1
|
Cellini BR, Edachola SV, Faw TD, Cigliola V. Blueprints for healing: central nervous system regeneration in zebrafish and neonatal mice. BMC Biol 2025; 23:115. [PMID: 40307837 PMCID: PMC12044871 DOI: 10.1186/s12915-025-02203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
In adult mammals, including humans, neurons, and axons in the brain and spinal cord are inherently incapable of regenerating after injury. Studies of animals with innate capacity for regeneration are providing valuable insights into the mechanisms driving tissue healing. The aim of this review is to summarize recent data on regeneration mechanisms in the brain and spinal cord of zebrafish and neonatal mice. We infer that elucidating these mechanisms and understanding how and why they are lost in adult mammals will contribute to the development of strategies to promote central nervous system regeneration.
Collapse
Affiliation(s)
- Brianna R Cellini
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA
| | | | - Timothy D Faw
- Department of Orthopaedic Surgery, Duke University, Durham, NC, 27710, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA
| | - Valentina Cigliola
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
2
|
Qin H, Yu S, Han R, He J. Age-dependent glial heterogeneity and traumatic injury responses in a vertebrate brain structure. Cell Rep 2025; 44:115508. [PMID: 40198221 DOI: 10.1016/j.celrep.2025.115508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/11/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
The progression of traumatic brain injury (TBI) pathology is significantly influenced by age and involves a complex interplay of glial cells. However, the influence of age on the glial dynamics and their TBI responses remains mostly unexplored. Here, we obtain a comprehensive single-cell transcriptome atlas of three major glial types under the physiological and TBI conditions across four post-embryonic life stages in the zebrafish midbrain optic tectum. We identify a library of glial subtypes and states with specific age-dependent patterns that respond distinctly to TBI. Combining the glial interactome analysis and CRISPR-Cas9-mediated gene disruption, we reveal the essential roles of dla-notch3 and cxcl12a-cxcr4b interactions in the early-larval-stage-specific unresponsiveness of radial astrocytes to TBI and the TBI-induced age-independent recruitment of microglia to injury sites, respectively. Overall, our findings provide the molecular and cellular framework of TBI-induced age-related glial dynamics in vertebrate brains.
Collapse
Affiliation(s)
- Huiwen Qin
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Yu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyi Han
- Department of Ophthalmology, Eye, ENT Hospital of Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment, Restoration, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
| | - Jie He
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
3
|
Zhong W, Xu L, Jiang G, Gao Y, Song J, Ma Y, Wang G, Fan J, Li W, Zhou S, Yang Y, Yu X. Sodium tanshinone IIA sulfonate promotes proliferation and differentiation of endogenous neural stem cells to repair rat spinal cord injury via the Notch pathway. J Transl Med 2025; 23:367. [PMID: 40128847 PMCID: PMC11934593 DOI: 10.1186/s12967-025-06331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Interventions that promote the proliferation of endogenous neural stem cells (ENSCs) and induce their differentiation into neurons after spinal cord injury (SCI) hold significant potential for SCI repair. Tanshinone IIA (TIIA) exhibits extensive neuroprotective effects, and its derivative, sodium tanshinone IIA sulfonate (STS), has enhanced water solubility, making it easier to prepare injectable formulations and increasing bioavailability. STS injections have been extensively utilized in the treatment of cardiovascular and cerebrovascular diseases, and their clinical application in SCI shows promising potential. However, it remains unclear whether STS can promote spinal cord injury repair in rats by modulating the proliferation and differentiation of ENSCs, and the underlying regulatory mechanisms are yet to be elucidated. METHODS In this study, an incomplete spinal cord injury model was established in rats using the NYU spinal cord impactor. The regulatory effects of STS on ENSCs in rats post-SCI were observed by detecting the NSC marker Nestin, the neuronal marker NeuN, and the astrocyte marker GFAP. Additionally, rat behavioral assessments, histopathology, serum inflammation indices, and Notch signaling pathway activation were evaluated. In vitro experiments utilized an lipopolysaccharide (LPS)-induced rats spinal cord NSCs inflammation model. The effects of STS on the proliferation and viability of rats spinal cord NSCs were assessed using the CCK-8 assay and immunofluorescence cell counting. The mechanisms by which STS regulates NSC proliferation and differentiation via the Notch pathway were verified using immunofluorescence, Western blot, and RT-PCR techniques. RESULTS In vitro, STS significantly reduced the levels of inflammatory indices in the LPS-induced rats NSCs inflammation model and improved the viability of rats NSCs following inflammatory injury. STS also significantly increased the proliferation of NSCs and their differentiation into neurons while reducing their differentiation into astrocytes. Moreover, LPS significantly activated the Notch pathway, similar to the effects of the Notch pathway agonist valproic acid (VPA), whereas STS intervention could inhibit the LPS- or VPA-induced activation of the Notch pathway. In vivo, STS markedly improved the hindlimb motor function of rats with SCI, decreased the levels of pro-inflammatory factors IL-6 and TNF-α, and increased the level of the anti-inflammatory factor IL-10, thereby improving the pathological morphology of the injured spinal cord in rats post-SCI. STS effectively promoted the proliferation of ENSCs post-SCI, facilitated their differentiation into neurons, and inhibited their differentiation into astrocytes. Additionally, STS suppressed the excessive activation of the Notch signaling pathway following SCI. CONCLUSION STS promotes the proliferation of ENSCs post-SCI in rats, induces their differentiation into neurons, and inhibits their differentiation into astrocytes, thereby improving the pathological morphology of the injured spinal cord and promoting the recovery of hindlimb motor function in rats post-SCI. Furthermore, the regulatory effects of STS on the proliferation and differentiation of ENSCs post-SCI in rats may be related to its inhibition of the excessive activation of the Notch signaling pathway.
Collapse
Affiliation(s)
- Wenqing Zhong
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, PR China
| | - Luchun Xu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, PR China
| | - Guozheng Jiang
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, PR China
| | - Yushan Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiawei Song
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, PR China
| | - Yukun Ma
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, PR China
| | - Guanlong Wang
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, PR China
| | - Jiaojiao Fan
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, PR China
| | - Wenhao Li
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, PR China
| | - Shibo Zhou
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, PR China
| | - Yongdong Yang
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, PR China.
| | - Xing Yu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, PR China.
| |
Collapse
|
4
|
Erofeeva N, Galstyan DS, Yang L, Strekalova T, Lim LW, de Abreu MS, Golushko NI, Stewart AM, Kalueff AV. Developing zebrafish models of Notch-related CNS pathologies. Neurosci Biobehav Rev 2025; 170:106059. [PMID: 39929383 DOI: 10.1016/j.neubiorev.2025.106059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Notch signaling is an evolutionarily conserved cellular pathway that regulates various stem cell functions, including fate determination, differentiation, proliferation, and apoptosis. This crucial signaling mechanism also plays an important role in the brain, regulating neurogenesis, cell differentiation, and homeostasis, whereas disrupted Notch signaling is linked to various neurodegenerative diseases and brain cancers. Here, we review the central nervous system (CNS) pathologies associated with aberrant Notch signaling, and summarize the available experimental (animal) models used to study these pathologies, with a special focus on zebrafish (Danio rerio). As genetic, pharmacological, and behavioral models in zebrafish have significantly advanced our understanding of Notch-related CNS disorders, future research is expected to further link Notch signaling to brain disorders and, eventually, lead to their more specific and targeted therapeuties.
Collapse
Affiliation(s)
- Natalia Erofeeva
- St. Petersburg State University, St Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St Petersburg, Russia
| | - Longen Yang
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Tatiana Strekalova
- Peoples Friendship University of Russia (RUDN University) and Department of Normal Physiology, Sechenov University, Moscow, Russia
| | - Lee Wei Lim
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory on Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; Western Caspian University, Baku, Azerbaijan.
| | - Nikita I Golushko
- Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St Petersburg, Russia
| | - Adam Michael Stewart
- The International Zebrafish Neuroscience Research Consortium (ZNRC), New Orleans, USA
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St Petersburg, Russia; Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory on Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Neurobiology Program, Sirius University of Science and Technology, Sirius, Russia.
| |
Collapse
|
5
|
Ilyin NP, Shevlyakov AD, Boyko GA, Moskalenko AM, Ikrin AN, Galstyan DS, Kolesnikova TO, Katolikova NV, Chekrygin SA, Lim LW, Yang L, De Abreu MS, Yenkoyan KB, Kalueff AV, Demin KA. Neurotranscriptomic and behavioral effects of ISRIB, and its therapeutic effects in the traumatic brain injury model in zebrafish. Brain Res 2025; 1848:149329. [PMID: 39537125 DOI: 10.1016/j.brainres.2024.149329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/05/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Traumatic brain injury (TBI) is a global medical concern and has a lasting impact on brain activity with high risks of mortality. Current treatments are inadequate for repairing damaged brain cells or correcting cognitive and behavioral disabilities in TBI patients. Mounting evidence links TBI to the activation of the Integrated Stress Response (ISR) signaling in the brain. A novel small molecule, ISRIB, is an effective inhibitor of the ISR pathway, offering potential advantages for brain health. Here, we investigated how ISRIB affects brain transcriptome and behavior in zebrafish TBI model evoked by telencephalic brain injury. Overall, while TBI diminished memory and social behavior in zebrafish, administering ISRIB post-injury markedly reduced these behavioral deficits, and modulated brain gene expression, rescuing TBI-activated pathways related to inflammation and brain cell development. Collectively, this supports the role of brain ISR in TBI, and suggests potential utility of ISRIB for the treatment of TBI-related states.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Anton D Shevlyakov
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Galina A Boyko
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Aleksey N Ikrin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Nataliia V Katolikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Sergei A Chekrygin
- Core Facility Center "Center Bio-Bank", Saint Petersburg University, St. Petersburg, Russia
| | - Lee Wei Lim
- Department of Biociences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Key Municipal Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - LongEn Yang
- Department of Biociences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Key Municipal Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Murilo S De Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; Western Caspian University, Baku, Azerbaijan
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, Cobrain Center, M. Heratsi Yerevan State Medical University, Yerevan, Armenia; Biochemistry Department, M. Heratsi Yerevan State Medical University, Yerevan, Armenia
| | - Allan V Kalueff
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Department of Biociences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Key Municipal Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| | - Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
6
|
Chen HY, Huang YC, Yeh TH, Chang CW, Shen YJ, Chen YC, Sun MQ, Cheng YC. Dtx2 Deficiency Induces Ependymo-Radial Glial Cell Proliferation and Improves Spinal Cord Motor Function Recovery. Stem Cells Dev 2024; 33:540-550. [PMID: 39001828 DOI: 10.1089/scd.2023.0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024] Open
Abstract
Traumatic injury to the spinal cord can lead to significant, permanent disability. Mammalian spinal cords are not capable of regeneration; in contrast, adult zebrafish are capable of such regeneration, fully recovering motor function. Understanding the mechanisms underlying zebrafish neuroregeneration may provide useful information regarding endogenous regenerative potential and aid in the development of therapeutic strategies in humans. DELTEX proteins (DTXs) regulate a variety of cellular processes. However, their role in neural regeneration has not been described. We found that zebrafish dtx2, encoding Deltex E3 ubiquitin ligase 2, is expressed in ependymo-radial glial cells in the adult spinal cord. After spinal cord injury, the heterozygous dtx2 mutant fish motor function recovered quicker than that of the wild-type controls. The mutant fish displayed increased ependymo-radial glial cell proliferation and augmented motor neuron formation. Moreover, her gene expression, downstream of Notch signaling, increased in Dtx2 mutants. Notch signaling inactivation by dominant-negative Rbpj abolished the increased ependymo-radial glia proliferation caused by Dtx2 deficiency. These results indicate that ependymo-radial glial proliferation is induced by Dtx2 deficiency by activating Notch-Rbpj signaling to improve spinal cord regeneration and motor function recovery.
