1
|
Ducrot C, Drouet A, Tessier B, Desquines C, Cloâtre T, Mazouzi RC, Levet F, Favereaux A, Letellier M, Thoumine O. High-affinity detection of biotinylated endogenous neuroligin-1 at excitatory and inhibitory synapses using a tagged knock-in mouse. Proc Natl Acad Sci U S A 2025; 122:e2411669122. [PMID: 40424132 DOI: 10.1073/pnas.2411669122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 04/14/2025] [Indexed: 05/29/2025] Open
Abstract
Neuroligins (NLGNs) are important cell adhesion molecules mediating trans-synaptic contacts between neurons. However, the high-yield biochemical isolation and visualization of endogenous NLGNs is hampered by the lack of efficient antibodies. Thus, to reveal their subcellular distribution, binding partners, and synaptic function, NLGNs were extensively manipulated using knock-down, knock-out, or overexpression approaches, leading to controversial results. As an alternative to the manipulation of NLGN expression level, we describe here the generation of a knock-in (KI) mouse strain in which native NLGN1 was N-terminally tagged with a small biotin acceptor peptide (bAP) that can be enzymatically biotinylated by the exogenous delivery of biotin ligase. After showing that KI mice exhibit normal behavior as well as similar synaptic number, ultrastructure, transmission properties, and protein expression levels when compared to wild type counterparts, we exploited the fact that biotinylated bAP-NLGN1 can be selectively isolated or visualized using high-affinity streptavidin conjugates. Using immunoblotting and immunofluorescence, we show that bAP-NLGN1 binds PSD-95 and gephyrin and populates both excitatory and inhibitory synapses, challenging the historical view that NLGN1 is exclusively localized at excitatory synapses. Using superresolution optical and electron microscopy, we further highlight that bAP-NLGN1 forms in the synaptic cleft a subset of nanodomains, which contain each a few NLGN1 dimers and whose number positively scales with the postsynapse size. Overall, our study not only provides an extensively characterized KI mouse model which will be available to the scientific community but also an unprecedented view of the nanoscale organization of endogenous NLGN1.
Collapse
Affiliation(s)
- Charles Ducrot
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Adèle Drouet
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Béatrice Tessier
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Chloé Desquines
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Tiffany Cloâtre
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Rania-Cérine Mazouzi
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Florian Levet
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Alexandre Favereaux
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Mathieu Letellier
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| | - Olivier Thoumine
- Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Neurocampus Department, University of Bordeaux, Bordeaux F-33076, France
| |
Collapse
|
2
|
Galvan B, Singh T, Kurup P, Alvarez J, Bettagi A, Stuart H, Nair A, Menes S, Patel M, Delgado JY. Adaptations to the neuronal culture for researchers at undergraduate institutions. J Neurosci Methods 2025; 418:110437. [PMID: 40187537 DOI: 10.1016/j.jneumeth.2025.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND The use of rat hippocampal neurons in culture has become an essential tool in neuroscience, enabling detailed study of excitatory synapse organization, neurotransmitter release, and mechanisms of synaptic plasticity. While these cultures provide valuable insights, the physiological relevance of this simplified in vitro system remains an ongoing discussion. Research indicates that cultured hippocampal neurons undergo key maturation processes, including the development of mature dendritic spines, within weeks, mirroring aspects of in vivo development. Importantly, cultured neurons offer unique experimental flexibility, facilitating single-neuron manipulations that is technically challenging or impractical in intact brain slices or with viral vectors. Despite these advantages, establishing cultures with minimal glial support-critical for experiments involving sparse labeling of extracellular proteins for single-particle tracking-often demands substantial time, expertise, and resources, making it difficult to implement in smaller laboratories with limited personnel and funding. NEW METHOD In this study, we present modifications to the standard hippocampal culture protocol designed to improve accessibility and usability in resource-limited settings, such as undergraduate-focused institutions. RESULTS/COMPARISON Our protocol reduces costs, simplifies the culturing process, and minimizes time requirements, supporting robust neuronal cultures with physiological properties comparable to those of traditional methods. These adaptations enable the execution of sophisticated experiments, including single-molecule tracking, in personnel-limited research environments. CONCLUSIONS This approach highlights the potential for undergraduate institutions to make significant contributions to scientific advancements, rather than being viewed solely as centers for undergraduate training.
Collapse
Affiliation(s)
- Briahna Galvan
- Loyola University Chicago, Department of Biology, 1032 W Sheridan Rd, Chicago, IL 60660, USA
| | - Taranjot Singh
- Loyola University Chicago, Department of Biology, 1032 W Sheridan Rd, Chicago, IL 60660, USA
| | - Prajwal Kurup
- Loyola University Chicago, Department of Biology, 1032 W Sheridan Rd, Chicago, IL 60660, USA
| | - Jake Alvarez
- Loyola University Chicago, Department of Biology, 1032 W Sheridan Rd, Chicago, IL 60660, USA
| | - Atta Bettagi
- Loyola University Chicago, Department of Biology, 1032 W Sheridan Rd, Chicago, IL 60660, USA
| | - Henry Stuart
- Loyola University Chicago, Department of Biology, 1032 W Sheridan Rd, Chicago, IL 60660, USA
| | - Anuraj Nair
- Loyola University Chicago, Department of Biology, 1032 W Sheridan Rd, Chicago, IL 60660, USA
| | - Szilard Menes
- Loyola University Chicago, Department of Biology, 1032 W Sheridan Rd, Chicago, IL 60660, USA
| | - Meera Patel
- Loyola University Chicago, Department of Biology, 1032 W Sheridan Rd, Chicago, IL 60660, USA
| | - Jary Y Delgado
- Loyola University Chicago, Department of Biology, 1032 W Sheridan Rd, Chicago, IL 60660, USA.
| |
Collapse
|
3
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Heeh M, Sandouka D, Idais T. Exploring the role of AMPA receptor auxiliary proteins in synaptic functions and diseases. FEBS J 2025; 292:2433-2478. [PMID: 39394632 DOI: 10.1111/febs.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (AMPARs) mediate rapid excitatory synaptic transmission in the mammalian brain, primarily driven by the neurotransmitter glutamate. The modulation of AMPAR activity, particularly calcium-permeable AMPARs (CP-AMPARs), is crucially influenced by various auxiliary subunits. These subunits are integral membrane proteins that bind to the receptor's core and modify its functional properties, including ion channel kinetics and receptor trafficking. This review comprehensively catalogs all known AMPAR auxiliary proteins, providing vital insights into the biochemical mechanisms governing synaptic modulation and the specific impact of CP-AMPARs compared to their calcium-impermeable AMPA receptor (CI-AMPARs). Understanding the complex interplay between AMPARs and their auxiliary subunits in different brain regions is essential for elucidating their roles in cognitive functions such as learning and memory. Importantly, alterations in these auxiliary proteins' expression, function or interactions have been implicated in various neurological disorders. Aberrant signaling through CP-AMPARs, in particular, is associated with severe synaptic dysfunctions across neurodevelopmental, neurodegenerative and psychiatric conditions. Targeting the distinct properties of AMPAR-auxiliary subunit complexes, especially those involving CP-AMPARs, could disclose new therapeutic strategies, potentially allowing for more precise interventions in treating complex neuronal disorders.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
4
|
Chen L, Ni C, Lu D, Zhang S, Li Y, Wang D, Hua B, Ni H, Xu L, Yao M. Curcumin analog C16 attenuates bone cancer pain induced by MADB 106 breast cancer cells in female rats and inhibits the CREB/NLGN2 signaling axis by targeting CaMKⅠα. Neuropharmacology 2025; 266:110284. [PMID: 39725125 DOI: 10.1016/j.neuropharm.2024.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Bone cancer pain (BCP) is one of the most severe complications faced by patients with cancer; however, current pharmacological options are limited. Curcumin has been demonstrated to possess anti-inflammatory and analgesic properties; however, our preliminary research found that the analgesic efficiency of curcumin is not high in BCP. Consequently, curcumin analogs have emerged as a significant focus of our research. This study aimed to systematically investigate the analgesic effects of C16 in rats with BCP induced by MADB 106 breast cancer cells (MADB 106-induced BCP) and elucidate the underlying molecular mechanisms. A range of experimental methods, including kinase profiling, transcriptome sequencing, behavioral tests, immunofluorescence, and biochemical analyses, were employed to comprehensively assess the role of C16 in the MADB 106-induced BCP model. The results indicated that C16 significantly alleviated bone cancer pain induced by Luciferin-MADB 106 cells (10ˆ6 cells) in a dose-dependent manner. Importantly, kinase profiling and validation experiments identified CaMKIα in spinal dorsal horn neurons as the primary target of C16's analgesic effect on MADB 106-induced BCP. Continuous intrathecal administration of C16 markedly suppressed the expression of CREB and P-CREB and reduced the expression of neuroligin 2 in the spinal cords of BCP rats, thereby clarifying the mechanism of action of C16 in alleviating MADB 106-induced BCP. These findings suggest that C16 possesses significant therapeutic potential for mitigating MADB 106-induced BCP nociceptive hypersensitivity, providing a foundation for the future development of novel drugs targeting MADB 106-induced BCP. This article is part of the Special Issue on "Empathic Pain".
