II vestibular hair cells and vestibular ganglion neurons. The early stage of HPβCD damage involved disruption of hair cell mechanotransduction and destruction of stereocilia. HPβCD-mediated apoptosis in P3 cultures was most-strongly initiated by activation of the extrinsic caspase-8 cell death pathway in cochlear and vestibular hair cells and neurons followed by activation of executioner caspase-3. Thus, HPβCD is toxic to all types of postnatal cochlear and vestibular hair cells and neurons in vitro whereas in vivo it only appears to destroy outer hair cells in adult cochleae. The more severe HPβCD-induced damage in postnatal cultures could be due to greater drug bioavailability in vitro and/or greater vulnerability of the developing inner ear.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, United States
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, United States
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, United States
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, United States.
| |
Collapse
|
15
|
Song J, Patterson R, Metlagel Z, Krey JF, Hao S, Wang L, Ng B, Sazzed S, Kovacs J, Wriggers W, He J, Barr-Gillespie PG, Auer M. A cryo-tomography-based volumetric model of the actin core of mouse vestibular hair cell stereocilia lacking plastin 1. J Struct Biol 2020; 210:107461. [PMID: 31962158 PMCID: PMC7067663 DOI: 10.1016/j.jsb.2020.107461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
Electron cryo-tomography allows for high-resolution imaging of stereocilia in their native state. Because their actin filaments have a higher degree of order, we imaged stereocilia from mice lacking the actin crosslinker plastin 1 (PLS1). We found that while stereocilia actin filaments run 13 nm apart in parallel for long distances, there were gaps of significant size that were stochastically distributed throughout the actin core. Actin crosslinkers were distributed through the stereocilium, but did not occupy all possible binding sites. At stereocilia tips, protein density extended beyond actin filaments, especially on the side of the tip where a tip link is expected to anchor. Along the shaft, repeating density was observed that corresponds to actin-to-membrane connectors. In the taper region, most actin filaments terminated near the plasma membrane. The remaining filaments twisted together to make a tighter bundle than was present in the shaft region; the spacing between them decreased from 13 nm to 9 nm, and the apparent filament diameter decreased from 6.4 to 4.8 nm. Our models illustrate detailed features of distinct structural domains that are present within the stereocilium.
Collapse
Affiliation(s)
- Junha Song
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Roma Patterson
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zoltan Metlagel
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jocelyn F Krey
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Samantha Hao
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Linshanshan Wang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brian Ng
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Salim Sazzed
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Julio Kovacs
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, USA
| | - Willy Wriggers
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, USA
| | - Jing He
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Manfred Auer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
16
|
Richardson GP, Petit C. Hair-Bundle Links: Genetics as the Gateway to Function. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033142. [PMID: 30617060 DOI: 10.1101/cshperspect.a033142] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Up to five distinct cell-surface specializations interconnect the stereocilia and the kinocilium of the mature hair bundle in some species: kinocilial links, tip links, top connectors, shaft connectors, and ankle links. In developing hair bundles, transient lateral links are prominent. Mutations in genes encoding proteins associated with these links cause Usher deafness/blindness syndrome or nonsyndromic (isolated) forms of human hereditary deafness, and mice with constitutive or conditional alleles of these genes have provided considerable insight into the molecular composition and function of the different links. We describe the structure of these links and review evidence showing CDH23 and PCDH15 are components of the tip, kinocilial, and transient-lateral links, that stereocilin (STRC) and protein tyrosine phosphatase (PTPRQ) are associated with top and shaft connectors, respectively, and that USH2A and ADGRV1 are associated with the ankle links. Whereas tip links are required for mechanoelectrical transduction, all link proteins play key roles in the normal development and/or the maintenance of hair bundle structure and function. Recent crystallographic and single-particle analyses of PCDH15 and CDH23 provide insight as to how the structure of tip link may contribute to the elastic element predicted to lie in series with the hair cell's mechanoelectrical transducer channel.
Collapse
Affiliation(s)
- Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Christine Petit
- Institut Pasteur, 75724 Paris Cedex 15, France.,Collège de France, 75231 Paris Cedex 05, France
| |
Collapse
|
17
|
Du H, Zou L, Ren R, Li N, Li J, Wang Y, Sun J, Yang J, Xiong W, Xu Z. Lack of PDZD7 long isoform disrupts ankle-link complex and causes hearing loss in mice. FASEB J 2019; 34:1136-1149. [PMID: 31914662 DOI: 10.1096/fj.201901657rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/28/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
Usher syndrome (USH) is the most frequent form of combined hereditary deafness-blindness, characterized by hearing loss and retinitis pigmentosa, with or without vestibular dysfunction. PDZD7 is a PDZ domain-containing scaffold protein that was suggested to be a USH modifier and a contributor to digenic USH. In the inner ear hair cells, PDZD7 localizes at the ankle region of the stereocilia and constitutes the so-called ankle-link complex together with three other USH proteins Usherin, WHRN, and ADGRV1. PDZD7 gene is subjected to alternative splicing, which gives rise to two types of PDZD7 isoforms, namely the long and short isoforms. At present, little is known which specific isoform is involved in ankle-link formation and stereocilia development. In this work, we showed that PDZD7 long isoform, but not short isoforms, localizes at the ankle region of the stereocilia. Moreover, we established Pdzd7 mutant mice by introducing deletions into exon 14 of the Pdzd7 gene, which causes potential premature translational stop in the long isoform but leaves short isoforms unaffected. We found that lack of PDZD7 long isoform affects the localization of other ankle-link complex components in the stereocilia. Consequently, Pdzd7 mutant mice showed stereocilia development deficits and hearing loss as well as reduced mechanotransduction (MET) currents, suggesting that PDZD7 long isoform is indispensable for hair cells. Furthermore, by performing yeast two-hybrid screening, we identified a PDZD7 long isoform-specific binding partner PIP5K1C, which has been shown to play important roles in hearing and might participate in the function and/or transportation of PDZD7.