Collapse
Affiliation(s)
- Hao-Yuan Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan
- School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Wei Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yang-Jin Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chieh Chen
- Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mu-Qun Sun
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
7
|
Saraswathy VM, Zhou L, Mokalled MH. Single-cell analysis of innate spinal cord regeneration identifies intersecting modes of neuronal repair. Nat Commun 2024; 15:6808. [PMID: 39147780 PMCID: PMC11327264 DOI: 10.1038/s41467-024-50628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Adult zebrafish have an innate ability to recover from severe spinal cord injury. Here, we report a comprehensive single nuclear RNA sequencing atlas that spans 6 weeks of regeneration. We identify cooperative roles for adult neurogenesis and neuronal plasticity during spinal cord repair. Neurogenesis of glutamatergic and GABAergic neurons restores the excitatory/inhibitory balance after injury. In addition, a transient population of injury-responsive neurons (iNeurons) show elevated plasticity 1 week post-injury. We found iNeurons are injury-surviving neurons that acquire a neuroblast-like gene expression signature after injury. CRISPR/Cas9 mutagenesis showed iNeurons are required for functional recovery and employ vesicular trafficking as an essential mechanism that underlies neuronal plasticity. This study provides a comprehensive resource of the cells and mechanisms that direct spinal cord regeneration and establishes zebrafish as a model of plasticity-driven neural repair.
Collapse
Affiliation(s)
- Vishnu Muraleedharan Saraswathy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Lili Zhou
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Jiang Y, Cai Y, Yang N, Gao S, Li Q, Pang Y, Su P. Molecular mechanisms of spinal cord injury repair across vertebrates: A comparative review. Eur J Neurosci 2024; 60:4552-4568. [PMID: 38978308 DOI: 10.1111/ejn.16462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/09/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
In humans and other adult mammals, axon regeneration is difficult in axotomized neurons. Therefore, spinal cord injury (SCI) is a devastating event that can lead to permanent loss of locomotor and sensory functions. Moreover, the molecular mechanisms of axon regeneration in vertebrates are not very well understood, and currently, no effective treatment is available for SCI. In striking contrast to adult mammals, many nonmammalian vertebrates such as reptiles, amphibians, bony fishes and lampreys can spontaneously resume locomotion even after complete SCI. In recent years, rapid progress in the development of next-generation sequencing technologies has offered valuable information on SCI. In this review, we aimed to provide a comparison of axon regeneration process across classical model organisms, focusing on crucial genes and signalling pathways that play significant roles in the regeneration of individually identifiable descending neurons after SCI. Considering the special evolutionary location and powerful regenerative ability of lamprey and zebrafish, they will be the key model organisms for ongoing studies on spinal cord regeneration. Detailed study of SCI in these model organisms will help in the elucidation of molecular mechanisms of neuron regeneration across species.
Collapse
Affiliation(s)
- Ying Jiang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yang Cai
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Ning Yang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Si Gao
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
9
|
Crossman SH, Khabooshan MA, Stamatis SA, Vandestadt C, Kaslin J. Mechanical Ablation of Larval Zebrafish Spinal Cord. Methods Mol Biol 2024; 2746:47-56. [PMID: 38070078 DOI: 10.1007/978-1-0716-3585-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Unlike mammals, adult and larval zebrafish exhibit robust regeneration following traumatic spinal cord injury. This remarkable regenerative capacity, combined with exquisite imaging capabilities and an abundance of powerful genetic techniques, has established the zebrafish as an important vertebrate model for the study of neural regeneration. Here, we describe a protocol for the complete mechanical ablation of the larval zebrafish spinal cord. With practice, this protocol can be used to reproducibly injure upward of 100 samples per hour, facilitating the high-throughput screening of factors involved in spinal cord regeneration and repair.
Collapse
Affiliation(s)
- Samuel Henry Crossman
- The Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| | - Mitra Amiri Khabooshan
- The Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Celia Vandestadt
- The Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Jan Kaslin
- The Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
10
|
Muraleedharan Saraswathy V, Zhou L, Mokalled MH. Single-cell analysis of innate spinal cord regeneration identifies intersecting modes of neuronal repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541505. [PMID: 37292638 PMCID: PMC10245778 DOI: 10.1101/2023.05.19.541505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adult zebrafish have an innate ability to recover from severe spinal cord injury. Here, we report a comprehensive single nuclear RNA sequencing atlas that spans 6 weeks of regeneration. We identify cooperative roles for adult neurogenesis and neuronal plasticity during spinal cord repair. Neurogenesis of glutamatergic and GABAergic neurons restores the excitatory/inhibitory balance after injury. In addition, transient populations of injury-responsive neurons (iNeurons) show elevated plasticity between 1 and 3 weeks post-injury. Using cross-species transcriptomics and CRISPR/Cas9 mutagenesis, we found iNeurons are injury-surviving neurons that share transcriptional similarities with a rare population of spontaneously plastic mouse neurons. iNeurons are required for functional recovery and employ vesicular trafficking as an essential mechanism that underlies neuronal plasticity. This study provides a comprehensive resource of the cells and mechanisms that direct spinal cord regeneration and establishes zebrafish as a model of plasticity-driven neural repair.
Collapse
|
11
|
Cigliola V, Shoffner A, Lee N, Ou J, Gonzalez TJ, Hoque J, Becker CJ, Han Y, Shen G, Faw TD, Abd-El-Barr MM, Varghese S, Asokan A, Poss KD. Spinal cord repair is modulated by the neurogenic factor Hb-egf under direction of a regeneration-associated enhancer. Nat Commun 2023; 14:4857. [PMID: 37567873 PMCID: PMC10421883 DOI: 10.1038/s41467-023-40486-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Unlike adult mammals, zebrafish regenerate spinal cord tissue and recover locomotor ability after a paralyzing injury. Here, we find that ependymal cells in zebrafish spinal cords produce the neurogenic factor Hb-egfa upon transection injury. Animals with hb-egfa mutations display defective swim capacity, axon crossing, and tissue bridging after spinal cord transection, associated with disrupted indicators of neuron production. Local recombinant human HB-EGF delivery alters ependymal cell cycling and tissue bridging, enhancing functional regeneration. Epigenetic profiling reveals a tissue regeneration enhancer element (TREE) linked to hb-egfa that directs gene expression in spinal cord injuries. Systemically delivered recombinant AAVs containing this zebrafish TREE target gene expression to crush injuries of neonatal, but not adult, murine spinal cords. Moreover, enhancer-based HB-EGF delivery by AAV administration improves axon densities after crush injury in neonatal cords. Our results identify Hb-egf as a neurogenic factor necessary for innate spinal cord regeneration and suggest strategies to improve spinal cord repair in mammals.
Collapse
Affiliation(s)
- Valentina Cigliola
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, Nice, France
| | - Adam Shoffner
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Nutishia Lee
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jianhong Ou
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Jiaul Hoque
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Clayton J Becker
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Yanchao Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China
| | - Grace Shen
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Timothy D Faw
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | | | - Shyni Varghese
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aravind Asokan
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kenneth D Poss
- Duke Regeneration Center, Duke University, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
12
|
Louie JD, Bromberg BH, Zunitch MJ, Schwob JE. Horizontal basal cells self-govern their neurogenic potential during injury-induced regeneration of the olfactory epithelium. Development 2023; 150:dev201552. [PMID: 37260223 PMCID: PMC10323233 DOI: 10.1242/dev.201552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Horizontal basal cells (HBCs) residing within severely damaged olfactory epithelium (OE) mediate OE regeneration by differentiating into odorant-detecting olfactory sensory neurons (OSNs) and other tissue supporting non-neuronal cell types. Depending on both tissue type and integrity, the Notch signaling pathway can either positively or negatively regulate resident stem cell activity. Although Notch1 specifies HBC dormancy in the uninjured OE, little is known about how HBCs are influenced by the Notch pathway following OE injury. Here, we show that HBCs depend on a functional inversion of the Notch pathway to appropriately mediate OE regeneration. At 24 h post-injury, HBCs enhance Notch1-mediated signaling. Moreover, at 3 days post-injury when the regenerating OE is composed of multiple cell layers, HBCs enrich both Notch1 and the Notch ligand, Dll1. Notably, HBC-specific Notch1 knockout increases HBC quiescence and impairs HBC differentiation into neuronal progenitors and OSNs. Interestingly, complete HBC knockout of Dll1 only decreases differentiation of HBC-derived OSNs. These data underscore the context-dependent nature of Notch signaling. Furthermore, they reveal that HBCs regulate their own neurogenic potential after OE injury.