Collapse
Affiliation(s)
- Liping Chen
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University/The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Dashan Lu
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University/The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Shuyao Zhang
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Yuhua Li
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Dongjie Wang
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Bohan Hua
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China.
| | - Ming Yao
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University/The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China.
| |
Collapse
|
5
|
Choquet D, Opazo P, Zhang H. AMPA receptor diffusional trapping machinery as an early therapeutic target in neurodegenerative and neuropsychiatric disorders. Transl Neurodegener 2025; 14:8. [PMID: 39934896 PMCID: PMC11817889 DOI: 10.1186/s40035-025-00470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Over the past two decades, there has been a growing recognition of the physiological importance and pathological implications surrounding the surface diffusion of AMPA receptors (AMPARs) and their diffusional trapping at synapses. AMPAR surface diffusion entails the thermally powered random Brownian lateral movement of these receptors within the plasma membrane, facilitating dynamic exchanges between synaptic and extrasynaptic compartments. This process also enables the activity-dependent diffusional trapping and accumulation of AMPARs at synapses through transient binding to synaptic anchoring slots. Recent research highlights the critical role of synaptic recruitment of AMPARs via diffusional trapping in fundamental neural processes such as the development of the early phases of long-term potentiation (LTP), contextual fear memory, memory consolidation, and sensory input-induced cortical remapping. Furthermore, studies underscore that regulation of AMPAR diffusional trapping is altered across various neurological disease models, including Huntington's disease (HD), Alzheimer's disease (AD), and stress-related disorders like depression. Notably, pharmacological interventions aimed at correcting deficits in AMPAR diffusional trapping have demonstrated efficacy in restoring synapse numbers, LTP, and memory functions in these diverse disease models, despite their distinct pathogenic mechanisms. This review provides current insights into the molecular mechanisms underlying the dysregulation of AMPAR diffusional trapping, emphasizing its role as a converging point for multiple pathological signaling pathways. We propose that targeting AMPAR diffusional trapping represents a promising early therapeutic strategy to mitigate synaptic plasticity and memory deficits in a spectrum of brain disorders, encompassing but not limited to HD, AD, and stress-related conditions. This approach underscores an integrated therapeutic target amidst the complexity of these neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Daniel Choquet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33000, Bordeaux, France
| | - Patricio Opazo
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Hongyu Zhang
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
- Mohn Research Center for the Brain, University of Bergen, 5009, Bergen, Norway.
- Department of Radiology, Haukeland University Hospital, 5021, Bergen, Norway.
| |
Collapse
|
6
|
Sun SY, Nie L, Zhang J, Fang X, Luo H, Fu C, Wei Z, Tang AH. The interaction between KIF21A and KANK1 regulates dendritic morphology and synapse plasticity in neurons. Neural Regen Res 2025; 20:209-223. [PMID: 38767486 PMCID: PMC11246154 DOI: 10.4103/1673-5374.391301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 11/07/2023] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00029/figure1/v/2024-05-14T021156Z/r/image-tiff Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory. Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1; however, whether KIF21A modulates dendritic structure and function in neurons remains unknown. In this study, we found that KIF21A was distributed in a subset of dendritic spines, and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines. Furthermore, the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity. Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching, and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1, but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1. Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals' cognitive abilities. Taken together, our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function.
Collapse
Affiliation(s)
- Shi-Yan Sun
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China
| | - Lingyun Nie
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- CAS Center for Excellence in Molecular Cell Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Jing Zhang
- Department of Neurobiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xue Fang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Hongmei Luo
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China
| | - Chuanhai Fu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- CAS Center for Excellence in Molecular Cell Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Zhiyi Wei
- Department of Neurobiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Ai-Hui Tang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China
| |
Collapse
|
7
|
Czöndör K, Piette N, Tessier B, Studer V, Thoumine O. Synaptogenic Assays Using Primary Neurons Cultured on Micropatterned Substrates. Methods Mol Biol 2025; 2910:3-26. [PMID: 40220090 DOI: 10.1007/978-1-0716-4446-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
One of the difficulties for studying the mechanisms of synaptogenesis stems from the spatial unpredictability of contact formation between neurons, and the involvement of many parallel adhesive pathways mediating axon-dendrite recognition. To circumvent these limitations, we describe here a method allowing for the investigation of biomimetic synaptic contacts at controlled locations with high precision and statistics. Specifically, primary neurons are cultured on micropatterned substrates comprising arrays of micron-scale dots coated with purified synaptogenic adhesion molecules. Coating the substrates with the homophilic adhesion molecule SynCAM1 triggers the formation of functional presynaptic structures in axons, while neurexin-1β elicits postsynapses in dendrites from neurons expressing the counter receptor neuroligin-1. This assay can be combined with various optical imaging techniques, including immunocytochemistry to screen the accumulation of synaptic components, long-term live cell recordings to probe the kinetics of neurite growth and synapse differentiation, as well as high-resolution single-molecule tracking.
Collapse
Affiliation(s)
- Katalin Czöndör
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, IINS, Bordeaux, France
| | - Nathalie Piette
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, IINS, Bordeaux, France
- Alveole S.A., Paris, France
| | - Béatrice Tessier
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, IINS, Bordeaux, France
| | - Vincent Studer
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, IINS, Bordeaux, France
| | - Olivier Thoumine
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, IINS, Bordeaux, France.
| |
Collapse
|
8
|
Cowen MH, Haskell D, Zoga K, Reddy KC, Chalasani SH, Hart MP. Conserved autism-associated genes tune social feeding behavior in C. elegans. Nat Commun 2024; 15:9301. [PMID: 39468047 PMCID: PMC11519495 DOI: 10.1038/s41467-024-53590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Animal foraging is an essential and evolutionarily conserved behavior that occurs in social and solitary contexts, but the underlying molecular pathways are not well defined. We discover that conserved autism-associated genes (NRXN1(nrx-1), NLGN3(nlg-1), GRIA1,2,3(glr-1), GRIA2(glr-2), and GLRA2,GABRA3(avr-15)) regulate aggregate feeding in C. elegans, a simple social behavior. NRX-1 functions in chemosensory neurons (ADL and ASH) independently of its postsynaptic partner NLG-1 to regulate social feeding. Glutamate from these neurons is also crucial for aggregate feeding, acting independently of NRX-1 and NLG-1. Compared to solitary counterparts, social animals show faster presynaptic release and more presynaptic release sites in ASH neurons, with only the latter requiring nrx-1. Disruption of these distinct signaling components additively converts behavior from social to solitary. Collectively, we find that aggregate feeding is tuned by conserved autism-associated genes through complementary synaptic mechanisms, revealing molecular principles driving social feeding.