Collapse
Affiliation(s)
- Haibo Du
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Linzhi Zou
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, China
| | - Rui Ren
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Nana Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jie Li
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
18
|
Krey JF, Barr-Gillespie PG. Molecular Composition of Vestibular Hair Bundles. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033209. [PMID: 29844221 DOI: 10.1101/cshperspect.a033209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The vertebrate hair bundle, responsible for transduction of mechanical signals into receptor potentials in sensory hair cells, is an evolutionary masterpiece. Composed of actin-filled stereocilia of precisely regulated length, width, and number, the structure of the hair bundle is optimized for sensing auditory and vestibular stimuli. Recent developments in identifying the lipids and proteins constituting the hair bundle, obtained through genetics, biochemistry, and imaging, now permit a description of the consensus composition of vestibular bundles of mouse, rat, and chick.
Collapse
Affiliation(s)
- Jocelyn F Krey
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
19
|
Ge J, Elferich J, Goehring A, Zhao H, Schuck P, Gouaux E. Structure of mouse protocadherin 15 of the stereocilia tip link in complex with LHFPL5. eLife 2018; 7:38770. [PMID: 30070639 PMCID: PMC6092121 DOI: 10.7554/elife.38770] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
Hearing and balance involve the transduction of mechanical stimuli into electrical signals by deflection of bundles of stereocilia linked together by protocadherin 15 (PCDH15) and cadherin 23 'tip links'. PCDH15 transduces tip link tension into opening of a mechano-electrical transduction (MET) ion channel. PCDH15 also interacts with LHFPL5, a candidate subunit of the MET channel. Here we illuminate the PCDH15-LHFPL5 structure, showing how the complex is composed of PCDH15 and LHFPL5 subunit pairs related by a 2-fold axis. The extracellular cadherin domains define a mobile tether coupled to a rigid, 2-fold symmetric 'collar' proximal to the membrane bilayer. LHFPL5 forms extensive interactions with the PCDH15 transmembrane helices and stabilizes the overall PCDH15-LHFPL5 assembly. Our studies illuminate the architecture of the PCDH15-LHFPL5 complex, localize mutations associated with deafness, and shed new light on how forces in the PCDH15 tether may be transduced into the stereocilia membrane.
Collapse
Affiliation(s)
- Jingpeng Ge
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Johannes Elferich
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - April Goehring
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Huaying Zhao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, United States.,Howard Hughes Medical Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
20
|
Inokuchi JI, Inamori KI, Kabayama K, Nagafuku M, Uemura S, Go S, Suzuki A, Ohno I, Kanoh H, Shishido F. Biology of GM3 Ganglioside. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:151-195. [PMID: 29747813 DOI: 10.1016/bs.pmbts.2017.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the successful molecular cloning in 1998 of GM3 synthase (GM3S, ST3GAL5), the enzyme responsible for initiating biosynthesis of all complex gangliosides, the efforts of our research group have been focused on clarifying the physiological and pathological implications of gangliosides, particularly GM3. We have identified isoforms of GM3S proteins having distinctive lengths of N-terminal cytoplasmic tails, and found that these cytoplasmic tails define subcellular localization, stability, and in vivo activity of GM3S isoforms. Our studies of the molecular pathogenesis of type 2 diabetes, focused on interaction between insulin receptor and GM3 in membrane microdomains, led to a novel concept: type 2 diabetes and certain other lifestyle-related diseases are membrane microdomain disorders resulting from aberrant expression of gangliosides. This concept has enhanced our understanding of the pathophysiological roles of GM3 and related gangliosides in various diseases involving chronic inflammation, such as insulin resistance, leptin resistance, and T-cell function and immune disorders (e.g., allergic asthma). We also demonstrated an essential role of GM3 in murine and human auditory systems; a common pathological feature of GM3S deficiency is deafness. This is the first direct link reported between gangliosides and auditory functions.
Collapse
Affiliation(s)
- Jin-Ichi Inokuchi
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Kei-Ichiro Inamori
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | | | - Masakazu Nagafuku
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Satoshi Uemura
- Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Shinji Go
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Akemi Suzuki
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Isao Ohno
- Center for Medical Education, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Hirotaka Kanoh
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Fumi Shishido
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| |
Collapse
|
21
|
ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells. J Neurosci 2017; 38:843-857. [PMID: 29222402 DOI: 10.1523/jneurosci.2658-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 11/21/2022] Open
Abstract
Sensory hair cells require control of physical properties of their apical plasma membranes for normal development and function. Members of the ADP-ribosylation factor (ARF) small GTPase family regulate membrane trafficking and cytoskeletal assembly in many cells. We identified ELMO domain-containing protein 1 (ELMOD1), a guanine nucleoside triphosphatase activating protein (GAP) for ARF6, as the most highly enriched ARF regulator in hair cells. To characterize ELMOD1 control of trafficking, we analyzed mice of both sexes from a strain lacking functional ELMOD1 [roundabout (rda)]. In rda/rda mice, cuticular plates of utricle hair cells initially formed normally, then degenerated after postnatal day 5; large numbers of vesicles invaded the compromised cuticular plate. Hair bundles initially developed normally, but the cell's apical membrane lifted away from the cuticular plate, and stereocilia elongated and fused. Membrane trafficking in type I hair cells, measured by FM1-43 dye labeling, was altered in rda/rda mice. Consistent with the proposed GAP role for ELMOD1, the ARF6 GTP/GDP ratio was significantly elevated in rda/rda utricles compared with controls, and the level of ARF6-GTP was correlated with the severity of the rda/rda phenotype. These results suggest that conversion of ARF6 to its GDP-bound form is necessary for final stabilization of the hair bundle.SIGNIFICANCE STATEMENT Assembly of the mechanically sensitive hair bundle of sensory hair cells requires growth and reorganization of apical actin and membrane structures. Hair bundles and apical membranes in mice with mutations in the Elmod1 gene degenerate after formation, suggesting that the ELMOD1 protein stabilizes these structures. We show that ELMOD1 is a GTPase-activating protein in hair cells for the small GTP-binding protein ARF6, known to participate in actin assembly and membrane trafficking. We propose that conversion of ARF6 into the GDP-bound form in the apical domain of hair cells is essential for stabilizing apical actin structures like the hair bundle and ensuring that the apical membrane forms appropriately around the stereocilia.