Collapse
Affiliation(s)
- Jonathan D. Louie
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, MA 02111, USA
- Neuroscience Graduate Program, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Benjamin H. Bromberg
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Matthew J. Zunitch
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Cell, Molecular and Developmental Biology Graduate Program, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - James E. Schwob
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| |
Collapse
|
13
|
Zhu P, Zheng P, Kong X, Wang S, Cao M, Zhao C. Rassf7a promotes spinal cord regeneration and controls spindle orientation in neural progenitor cells. EMBO Rep 2023; 24:e54984. [PMID: 36408859 PMCID: PMC9827555 DOI: 10.15252/embr.202254984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) can cause long-lasting disability in mammals due to the lack of axonal regrowth together with the inability to reinitiate spinal neurogenesis at the injury site. Deciphering the mechanisms that regulate the proliferation and differentiation of neural progenitor cells is critical for understanding spinal neurogenesis after injury. Compared with mammals, zebrafish show a remarkable capability of spinal cord regeneration. Here, we show that Rassf7a, a member of the Ras-association domain family, promotes spinal cord regeneration after injury. Zebrafish larvae harboring a rassf7a mutation show spinal cord regeneration and spinal neurogenesis defects. Live imaging shows abnormal asymmetric neurogenic divisions and spindle orientation defects in mutant neural progenitor cells. In line with this, the expression of rassf7a is enriched in neural progenitor cells. Subcellular analysis shows that Rassf7a localizes to the centrosome and is essential for cell cycle progression. Our data indicate a role for Rassf7a in modulating spindle orientation and the proliferation of neural progenitor cells after spinal cord injury.
Collapse
Affiliation(s)
- Panpan Zhu
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Sars‐Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Pengfei Zheng
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Xinlong Kong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of PathophysiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuo Wang
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of PathophysiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chengtian Zhao
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Sars‐Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| |
Collapse
|
14
|
Sîrbulescu RF, Ilieş I, Amelung L, Zupanc GKH. Proteomic characterization of spontaneously regrowing spinal cord following injury in the teleost fish Apteronotus leptorhynchus, a regeneration-competent vertebrate. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:671-706. [PMID: 36445471 DOI: 10.1007/s00359-022-01591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
In adult mammals, spontaneous repair after spinal cord injury (SCI) is severely limited. By contrast, teleost fish successfully regenerate injured axons and produce new neurons from adult neural stem cells after SCI. The molecular mechanisms underlying this high regenerative capacity are largely unknown. The present study addresses this gap by examining the temporal dynamics of proteome changes in response to SCI in the brown ghost knifefish (Apteronotus leptorhynchus). Two-dimensional difference gel electrophoresis (2D DIGE) was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem mass spectrometry (MS/MS) to collect data during early (1 day), mid (10 days), and late (30 days) phases of regeneration following caudal amputation SCI. Forty-two unique proteins with significant differences in abundance between injured and intact control samples were identified. Correlation analysis uncovered six clusters of spots with similar expression patterns over time and strong conditional dependences, typically within functional families or between isoforms. Significantly regulated proteins were associated with axon development and regeneration; proliferation and morphogenesis; neuronal differentiation and re-establishment of neural connections; promotion of neuroprotection, redox homeostasis, and membrane repair; and metabolism or energy supply. Notably, at all three time points examined, significant regulation of proteins involved in inflammatory responses was absent.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
- Vaccine and Immunotherapy Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Iulian Ilieş
- School of Humanities and Social Sciences, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Lisa Amelung
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Günther K H Zupanc
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany.
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Hong X, Chen R, Zhang L, Yan L, Xin J, Li J, Zha J. Long-Term Exposure to SSRI Citalopram Induces Neurotoxic Effects in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12380-12390. [PMID: 35985052 DOI: 10.1021/acs.est.2c01514] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Residual antidepressants are of increasing concern worldwide, yet critical information on their long-term neurotoxic impacts on nontarget aquatic animals is lacking. Here, we investigated the long-term effects (from 0 to 150 days postfertilization) of the selective serotonin reuptake inhibitor citalopram (0.1-100 μg/L) on motor function, learning, and memory in zebrafish over two generations and explored the reversibility of the effect in F1 larvae. Unlike F0+ larvae, we found that F1+ larvae displayed decreased sensorimotor performance when continuously exposed to citalopram at 100 μg/L. No adverse effects were found in F1- larvae after they were transferred to a clean medium. Whole-mount immunofluorescence assays suggested that the motor impairments were related to axonal projections of the spinal motor neurons (MNs). For F0+ adults, long-term citalopram exposure mainly caused male-specific declines in motor, learning, and memory performance. Analysis of serotonergic and cholinergic MNs revealed no significant changes in the male zebrafish spinal cord. In contrast, the number of glutamatergic spinal MNs decreased, likely associated with the impairment of motor function. Additionally, treatment with 100 μg/L citalopram significantly reduced the number of dopaminergic neurons, but no significant neuronal apoptosis was observed in the adult telencephalon. Overall, this study provides neurobehavioral evidence and novel insights into the neurotoxic mechanisms of long-term citalopram exposure and may facilitate the assessment of the environmental and health risks posed by citalopram-containing antidepressant drugs.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Le Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajing Xin
- Department of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Jiasu Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Becker T, Becker CG. Regenerative neurogenesis: the integration of developmental, physiological and immune signals. Development 2022; 149:275248. [PMID: 35502778 PMCID: PMC9124576 DOI: 10.1242/dev.199907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In fishes and salamanders, but not mammals, neural stem cells switch back to neurogenesis after injury. The signalling environment of neural stem cells is strongly altered by the presence of damaged cells and an influx of immune, as well as other, cells. Here, we summarise our recently expanded knowledge of developmental, physiological and immune signals that act on neural stem cells in the zebrafish central nervous system to directly, or indirectly, influence their neurogenic state. These signals act on several intracellular pathways, which leads to changes in chromatin accessibility and gene expression, ultimately resulting in regenerative neurogenesis. Translational approaches in non-regenerating mammals indicate that central nervous system stem cells can be reprogrammed for neurogenesis. Understanding signalling mechanisms in naturally regenerating species show the path to experimentally promoting neurogenesis in mammals.
Collapse
Affiliation(s)
- Thomas Becker
- Center for Regenerative Therapies at the TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,Centre for Discovery Brain Sciences, University of Edinburgh Medical School, Biomedical Science, Edinburgh, EH16 4SB, Scotland
| | - Catherina G Becker
- Center for Regenerative Therapies at the TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,Centre for Discovery Brain Sciences, University of Edinburgh Medical School, Biomedical Science, Edinburgh, EH16 4SB, Scotland
| |
Collapse
|
17
|
Riley SE, Feng Y, Hansen CG. Hippo-Yap/Taz signalling in zebrafish regeneration. NPJ Regen Med 2022; 7:9. [PMID: 35087046 PMCID: PMC8795407 DOI: 10.1038/s41536-022-00209-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
The extent of tissue regeneration varies widely between species. Mammals have a limited regenerative capacity whilst lower vertebrates such as the zebrafish (Danio rerio), a freshwater teleost, can robustly regenerate a range of tissues, including the spinal cord, heart, and fin. The molecular and cellular basis of this altered response is one of intense investigation. In this review, we summarise the current understanding of the association between zebrafish regeneration and Hippo pathway function, a phosphorylation cascade that regulates cell proliferation, mechanotransduction, stem cell fate, and tumorigenesis, amongst others. We also compare this function to Hippo pathway activity in the regenerative response of other species. We find that the Hippo pathway effectors Yap/Taz facilitate zebrafish regeneration and that this appears to be latent in mammals, suggesting that therapeutically promoting precise and temporal YAP/TAZ signalling in humans may enhance regeneration and hence reduce morbidity.
Collapse
Affiliation(s)
- Susanna E Riley
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Yi Feng
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Carsten Gram Hansen
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
18
|
Haspel G, Severi KE, Fauci LJ, Cohen N, Tytell ED, Morgan JR. Resilience of neural networks for locomotion. J Physiol 2021; 599:3825-3840. [PMID: 34187088 DOI: 10.1113/jp279214] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 01/15/2023] Open
Abstract
Locomotion is an essential behaviour for the survival of all animals. The neural circuitry underlying locomotion is therefore highly robust to a wide variety of perturbations, including injury and abrupt changes in the environment. In the short term, fault tolerance in neural networks allows locomotion to persist immediately after mild to moderate injury. In the longer term, in many invertebrates and vertebrates, neural reorganization including anatomical regeneration can restore locomotion after severe perturbations that initially caused paralysis. Despite decades of research, very little is known about the mechanisms underlying locomotor resilience at the level of the underlying neural circuits and coordination of central pattern generators (CPGs). Undulatory locomotion is an ideal behaviour for exploring principles of circuit organization, neural control and resilience of locomotion, offering a number of unique advantages including experimental accessibility and modelling tractability. In comparing three well-characterized undulatory swimmers, lampreys, larval zebrafish and Caenorhabditis elegans, we find similarities in the manifestation of locomotor resilience. To advance our understanding, we propose a comparative approach, integrating experimental and modelling studies, that will allow the field to begin identifying shared and distinct solutions for overcoming perturbations to persist in orchestrating this essential behaviour.
Collapse
Affiliation(s)
- Gal Haspel
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kristen E Severi
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Lisa J Fauci
- Department of Mathematics, Tulane University, New Orleans, LA, 70118, USA
| | - Netta Cohen
- School of Computing, University of Leeds, Leeds, LS2 9JT, UK
| | - Eric D Tytell
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Jennifer R Morgan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| |
Collapse
|
19
|
Shimizu Y, Kawasaki T. Histone acetyltransferase EP300 regulates the proliferation and differentiation of neural stem cells during adult neurogenesis and regenerative neurogenesis in the zebrafish optic tectum. Neurosci Lett 2021; 756:135978. [PMID: 34023416 DOI: 10.1016/j.neulet.2021.135978] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/07/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Zebrafish have a greater capacity for adult neurogenesis and brain regeneration than mammals. In the adult zebrafish optic tectum (OT), neuroepithelial-like stem cells (NE) contribute to adult neurogenesis, whereas radial glia (RG) contribute to neuronal regeneration after the stab wound injury. The molecular mechanisms regulated by acetylated histone play important roles in these events; however, the functions of histone acetyltransferase (HAT) require further elucidation. The aim of this study was to study the proliferation and differentiation of neural stem cells (NSCs) following treatment with C646, a HAT EP300 inhibitor, to identify the functions of HAT in adult neurogenesis and neuronal regeneration. C646 treatment decreased acetylation of histone 3 lysine 9 in the adult OT. Under physiological conditions, C646 promoted NE proliferation and generation of newborn neurons. EP300 inhibition promoted RG proliferation but suppressed the generation of newborn neurons after the injury. EP300 inhibition downregulated the Notch target genes her4 and her6, which was correlated with NE and RG proliferation in the adult OT. EP300 inhibition regulates the proliferation and differentiation of NSCs by inhibiting histone acetylation and Notch target genes expression, suggesting that the functions of HAT in neurogenesis are opposite to those of histone deacetylase.