Collapse
Affiliation(s)
- Mara H Cowen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA, USA
| | - Dustin Haskell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristi Zoga
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirthi C Reddy
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA, USA
| | | | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Liouta K, Lubas M, Venugopal V, Chabbert J, Jeannière C, Diaz C, Munier M, Tessier B, Claverol S, Favereaux A, Sainlos M, de Wit J, Letellier M, Thoumine O, Chamma I. LRRTM2 controls presynapse nano-organization and AMPA receptor sub-positioning through Neurexin-binding interface. Nat Commun 2024; 15:8807. [PMID: 39394199 PMCID: PMC11470055 DOI: 10.1038/s41467-024-53090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
Synapses are organized into nanocolumns that control synaptic transmission efficacy through precise alignment of postsynaptic neurotransmitter receptors and presynaptic release sites. Recent evidence show that Leucine-Rich Repeat Transmembrane protein LRRTM2, highly enriched and confined at synapses, interacts with Neurexins through its C-terminal cap, but the role of this binding interface has not been explored in synapse formation and function. Here, we develop a conditional knock-out mouse model (cKO) to address the molecular mechanisms of LRRTM2 regulation, and its role in synapse organization and function. We show that LRRTM2 cKO specifically impairs excitatory synapse formation and function in mice. Surface expression, synaptic clustering, and membrane dynamics of LRRTM2 are tightly controlled by selective motifs in the C-terminal domain. Conversely, the N-terminal domain controls presynapse nano-organization and postsynapse AMPAR sub-positioning and stabilization through the recently identified Neurexin-binding interface. Thus, we identify LRRTM2 as a central organizer of pre- and post- excitatory synapse nanostructure through interaction with presynaptic Neurexins.
Collapse
Affiliation(s)
- Konstantina Liouta
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Malgorzata Lubas
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Vasika Venugopal
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Julia Chabbert
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Caroline Jeannière
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Candice Diaz
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Matthieu Munier
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Béatrice Tessier
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | | | - Alexandre Favereaux
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Matthieu Sainlos
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Mathieu Letellier
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Olivier Thoumine
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Ingrid Chamma
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
10
|
Xie X, Li Y, Su S, Li X, Xu X, Gao Y, Peng M, Ke C. Neuroligins facilitate the development of bone cancer pain via regulating synaptic transmission: an experimental study. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2024; 74:744422. [PMID: 36841430 PMCID: PMC11281930 DOI: 10.1016/j.bjane.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND The underlying mechanism of chronic pain involves the plasticity in synaptic receptors and neurotransmitters. This study aimed to investigate potential roles of Neuroligins (NLs) within the spinal dorsal horn of rats in a newly established Bone Cancer Pain (BCP) model. The objective was to explore the mechanism of neuroligin involved in the occurrence and development of bone cancer pain. METHODS Using our rat BCP model, we assessed pain hypersensitivity over time. Quantitative real-time polymerase chain reaction and Western blot analysis were performed to investigate NL expression, and NLs were overexpressed in the rat spinal cord using lentiviral vectors. Immunofluorescence staining and whole-cell patch-clamp recordings were deployed to investigate the role of NLs in the development of BCP. RESULTS We observed reduced expression levels of NL1 and NL2, but not of NL3, within the rat spinal cord, which were found to be associated with and essential for the development of BCP in our model. Accordingly, NL1 or NL2 overexpression in the spinal cord alleviated mechanical hypersensitivity of rats. Electrophysiological experiments indicated that NL1 and NL2 are involved in BCP via regulating γ-aminobutyric acid-ergic interneuronal synapses and the activity of glutamatergic interneuronal synapses, respectively. CONCLUSIONS Our observations unravel the role of NLs in cancer-related chronic pain and further suggest that inhibitory mechanisms are central features of BCP in the spinal dorsal horn. These results provide a new perspective and basis for subsequent studies elucidating the onset and progression of BCP.
Collapse
Affiliation(s)
- Xianqiao Xie
- Hubei University of Medicine, Taihe Hospital, Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Shiyan, Hubei, China; Suizhou Central Hospital, Department of Anesthesiology, Suizhou, China.
| | - Yang Li
- Hubei University of Medicine, Taihe Hospital, Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Shiyan, Hubei, China
| | - Shanchun Su
- Hubei University of Medicine, Taihe Hospital, Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Shiyan, Hubei, China
| | - Xiaohui Li
- Hubei University of Medicine, Taihe Hospital, Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Shiyan, Hubei, China
| | - Xueqin Xu
- Hubei University of Medicine, Taihe Hospital, Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Shiyan, Hubei, China
| | - Yan Gao
- Hubei University of Medicine, Taihe Hospital, Department of Nuclear Medicine and Institute of Anesthesiology & Pain (IAP), Shiyan, Hubei, China
| | - Minjing Peng
- Hubei University of Medicine, Taihe Hospital, Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Shiyan, Hubei, China
| | - Changbin Ke
- Hubei University of Medicine, Taihe Hospital, Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan, Hubei, China
| |
Collapse
|
11
|
Fukata Y, Fukata M, MacGillavry HD, Nair D, Hosy E. Celebrating the Birthday of AMPA Receptor Nanodomains: Illuminating the Nanoscale Organization of Excitatory Synapses with 10 Nanocandles. J Neurosci 2024; 44:e2104232024. [PMID: 38839340 PMCID: PMC11154862 DOI: 10.1523/jneurosci.2104-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 06/07/2024] Open
Abstract
A decade ago, in 2013, and over the course of 4 summer months, three separate observations were reported that each shed light independently on a new molecular organization that fundamentally reshaped our perception of excitatory synaptic transmission (Fukata et al., 2013; MacGillavry et al., 2013; Nair et al., 2013). This discovery unveiled an intricate arrangement of AMPA-type glutamate receptors and their principal scaffolding protein PSD-95, at synapses. This breakthrough was made possible, thanks to advanced super-resolution imaging techniques. It fundamentally changed our understanding of excitatory synaptic architecture and paved the way for a brand-new area of research. In this Progressions article, the primary investigators of the nanoscale organization of synapses have come together to chronicle the tale of their discovery. We recount the initial inquiry that prompted our research, the preceding studies that inspired our work, the technical obstacles that were encountered, and the breakthroughs that were made in the subsequent decade in the realm of nanoscale synaptic transmission. We review the new discoveries made possible by the democratization of super-resolution imaging techniques in the field of excitatory synaptic physiology and architecture, first by the extension to other glutamate receptors and to presynaptic proteins and then by the notion of trans-synaptic organization. After describing the organizational modifications occurring in various pathologies, we discuss briefly the latest technical developments made possible by super-resolution imaging and emerging concepts in synaptic physiology.
Collapse
Affiliation(s)
- Yuko Fukata
- Division of Molecular and Cellular Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Harold D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Eric Hosy
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR5297, Bordeaux F-33000, France
| |
Collapse
|
12
|
Szíber Z, Drouet A, Mondin M, Levet F, Thoumine O. Neuroligin-1 dependent phosphotyrosine signaling in excitatory synapse differentiation. Front Mol Neurosci 2024; 17:1359067. [PMID: 38813439 PMCID: PMC11133670 DOI: 10.3389/fnmol.2024.1359067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction The synaptic adhesion molecule neuroligin-1 (NLGN1) is involved in the differentiation of excitatory synapses, but the precise underlying molecular mechanisms are still debated. Here, we explored the role of NLGN1 tyrosine phosphorylation in this process, focusing on a subset of receptor tyrosine kinases (RTKs), namely FGFR1 and Trks, that were previously described to phosphorylate NLGN1 at a unique intracellular residue (Y782). Methods We used pharmacological inhibitors and genetic manipulation of those RTKs in dissociated hippocampal neurons, followed by biochemical measurement of NLGN1 phosphorylation and immunocytochemical staining of excitatory synaptic scaffolds. Results This study shows that: (i) the accumulation of PSD-95 at de novo NLGN1 clusters induced by neurexin crosslinking is reduced by FGFR and Trk inhibitors; (ii) the increase in PSD-95 puncta caused by NLGN1 over-expression is impaired by FGFR and Trk inhibitors; (iii) TrkB activation by BDNF increases NLGN1 phosphorylation; and (iv) TrkB knock-down impairs the increase of PSD-95 puncta caused by NLGN1 over-expression, an effect which is not seen with the NLGN1 Y782A mutant. Discussion Together, our data identify TrkB as one of the major RTKs responsible for NLGN1 tyrosine phosphorylation, and reveal that TrkB activity is necessary for the synaptogenic effects of NLGN1.