Collapse
|
22
|
Phosphoinositol-4,5-Bisphosphate Regulates Auditory Hair-Cell Mechanotransduction-Channel Pore Properties and Fast Adaptation. J Neurosci 2017; 37:11632-11646. [PMID: 29066559 DOI: 10.1523/jneurosci.1351-17.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/05/2017] [Indexed: 11/21/2022] Open
Abstract
Membrane proteins, such as ion channels, interact dynamically with their lipid environment. Phosphoinositol-4,5-bisphosphate (PIP2) can directly or indirectly modify ion-channel properties. In auditory sensory hair cells of rats (Sprague Dawley) of either sex, PIP2 localizes within stereocilia, near stereocilia tips. Modulating the amount of free PIP2 in inner hair-cell stereocilia resulted in the following: (1) the loss of a fast component of mechanoelectric-transduction current adaptation, (2) an increase in the number of channels open at the hair bundle's resting position, (3) a reduction of single-channel conductance, (4) a change in ion selectivity, and (5) a reduction in calcium pore blocking effects. These changes occur without altering hair-bundle compliance or the number of functional stereocilia within a given hair bundle. Although the specific molecular mechanism for PIP2 action remains to be uncovered, data support a hypothesis for PIP2 directly regulating channel conformation to alter calcium permeation and single-channel conductance.SIGNIFICANCE STATEMENT How forces are relayed to the auditory mechanoelectrical transduction (MET) channel remains unknown. However, researchers have surmised that lipids might be involved. Previous work on bullfrog hair cells showed an effect of phosphoinositol-4,5-bisphosphate (PIP2) depletion on MET current amplitude and adaptation, leading to the postulation of the existence of an underlying myosin-based adaptation mechanism. We find similar results in rat cochlea hair cells but extend these data to include single-channel analysis, hair-bundle mechanics, and channel-permeation properties. These additional data attribute PIP2 effects to actions on MET-channel properties and not motor interactions. Further findings support PIP2's role in modulating a fast, myosin-independent, and Ca2+-independent adaptation process, validating fast adaptation's biological origin. Together this shows PIP2's pivotal role in auditory MET, likely as a direct channel modulator.
Collapse
|
23
|
Vogl C, Butola T, Haag N, Hausrat TJ, Leitner MG, Moutschen M, Lefèbvre PP, Speckmann C, Garrett L, Becker L, Fuchs H, Hrabe de Angelis M, Nietzsche S, Kessels MM, Oliver D, Kneussel M, Kilimann MW, Strenzke N. The BEACH protein LRBA is required for hair bundle maintenance in cochlear hair cells and for hearing. EMBO Rep 2017; 18:2015-2029. [PMID: 28893864 DOI: 10.15252/embr.201643689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 07/27/2017] [Accepted: 08/07/2017] [Indexed: 12/15/2022] Open
Abstract
Lipopolysaccharide-responsive beige-like anchor protein (LRBA) belongs to the enigmatic class of BEACH domain-containing proteins, which have been attributed various cellular functions, typically involving intracellular protein and membrane transport processes. Here, we show that LRBA deficiency in mice leads to progressive sensorineural hearing loss. In LRBA knockout mice, inner and outer hair cell stereociliary bundles initially develop normally, but then partially degenerate during the second postnatal week. LRBA deficiency is associated with a reduced abundance of radixin and Nherf2, two adaptor proteins, which are important for the mechanical stability of the basal taper region of stereocilia. Our data suggest that due to the loss of structural integrity of the central parts of the hair bundle, the hair cell receptor potential is reduced, resulting in a loss of cochlear sensitivity and functional loss of the fraction of spiral ganglion neurons with low spontaneous firing rates. Clinical data obtained from two human patients with protein-truncating nonsense or frameshift mutations suggest that LRBA deficiency may likewise cause syndromic sensorineural hearing impairment in humans, albeit less severe than in our mouse model.
Collapse
Affiliation(s)
- Christian Vogl
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Tanvi Butola
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry Göttingen, Göttingen, Germany
| | - Natja Haag
- Institute for Biochemistry I, University Hospital Jena, Jena, Germany
| | - Torben J Hausrat
- Department for Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Michael G Leitner
- Department of Physiology, Philipps University Marburg, Marburg, Germany
| | - Michel Moutschen
- Department of Immunology and Infectious Diseases, University of Liège CHU Liège, Liège, Belgium
| | - Philippe P Lefèbvre
- Department of Otorhinolaryngology, University of Liège CHU Liège, Liège, Belgium
| | - Carsten Speckmann
- Division of Pediatric Hematology and Oncology, Center for Chronic Immunodeficiency and Department of Pediatrics and Adolescent Medicine, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, München, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Michael M Kessels
- Institute for Biochemistry I, University Hospital Jena, Jena, Germany
| | - Dominik Oliver
- Department of Physiology, Philipps University Marburg, Marburg, Germany
| | - Matthias Kneussel
- Department for Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Manfred W Kilimann
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.,Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Nicola Strenzke
- Auditory Systems Physiology Group Department of Otolaryngology University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Gangliosides and hearing. Biochim Biophys Acta Gen Subj 2017; 1861:2485-2493. [PMID: 28571946 DOI: 10.1016/j.bbagen.2017.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 01/12/2023]
Abstract
Severe auditory impairment observed in GM3 synthase-deficient mice and humans indicates that glycosphingolipids, especially sialic-acid containing gangliosides, are indispensable for hearing. Gangliosides associate with glycoproteins to form membrane microdomains, the composition of which plays a special role in maintaining the structural and functional integrity of hair cells. These microdomains, also called lipid rafts, connect with intracellular signaling and cytoskeletal systems to link cellular responses to environmental cues. During development, ganglioside species are expressed in distinctive spatial and temporal patterns throughout the cochlea. In both mice and humans, blocking particular steps of ganglioside metabolism produces distinctive neurological and auditory phenotypes. Thus each ganglioside species may have specific, non-overlapping functions within the cochlea, central auditory network, and brain.
Collapse
|
25
|
McGrath J, Roy P, Perrin BJ. Stereocilia morphogenesis and maintenance through regulation of actin stability. Semin Cell Dev Biol 2016; 65:88-95. [PMID: 27565685 DOI: 10.1016/j.semcdb.2016.08.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/24/2022]
Abstract
Stereocilia are actin-based protrusions on auditory and vestibular sensory cells that are required for hearing and balance. They convert physical force from sound, head movement or gravity into an electrical signal, a process that is called mechanoelectrical transduction. This function depends on the ability of sensory cells to grow stereocilia of defined lengths. These protrusions form a bundle with a highly precise geometry that is required to detect nanoscale movements encountered in the inner ear. Congenital or progressive stereocilia degeneration causes hearing loss. Thus, understanding stereocilia hair bundle structure, development, and maintenance is pivotal to understanding the pathogenesis of deafness. Stereocilia cores are made from a tightly packed array of parallel, crosslinked actin filaments, the length and stability of which are regulated in part by myosin motors, actin crosslinkers and capping proteins. This review aims to describe stereocilia actin regulation in the context of an emerging "tip turnover" model where actin assembles and disassembles at stereocilia tips while the remainder of the core is exceptionally stable.