Collapse
Affiliation(s)
- Yuki Shimizu
- Functional Biomolecular Research Group and Biomedical Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577, Japan; DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
| | - Takashi Kawasaki
- Functional Biomolecular Research Group and Biomedical Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| |
Collapse
|
20
|
Shimizu Y, Kiyooka M, Ohshima T. Transcriptome Analyses Reveal IL6/Stat3 Signaling Involvement in Radial Glia Proliferation After Stab Wound Injury in the Adult Zebrafish Optic Tectum. Front Cell Dev Biol 2021; 9:668408. [PMID: 33996824 PMCID: PMC8119998 DOI: 10.3389/fcell.2021.668408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 01/09/2023] Open
Abstract
Adult zebrafish have many neurogenic niches and a high capacity for central nervous system regeneration compared to mammals, including humans and rodents. The majority of radial glia (RG) in the zebrafish optic tectum are quiescent under physiological conditions; however, stab wound injury induces their proliferation and differentiation into newborn neurons. Although previous studies have functionally analyzed the molecular mechanisms of RG proliferation and differentiation and have performed single-cell transcriptomic analyses around the peak of RG proliferation, the cellular response and changes in global gene expression during the early stages of tectum regeneration remain poorly understood. In this study, we performed histological analyses which revealed an increase in isolectin B4+ macrophages prior to the induction of RG proliferation. Moreover, transcriptome and pathway analyses based on differentially expressed genes identified various enriched pathways, including apoptosis, the innate immune system, cell proliferation, cytokine signaling, p53 signaling, and IL6/Jak-Stat signaling. In particular, we found that Stat3 inhibition suppressed RG proliferation after stab wound injury and that IL6 administration into cerebroventricular fluid activates RG proliferation without causing injury. Together, the findings of these transcriptomic and functional analyses reveal that IL6/Stat3 signaling is an initial trigger of RG activation during optic tectum regeneration.
Collapse
Affiliation(s)
- Yuki Shimizu
- Functional Biomolecular Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Osaka, Japan.,DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology, Osaka, Japan
| | - Mariko Kiyooka
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan.,Graduate School of Advanced Science and Engineering, Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
21
|
Gao J, Fan L, Zhao L, Su Y. The interaction of Notch and Wnt signaling pathways in vertebrate regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:11. [PMID: 33791915 PMCID: PMC8012441 DOI: 10.1186/s13619-020-00072-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Regeneration is an evolutionarily conserved process in animal kingdoms, however, the regenerative capacities differ from species and organ/tissues. Mammals possess very limited regenerative potential to replace damaged organs, whereas non-mammalian species usually have impressive abilities to regenerate organs. The regeneration process requires proper spatiotemporal regulation from key signaling pathways. The canonical Notch and Wnt signaling pathways, two fundamental signals guiding animal development, have been demonstrated to play significant roles in the regeneration of vertebrates. In recent years, increasing evidence has implicated the cross-talking between Notch and Wnt signals during organ regeneration. In this review, we summarize the roles of Notch signaling and Wnt signaling during several representative organ regenerative events, emphasizing the functions and molecular bases of their interplay in these processes, shedding light on utilizing these two signaling pathways to enhance regeneration in mammals and design legitimate therapeutic strategies.
Collapse
Affiliation(s)
- Junying Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China.,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Lixia Fan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China.,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Long Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China. .,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Ying Su
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China. .,College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
22
|
Lu S, Lyu Z, Wang Z, Kou Y, Liu C, Li S, Hu M, Zhu H, Wang W, Zhang C, Kuan YS, Liu YW, Chen J, Tian J. Lipin 1 deficiency causes adult-onset myasthenia with motor neuron dysfunction in humans and neuromuscular junction defects in zebrafish. Theranostics 2021; 11:2788-2805. [PMID: 33456573 PMCID: PMC7806489 DOI: 10.7150/thno.53330] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/12/2020] [Indexed: 12/03/2022] Open
Abstract
Lipin 1 is an intracellular protein acting as a phosphatidic acid phosphohydrolase enzyme controlling lipid metabolism. Human recessive mutations in LPIN1 cause recurrent, early-onset myoglobinuria, a condition normally associated with muscle pain and weakness. Whether and how lipin 1 deficiency in humans leads to peripheral neuropathy is yet unclear. Herein, two novel compound heterozygous mutations in LPIN1 with neurological disorders, but no myoglobinuria were identified in an adult-onset syndromic myasthenia family. The present study sought to explore the pathogenic mechanism of LPIN1 in muscular and neural development. Methods: The clinical diagnosis of the proband was compared to the known 48 cases of LPIN1 recessive homozygous mutations. Whole-exome sequencing was carried out on the syndromic myasthenia family to identify the causative gene. The pathogenesis of lipin 1 deficiency during somitogenesis and neurogenesis was investigated using the zebrafish model. Whole-mount in situ hybridization, immunohistochemistry, birefringence analysis, touch-evoke escape response and locomotion assays were performed to observe in vivo the changes in muscles and neurons. The conservatism of the molecular pathways regulated by lipin 1 was evaluated in human primary glioblastoma and mouse myoblast cells by siRNA knockdown, drug treatment, qRT-PCR and Western blotting analysis. Results: The patient exhibited adult-onset myasthenia accompanied by muscle fiber atrophy and nerve demyelination without myoglobinuria. Two novel heterozygous mutations, c.2047A>C (p.I683L) and c.2201G>A (p.R734Q) in LPIN1, were identified in the family and predicted to alter the tertiary structure of LPIN1 protein. Lipin 1 deficiency in zebrafish embryos generated by lpin1 morpholino knockdown or human LPIN1 mutant mRNA injections reproduced the myotomes defects, a reduction both in primary motor neurons and secondary motor neurons projections, morphological changes of post-synaptic clusters of acetylcholine receptors, and myelination defects, which led to reduced touch-evoked response and abnormalities of swimming behaviors. Loss of lipin 1 function in zebrafish and mammalian cells also exhibited altered expression levels of muscle and neuron markers, as well as abnormally enhanced Notch signaling, which was partially rescued by the specific Notch pathway inhibitor DAPT. Conclusions: These findings pointed out that the compound heterozygous mutations in human LPIN1 caused adult-onset syndromic myasthenia with peripheral neuropathy. Moreover, zebrafish could be used to model the neuromuscular phenotypes due to the lipin 1 deficiency, where a novel pathological role of over-activated Notch signaling was discovered and further confirmed in mammalian cell lines.
Collapse
|
23
|
Campbell LJ, Hobgood JS, Jia M, Boyd P, Hipp RI, Hyde DR. Notch3 and DeltaB maintain Müller glia quiescence and act as negative regulators of regeneration in the light-damaged zebrafish retina. Glia 2020; 69:546-566. [PMID: 32965734 DOI: 10.1002/glia.23912] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Damage to the zebrafish retina stimulates resident Müller glia to reprogram, reenter the cell cycle, divide asymmetrically, and produce neuronal progenitor cells that amplify and differentiate into the lost neurons. The transition from quiescent to proliferative Müller glia involves both positive and negative regulators. We previously demonstrated that the Notch signaling pathway represses retinal regeneration by maintaining Müller glia quiescence in zebrafish. Here we examine which Notch receptor is necessary to maintain quiescence. Quantitative RT-PCR and RNA-Seq analyses reveal that notch3 is expressed in the undamaged retina and is downregulated in response to light damage. Additionally, Notch3 protein is expressed in quiescent Müller glia of the undamaged retina, is downregulated as Müller glia proliferate, and is reestablished in the Müller glia. Knockdown of Notch3 is sufficient to induce Müller glia proliferation in undamaged retinas and enhances proliferation during light damage. Alternatively, knockdown of Notch1a, Notch1b, or Notch2 decreases the number of proliferating cells during light damage, suggesting that Notch signaling is also required for proliferation during retinal regeneration. We also knockdown the zebrafish Delta and Delta-like proteins, ligands for the Notch receptors, and find that the deltaB morphant possesses an increased number of proliferating cells in the light-damaged retina. As with Notch3, knockdown of DeltaB is sufficient to induce Müller glia proliferation in the absence of light damage. Taken together, the negative regulation of Müller glia proliferation in zebrafish retinal regeneration is mediated by Notch3 and DeltaB.
Collapse
Affiliation(s)
- Leah J Campbell
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua S Hobgood
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Meng Jia
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patrick Boyd
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rebecca I Hipp
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - David R Hyde
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
24
|
El-Daher F, Becker CG. Neural circuit reorganisation after spinal cord injury in zebrafish. Curr Opin Genet Dev 2020; 64:44-51. [PMID: 32604009 DOI: 10.1016/j.gde.2020.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 01/11/2023]
Abstract
Spinal cord injuries disrupt signalling from the brain leading to loss of limb, locomotion, sexual and bladder function, usually irreversible in humans. In zebrafish, recovery of function occurs in a few days for larvae or a few weeks for adults due to regrowth of axons and de novo neurogenesis. Together with its genetic amenability and optical clarity, this makes zebrafish a powerful animal model to study circuit reorganisation after spinal cord injuries. With the fast evolution of techniques, we can forecast significative improvements of our knowledge of the mechanisms leading to successful or failed recovery of spinal cord function. We review here the present knowledge on the subject, the new technological approaches and we propose future directions of research.