Collapse
Affiliation(s)
- Zsófia Szíber
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Adèle Drouet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Magali Mondin
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, Bordeaux, France
| | - Florian Levet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, Bordeaux, France
| | - Olivier Thoumine
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| |
Collapse
|
13
|
Rimbault C, Breillat C, Compans B, Toulmé E, Vicente FN, Fernandez-Monreal M, Mascalchi P, Genuer C, Puente-Muñoz V, Gauthereau I, Hosy E, Claverol S, Giannone G, Chamma I, Mackereth CD, Poujol C, Choquet D, Sainlos M. Engineering paralog-specific PSD-95 recombinant binders as minimally interfering multimodal probes for advanced imaging techniques. eLife 2024; 13:e69620. [PMID: 38167295 PMCID: PMC10803022 DOI: 10.7554/elife.69620] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the constant advances in fluorescence imaging techniques, monitoring endogenous proteins still constitutes a major challenge in particular when considering dynamics studies or super-resolution imaging. We have recently evolved specific protein-based binders for PSD-95, the main postsynaptic scaffold proteins at excitatory synapses. Since the synthetic recombinant binders recognize epitopes not directly involved in the target protein activity, we consider them here as tools to develop endogenous PSD-95 imaging probes. After confirming their lack of impact on PSD-95 function, we validated their use as intrabody fluorescent probes. We further engineered the probes and demonstrated their usefulness in different super-resolution imaging modalities (STED, PALM, and DNA-PAINT) in both live and fixed neurons. Finally, we exploited the binders to enrich at the synapse genetically encoded calcium reporters. Overall, we demonstrate that these evolved binders constitute a robust and efficient platform to selectively target and monitor endogenous PSD-95 using various fluorescence imaging techniques.
Collapse
Affiliation(s)
- Charlotte Rimbault
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Christelle Breillat
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Benjamin Compans
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Estelle Toulmé
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Filipe Nunes Vicente
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Monica Fernandez-Monreal
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Patrice Mascalchi
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Camille Genuer
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Virginia Puente-Muñoz
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Isabel Gauthereau
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Eric Hosy
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | | | - Gregory Giannone
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Ingrid Chamma
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | | | - Christel Poujol
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Matthieu Sainlos
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| |
Collapse
|
14
|
Cowen MH, Reddy KC, Chalasani SH, Hart MP. Conserved autism-associated genes tune social feeding behavior in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570116. [PMID: 38106124 PMCID: PMC10723370 DOI: 10.1101/2023.12.05.570116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Animal foraging is an essential and evolutionarily conserved behavior that occurs in social and solitary contexts, but the underlying molecular pathways are not well defined. We discover that conserved autism-associated genes (NRXN1(nrx-1), NLGN3(nlg-1), GRIA1,2,3(glr-1), GRIA2(glr-2), and GLRA2,GABRA3(avr-15)) regulate aggregate feeding in C. elegans, a simple social behavior. NRX-1 functions in chemosensory neurons (ADL and ASH) independently of its postsynaptic partner NLG-1 to regulate social feeding. Glutamate from these neurons is also crucial for aggregate feeding, acting independently of NRX-1 and NLG-1. Compared to solitary counterparts, social animals show faster presynaptic release and more presynaptic release sites in ASH neurons, with only the latter requiring nrx-1. Disruption of these distinct signaling components additively converts behavior from social to solitary. Aggregation induced by circuit activation is also dependent on nrx-1. Collectively, we find that aggregate feeding is tuned by conserved autism-associated genes through complementary synaptic mechanisms, revealing molecular principles driving social feeding.
Collapse
Affiliation(s)
- Mara H. Cowen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA
| | - Kirthi C. Reddy
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA
| | | | - Michael P. Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
15
|
Benner O, Cast TP, Minamide LS, Lenninger Z, Bamburg JR, Chanda S. Multiple N-linked glycosylation sites critically modulate the synaptic abundance of neuroligin isoforms. J Biol Chem 2023; 299:105361. [PMID: 37865312 PMCID: PMC10679506 DOI: 10.1016/j.jbc.2023.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
In recent years, elegant glycomic and glycoproteomic approaches have revealed an intricate glycosylation profile of mammalian brain with enormous spatial and temporal diversities. Nevertheless, at a cellular level, it is unclear how these post-translational modifications affect various proteins to influence crucial neuronal properties. Here, we have investigated the impact of N-linked glycosylation on neuroligins (NLGNs), a class of cell-adhesion molecules that play instructive roles in synapse organization. We found that endogenous NLGN proteins are differentially glycosylated across several regions of murine brain in a sex-independent but isoform-dependent manner. In both rodent primary neurons derived from brain sections and human neurons differentiated from stem cells, all NLGN variants were highly enriched with multiple N-glycan subtypes, which cumulatively ensured their efficient trafficking to the cell surface. Removal of these N-glycosylation residues only had a moderate effect on NLGNs' stability or expression levels but particularly enhanced their retention at the endoplasmic reticulum. As a result, the glycosylation-deficient NLGNs exhibited considerable impairments in their dendritic distribution and postsynaptic accumulation, which in turn, virtually eliminated their ability to recruit presynaptic terminals and significantly reduced NLGN overexpression-induced assemblies of both glutamatergic and GABAergic synapse structures. Therefore, our results highlight an essential mechanistic contribution of N-linked glycosylations in facilitating the appropriate secretory transport of a major synaptic cell-adhesion molecule and promoting its cellular function in neurons.
Collapse
Affiliation(s)
- Orion Benner
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Thomas P Cast
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Laurie S Minamide
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Zephyr Lenninger
- Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA
| | - James R Bamburg
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Soham Chanda
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
16
|
Olah SS, Kareemo DJ, Buchta WC, Sinnen BL, Miller CN, Actor-Engel HS, Gookin SE, Winborn CS, Kleinjan MS, Crosby KC, Aoto J, Smith KR, Kennedy MJ. Acute reorganization of postsynaptic GABA A receptors reveals the functional impact of molecular nanoarchitecture at inhibitory synapses. Cell Rep 2023; 42:113331. [PMID: 37910506 PMCID: PMC10782565 DOI: 10.1016/j.celrep.2023.113331] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/01/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
Neurotransmitter receptors partition into nanometer-scale subdomains within the postsynaptic membrane that are precisely aligned with presynaptic neurotransmitter release sites. While spatial coordination between pre- and postsynaptic elements is observed at both excitatory and inhibitory synapses, the functional significance of this molecular architecture has been challenging to evaluate experimentally. Here we utilized an optogenetic clustering approach to acutely alter the nanoscale organization of the postsynaptic inhibitory scaffold gephyrin while monitoring synaptic function. Gephyrin clustering rapidly enlarged postsynaptic area, laterally displacing GABAA receptors from their normally precise apposition with presynaptic active zones. Receptor displacement was accompanied by decreased synaptic GABAA receptor currents even though presynaptic release probability and the overall abundance and function of synaptic GABAA receptors remained unperturbed. Thus, acutely repositioning neurotransmitter receptors within the postsynaptic membrane profoundly influences synaptic efficacy, establishing the functional importance of precision pre-/postsynaptic molecular coordination at inhibitory synapses.