Collapse
Affiliation(s)
- Jamis McGrath
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46022, USA
| | - Pallabi Roy
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46022, USA
| | - Benjamin J Perrin
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46022, USA.
| |
Collapse
|
26
|
Morgan CP, Krey JF, Grati M, Zhao B, Fallen S, Kannan-Sundhari A, Liu XZ, Choi D, Müller U, Barr-Gillespie PG. PDZD7-MYO7A complex identified in enriched stereocilia membranes. eLife 2016; 5:e18312. [PMID: 27525485 PMCID: PMC5005036 DOI: 10.7554/elife.18312] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/14/2016] [Indexed: 12/15/2022] Open
Abstract
While more than 70 genes have been linked to deafness, most of which are expressed in mechanosensory hair cells of the inner ear, a challenge has been to link these genes into molecular pathways. One example is Myo7a (myosin VIIA), in which deafness mutations affect the development and function of the mechanically sensitive stereocilia of hair cells. We describe here a procedure for the isolation of low-abundance protein complexes from stereocilia membrane fractions. Using this procedure, combined with identification and quantitation of proteins with mass spectrometry, we demonstrate that MYO7A forms a complex with PDZD7, a paralog of USH1C and DFNB31. MYO7A and PDZD7 interact in tissue-culture cells, and co-localize to the ankle-link region of stereocilia in wild-type but not Myo7a mutant mice. Our data thus describe a new paradigm for the interrogation of low-abundance protein complexes in hair cell stereocilia and establish an unanticipated link between MYO7A and PDZD7.
Collapse
Affiliation(s)
- Clive P Morgan
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jocelyn F Krey
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, United States
| | - M'hamed Grati
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, United States
| | - Bo Zhao
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Shannon Fallen
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, United States
| | | | - Xue Zhong Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, United States
| | - Dongseok Choi
- OHSU-PSU School of Public Health, Oregon Health and Science University, Portland, United States
- Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Ulrich Müller
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
27
|
Zhao B, Wu Z, Müller U. Murine Fam65b forms ring-like structures at the base of stereocilia critical for mechanosensory hair cell function. eLife 2016; 5. [PMID: 27269051 PMCID: PMC4898930 DOI: 10.7554/elife.14222] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/12/2016] [Indexed: 12/23/2022] Open
Abstract
Cochlear hair cells convert sound-induced vibration into electrical signals. FAM65B mutations cause hearing loss by an unknown mechanism. Using biochemistry and stochastic optical reconstruction microscopy (STORM), we show here that Fam65b oligomers form a circumferential ring near the basal taper of the mechanically sensitive stereocilia of murine hair cells. Taperin, a second protein near the taper, forms a dense-core-like structure that is disrupted in the absence of Fam65b. Stereocilia of Fam65b-deficient murine hair cells start to develop, but mechanotransduction is affected and stereocilia deteriorate. Yeast-two-hybrid screens identify RhoC as a Fam65b binding partner. RhoC co-localizes with Fam65b in stereocilia and regulates Fam65b oligomerization. Binding to RhoC and oligomerization are critical for Fam65b function. Our findings thus reveal a highly organized compartment near the base of stereocilia that is critical for hair cell function and affected in disease. DOI:http://dx.doi.org/10.7554/eLife.14222.001
Collapse
Affiliation(s)
- Bo Zhao
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, United States.,Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Zizhen Wu
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, United States.,Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Ulrich Müller
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, United States.,Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
28
|
Annexin A5 is the Most Abundant Membrane-Associated Protein in Stereocilia but is Dispensable for Hair-Bundle Development and Function. Sci Rep 2016; 6:27221. [PMID: 27251877 PMCID: PMC4890179 DOI: 10.1038/srep27221] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/17/2016] [Indexed: 01/26/2023] Open
Abstract
The phospholipid- and Ca(2+)-binding protein annexin A5 (ANXA5) is the most abundant membrane-associated protein of ~P23 mouse vestibular hair bundles, the inner ear's sensory organelle. Using quantitative mass spectrometry, we estimated that ANXA5 accounts for ~15,000 copies per stereocilium, or ~2% of the total protein there. Although seven other annexin genes are expressed in mouse utricles, mass spectrometry showed that none were present at levels near ANXA5 in bundles and none were upregulated in stereocilia of Anxa5(-/-) mice. Annexins have been proposed to mediate Ca(2+)-dependent repair of membrane lesions, which could be part of the repair mechanism in hair cells after noise damage. Nevertheless, mature Anxa5(-/-) mice not only have normal hearing and balance function, but following noise exposure, they are identical to wild-type mice in their temporary or permanent changes in hearing sensitivity. We suggest that despite the unusually high levels of ANXA5 in bundles, it does not play a role in the bundle's key function, mechanotransduction, at least until after two months of age in the cochlea and six months of age in the vestibular system. These results reinforce the lack of correlation between abundance of a protein in a specific compartment or cellular structure and its functional significance.
Collapse
|
29
|
Kim J. Unconventional mechanics of lipid membranes: a potential role for mechanotransduction of hair cell stereocilia. Biophys J 2015; 108:610-21. [PMID: 25650928 DOI: 10.1016/j.bpj.2014.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/15/2014] [Accepted: 12/10/2014] [Indexed: 01/20/2023] Open
Abstract
A force-conveying role of the lipid membrane across various mechanoreceptors is now an accepted hypothesis. However, such a mechanism is still not fully understood for mechanotransduction in the hair bundle of auditory sensory hair cells. A major goal of this theoretical assessment was to investigate the role of the lipid membrane in auditory mechanotransduction, especially in generating nonlinear bundle force versus displacement measurements, one of the main features of auditory mechanotransduction. To this end, a hair bundle model that generates lipid membrane tented deformation in the stereocilia was developed. A computational analysis of the model not only reproduced nonlinear bundle force measurements but also generated membrane energy that is potentially sufficient to activate the mechanosensitive ion channel of the hair cell. In addition, the model provides biophysical insight into 1) the likelihood that the channel must be linked in some way to the tip link; 2) how the interplay of the bending and stretching of the lipid bilayer may be responsible for the nonlinear force versus displacement response; 3) how measurements of negative stiffness may be a function of the rotational stiffness of the rootlets; and 4) how the standing tension of the tip link is required to interpret migration of the nonlinear force versus displacement and activation curves. These are all features of hair cell mechanotransduction, but the underlying biophysical mechanism has proved elusive for the last three decades.