Collapse
Affiliation(s)
- François El-Daher
- Centre for Discovery Brain Sciences, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh EH16 4SB, United Kingdom
| | - Catherina G Becker
- Centre for Discovery Brain Sciences, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh EH16 4SB, United Kingdom.
| |
Collapse
|
25
|
Zhou Z, Tian X, Mo B, Xu H, Zhang L, Huang L, Yao S, Huang Z, Wang Y, Xie H, Xu L, Zhang H. Adipose mesenchymal stem cell transplantation alleviates spinal cord injury-induced neuroinflammation partly by suppressing the Jagged1/Notch pathway. Stem Cell Res Ther 2020; 11:212. [PMID: 32493480 PMCID: PMC7268310 DOI: 10.1186/s13287-020-01724-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The therapeutic effects of adipose-derived mesenchymal stem cell (ADSC) transplantation have been demonstrated in several models of central nervous system (CNS) injury and are thought to involve the modulation of the inflammatory response. However, the exact underlying molecular mechanism is poorly understood. Activation of the Jagged1/Notch signaling pathway is thought to involve inflammatory and gliotic events in the CNS. Here, we elucidated the effect of ADSC transplantation on the inflammatory reaction after spinal cord injury (SCI) and the potential mechanism mediated by Jagged1/Notch signaling pathway suppression. METHODS To evaluate the therapeutic effects of ADSC treatment and the potential inhibitory effects of ADSCs on Notch signaling, mice were subjected to contusion SCI, and GFP-labeled ADSCs were injected into the lesion site immediately after the injury. Locomotor function, spinal cord tissue morphology, and the levels of Notch-related proteins and proinflammatory transcripts were compared between groups. To validate the hypothesis that the therapeutic effects of ADSCs are partly due to Notch1 signaling inhibition, a Jagged1 small interfering RNA (siRNA) was injected into the spinal cord to knock down Jagged1/Notch signaling. Neuronal staining and analyses of microglia/macrophage activation and signaling pathways were performed. RESULTS We demonstrated that ADSCs survived in the injured spinal cord for at least 28 days without differentiating into glial or neuronal elements. ADSC treatment resulted in significant downregulation of proinflammatory mediator expression and reduced ionized calcium-binding adapter molecule 1 (IBA1) and ED-1 staining in the injured spinal cord, eventually improving functional recovery. The augmentation of the Jagged1/Notch signaling pathway after SCI was suppressed by ADSC transplantation. The inhibition of the Jagged1/Notch signaling pathway by Jagged1 siRNA resulted in decreases in SCI-induced proinflammatory cytokines and the activation of microglia and an increase in the survival of neurons. Furthermore, Jagged1 knockdown suppressed the phosphorylation of JAK/STAT3 in astrocytes following SCI. CONCLUSION The results of this study demonstrated that the therapeutic effects of ADSCs in SCI mice were partly due to Jagged1/Notch signaling pathway inhibition and a subsequent reduction in JAK/STAT3 phosphorylation in astrocytes.
Collapse
Affiliation(s)
- Zhilai Zhou
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaobo Tian
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Biling Mo
- Department of Cardiology, Liwan Central Hospital of Gaungzhou, Guangzhou, China
| | - Huali Xu
- Department of Anesthesiology, Zhu Jiang Hospital, Southern Medical University, Guangzhou, China
| | - Li Zhang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lishan Huang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shun Yao
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zixiang Huang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yeyang Wang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huan Xie
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Liwei Xu
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hui Zhang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China. .,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
26
|
Cigliola V, Becker CJ, Poss KD. Building bridges, not walls: spinal cord regeneration in zebrafish. Dis Model Mech 2020; 13:13/5/dmm044131. [PMID: 32461216 PMCID: PMC7272344 DOI: 10.1242/dmm.044131] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury is a devastating condition in which massive cell death and disruption of neural circuitry lead to long-term chronic functional impairment and paralysis. In mammals, spinal cord tissue has minimal capacity to regenerate after injury. In stark contrast, the regeneration of a completely transected spinal cord and accompanying reversal of paralysis in adult zebrafish is arguably one of the most spectacular biological phenomena in nature. Here, we review reports from the last decade that dissect the mechanisms of spinal cord regeneration in zebrafish. We highlight recent progress as well as areas requiring emphasis in a line of study that has great potential to uncover strategies for human spinal cord repair. Summary: Unlike mammals, teleost fish are capable of efficient, spontaneous recovery after a paralyzing spinal cord injury. Here, we highlight the major events through which laboratory model zebrafish regenerate spinal cord tissue.
Collapse
Affiliation(s)
- Valentina Cigliola
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Clayton J Becker
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA .,Regeneration Next, Duke University, Durham, NC 27710, USA
| |
Collapse
|
27
|
Sobrido-Cameán D, Robledo D, Romaus-Sanjurjo D, Pérez-Cedrón V, Sánchez L, Rodicio MC, Barreiro-Iglesias A. Inhibition of Gamma-Secretase Promotes Axon Regeneration After a Complete Spinal Cord Injury. Front Cell Dev Biol 2020; 8:173. [PMID: 32266257 PMCID: PMC7100381 DOI: 10.3389/fcell.2020.00173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
In a recent study, we showed that GABA and baclofen (a GABAB receptor agonist) inhibit caspase activation and promote axon regeneration in descending neurons of the sea lamprey brainstem after a complete spinal cord injury (Romaus-Sanjurjo et al., 2018a). Now, we repeated these treatments and performed 2 independent Illumina RNA-Sequencing studies in the brainstems of control and GABA or baclofen treated animals. GABA treated larval sea lampreys with their controls were analyzed 29 days after a complete spinal cord injury and baclofen treated larvae with their controls 9 days after the injury. One of the most significantly downregulated genes after both treatments was a HES gene (HESB). HES proteins are transcription factors that are key mediators of the Notch signaling pathway and gamma-secretase activity is crucial for the activation of this pathway. So, based on the RNA-Seq results we subsequently treated spinal cord injured larval sea lampreys with a novel gamma-secretase inhibitor (PF-3804014). This treatment also reduced the expression of HESB in the brainstem and significantly enhanced the regeneration of individually identifiable descending neurons after a complete spinal cord injury. Our results show that gamma-secretase could be a novel target to promote axon regeneration after nervous system injuries.
Collapse
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Romaus-Sanjurjo
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Vanessa Pérez-Cedrón
- Department of Genetics, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Genetics, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
28
|
Li JH, Shi ZJ, Li Y, Pan B, Yuan SY, Shi LL, Hao Y, Cao FJ, Feng SQ. Bioinformatic identification of key candidate genes and pathways in axon regeneration after spinal cord injury in zebrafish. Neural Regen Res 2020; 15:103-111. [PMID: 31535658 PMCID: PMC6862403 DOI: 10.4103/1673-5374.264460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zebrafish and human genomes are highly homologous; however, despite this genomic similarity, adult zebrafish can achieve neuronal proliferation, regeneration and functional restoration within 6–8 weeks after spinal cord injury, whereas humans cannot. To analyze differentially expressed zebrafish genes between axon-regenerated neurons and axon-non-regenerated neurons after spinal cord injury, and to explore the key genes and pathways of axonal regeneration after spinal cord injury, microarray GSE56842 was analyzed using the online tool, GEO2R, in the Gene Expression Omnibus database. Gene ontology and protein-protein interaction networks were used to analyze the identified differentially expressed genes. Finally, we screened for genes and pathways that may play a role in spinal cord injury repair in zebrafish and mammals. A total of 636 differentially expressed genes were obtained, including 255 up-regulated and 381 down-regulated differentially expressed genes in axon-regenerated neurons. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment results were also obtained. A protein-protein interaction network contained 480 node genes and 1976 node connections. We also obtained the 10 hub genes with the highest correlation and the two modules with the highest score. The results showed that spectrin may promote axonal regeneration after spinal cord injury in zebrafish. Transforming growth factor beta signaling may inhibit repair after spinal cord injury in zebrafish. Focal adhesion or tight junctions may play an important role in the migration and proliferation of some cells, such as Schwann cells or neural progenitor cells, after spinal cord injury in zebrafish. Bioinformatic analysis identified key candidate genes and pathways in axonal regeneration after spinal cord injury in zebrafish, providing targets for treatment of spinal cord injury in mammals.
Collapse
Affiliation(s)
- Jia-He Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhong-Ju Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Pan
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Shi-Yang Yuan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin-Lin Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Hao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu-Jiang Cao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
29
|
Hachem LD, Mothe AJ, Tator CH. Unlocking the paradoxical endogenous stem cell response after spinal cord injury. Stem Cells 2019; 38:187-194. [PMID: 31648407 DOI: 10.1002/stem.3107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 11/08/2022]
Abstract
Nearly a century ago, the concept of the secondary injury in spinal cord trauma was first proposed to explain the complex cascade of molecular and cellular events leading to widespread neuronal and glial cell death after trauma. In recent years, it has been established that the ependymal region of the adult mammalian spinal cord contains a population of multipotent neural stem/progenitor cells (NSPCs) that are activated after spinal cord injury (SCI) and likely play a key role in endogenous repair and regeneration. How these cells respond to the various components of the secondary injury remains poorly understood. Emerging evidence suggests that many of the biochemical components of the secondary injury cascade which have classically been viewed as deleterious to host neuronal and glial cells may paradoxically trigger NSPC activation, proliferation, and differentiation thus challenging our current understanding of secondary injury mechanisms in SCI. Herein, we highlight new findings describing the response of endogenous NSPCs to spinal cord trauma, redefining the secondary mechanisms of SCI through the lens of the endogenous population of stem/progenitor cells. Moreover, we outline how these insights can fuel novel stem cell-based therapeutic strategies to repair the injured spinal cord.
Collapse
Affiliation(s)
- Laureen D Hachem
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Andrea J Mothe
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Charles H Tator
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
30
|
Sabin KZ, Echeverri K. The role of the immune system during regeneration of the central nervous system. ACTA ACUST UNITED AC 2019; 7. [PMID: 32864529 DOI: 10.1016/j.regen.2019.100023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Central nervous system damage in mammals leads to neuronal cell death, axonal degeneration, and formation of a glial scar resulting in functional and behavioral defects. Other vertebrates, like fish and salamanders, have retained the ability to functionally regenerate after central nervous system injury. To date research from many research organisms has led to a more concise understanding of the response of local neural cells to injury. However, it has become clear that non-neural cells of the immune system play an important role in determining the tissue response to injury. In this review we briefly consider the mammalian response to injury compared to organisms with the natural ability to regenerate. We then discuss similarities and differences in how cells of the innate and adaptive immune system respond and contribute to tissue repair in various species.