Collapse
Affiliation(s)
- Samantha S Olah
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dean J Kareemo
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - William C Buchta
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Brooke L Sinnen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Carley N Miller
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hannah S Actor-Engel
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sara E Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Christina S Winborn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mason S Kleinjan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin C Crosby
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jason Aoto
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
17
|
Vellucci L, Ciccarelli M, Buonaguro EF, Fornaro M, D’Urso G, De Simone G, Iasevoli F, Barone A, de Bartolomeis A. The Neurobiological Underpinnings of Obsessive-Compulsive Symptoms in Psychosis, Translational Issues for Treatment-Resistant Schizophrenia. Biomolecules 2023; 13:1220. [PMID: 37627285 PMCID: PMC10452784 DOI: 10.3390/biom13081220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Almost 25% of schizophrenia patients suffer from obsessive-compulsive symptoms (OCS) considered a transdiagnostic clinical continuum. The presence of symptoms pertaining to both schizophrenia and obsessive-compulsive disorder (OCD) may complicate pharmacological treatment and could contribute to lack or poor response to the therapy. Despite the clinical relevance, no reviews have been recently published on the possible neurobiological underpinnings of this comorbidity, which is still unclear. An integrative view exploring this topic should take into account the following aspects: (i) the implication for glutamate, dopamine, and serotonin neurotransmission as demonstrated by genetic findings; (ii) the growing neuroimaging evidence of the common brain regions and dysfunctional circuits involved in both diseases; (iii) the pharmacological modulation of dopaminergic, serotoninergic, and glutamatergic systems as current therapeutic strategies in schizophrenia OCS; (iv) the recent discovery of midbrain dopamine neurons and dopamine D1- and D2-like receptors as orchestrating hubs in repetitive and psychotic behaviors; (v) the contribution of N-methyl-D-aspartate receptor subunits to both psychosis and OCD neurobiology. Finally, we discuss the potential role of the postsynaptic density as a structural and functional hub for multiple molecular signaling both in schizophrenia and OCD pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry University Medical School of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
18
|
Arias-Aragón F, Tristán-Clavijo E, Martínez-Gallego I, Robles-Lanuza E, Coatl-Cuaya H, Martín-Cuevas C, Sánchez-Hidalgo AC, Rodríguez-Moreno A, Martinez-Mir A, Scholl FG. A Neuroligin-1 mutation associated with Alzheimer's disease produces memory and age-dependent impairments in hippocampal plasticity. iScience 2023; 26:106868. [PMID: 37260747 PMCID: PMC10227424 DOI: 10.1016/j.isci.2023.106868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by memory impairments and age-dependent synapse loss. Experimental and clinical studies have shown decreased expression of the glutamatergic protein Neuroligin-1 (Nlgn1) in AD. However, the consequences of a sustained reduction of Nlgn1 are unknown. Here, we generated a knockin mouse that reproduces the NLGN1 Thr271fs mutation, identified in heterozygosis in a familial case of AD. We found that Nlgn1 Thr271fs mutation abolishes Nlgn1 expression in mouse brain. Importantly, heterozygous Nlgn1 Thr271fs mice showed delay-dependent amnesia for recognition memory. Electrophysiological recordings uncovered age-dependent impairments in basal synaptic transmission and long-term potentiation (LTP) in CA1 hippocampal neurons of heterozygous Nlgn1 Thr271fs mice. In contrast, homozygous Nlgn1 Thr271fs mice showed impaired fear-conditioning memory and normal basal synaptic transmission, suggesting unshared mechanisms for a partial or total loss of Nlgn1. These data suggest that decreased Nlgn1 may contribute to the synaptic and memory deficits in AD.
Collapse
Affiliation(s)
- Francisco Arias-Aragón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| | - Enriqueta Tristán-Clavijo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, 41013 Seville, Spain
| | - Estefanía Robles-Lanuza
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| | - Heriberto Coatl-Cuaya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, 41013 Seville, Spain
| | - Celia Martín-Cuevas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| | - Ana C. Sánchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, 41013 Seville, Spain
| | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Francisco G. Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| |
Collapse
|
19
|
Dysregulation of AMPA Receptor Trafficking and Intracellular Vesicular Sorting in the Prefrontal Cortex of Dopamine Transporter Knock-Out Rats. Biomolecules 2023; 13:biom13030516. [PMID: 36979451 PMCID: PMC10046215 DOI: 10.3390/biom13030516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Dopamine (DA) and glutamate interact, influencing neural excitability and promoting synaptic plasticity. However, little is known regarding the molecular mechanisms underlying this crosstalk. Since perturbation of DA-AMPA receptor interaction might sustain pathological conditions, the major aim of our work was to evaluate the effect of the hyperactive DA system on the AMPA subunit composition, trafficking, and membrane localization in the prefrontal cortex (PFC). Taking advantage of dopamine transporter knock-out (DAT−/−) rats, we found that DA overactivity reduced the translation of cortical AMPA receptors and their localization at both synaptic and extra-synaptic sites through, at least in part, altered intracellular vesicular sorting. Moreover, the reduced expression of AMPA receptor-specific anchoring proteins and structural markers, such as Neuroligin-1 and nCadherin, likely indicate a pattern of synaptic instability. Overall, these data reveal that a condition of hyperdopaminergia markedly alters the homeostatic plasticity of AMPA receptors, suggesting a general destabilization and depotentiation of the AMPA-mediated glutamatergic neurotransmission in the PFC. This effect might be functionally relevant for disorders characterized by elevated dopaminergic activity.
Collapse
|
20
|
Bencsik N, Oueslati Morales CO, Hausser A, Schlett K. Endocytosis of AMPA receptors: Role in neurological conditions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:59-97. [PMID: 36813366 DOI: 10.1016/bs.pmbts.2022.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AMPA receptors are glutamate-gated ion channels, present in a wide range of neuron types and in glial cells. Their main role is to mediate fast excitatory synaptic transmission, and therefore, they are critical for normal brain function. In neurons, AMPA receptors undergo constitutive and activity-dependent trafficking between the synaptic, extrasynaptic and intracellular pools. The kinetics of AMPA receptor trafficking is crucial for the precise functioning of both individual neurons and neural networks involved in information processing and learning. Many of the neurological diseases evoked by neurodevelopmental and neurodegenerative malfunctions or traumatic injuries are caused by impaired synaptic function in the central nervous system. For example, attention-deficit/hyperactivity disorder (ADHD), Alzheimer's disease (AD), tumors, seizures, ischemic strokes, and traumatic brain injury are all characterized by impaired glutamate homeostasis and associated neuronal death, typically caused by excitotoxicity. Given the important role of AMPA receptors in neuronal function, it is not surprising that perturbations in AMPA receptor trafficking are associated with these neurological disorders. In this book chapter, we will first introduce the structure, physiology and synthesis of AMPA receptors, followed by an in-depth description of the molecular mechanisms that control AMPA receptor endocytosis and surface levels under basal conditions or synaptic plasticity. Finally, we will discuss how impairments in AMPA receptor trafficking, particularly endocytosis, contribute to the pathophysiology of various neurological disorders and what efforts are being made to therapeutically target this process.
Collapse
Affiliation(s)
- Norbert Bencsik
- Neuronal Cell Biology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Carlos Omar Oueslati Morales
- Membrane Trafficking and Signalling Group, Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Angelika Hausser
- Membrane Trafficking and Signalling Group, Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Katalin Schlett
- Neuronal Cell Biology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
21
|
Stepan J, Heinz DE, Dethloff F, Bajaj T, Zellner A, Hafner K, Wiechmann S, Mackert S, Mecdad Y, Rabenstein M, Ebert T, Martinelli S, Häusl AS, Pöhlmann ML, Hermann A, Ma X, Pavenstädt H, Schmidt MV, Philipsen A, Turck CW, Deussing JM, Kuster B, Wehr MC, Stein V, Kremerskothen J, Wotjak CT, Gassen NC. Hippo-released WWC1 facilitates AMPA receptor regulatory complexes for hippocampal learning. Cell Rep 2022; 41:111766. [PMID: 36476872 DOI: 10.1016/j.celrep.2022.111766] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/23/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Learning and memory rely on changes in postsynaptic glutamergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type receptor (AMPAR) number, spatial organization, and function. The Hippo pathway component WW and C2 domain-containing protein 1 (WWC1) regulates AMPAR surface expression and impacts on memory performance. However, synaptic binding partners of WWC1 and its hierarchical position in AMPAR complexes are largely unclear. Using cell-surface proteomics in hippocampal tissue of Wwc1-deficient mice and by generating a hippocampus-specific interactome, we show that WWC1 is a major regulatory platform in AMPAR signaling networks. Under basal conditions, the Hippo pathway members WWC1 and large tumor-suppressor kinase (LATS) are associated, which might prevent WWC1 effects on synaptic proteins. Reduction of WWC1/LATS binding through a point mutation at WWC1 elevates the abundance of WWC1 in AMPAR complexes and improves hippocampal-dependent learning and memory. Thus, uncoupling of WWC1 from the Hippo pathway to AMPAR-regulatory complexes provides an innovative strategy to enhance synaptic transmission.