Collapse
Affiliation(s)
- Jichul Kim
- Department of Mechanical Engineering, Stanford University, Stanford, California.
| |
Collapse
|
30
|
Lu X, Sipe CW. Developmental regulation of planar cell polarity and hair-bundle morphogenesis in auditory hair cells: lessons from human and mouse genetics. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:85-101. [PMID: 26265594 DOI: 10.1002/wdev.202] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/12/2015] [Accepted: 06/29/2015] [Indexed: 12/11/2022]
Abstract
Hearing loss is the most common and costly sensory defect in humans and genetic causes underlie a significant proportion of affected individuals. In mammals, sound is detected by hair cells (HCs) housed in the cochlea of the inner ear, whose function depends on a highly specialized mechanotransduction organelle, the hair bundle. Understanding the factors that regulate the development and functional maturation of the hair bundle is crucial for understanding the pathophysiology of human deafness. Genetic analysis of deafness genes in animal models, together with complementary forward genetic screens and conditional knock-out mutations in essential genes, have provided great insights into the molecular machinery underpinning hair-bundle development and function. In this review, we highlight recent advances in our understanding of hair-bundle morphogenesis, with an emphasis on the molecular pathways governing hair-bundle polarity and orientation. We next discuss the proteins and structural elements important for hair-cell mechanotransduction as well as hair-bundle cohesion and maintenance. In addition, developmental signals thought to regulate tonotopic features of HCs are introduced. Finally, novel approaches that complement classic genetics for studying the molecular etiology of human deafness are presented. WIREs Dev Biol 2016, 5:85-101. doi: 10.1002/wdev.202 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Xiaowei Lu
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Conor W Sipe
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
31
|
Han Y, Wang X, Chen J, Sha SH. Noise-induced cochlear F-actin depolymerization is mediated via ROCK2/p-ERM signaling. J Neurochem 2015; 133:617-28. [PMID: 25683353 DOI: 10.1111/jnc.13061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/26/2015] [Accepted: 02/04/2015] [Indexed: 02/02/2023]
Abstract
Our previous work has suggested that traumatic noise activates Rho-GTPase pathways in cochlear outer hair cells (OHCs), resulting in cell death and noise-induced hearing loss (NIHL). In this study, we investigated Rho effectors, Rho-associated kinases (ROCKs), and the targets of ROCKs, the ezrin-radixin-moesin (ERM) proteins, in the regulation of the cochlear actin cytoskeleton using adult CBA/J mice under conditions of noise-induced temporary threshold shift (TTS) and permanent threshold shift (PTS) hearing loss, which result in changes to the F/G-actin ratio. The levels of cochlear ROCK2 and p-ERM decreased 1 h after either TTS- or PTS-noise exposure. In contrast, ROCK2 and p-ERM in OHCs decreased only after PTS-, not after TTS-noise exposure. Treatment with lysophosphatidic acid, an activator of the Rho pathway, resulted in significant reversal of the F/G-actin ratio changes caused by noise exposure and attenuated OHC death and NIHL. Conversely, the down-regulation of ROCK2 by pretreatment with ROCK2 siRNA reduced the expression of ROCK2 and p-ERM in OHCs, exacerbated TTS to PTS, and worsened OHC loss. Additionally, pretreatment with siRNA against radixin, an ERM protein, aggravated TTS to PTS. Our results indicate that a ROCK2-mediated ERM-phosphorylation signaling cascade modulates noise-induced hair cell loss and NIHL by targeting the cytoskeleton. We propose the following cascade following noise trauma leading to alteration of the F-actin arrangement in the outer hair cell cytoskeleton: Noise exposure reduces the levels of GTP-RhoA and subsequently diminishes levels of RhoA effector ROCK2 (Rho-associated kinase 2). Phosphorylation of ezrin-radixin-moesin (ERM) by ROCK2 normally allows ERM to cross-link actin filaments with the plasma membrane. Noise-decreased levels of ROCK results in reduction of phosphorylation of ERM that leads to depolymerization of actin filaments. Lysophosphatidic acid (LPA), an agonist of RhoA, binds to the G-protein-coupled receptor (GPCR) leading to activation of RhoA through Gα12/13 and RhoGEF. Administration of LPA rescues the noise-diminished F/G-actin ratio.
Collapse
Affiliation(s)
- Yu Han
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | |
Collapse
|
32
|
Yoshikawa M, Go S, Suzuki SI, Suzuki A, Katori Y, Morlet T, Gottlieb SM, Fujiwara M, Iwasaki K, Strauss KA, Inokuchi JI. Ganglioside GM3 is essential for the structural integrity and function of cochlear hair cells. Hum Mol Genet 2015; 24:2796-807. [PMID: 25652401 DOI: 10.1093/hmg/ddv041] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/02/2015] [Indexed: 01/18/2023] Open
Abstract
GM3 synthase (ST3GAL5) is the first biosynthetic enzyme of a- and b-series gangliosides. Patients with GM3 synthase deficiency suffer severe neurological disability and deafness. Eight children (ages 4.1 ± 2.3 years) homozygous for ST3GAL5 c.694C>T had no detectable GM3 (a-series) or GD3 (b-series) in plasma. Their auditory function was characterized by the absence of middle ear muscle reflexes, distortion product otoacoustic emissions and cochlear microphonics, as well as abnormal auditory brainstem responses and cortical auditory-evoked potentials. In St3gal5(-/-) mice, stereocilia of outer hair cells showed signs of degeneration as early as postnatal Day 3 (P3); thereafter, blebs devoid of actin or tubulin appeared at the region of vestigial kinocilia, suggesting impaired vesicular trafficking. Stereocilia of St3gal5(-/-) inner hair cells were fused by P17, and protein tyrosine phosphatase receptor Q, normally linked to myosin VI at the tapered base of stereocilia, was maldistributed along the cell membrane. B4galnt1(-/-) (GM2 synthase-deficient) mice expressing only GM3 and GD3 gangliosides had normal auditory structure and function. Thus, GM3-dependent membrane microdomains might be essential for the proper organization and maintenance of stereocilia in auditory hair cells.