Collapse
Affiliation(s)
- K Z Sabin
- Eugene Bell Center for Regenerative Biology & Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| | - K Echeverri
- Eugene Bell Center for Regenerative Biology & Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| |
Collapse
|
31
|
Abstract
Cardiogenesis is a complex developmental process involving multiple overlapping stages of cell fate specification, proliferation, differentiation, and morphogenesis. Precise spatiotemporal coordination between the different cardiogenic processes is ensured by intercellular signalling crosstalk and tissue-tissue interactions. Notch is an intercellular signalling pathway crucial for cell fate decisions during multicellular organismal development and is aptly positioned to coordinate the complex signalling crosstalk required for progressive cell lineage restriction during cardiogenesis. In this Review, we describe the role of Notch signalling and the crosstalk with other signalling pathways during the differentiation and patterning of the different cardiac tissues and in cardiac valve and ventricular chamber development. We examine how perturbation of Notch signalling activity is linked to congenital heart diseases affecting the neonate and adult, and discuss studies that shed light on the role of Notch signalling in heart regeneration and repair after injury.
Collapse
|
32
|
Ceci M, Mariano V, Romano N. Zebrafish as a translational regeneration model to study the activation of neural stem cells and role of their environment. Rev Neurosci 2019; 30:45-66. [PMID: 30067512 DOI: 10.1515/revneuro-2018-0020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
The review is an overview of the current knowledge of neuronal regeneration properties in mammals and fish. The ability to regenerate the damaged parts of the nervous tissue has been demonstrated in all vertebrates. Notably, fish and amphibians have the highest capacity for neurogenesis, whereas reptiles and birds are able to only regenerate specific regions of the brain, while mammals have reduced capacity for neurogenesis. Zebrafish (Danio rerio) is a promising model of study because lesions in the brain or complete cross-section of the spinal cord are followed by an effective neuro-regeneration that successfully restores the motor function. In the brain and the spinal cord of zebrafish, stem cell activity is always able to re-activate the molecular programs required for central nervous system regeneration. In mammals, traumatic brain injuries are followed by reduced neurogenesis and poor axonal regeneration, often insufficient to functionally restore the nervous tissue, while spinal injuries are not repaired at all. The environment that surrounds the stem cell niche constituted by connective tissue and stimulating factors, including pro-inflammation molecules, seems to be a determinant in triggering stem cell proliferation and/or the trans-differentiation of connective elements (mainly fibroblasts). Investigating and comparing the neuronal regeneration in zebrafish and mammals may lead to a better understanding of the mechanisms behind neurogenesis, and the failure of the regenerative response in mammals, first of all, the role of inflammation, considered the main inhibitor of the neuronal regeneration.
Collapse
Affiliation(s)
- Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell'Università, I-01100 Viterbo, Italy
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Nicla Romano
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell'Università, I-01100 Viterbo, Italy
| |
Collapse
|
33
|
Peng Z, Li X, Fu M, Zhu K, Long L, Zhao X, Chen Q, Deng DYB, Wan Y. Inhibition of Notch1 signaling promotes neuronal differentiation and improves functional recovery in spinal cord injury through suppressing the activation of Ras homolog family member A. J Neurochem 2019; 150:709-722. [PMID: 31339573 DOI: 10.1111/jnc.14833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 12/28/2022]
Abstract
Neural stem cells (NSCs) transplantation represents a promising strategy for the repair of injured neurons, since NSCs not only produce multiple neurotrophic growth factors but also differentiate into mature cells to replace damaged cells. Previous studies have shown that Notch signaling pathway had negative effects on neuronal differentiation; however, the precise mechanism remained inadequately understood. This research aimed to investigate whether inhibition of Notch1 signaling promotes neuronal differentiation and improves functional recovery in rat spinal cord injury through suppressing the activation of Ras homolog family member A (RhoA). QPCR, western blot, and immunofluorescence experiments were used to analyze Notch1 signaling pathways, RhoA, Ras homologous -associated coiled-coil containing protein kinase 1 (ROCK1), cleaved caspased-3, and neuronal/astrocytic differentiation markers. The expression of RhoA and ROCK1 was inhibited by lentivirus or specific biochemical inhibitors. In spinal cord injury (SCI), motor function was assessed by hind limbs movements and electrophysiology. Tissue repairing was measured by immunofluorescence, Nissl staining, Fluorogold, HE staining, QPCR, western blot, and magnetic resonance imaging (MRI) experiments. Our results demonstrate that inhibition of Notch1 in NSCs can promote the differentiation of NSCs to neurons. Knockdown of RhoA and inhibition of ROCK1 both can promote neuronal differentiation through inhibiting the activation of Notch1 signaling pathway in NSCs. In SCI, silencing RhoA enhanced neuronal differentiation and improved tissue repairing/functional recovery by inhibiting the activation of Notch1 signaling pathway. Since Notch1 inhibits neuronal differentiation through activating the RhoA/ROCK1 signaling pathway in NSCs, our data suggest that the Notch1/RhoA/ROCK1/Hes1/Hes5 signaling pathway may serve as a novel target for the treatment of SCI.
Collapse
Affiliation(s)
- Zhiming Peng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengxia Fu
- Division of Cardiac Surgery, NHC Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Zhu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lingli Long
- Department of Translational Medicine Center Research Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyang Zhao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingui Chen
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - David Y B Deng
- Scientific Research Center and Department of Orthopedic, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Yu S, He J. Stochastic cell-cycle entry and cell-state-dependent fate outputs of injury-reactivated tectal radial glia in zebrafish. eLife 2019; 8:48660. [PMID: 31442201 PMCID: PMC6707787 DOI: 10.7554/elife.48660] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/02/2019] [Indexed: 12/22/2022] Open
Abstract
Gliosis defined as reactive changes of resident glia is the primary response of the central nervous system (CNS) to trauma. The proliferation and fate controls of injury-reactivated glia are essential but remain largely unexplored. In zebrafish optic tectum, we found that stab injury drove a subset of radial glia (RG) into the cell cycle, and surprisingly, proliferative RG responding to sequential injuries of the same site were distinct but overlapping, which was in agreement with stochastic cell-cycle entry. Single-cell RNA sequencing analysis and functional assays further revealed the involvement of Notch/Delta lateral inhibition in this stochastic cell-cycle entry. Furthermore, the long-term clonal analysis showed that proliferative RG were largely gliogenic. Notch inhibition of reactive RG, not dormant and proliferative RG, resulted in an increased production of neurons, which were short-lived. Our findings gain new insights into the proliferation and fate controls of injury-reactivated CNS glia in zebrafish. The brain contains networks of cells known as neurons that rapidly relay information from one place to another. Other brain cells called glial cells perform several roles to support and protect the neurons including holding them in position and supplying them with oxygen and other nutrients. Damage to the brain as a result of physical injuries is one of the leading causes of death and disability in people worldwide. Brain injuries generally stimulate glial cells to enter a “reactive” state to help repair the damage. However, some glial cells may start to divide and produce more glial cells instead, leading to scar-like structures in the brain that hinder the repair process. To investigate why brain injuries trigger some glial cells to divide, Yu and He systematically examined glial cells in the part of the zebrafish brain that handles vision, known as the optic tectum. The experiments showed that a physical injury stimulated some of the glial cells to divide. Repeated injuries to the same part of the brain did not always stimulate the same glial cells to divide, suggesting that this process happens in random cells. Further experiments revealed that molecules involved in a signaling pathway known as Notch signaling were released from some brain cells and inhibited neighboring glial cells from dividing to make new glial cells. Unexpectedly, inhibiting Notch signaling after a brain injury caused some of the glial cells that were in the reactive state to divide to produce neurons instead of glial cells. Understanding how the brain responds to injury may help researchers develop new therapies that may benefit human patients in future. The next steps following on from this work will be to find out whether glial cells in humans and other mammals work in the same way as glial cells in zebrafish.
Collapse
Affiliation(s)
- Shuguang Yu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie He
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
35
|
McCallum-Loudeac J, Anderson G, Wilson MJ. Age and Sex-Related Changes to Gene Expression in the Mouse Spinal Cord. J Mol Neurosci 2019; 69:419-432. [PMID: 31267314 DOI: 10.1007/s12031-019-01371-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
The spinal cord is essential for neuronal communication between the brain and rest of the body. To gain further insight into the molecular changes underpinning maturation of the mouse spinal cord, we analysed gene expression differences between 4 weeks of age (prior to puberty onset) and adulthood (8 weeks). We found 800 genes were significantly differentially expressed between juvenile and adult spinal cords. Gene ontology analysis revealed an overrepresentation of genes with roles in myelination and signal transduction among others. The expression of a further 19 genes was sexually dimorphic; these included both autosomal and sex-linked genes. Given the presence of steroid hormone receptors in the spinal cord, we also looked at the impact of two major steroid hormones, oestradiol and dihydrotestosterone (DHT) on spinal cord gene expression for selected genes. In gonadectomised male animals, implants with oestradiol and DHT produced significant changes to spinal cord gene expression. This study provides an overview of the global gene expression changes that occur as the spinal cord matures, over a key period of maturation. This confirms that both age and sex are important considerations in studies involving the spinal cord.
Collapse
Affiliation(s)
- Jeremy McCallum-Loudeac
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Greg Anderson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Megan J Wilson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
36
|
Zhang S, Botchway BO, Zhang Y, Liu X. Resveratrol can inhibit Notch signaling pathway to improve spinal cord injury. Ann Anat 2019; 223:100-107. [DOI: 10.1016/j.aanat.2019.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
|
37
|
Regeneration of Dopaminergic Neurons in Adult Zebrafish Depends on Immune System Activation and Differs for Distinct Populations. J Neurosci 2019; 39:4694-4713. [PMID: 30948475 DOI: 10.1523/jneurosci.2706-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Adult zebrafish, in contrast to mammals, regenerate neurons in their brain, but the extent and variability of this capacity is unclear. Here we ask whether the loss of various dopaminergic neuron populations is sufficient to trigger their functional regeneration. Both sexes of zebrafish were analyzed. Genetic lineage tracing shows that specific diencephalic ependymo-radial glial (ERG) progenitor cells give rise to new dopaminergic [tyrosine hydroxylase-positive (TH+)] neurons. Ablation elicits an immune response, increased proliferation of ERG progenitor cells, and increased addition of new TH+ neurons in populations that constitutively add new neurons (e.g., diencephalic population 5/6). Inhibiting the immune response attenuates neurogenesis to control levels. Boosting the immune response enhances ERG proliferation, but not addition of TH+ neurons. In contrast, in populations in which constitutive neurogenesis is undetectable (e.g., the posterior tuberculum and locus ceruleus), cell replacement and tissue integration are incomplete and transient. This is associated with a loss of spinal TH+ axons, as well as permanent deficits in shoaling and reproductive behavior. Hence, dopaminergic neuron populations in the adult zebrafish brain show vast differences in regenerative capacity that correlate with constitutive addition of neurons and depend on immune system activation.SIGNIFICANCE STATEMENT Despite the fact that zebrafish show a high propensity to regenerate neurons in the brain, this study reveals that not all types of dopaminergic neurons are functionally regenerated after specific ablation. Hence, in the same adult vertebrate brain, mechanisms of successful and incomplete regeneration can be studied. We identify progenitor cells for dopaminergic neurons and show that activating the immune system promotes the proliferation of these cells. However, in some areas of the brain this only leads to insufficient replacement of functionally important dopaminergic neurons that later disappear. Understanding the mechanisms of regeneration in zebrafish may inform interventions targeting the regeneration of functionally important neurons, such as dopaminergic neurons, from endogenous progenitor cells in nonregenerating mammals.