Collapse
Affiliation(s)
- Jens Stepan
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; Department of Obstetrics and Gynecology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Daniel E Heinz
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Max Planck School of Cognition, 04103 Leipzig, Germany
| | - Frederik Dethloff
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
| | - Andreas Zellner
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Svenja Wiechmann
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany; German Cancer Consortium (DKTK), 80336 Munich, Germany; German Cancer Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah Mackert
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
| | - Yara Mecdad
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
| | - Michael Rabenstein
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Tim Ebert
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Silvia Martinelli
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alexander S Häusl
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Maximilian L Pöhlmann
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Anke Hermann
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, 48149 Münster, Germany
| | - Xiao Ma
- Research Group Signal Transduction, Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, 48149 Münster, Germany
| | - Mathias V Schmidt
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alexandra Philipsen
- Clinic for Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
| | - Chris W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany; German Cancer Consortium (DKTK), 80336 Munich, Germany; German Cancer Center (DKFZ), 69120 Heidelberg, Germany; Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, 85354 Freising, Germany
| | - Michael C Wehr
- Research Group Signal Transduction, Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Valentin Stein
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Joachim Kremerskothen
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, 48149 Münster, Germany
| | - Carsten T Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Central Nervous System Diseases Research, Boehringer-Ingelheim Pharma GmbH & Co KG, 88400 Biberach, Germany.
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
22
|
Bai Y, Wang H, Li C. SAPAP Scaffold Proteins: From Synaptic Function to Neuropsychiatric Disorders. Cells 2022; 11:cells11233815. [PMID: 36497075 PMCID: PMC9740047 DOI: 10.3390/cells11233815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Excitatory (glutamatergic) synaptic transmission underlies many aspects of brain activity and the genesis of normal human behavior. The postsynaptic scaffolding proteins SAP90/PSD-95-associated proteins (SAPAPs), which are abundant components of the postsynaptic density (PSD) at excitatory synapses, play critical roles in synaptic structure, formation, development, plasticity, and signaling. The convergence of human genetic data with recent in vitro and in vivo animal model data indicates that mutations in the genes encoding SAPAP1-4 are associated with neurological and psychiatric disorders, and that dysfunction of SAPAP scaffolding proteins may contribute to the pathogenesis of various neuropsychiatric disorders, such as schizophrenia, autism spectrum disorders, obsessive compulsive disorders, Alzheimer's disease, and bipolar disorder. Here, we review recent major genetic, epigenetic, molecular, behavioral, electrophysiological, and circuitry studies that have advanced our knowledge by clarifying the roles of SAPAP proteins at the synapses, providing new insights into the mechanistic links to neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yunxia Bai
- Key Laboratory of Brain Functional Genomics (STCSM & MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
| | - Huimin Wang
- Key Laboratory of Brain Functional Genomics (STCSM & MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| | - Chunxia Li
- Key Laboratory of Brain Functional Genomics (STCSM & MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
- Correspondence:
| |
Collapse
|
23
|
Liu X, Hua F, Yang D, Lin Y, Zhang L, Ying J, Sheng H, Wang X. Roles of neuroligins in central nervous system development: focus on glial neuroligins and neuron neuroligins. Lab Invest 2022; 20:418. [PMID: 36088343 PMCID: PMC9463862 DOI: 10.1186/s12967-022-03625-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022]
Abstract
Neuroligins are postsynaptic cell adhesion molecules that are relevant to many neurodevelopmental disorders. They are differentially enriched at the postsynapse and interact with their presynaptic ligands, neurexins, whose differential binding to neuroligins has been shown to regulate synaptogenesis, transmission, and other synaptic properties. The proper functioning of functional networks in the brain depends on the proper connection between neuronal synapses. Impaired synaptogenesis or synaptic transmission results in synaptic dysfunction, and these synaptic pathologies are the basis for many neurodevelopmental disorders. Deletions or mutations in the neuroligins genes have been found in patients with both autism and schizophrenia. It is because of the important role of neuroligins in synaptic connectivity and synaptic dysfunction that studies on neuroligins in the past have mainly focused on their expression in neurons. As studies on the expression of genes specific to various cells of the central nervous system deepened, neuroligins were found to be expressed in non-neuronal cells as well. In the central nervous system, glial cells are the most representative non-neuronal cells, which can also express neuroligins in large amounts, especially astrocytes and oligodendrocytes, and they are involved in the regulation of synaptic function, as are neuronal neuroligins. This review examines the mechanisms of neuron neuroligins and non-neuronal neuroligins in the central nervous system and also discusses the important role of neuroligins in the development of the central nervous system and neurodevelopmental disorders from the perspective of neuronal neuroligins and glial neuroligins.
Collapse
|
24
|
Ramirez MA, Ninoyu Y, Miller C, Andrade LR, Edassery S, Bomba-Warczak E, Ortega B, Manor U, Rutherford MA, Friedman RA, Savas JN. Cochlear ribbon synapse maturation requires Nlgn1 and Nlgn3. iScience 2022; 25:104803. [PMID: 35992071 PMCID: PMC9386149 DOI: 10.1016/j.isci.2022.104803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/10/2022] [Accepted: 07/15/2022] [Indexed: 01/13/2023] Open
Abstract
Hearing depends on precise synaptic transmission between cochlear inner hair cells and spiral ganglion neurons through afferent ribbon synapses. Neuroligins (Nlgns) facilitate synapse maturation in the brain, but they have gone unstudied in the cochlea. We report Nlgn3 and Nlgn1 knockout (KO) cochleae have fewer ribbon synapses and have impaired hearing. Nlgn3 KO is more vulnerable to noise trauma with limited activity at high frequencies one day after noise. Furthermore, Nlgn3 KO cochleae have a 5-fold reduction in synapse number compared to wild type after two weeks of recovery. Double KO cochlear phenotypes are more prominent than the KOs, for example, 5-fold smaller synapses, 25% reduction in synapse density, and 30% less synaptic output. These observations indicate Nlgn3 and Nlgn1 are essential to cochlear ribbon synapse maturation and function.
Collapse
Affiliation(s)
- Miguel A. Ramirez
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yuzuru Ninoyu
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, 9500 Gilman Drive, Mail Code 0666, La Jolla, CA 92093, USA
| | - Cayla Miller
- Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Leonardo R. Andrade
- Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Seby Edassery
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ewa Bomba-Warczak
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Briana Ortega
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, 9500 Gilman Drive, Mail Code 0666, La Jolla, CA 92093, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark A. Rutherford
- Department of Otolaryngology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Rick A. Friedman
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, 9500 Gilman Drive, Mail Code 0666, La Jolla, CA 92093, USA
| | - Jeffrey N. Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
25
|
Dubes S, Soula A, Benquet S, Tessier B, Poujol C, Favereaux A, Thoumine O, Letellier M. miR
‐124‐dependent tagging of synapses by synaptopodin enables input‐specific homeostatic plasticity. EMBO J 2022; 41:e109012. [PMID: 35875872 PMCID: PMC9574720 DOI: 10.15252/embj.2021109012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/11/2022] [Accepted: 06/27/2022] [Indexed: 12/26/2022] Open
Abstract
Homeostatic synaptic plasticity is a process by which neurons adjust their synaptic strength to compensate for perturbations in neuronal activity. Whether the highly diverse synapses on a neuron respond uniformly to the same perturbation remains unclear. Moreover, the molecular determinants that underlie synapse‐specific homeostatic synaptic plasticity are unknown. Here, we report a synaptic tagging mechanism in which the ability of individual synapses to increase their strength in response to activity deprivation depends on the local expression of the spine‐apparatus protein synaptopodin under the regulation of miR‐124. Using genetic manipulations to alter synaptopodin expression or regulation by miR‐124, we show that synaptopodin behaves as a “postsynaptic tag” whose translation is derepressed in a subpopulation of synapses and allows for nonuniform homeostatic strengthening and synaptic AMPA receptor stabilization. By genetically silencing individual connections in pairs of neurons, we demonstrate that this process operates in an input‐specific manner. Overall, our study shifts the current view that homeostatic synaptic plasticity affects all synapses uniformly to a more complex paradigm where the ability of individual synapses to undergo homeostatic changes depends on their own functional and biochemical state.