Collapse
Affiliation(s)
- Misato Yoshikawa
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Aoba-ku, Sendai, Miyagi 981-8558, Japan, Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Shinji Go
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Shun-ichi Suzuki
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Akemi Suzuki
- Institute of Glycoscience, Tokai University, Kanagawa 259-1292, Japan
| | - Yukio Katori
- Department of Otorhinolaryngology, Head and Neck Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, SendaiCity, Miyagi 980-8574, Japan
| | - Thierry Morlet
- Department of Biomedical Research, Nemours, Wilmington, DE 19803, USA
| | - Steven M Gottlieb
- Division of Pediatric Neurology, Nemours Alfred I. DuPont Hospital for Children, Wilimington, DE 19803, USA
| | - Michihiro Fujiwara
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kevin A Strauss
- Clinic for Special Children, Strasburg, PA 17579, USA, Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17602, USA and Lancaster General Hospital, Lancaster, PA 17602, USA
| | - Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Aoba-ku, Sendai, Miyagi 981-8558, Japan,
| |
Collapse
|
33
|
Zhang J, Sun X, Zheng S, Liu X, Jin J, Ren Y, Luo J. Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane. PLoS One 2014; 9:e108646. [PMID: 25255088 PMCID: PMC4177931 DOI: 10.1371/journal.pone.0108646] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 08/18/2014] [Indexed: 12/15/2022] Open
Abstract
The central nervous system (CNS) insults may cause massive demyelination and lead to the release of myelin-associated proteins including its major component myelin basic protein (MBP). MBP is reported to induce glial activation but its effect on neurons is still little known. Here we found that MBP specifically bound to the extracellular surface of the neuronal plasma membrane and induced neurotoxicity in vitro. This effect of MBP on neurons was basicity-dependent because the binding was blocked by acidic lipids and competed by other basic proteins. Further studies revealed that MBP induced damage to neuronal membrane integrity and function by depolarizing the resting membrane potential, increasing the permeability to cations and other molecules, and decreasing the membrane fluidity. At last, artificial liposome vesicle assay showed that MBP directly disturbed acidic lipid bilayer and resulted in increased membrane permeability. These results revealed that MBP induces neurotoxicity through its direct interaction with acidic components on the extracellular surface of neuronal membrane, which may suggest a possible contribution of MBP to the pathogenesis in the CNS disorders with myelin damage.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Sun
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sixin Zheng
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao Liu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghua Jin
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Jianhong Luo
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
34
|
Fettiplace R, Kim KX. The physiology of mechanoelectrical transduction channels in hearing. Physiol Rev 2014; 94:951-86. [PMID: 24987009 DOI: 10.1152/physrev.00038.2013] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Much is known about the mechanotransducer (MT) channels mediating transduction in hair cells of the vertrbrate inner ear. With the use of isolated preparations, it is experimentally feasible to deliver precise mechanical stimuli to individual cells and record the ensuing transducer currents. This approach has shown that small (1-100 nm) deflections of the hair-cell stereociliary bundle are transmitted via interciliary tip links to open MT channels at the tops of the stereocilia. These channels are cation-permeable with a high selectivity for Ca(2+); two channels are thought to be localized at the lower end of the tip link, each with a large single-channel conductance that increases from the low- to high-frequency end of the cochlea. Ca(2+) influx through open channels regulates their resting open probability, which may contribute to setting the hair cell resting potential in vivo. Ca(2+) also controls transducer fast adaptation and force generation by the hair bundle, the two coupled processes increasing in speed from cochlear apex to base. The molecular intricacy of the stereocilary bundle and the transduction apparatus is reflected by the large number of single-gene mutations that are linked to sensorineural deafness, especially those in Usher syndrome. Studies of such mutants have led to the discovery of many of the molecules of the transduction complex, including the tip link and its attachments to the stereociliary core. However, the MT channel protein is still not firmly identified, nor is it known whether the channel is activated by force delivered through accessory proteins or by deformation of the lipid bilayer.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kyunghee X Kim
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
35
|
Teng J, Loukin S, Anishkin A, Kung C. The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflugers Arch 2014; 467:27-37. [PMID: 24888690 DOI: 10.1007/s00424-014-1530-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/29/2014] [Accepted: 05/05/2014] [Indexed: 12/27/2022]
Abstract
Focus on touch and hearing distracts attention from numerous subconscious force sensors, such as the vital control of blood pressure and systemic osmolarity, and sensors in nonanimals. Multifarious manifestations should not obscure invariant and fundamental physicochemical principles. We advocate that force from lipid (FFL) is one such principle. It is based on the fact that the self-assembled bilayer necessitates inherent forces that are large and anisotropic, even at life's origin. Functional response of membrane proteins is governed by bilayer force changes. Added stress can redirect these forces, leading to geometric changes of embedded proteins such as ion channels. The FFL principle was first demonstrated when purified bacterial mechanosensitive channel of large conductance (MscL) remained mechanosensitive (MS) after reconstituting into bilayers. This key experiment has recently been unequivocally replicated with two vertebrate MS K2p channels. Even the canonical Kv and the Drosophila canonical transient receptor potentials (TRPCs) have now been shown to be MS in biophysical and in physiological contexts, supporting the universality of the FFL paradigm. We also review the deterministic role of mechanical force during stem cell differentiation as well as the cell-cell and cell-matrix tethers that provide force communications. In both the ear hair cell and the worm's touch neuron, deleting the cadherin or microtubule tethers reduces but does not eliminate MS channel activities. We found no evidence to distinguish whether these tethers directly pull on the channel protein or a surrounding lipid platform. Regardless of the implementation, pulling tether tenses up the bilayer. Membrane tenting is directly visible at the apexes of the stereocilia.