Collapse
|
38
|
Becker CG, Becker T, Hugnot JP. The spinal ependymal zone as a source of endogenous repair cells across vertebrates. Prog Neurobiol 2018; 170:67-80. [DOI: 10.1016/j.pneurobio.2018.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/30/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
|
39
|
Ghosh S, Hui SP. Axonal regeneration in zebrafish spinal cord. REGENERATION (OXFORD, ENGLAND) 2018; 5:43-60. [PMID: 29721326 PMCID: PMC5911453 DOI: 10.1002/reg2.99] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
In the present review we discuss two interrelated events-axonal damage and repair-known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals.
Collapse
Affiliation(s)
- Sukla Ghosh
- Department of BiophysicsMolecular Biology and BioinformaticsUniversity of Calcutta92 A. P. C. RoadKolkata 700009India
| | - Subhra Prakash Hui
- Department of BiophysicsMolecular Biology and BioinformaticsUniversity of Calcutta92 A. P. C. RoadKolkata 700009India
- Victor Chang Cardiac Research InstituteLowy Packer Building, 405 Liverpool StDarlinghurstNSW 2010Australia.
| |
Collapse
|
40
|
Cardozo MJ, Mysiak KS, Becker T, Becker CG. Reduce, reuse, recycle – Developmental signals in spinal cord regeneration. Dev Biol 2017; 432:53-62. [DOI: 10.1016/j.ydbio.2017.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/03/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
|
41
|
Vijayanathan Y, Lim FT, Lim SM, Long CM, Tan MP, Majeed ABA, Ramasamy K. 6-OHDA-Lesioned Adult Zebrafish as a Useful Parkinson's Disease Model for Dopaminergic Neuroregeneration. Neurotox Res 2017; 32:496-508. [PMID: 28707266 DOI: 10.1007/s12640-017-9778-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 06/14/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022]
Abstract
Conventional mammalian models of neurodegeneration are often limited by futile axonogenesis with minimal functional recuperation of severed neurons. The emergence of zebrafish, a non-mammalian model with excellent neuroregenerative properties, may address these limitations. This study aimed to establish an adult zebrafish-based, neurotoxin-induced Parkinson's disease (PD) model and subsequently validate the regenerative capability of dopaminergic neurons (DpN). The DpN of adult male zebrafish (Danio rerio) were lesioned by microinjecting 6-hydroxydopamine (6-OHDA) neurotoxin (6.25, 12.5, 18.75, 25, 37.5, 50 and 100 mg/kg) into the ventral diencephalon (Dn). This was facilitated by an optimised protocol that utilised 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanineperchlorate (DiI) dye to precisely identify the injection site. Immunostaining was utilised to identify the number of tyrosine hydroxylase immunoreactive (TH-ir) DpN in brain regions of interest (i.e. olfactory bulb, telencephalon, preoptic area, posterior tuberculum and hypothalamus). Open tank video recordings were performed for locomotor studies. The Dn was accessed by setting the injection angle of the microinjection capillary to 60° and injection depth to 1200 μm (from the exposed brain surface). 6-OHDA (25 mg/kg) successfully ablated >85% of the Dn DpN (preoptic area, posterior tuberculum and hypothalamus) whilst maintaining a 100% survival. Locomotor analysis of 5-min recordings revealed that 6-OHDA-lesioned adult zebrafish were significantly (p < 0.0001) reduced in speed (cm/s) and distance travelled (cm). Lesioned zebrafish showed full recovery of Dn DpN 30 days post-lesion. This study had successfully developed a stable 6-OHDA-induced PD zebrafish model using a straightforward and reproducible approach. Thus, this developed teleost model poses exceptional potentials to study DpN regeneration.
Collapse
Affiliation(s)
- Yuganthini Vijayanathan
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300, Puncak Alam, Selangor Darul Ehsan, Malaysia.,Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fei Tieng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300, Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300, Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Chiau Ming Long
- School of Pharmacy, KPJ Healthcare University College, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Maw Pin Tan
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abu Bakar Abdul Majeed
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300, Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300, Puncak Alam, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
42
|
Ma L, Shen HF, Shen YQ, Schachner M. The Adhesion Molecule-Characteristic HNK-1 Carbohydrate Contributes to Functional Recovery After Spinal Cord Injury in Adult Zebrafish. Mol Neurobiol 2017; 54:3253-3263. [PMID: 27086029 DOI: 10.1007/s12035-016-9876-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/18/2016] [Indexed: 02/05/2023]
Abstract
The human natural killer cell antigen-1 (HNK-1) is functionally important in development, synaptic activity, and regeneration after injury in the nervous system of several mammalian species. It contains a sulfated glucuronic acid which is carried by neural adhesion molecules and expressed in nonmammalian species, including zebrafish, which, as opposed to mammals, spontaneously regenerate after injury in the adult. To evaluate HNK-1's role in recovery of function after spinal cord injury (SCI) of adult zebrafish, we assessed the effects of the two HNK-1 synthesizing enzymes, glucuronyl transferase and HNK-1 sulfotransferase. Expression of these two enzymes was increased at the messenger RNA (mRNA) level 11 days after injury in the brainstem nuclei that are capable of regrowth of severed axons, namely, the nucleus of medial longitudinal fascicle and intermediate reticular formation, but not at earlier time points after SCI. mRNA levels of glucuronyl transferase and sulfotransferase were increased in neurons, not only of these nuclei but also in the spinal cord caudal to the injury site at 11 days. Mauthner neurons which are not capable of regeneration did not show increased levels of enzyme mRNAs after injury. Reducing protein levels of the enzymes by application of anti-sense morpholinos resulted in reduction of locomotor recovery for glucuronyl transferase, but not for HNK-1 sulfotransferase. The combined results indicate that HNK-1 is upregulated in expression only in those neurons that are intrinsically capable of regeneration and contributes to regeneration after spinal cord injury in adult zebrafish in the absence of its sulfate moiety.
Collapse
Affiliation(s)
- Liping Ma
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Hui-Fan Shen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, P.R. China
| | - Yan-Qin Shen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, P.R. China
- Department of Basic Medicine, Jiangnan University Medical School, Wuxi, Jiangsu, P.R. China
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, P.R. China.
| |
Collapse
|
43
|
Gorsuch RA, Lahne M, Yarka CE, Petravick ME, Li J, Hyde DR. Sox2 regulates Müller glia reprogramming and proliferation in the regenerating zebrafish retina via Lin28 and Ascl1a. Exp Eye Res 2017; 161:174-192. [PMID: 28577895 DOI: 10.1016/j.exer.2017.05.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 04/27/2017] [Accepted: 05/26/2017] [Indexed: 01/01/2023]
Abstract
Sox2 is a well-established neuronal stem cell-associated transcription factor that regulates neural development and adult neurogenesis in vertebrates, and is one of the critical genes used to reprogram differentiated cells into induced pluripotent stem cells. We examined if Sox2 was involved in the early reprogramming-like events that Müller glia undergo as they upregulate many pluripotency- and neural stem cell-associated genes required for proliferation in light-damaged adult zebrafish retinas. In the undamaged adult zebrafish retina, Sox2 is expressed in Müller glia and a subset of amacrine cells, similar to other vertebrates. Following 31 h of light damage, Sox2 expression significantly increased in proliferating Müller glia. Morpholino-mediated knockdown of Sox2 expression resulted in decreased numbers of proliferating Müller glia, while induced overexpression of Sox2 stimulated Müller glia proliferation in the absence of retinal damage. Thus, Sox2 is necessary and sufficient for Müller glia proliferation. We investigated the role of Wnt/β-catenin signaling, which is a known regulator of sox2 expression during vertebrate retinal development. While β-catenin 2, but not β-catenin 1, was necessary for Müller glia proliferation, neither β-catenin paralog was required for sox2 expression following retinal damage. Sox2 expression was also necessary for ascl1a (neurogenic) and lin28a (reprogramming) expression, but not stat3 expression following retinal damage. Furthermore, Sox2 was required for Müller glial-derived neuronal progenitor cell amplification and expression of the pro-neural marker Tg(atoh7:EGFP). Finally, loss of Sox2 expression prevented complete regeneration of cone photoreceptors. This study is the first to identify a functional role for Sox2 during Müller glial-based regeneration of the vertebrate retina.