Collapse
Affiliation(s)
- Sandra Dubes
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Anaïs Soula
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Sébastien Benquet
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Béatrice Tessier
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Christel Poujol
- University of Bordeaux CNRS INSERM Bordeaux Imaging Center BIC UMS 3420, US 4 Bordeaux France
| | - Alexandre Favereaux
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Olivier Thoumine
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Mathieu Letellier
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| |
Collapse
|
26
|
Gormal RS, Meunier FA. Nanoscale organization of the pre-synapse: Tracking the neurotransmitter release machinery. Curr Opin Neurobiol 2022; 75:102576. [PMID: 35716557 DOI: 10.1016/j.conb.2022.102576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
Chemical communication is underpinned by the fusion of neurotransmitter-containing synaptic vesicles with the plasma membrane at active zones. With the advent of super-resolution microscopy, the door is now opened to unravel the dynamic remodeling of synapses underpinning learning and memory. Imaging proteins with conventional light microscopy cannot provide submicron information vital to determining the nanoscale organization of the synapse. We will first review the current super-resolution microscopy techniques available to investigate the localization and movement of synaptic proteins and how they have been applied to visualize the synapse. We discuss the new techniques and analytical approaches have provided comprehensive insights into synaptic organization in various model systems. Finally, this review provides a brief update on how these super-resolution techniques and analyses have opened the way to a much greater understanding of the synapse, the fusion and compensatory endocytosis machinery.
Collapse
Affiliation(s)
- Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia. https://twitter.com/rachelgormal
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
27
|
Re-examination of the determinants of synaptic strength from the perspective of superresolution imaging. Curr Opin Neurobiol 2022; 74:102540. [DOI: 10.1016/j.conb.2022.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022]
|
28
|
Rose JK, Butterfield M, Liang J, Parvand M, Lin CHS, Rankin CH. Neuroligin Plays a Role in Ethanol-Induced Disruption of Memory and Corresponding Modulation of Glutamate Receptor Expression. Front Behav Neurosci 2022; 16:908630. [PMID: 35722190 PMCID: PMC9204643 DOI: 10.3389/fnbeh.2022.908630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to alcohol causes deficits in long-term memory formation across species. Using a long-term habituation memory assay in Caenorhabditis elegans, the effects of ethanol on long-term memory (> 24 h) for habituation were investigated. An impairment in long-term memory was observed when animals were trained in the presence of ethanol. Cues of internal state or training context during testing did not restore memory. Ethanol exposure during training also interfered with the downregulation of AMPA/KA-type glutamate receptor subunit (GLR-1) punctal expression previously associated with long-term memory for habituation in C. elegans. Interestingly, ethanol exposure alone had the opposite effect, increasing GLR-1::GFP punctal expression. Worms with a mutation in the C. elegans ortholog of vertebrate neuroligins (nlg-1) were resistant to the effects of ethanol on memory, as they displayed both GLR-1::GFP downregulation and long-term memory for habituation after training in the presence of ethanol. These findings provide insights into the molecular mechanisms through which alcohol consumption impacts memory.
Collapse
|
29
|
Toledo A, Letellier M, Bimbi G, Tessier B, Daburon S, Favereaux A, Chamma I, Vennekens K, Vanderlinden J, Sainlos M, de Wit J, Choquet D, Thoumine O. MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior. eLife 2022; 11:75233. [PMID: 35532105 PMCID: PMC9084894 DOI: 10.7554/elife.75233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
MDGA molecules can bind neuroligins and interfere with trans-synaptic interactions to neurexins, thereby impairing synapse development. However, the subcellular localization and dynamics of MDGAs, or their specific action mode in neurons remain unclear. Here, surface immunostaining of endogenous MDGAs and single molecule tracking of recombinant MDGAs in dissociated hippocampal neurons reveal that MDGAs are homogeneously distributed and exhibit fast membrane diffusion, with a small reduction in mobility across neuronal maturation. Knocking-down/out MDGAs using shRNAs and CRISPR/Cas9 strategies increases the density of excitatory synapses, the membrane confinement of neuroligin-1, and the phosphotyrosine level of neuroligins associated with excitatory post-synaptic differentiation. Finally, MDGA silencing reduces the mobility of AMPA receptors, increases the frequency of miniature EPSCs (but not IPSCs), and selectively enhances evoked AMPA-receptor-mediated EPSCs in CA1 pyramidal neurons. Overall, our results support a mechanism by which interactions between MDGAs and neuroligin-1 delays the assembly of functional excitatory synapses containing AMPA receptors.
Collapse
Affiliation(s)
- Andrea Toledo
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Mathieu Letellier
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Giorgia Bimbi
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Béatrice Tessier
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Sophie Daburon
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Alexandre Favereaux
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Ingrid Chamma
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Kristel Vennekens
- VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute
| | - Jeroen Vanderlinden
- VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute
| | - Matthieu Sainlos
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Joris de Wit
- VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute
| | - Daniel Choquet
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
- University of Bordeaux, CNRS UAR 3420, INSERM, Bordeaux Imaging Center
| | - Olivier Thoumine
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| |
Collapse
|
30
|
Choquet D, Opazo P. The role of AMPAR lateral diffusion in memory. Semin Cell Dev Biol 2022; 125:76-83. [PMID: 35123863 DOI: 10.1016/j.semcdb.2022.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022]
Abstract
The accumulation of AMPARs to synapses is a fundamental step in Long-term potentiation (LTP) of synaptic transmission, a well-established cellular correlate of learning and memory. The discovery of a sizeable and highly mobile population of extrasynaptic AMPARs - randomly scanning the synaptic surface under basal conditions - provided a conceptual framework for a simplified model: LTP can be induced by the capture, and hence accumulation, of laterally diffusing extrasynaptic AMPARs. Here, we review the evidence supporting a rate-limiting role of AMPAR lateral diffusion in LTP and as consequence, in learning and memory. We propose that there are "multiple solutions" for achieving the diffusional trapping of AMPAR during LTP, mainly mediated by the interaction between interchangeable AMPAR auxiliary subunits and cell-adhesion molecules containing PDZ-binding domains and synaptic scaffolds containing PDZ-domains. We believe that this molecular degeneracy in the diffusional trapping of AMPAR during LTP serve to ensure the robustness of this crucial step in the making of memories. All in all, the role of AMPAR lateral diffusion in LTP is not only a conceptual leap in our understanding of memory, but it might also hold the keys for the development of therapeutics against disorders associated with memory deficits such as Alzheimer's disease.
Collapse
Affiliation(s)
- Daniel Choquet
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, IINS, UMR 5297, Bordeaux, France; Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, Bordeaux, France.
| | - Patricio Opazo
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK; Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
31
|
Lagardère M, Drouet A, Sainlos M, Thoumine O. High-Resolution Fluorescence Imaging Combined With Computer Simulations to Quantitate Surface Dynamics and Nanoscale Organization of Neuroligin-1 at Synapses. Front Synaptic Neurosci 2022; 14:835427. [PMID: 35546899 PMCID: PMC9083120 DOI: 10.3389/fnsyn.2022.835427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroligins (NLGNs) form a family of cell adhesion molecules implicated in synapse development, but the mechanisms that retain these proteins at synapses are still incompletely understood. Recent studies indicate that surface-associated NLGN1 is diffusionally trapped at synapses, where it interacts with quasi-static scaffolding elements of the post-synaptic density. Whereas single molecule tracking reveals rapid diffusion and transient immobilization of NLGN1 at synapses within seconds, fluorescence recovery after photobleaching experiments indicate instead a long-term turnover of NLGN1 at synapse, in the hour time range. To gain insight into the mechanisms supporting NLGN1 anchorage at post-synapses and try to reconcile those experimental paradigms, we quantitatively analyzed here live-cell and super-resolution imaging experiments performed on NLGN1 using a newly released simulator of membrane protein dynamics for fluorescence microscopy, FluoSim. Based on a small set of parameters including diffusion coefficients, binding constants, and photophysical rates, the framework describes fairly well the dynamic behavior of extra-synaptic and synaptic NLGN1 over both short and long time ranges, and provides an estimate of NLGN1 copy numbers in post-synaptic densities at steady-state (around 50 dimers). One striking result is that the residence time of NLGN1 at synapses is much longer than what can be expected from extracellular interactions with pre-synaptic neurexins only, suggesting that NLGN1 is stabilized at synapses through multivalent interactions with intracellular post-synaptic scaffolding proteins.