Collapse
Affiliation(s)
- Jinfeng Teng
- Laboratory of Molecular Biology, University of Wisconsin, Madison, WI, 53706, USA
| | | | | | | |
Collapse
|
36
|
Thomas PV, Cheng AL, Colby CC, Liu L, Patel CK, Josephs L, Duncan RK. Localization and proteomic characterization of cholesterol-rich membrane microdomains in the inner ear. J Proteomics 2014; 103:178-93. [PMID: 24713161 DOI: 10.1016/j.jprot.2014.03.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Biological membranes organize and compartmentalize cell signaling into discrete microdomains, a process that often involves stable, cholesterol-rich platforms that facilitate protein-protein interactions. Polarized cells with distinct apical and basolateral cell processes rely on such compartmentalization to maintain proper function. In the cochlea, a variety of highly polarized sensory and non-sensory cells are responsible for the early stages of sound processing in the ear, yet little is known about the mechanisms that traffic and organize signaling complexes within these cells. We sought to determine the prevalence, localization, and protein composition of cholesterol-rich lipid microdomains in the cochlea. Lipid raft components, including the scaffolding protein caveolin and the ganglioside GM1, were found in sensory, neural, and glial cells. Mass spectrometry of detergent-resistant membrane (DRM) fractions revealed over 600 putative raft proteins associated with subcellular localization, trafficking, and metabolism. Among the DRM constituents were several proteins involved in human forms of deafness including those involved in ion homeostasis, such as the potassium channel KCNQ1, the co-transporter SLC12A2, and gap junction proteins GJA1 and GJB6. The presence of caveolin in the cochlea and the abundance of proteins in cholesterol-rich DRM suggest that lipid microdomains play a significant role in cochlear physiology. BIOLOGICAL SIGNIFICANCE Although mechanisms underlying cholesterol synthesis, homeostasis, and compartmentalization in the ear are poorly understood, there are several lines of evidence indicating that cholesterol is a key modulator of cochlear function. Depletion of cholesterol in mature sensory cells alters calcium signaling, changes excitability during development, and affects the biomechanical processes in outer hair cells that are responsible for hearing acuity. More recently, we have established that the cholesterol-modulator beta-cyclodextrin is capable of inducing significant and permanent hearing loss when delivered subcutaneously at high doses. We hypothesize that proteins involved in cochlear homeostasis and otopathology are partitioned into cholesterol-rich domains. The results of a large-scale proteomic analysis point to metabolic processes, scaffolding/trafficking, and ion homeostasis as particularly associated with cholesterol microdomains. These data offer insight into the proteins and protein families that may underlie cholesterol-mediated effects in sensory cell excitability and cyclodextrin ototoxicity.
Collapse
Affiliation(s)
- Paul V Thomas
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Andrew L Cheng
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Candice C Colby
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Liqian Liu
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Chintan K Patel
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Lydia Josephs
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - R Keith Duncan
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA.
| |
Collapse
|
37
|
Salles FT, Andrade LR, Tanda S, Grati M, Plona KL, Gagnon LH, Johnson KR, Kachar B, Berryman MA. CLIC5 stabilizes membrane-actin filament linkages at the base of hair cell stereocilia in a molecular complex with radixin, taperin, and myosin VI. Cytoskeleton (Hoboken) 2013; 71:61-78. [PMID: 24285636 DOI: 10.1002/cm.21159] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 12/30/2022]
Abstract
Chloride intracellular channel 5 protein (CLIC5) was originally isolated from microvilli in complex with actin binding proteins including ezrin, a member of the Ezrin-Radixin-Moesin (ERM) family of membrane-cytoskeletal linkers. CLIC5 concentrates at the base of hair cell stereocilia and is required for normal hearing and balance in mice, but its functional significance is poorly understood. This study investigated the role of CLIC5 in postnatal development and maintenance of hair bundles. Confocal and scanning electron microscopy of CLIC5-deficient jitterbug (jbg) mice revealed progressive fusion of stereocilia as early as postnatal day 10. Radixin (RDX), protein tyrosine phosphatase receptor Q (PTPRQ), and taperin (TPRN), deafness-associated proteins that also concentrate at the base of stereocilia, were mislocalized in fused stereocilia of jbg mice. TPRQ and RDX were dispersed even prior to stereocilia fusion. Biochemical assays showed interaction of CLIC5 with ERM proteins, TPRN, and possibly myosin VI (MYO6). In addition, CLIC5 and RDX failed to localize normally in fused stereocilia of MYO6 mutant mice. Based on these findings, we propose a model in which these proteins work together as a complex to stabilize linkages between the plasma membrane and subjacent actin cytoskeleton at the base of stereocilia.
Collapse
Affiliation(s)
- Felipe T Salles
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Krey JF, Wilmarth PA, Shin JB, Klimek J, Sherman NE, Jeffery ED, Choi D, David LL, Barr-Gillespie PG. Accurate label-free protein quantitation with high- and low-resolution mass spectrometers. J Proteome Res 2013; 13:1034-1044. [PMID: 24295401 DOI: 10.1021/pr401017h] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Label-free quantitation of proteins analyzed by tandem mass spectrometry uses either integrated peak intensity from the parent-ion mass analysis (MS1) or features from fragment-ion analysis (MS2), such as spectral counts or summed fragment-ion intensity. We directly compared MS1 and MS2 quantitation by analyzing human protein standards diluted into Escherichia coli extracts on an Orbitrap mass spectrometer. We found that summed MS2 intensities were nearly as accurate as integrated MS1 intensities, and both outperformed MS2 spectral counting in accuracy and linearity. We compared these results to those obtained from two low-resolution ion-trap mass spectrometers; summed MS2 intensities from LTQ and LTQ Velos instruments were similar in accuracy to those from the Orbitrap. Data from all three instruments are available via ProteomeXchange with identifier PXD000602. Abundance measurements using MS1 or MS2 intensities had limitations, however. While measured protein concentration was on average well-correlated with the known concentration, there was considerable protein-to-protein variation. Moreover, not all human proteins diluted to a mole fraction of 10(-3) or lower were detected, with a strong falloff below 10(-4) mole fraction. These results show that MS1 and MS2 intensities are simple measures of protein abundance that are on average accurate but should be limited to quantitation of proteins of intermediate to higher fractional abundance.