Collapse
Affiliation(s)
- Ryne A Gorsuch
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Manuela Lahne
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Clare E Yarka
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Michael E Petravick
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jingling Li
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - David R Hyde
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
44
|
Valentin-Kahan A, García-Tejedor GB, Robello C, Trujillo-Cenóz O, Russo RE, Alvarez-Valin F. Gene Expression Profiling in the Injured Spinal Cord of Trachemys scripta elegans: An Amniote with Self-Repair Capabilities. Front Mol Neurosci 2017; 10:17. [PMID: 28223917 PMCID: PMC5293771 DOI: 10.3389/fnmol.2017.00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
Abstract
Slider turtles are the only known amniotes with self-repair mechanisms of the spinal cord that lead to substantial functional recovery. Their strategic phylogenetic position makes them a relevant model to investigate the peculiar genetic programs that allow anatomical reconnection in some vertebrate groups but are absent in others. Here, we analyze the gene expression profile of the response to spinal cord injury (SCI) in the turtle Trachemys scripta elegans. We found that this response comprises more than 1000 genes affecting diverse functions: reaction to ischemic insult, extracellular matrix re-organization, cell proliferation and death, immune response, and inflammation. Genes related to synapses and cholesterol biosynthesis are down-regulated. The analysis of the evolutionary distribution of these genes shows that almost all are present in most vertebrates. Additionally, we failed to find genes that were exclusive of regenerating taxa. The comparison of expression patterns among species shows that the response to SCI in the turtle is more similar to that of mice and non-regenerative Xenopus than to Xenopus during its regenerative stage. This observation, along with the lack of conserved “regeneration genes” and the current accepted phylogenetic placement of turtles (sister group of crocodilians and birds), indicates that the ability of spinal cord self-repair of turtles does not represent the retention of an ancestral vertebrate character. Instead, our results suggest that turtles developed this capability from a non-regenerative ancestor (i.e., a lineage specific innovation) that was achieved by re-organizing gene expression patterns on an essentially non-regenerative genetic background. Among the genes activated by SCI exclusively in turtles, those related to anoxia tolerance, extracellular matrix remodeling, and axonal regrowth are good candidates to underlie functional recovery.
Collapse
Affiliation(s)
- Adrián Valentin-Kahan
- Department of Cellular and Molecular Neurophysiology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Gabriela B García-Tejedor
- Department of Cellular and Molecular Neurophysiology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Carlos Robello
- Molecular Biology Unit, Institut Pasteur de MontevideoMontevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la RepublicaMontevideo, Uruguay
| | - Omar Trujillo-Cenóz
- Department of Cellular and Molecular Neurophysiology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Raúl E Russo
- Department of Cellular and Molecular Neurophysiology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Fernando Alvarez-Valin
- Sección Biomatemática, Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| |
Collapse
|
45
|
Neuroinflammation as Fuel for Axonal Regeneration in the Injured Vertebrate Central Nervous System. Mediators Inflamm 2017; 2017:9478542. [PMID: 28203046 PMCID: PMC5288536 DOI: 10.1155/2017/9478542] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/05/2016] [Accepted: 12/25/2016] [Indexed: 01/19/2023] Open
Abstract
Damage to the central nervous system (CNS) is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided. Here, we review the current knowledge on how acute inflammation is intertwined with axonal regeneration, an important component of CNS repair. After optic nerve or spinal cord injury, inflammatory stimulation and/or modification greatly improve the regenerative outcome in rodents. Moreover, the hypothesis of a beneficial role of inflammation is further supported by evidence from adult zebrafish, which possess the remarkable capability to repair CNS lesions and even restore functionality. Lastly, we shed light on the impact of aging processes on the regenerative capacity in the CNS of mammals and zebrafish. As aging not only affects the CNS, but also the immune system, the regeneration potential is expected to further decline in aged individuals, an element that should definitely be considered in the search for novel therapeutic strategies.
Collapse
|
46
|
Altmann C, Vasic V, Hardt S, Heidler J, Häussler A, Wittig I, Schmidt MHH, Tegeder I. Progranulin promotes peripheral nerve regeneration and reinnervation: role of notch signaling. Mol Neurodegener 2016; 11:69. [PMID: 27770818 PMCID: PMC5075406 DOI: 10.1186/s13024-016-0132-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 09/28/2016] [Indexed: 01/11/2023] Open
Abstract
Background Peripheral nerve injury is a frequent cause of lasting motor deficits and chronic pain. Although peripheral nerves are capable of regrowth they often fail to re-innervate target tissues. Results Using newly generated transgenic mice with inducible neuronal progranulin overexpression we show that progranulin accelerates axonal regrowth, restoration of neuromuscular synapses and recovery of sensory and motor functions after injury of the sciatic nerve. Oppositely, progranulin deficient mice have long-lasting deficits in motor function tests after nerve injury due to enhanced losses of motor neurons and stronger microglia activation in the ventral horn of the spinal cord. Deep proteome and gene ontology (GO) enrichment analysis revealed that the proteins upregulated in progranulin overexpressing mice were involved in ‘regulation of transcription’ and ‘response to insulin’ (GO terms). Transcription factor prediction pointed to activation of Notch signaling and indeed, co-immunoprecipitation studies revealed that progranulin bound to the extracellular domain of Notch receptors, and this was functionally associated with higher expression of Notch target genes in the dorsal root ganglia of transgenic mice with neuronal progranulin overexpression. Functionally, these transgenic mice recovered normal gait and running, which was not achieved by controls and was stronger impaired in progranulin deficient mice. Conclusion We infer that progranulin activates Notch signaling pathways, enhancing thereby the regenerative capacity of partially injured neurons, which leads to improved motor function recovery. Graphical abstract ![]()
Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0132-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine Altmann
- Institute of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | - Verica Vasic
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stefanie Hardt
- Institute of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | - Juliana Heidler
- Functional Proteomics, SFB815 Core Unit, Goethe-University, Frankfurt, Germany
| | - Annett Häussler
- Institute of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics, SFB815 Core Unit, Goethe-University, Frankfurt, Germany
| | - Mirko H H Schmidt
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany.
| |
Collapse
|
47
|
Abstract
In all vertebrate species studied thus far, the adult central nervous system harbors neural stem cells that sustain constitutive neurogenesis, as well as latent neural progenitors that can be awakened in lesional contexts. In spite of this common theme, many species differ dramatically in their ability to recruit constitutive progenitors, to awaken latent progenitors, or to enhance or bias neural progenitor fate to achieve successful neuronal repair. This Review summarizes the striking similarities in the essential molecular and cellular properties of adult neural stem cells between different vertebrate species, both under physiological and reparative conditions. It also emphasizes the differences in the reparative process across evolution and how the study of non-mammalian models can provide insights into both basic neural stem cell properties and stimulatory cues shared between vertebrates, and subsequent neurogenic events, which are abortive under reparative conditions in mammals. Summary: This Review article provides a comparative view of neuronal repair across vertebrate species, with a particular focus on the molecular pathways that enable repair in some, but not all animals.
Collapse
Affiliation(s)
- Alessandro Alunni
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Université Paris-Saclay, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| | - Laure Bally-Cuif
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Université Paris-Saclay, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| |
Collapse
|
48
|
Actin-Cytoskeleton- and Rock-Mediated INM Are Required for Photoreceptor Regeneration in the Adult Zebrafish Retina. J Neurosci 2016; 35:15612-34. [PMID: 26609156 DOI: 10.1523/jneurosci.5005-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Loss of retinal neurons in adult zebrafish (Danio rerio) induces a robust regenerative response mediated by the reentry of the resident Müller glia into the cell cycle. Upon initiating Müller glia proliferation, their nuclei migrate along the apicobasal axis of the retina in phase with the cell cycle in a process termed interkinetic nuclear migration (INM). We examined the mechanisms governing this cellular process and explored its function in regenerating the adult zebrafish retina. Live-cell imaging revealed that the majority of Müller glia nuclei migrated to the outer nuclear layer (ONL) to divide. These Müller glia formed prominent actin filaments at the rear of nuclei that had migrated to the ONL. Inhibiting actin filament formation or Rho-associated coiled-coil kinase (Rock) activity, which is necessary for phosphorylation of myosin light chain and actin myosin-mediated contraction, disrupted INM with increased numbers of mitotic nuclei remaining in the basal inner nuclear layer, the region where Müller glia typically reside. Double knockdown of Rho-associated coiled-coil kinase 2a (Rock2a) and Rho-associated coiled-coil kinase 2b (Rock2b) similarly disrupted INM and reduced Müller glial cell cycle reentry. In contrast, Rock inhibition immediately before the onset of INM did not affect Müller glia proliferation, but subsequently reduced neuronal progenitor cell proliferation due to early cell cycle exit. Long-term, Rock inhibition increased the generation of mislocalized ganglion/amacrine cells at the expense of rod and cone photoreceptors. In summary, INM is driven by an actin-myosin-mediated process controlled by Rock2a and Rock2b activity, which is required for sufficient proliferation and regeneration of photoreceptors after light damage. SIGNIFICANCE STATEMENT The human retina does not replace lost or damaged neurons, ultimately causing vision impairment. In contrast, zebrafish are capable of regenerating lost neurons. Understanding the mechanisms that regulate retinal regeneration in these organisms will help to elucidate approaches to stimulate a similar response in humans. In the damaged zebrafish retina, Müller glia dedifferentiate and proliferate to generate neuronal progenitor cells (NPCs) that differentiate into the lost neurons. We show that the nuclei of Müller glia and NPCs migrate apically and basally in phase with the cell cycle. This migration is facilitated by the actin cytoskeleton and Rho-associated coiled-coil kinases (Rocks). We demonstrate that Rock function is required for sufficient proliferation and the regeneration of photoreceptors, likely via regulating nuclear migration.
Collapse
|
49
|
Rodriguez Viales R, Diotel N, Ferg M, Armant O, Eich J, Alunni A, März M, Bally-Cuif L, Rastegar S, Strähle U. The helix-loop-helix protein id1 controls stem cell proliferation during regenerative neurogenesis in the adult zebrafish telencephalon. Stem Cells 2015; 33:892-903. [PMID: 25376791 DOI: 10.1002/stem.1883] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/23/2014] [Accepted: 09/27/2014] [Indexed: 01/11/2023]
Abstract
The teleost brain has the remarkable ability to generate new neurons and to repair injuries during adult life stages. Maintaining life-long neurogenesis requires careful management of neural stem cell pools. In a genome-wide expression screen for transcription regulators, the id1 gene, encoding a negative regulator of E-proteins, was found to be upregulated in response to injury. id1 expression was mapped to quiescent type I neural stem cells in the adult telencephalic stem cell niche. Gain and loss of id1 function in vivo demonstrated that Id1 promotes stem cell quiescence. The increased id1 expression observed in neural stem cells in response to injury appeared independent of inflammatory signals, suggesting multiple antagonistic pathways in the regulation of reactive neurogenesis. Together, we propose that Id1 acts to maintain the neural stem cell pool by counteracting neurogenesis-promoting signals.
Collapse
|
50
|
Mysiak KS, Barreiro‐Iglesias A, Reimer MM, Scott AL, Yang Y, Becker T, Becker CG. ISDN2014_0175: Serotonin promotes motor neuron development and adult regeneration in zebrafish. Int J Dev Neurosci 2015. [DOI: 10.1016/j.ijdevneu.2015.04.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|