Collapse
Affiliation(s)
- Jocelyn F Krey
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Phillip A Wilmarth
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR
| | - Jung-Bum Shin
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR
| | - John Klimek
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR
| | - Nicholas E Sherman
- W.M. Keck Biomedical Mass Spectrometry Lab, University of Virginia, Charlottesville, VA
| | - Erin D Jeffery
- W.M. Keck Biomedical Mass Spectrometry Lab, University of Virginia, Charlottesville, VA
| | - Dongseok Choi
- Department of Public Health & Preventative Medicine, Oregon Health & Science University, Portland, OR
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR.,Proteomics Shared Resource, Oregon Health & Science University, Portland, OR
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
39
|
Penniston JT, Padányi R, Pászty K, Varga K, Hegedus L, Enyedi A. Apart from its known function, the plasma membrane Ca²⁺ATPase can regulate Ca²⁺ signaling by controlling phosphatidylinositol 4,5-bisphosphate levels. J Cell Sci 2013; 127:72-84. [PMID: 24198396 DOI: 10.1242/jcs.132548] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma membrane Ca(2+) ATPases (PMCAs, also known as ATP2B1-ATP2B4) are known targets of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P₂], but if and how they control the PtdIns(4,5)P₂ pool has not been considered. We demonstrate here that PMCAs protect PtdIns(4,5)P₂ in the plasma membrane from hydrolysis by phospholipase C (PLC). Comparison of active and inactive PMCAs indicates that the protection operates by two mechanisms; one requiring active PMCAs, the other not. It appears that the mechanism requiring activity is the removal of the Ca(2+) required for sustained PLC activity, whereas the mechanism not requiring activity is PtdIns(4,5)P₂ binding. We show that in PMCA overexpressing cells, PtdIns(4,5)P₂ binding can lead to less inositol 1,4,5-triphosphate (InsP₃) and diminished Ca(2+) release from intracellular Ca(2+) pools. Inspection of a homology model of PMCA suggests that PMCAs have a conserved cluster of basic residues forming a 'blue collar' at the interface between the membrane core and the cytoplasmic domains. By molecular dynamics simulation, we found that the blue collar forms four binding pockets for the phosphorylated inositol head group of PtdIns(4,5)P₂; these pockets bind PtdIns(4,5)P₂ strongly and frequently. Our studies suggest that by having the ability to bind PtdIns(4,5)P₂, PMCAs can control the accessibility of PtdIns(4,5)P₂ for PLC and other PtdIns(4,5)P₂-mediated processes.
Collapse
Affiliation(s)
- John T Penniston
- Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1025 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
How mechanical forces are sensed remains largely mysterious. The forces that gate prokaryotic and several eukaryotic channels were found to come from the lipid membrane. Our survey of animal cells found that membrane force foci all have cholesterol-gathering proteins and are reinforced with cholesterol. This result is evident in overt force sensors at the tips of stereocilia for vertebrate hearing and the touch receptor of Caenorhabditis elegans and mammalian neurons. For less specialized cells, cadherins sustain the force between neighboring cells and integrins between cells and matrix. These tension bearers also pass through and bind to a cholesterol-enriched platform before anchoring to cytoskeleton through other proteins. Cholesterol, in alliance with sphingomyelin and specialized proteins, enforces a more ordered structure in the bilayer. Such a stiffened platform can suppress mechanical noise, redirect, rescale, and confine force. We speculate that such platforms may be dynamic. The applied force may allow disordered-phase lipids to enter the platform-staging channel opening in the thinner mobile neighborhood. The platform may also contain specialized protein/lipid subdomains enclosing mechanosensitive channels to open with localized tension. Such a dynamic stage can mechanically operate structurally disparate channels or enzymes without having to tie them directly to cadherin, integrin, or other protein tethers.
Collapse
|
41
|
Shin JB, Krey JF, Hassan A, Metlagel Z, Tauscher AN, Pagana JM, Sherman NE, Jeffery ED, Spinelli KJ, Zhao H, Wilmarth PA, Choi D, David LL, Auer M, Barr-Gillespie PG. Molecular architecture of the chick vestibular hair bundle. Nat Neurosci 2013; 16:365-74. [PMID: 23334578 PMCID: PMC3581746 DOI: 10.1038/nn.3312] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/17/2012] [Indexed: 12/31/2022]
Abstract
Hair bundles of the inner ear have a specialized structure and protein composition that underlies their sensitivity to mechanical stimulation. Using mass spectrometry, we identified and quantified >1,100 proteins, present from a few to 400,000 copies per stereocilium, from purified chick bundles; 336 of these were significantly enriched in bundles. Bundle proteins that we detected have been shown to regulate cytoskeleton structure and dynamics, energy metabolism, phospholipid synthesis and cell signaling. Three-dimensional imaging using electron tomography allowed us to count the number of actin-actin cross-linkers and actin-membrane connectors; these values compared well to those obtained from mass spectrometry. Network analysis revealed several hub proteins, including RDX (radixin) and SLC9A3R2 (NHERF2), which interact with many bundle proteins and may perform functions essential for bundle structure and function. The quantitative mass spectrometry of bundle proteins reported here establishes a framework for future characterization of dynamic processes that shape bundle structure and function.
Collapse
Affiliation(s)
- Jung-Bum Shin
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hackney CM, Furness DN. The composition and role of cross links in mechanoelectrical transduction in vertebrate sensory hair cells. J Cell Sci 2013; 126:1721-31. [DOI: 10.1242/jcs.106120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The key components of acousticolateralis systems (lateral line, hearing and balance) are sensory hair cells. At their apex, these cells have a bundle of specialized cellular protrusions, which are modified actin-containing microvilli, connected together by extracellular filaments called cross links. Stereociliary deflections open nonselective cation channels allowing ions from the extracellular environment into the cell, a process called mechanoelectrical transduction. This produces a receptor potential that causes the release of the excitatory neurotransmitter glutamate onto the terminals of the sensory nerve fibres, which connect to the cell base, causing nerve signals to be sent to the brain. Identification of the cellular mechanisms underlying mechanoelectrical transduction and of some of the proteins involved has been assisted by research into the genetics of deafness, molecular biology and mechanical measurements of function. It is thought that one type of cross link, the tip link, is composed of cadherin 23 and protocadherin 15, and gates the transduction channel when the bundle is deflected. Another type of link, called lateral (or horizontal) links, maintains optimal bundle cohesion and stiffness for transduction. This Commentary summarizes the information currently available about the structure, function and composition of the links and how they might be relevant to human hearing impairment.
Collapse
|