Collapse
Affiliation(s)
| | | | | | - Olivier Thoumine
- CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, University of Bordeaux, Bordeaux, France
| |
Collapse
|
32
|
Niescier RF, Lin YC. The Potential Role of AMPA Receptor Trafficking in Autism and Other Neurodevelopmental Conditions. Neuroscience 2021; 479:180-191. [PMID: 34571086 DOI: 10.1016/j.neuroscience.2021.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
Autism Spectrum Disorder (ASD) is a multifaceted condition associated with difficulties in social interaction and communication. It also shares several comorbidities with other neurodevelopmental conditions. Intensive research examining the molecular basis and characteristics of ASD has revealed an association with a large number and variety of low-penetrance genes. Many of the variants associated with ASD are in genes underlying pathways involved in long-term potentiation (LTP) or depression (LTD). These mechanisms then control the tuning of neuronal connections in response to experience by modifying and trafficking ionotropic glutamate receptors at the post-synaptic areas. Despite the high genetic heterogeneity in ASD, surface trafficking of the α-amino-3-hydroxy-5-Methyl-4-isoxazolepropionate (AMPA) receptor is a vulnerable pathway in ASD. In this review, we discuss autism-related alterations in the trafficking of AMPA receptors, whose surface density and composition at the post-synapse determine the strength of the excitatory connection between neurons. We highlight genes associated with neurodevelopmental conditions that share the autism comorbidity, including Fragile X syndrome, Rett Syndrome, and Tuberous Sclerosis, as well as the autism-risk genes NLGNs, IQSEC2, DOCK4, and STXBP5, all of which are involved in regulating AMPAR trafficking to the post-synaptic surface.
Collapse
Affiliation(s)
- Robert F Niescier
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA.
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA.
| |
Collapse
|
33
|
Luo JK, Melland H, Nithianantharajah J, Gordon SL. Postsynaptic Neuroligin-1 Mediates Presynaptic Endocytosis During Neuronal Activity. Front Mol Neurosci 2021; 14:744845. [PMID: 34690694 PMCID: PMC8531268 DOI: 10.3389/fnmol.2021.744845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 01/31/2023] Open
Abstract
Fast, high-fidelity neurotransmission and synaptic efficacy requires tightly regulated coordination of pre- and postsynaptic compartments and alignment of presynaptic release sites with postsynaptic receptor nanodomains. Neuroligin-1 (Nlgn1) is a postsynaptic cell-adhesion protein exclusively localised to excitatory synapses that is crucial for coordinating the transsynaptic alignment of presynaptic release sites with postsynaptic AMPA receptors as well as postsynaptic transmission and plasticity. However, little is understood about whether the postsynaptic machinery can mediate the molecular architecture and activity of the presynaptic nerve terminal, and thus it remains unclear whether there are presynaptic contributions to Nlgn1-dependent control of signalling and plasticity. Here, we employed a presynaptic reporter of neurotransmitter release and synaptic vesicle dynamics, synaptophysin-pHluorin (sypHy), to directly assess the presynaptic impact of loss of Nlgn1. We show that lack of Nlgn1 had no effect on the size of the readily releasable or entire recycling pool of synaptic vesicles, nor did it impact exocytosis. However, we observed significant changes in the retrieval of synaptic vesicles by compensatory endocytosis, specifically during activity. Our data extends growing evidence that synaptic adhesion molecules critical for forming transsynaptic scaffolds are also important for regulating activity-induced endocytosis at the presynapse.
Collapse
Affiliation(s)
- Jiaqi Keith Luo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Holly Melland
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
34
|
Dutta P, Bharti P, Kumar J, Maiti S. Role of actin cytoskeleton in the organization and function of ionotropic glutamate receptors. Curr Res Struct Biol 2021; 3:277-289. [PMID: 34766008 PMCID: PMC8569634 DOI: 10.1016/j.crstbi.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/04/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
Neural networks with precise connection are compulsory for learning and memory. Various cellular events occur during the genesis of dendritic spines to their maturation, synapse formation, stabilization of the synapse, and proper signal transmission. The cortical actin cytoskeleton and its multiple regulatory proteins are crucial for the above cellular events. The different types of ionotropic glutamate receptors (iGluRs) present on the postsynaptic density (PSD) are also essential for learning and memory. Interaction of the iGluRs in association of their auxiliary proteins with actin cytoskeleton regulated by actin-binding proteins (ABPs) are required for precise long-term potentiation (LTP) and long-term depression (LTD). There has been a quest to understand the mechanistic detail of synapse function involving these receptors with dynamic actin cytoskeleton. A major, emerging area of investigation is the relationship between ABPs and iGluRs in synapse development. In this review we have summarized the current understanding of iGluRs functioning with respect to the actin cytoskeleton, scaffolding proteins, and their regulators. The AMPA, NMDA, Delta and Kainate receptors need the stable underlying actin cytoskeleton to anchor through synaptic proteins for precise synapse formation. The different types of ABPs present in neurons play a critical role in dynamizing/stabilizing the actin cytoskeleton needed for iGluRs function.
Collapse
Affiliation(s)
- Priyanka Dutta
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Pratibha Bharti
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Janesh Kumar
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Sankar Maiti
- Indian Institute of Science Education and Research, Kolkata, 741246, India
| |
Collapse
|
35
|
Klatt O, Repetto D, Brockhaus J, Reissner C, El Khallouqi A, Rohlmann A, Heine M, Missler M. Endogenous β-neurexins on axons and within synapses show regulated dynamic behavior. Cell Rep 2021; 35:109266. [PMID: 34133920 DOI: 10.1016/j.celrep.2021.109266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/21/2020] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
Abstract
Neurexins are key organizer molecules that regulate synaptic function and are implicated in autism and schizophrenia. β-neurexins interact with numerous cell adhesion and receptor molecules, but their neuronal localization remains elusive. Using single-molecule tracking and high-resolution microscopy to detect neurexin1β and neurexin3β in primary hippocampal neurons from knockin mice, we demonstrate that endogenous β-neurexins are present in fewer than half of excitatory and inhibitory synapses. Moreover, we observe a large extrasynaptic pool of β-neurexins on axons and show that axonal β-neurexins diffuse with higher surface mobility than those transiently confined within synapses. Stimulation of neuronal activity further increases the mobility of synaptic and axonal β-neurexins, whereas inhibition causes the opposite. Blocking ectodomain cleavage by metalloproteases also reduces β-neurexin mobility and enhances glutamate release. These findings suggest that the surface mobility of endogenous β-neurexins inside and outside of synapses is dynamically regulated and linked to neuronal activity.
Collapse
Affiliation(s)
- Oliver Klatt
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany; Functional Neurobiology Group, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Daniele Repetto
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Abderazzaq El Khallouqi
- Functional Neurobiology Group, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Martin Heine
- Functional Neurobiology Group, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany.
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany.
| |
Collapse
|
36
|
Ouyang J, Chen X, Su S, Li X, Xu X, Yu X, Ke C, Zhu X. Neuroligin1 Contributes to Neuropathic Pain by Promoting Phosphorylation of Cofilin in Excitatory Neurons. Front Mol Neurosci 2021; 14:640533. [PMID: 33716669 PMCID: PMC7947913 DOI: 10.3389/fnmol.2021.640533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain is a kind of chronic pain that remains difficult to treat due to its complicated underlying mechanisms. Accumulating evidence has indicated that enhanced synaptic plasticity of nociceptive interneurons in the superficial spinal dorsal horn contributes to the development of neuropathic pain. Neuroligin1 (NL1) is a type of excitatory postsynaptic adhesion molecule, which can mediate excitatory synaptic activity, hence promoting neuronal activation. Vglut2 is the most common marker of excitatory glutamatergic neurons. To explore the role of NL1 in excitatory neurons in nociceptive regulation, we used transgenic mice with cre recombinase expression driven by the Vglut2 promoter combined with viral vectors to knockdown the expression of NL1 in excitatory neurons in the spinal dorsal horn. We found that NL1 was upregulated in the L4-L6 spinal dorsal horn in Vglut2-cre+/- mouse subjected to spared nerve injury (SNI). Meanwhile, the expression of phosphorylated cofilin (p-cofilin) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit 1 (GluR1) was also increased. Spinal microinjection of a cre-dependent NL1-targeting RNAi in Vglut2-cre+/- mouse alleviated the neuropathic pain-induced mechanical hypersensitivity and reduced the increase in p-cofilin and GluR1 caused by SNI. Taken together, NL1 in excitatory neurons regulates neuropathic pain by promoting the SNI-dependent increase in p-cofilin and GluR1 in the spinal dorsal horn. Our study provides a better understanding of the role of NL1 in excitatory neurons, which might represent a possible therapeutic target for alleviating neuropathic pain.
Collapse
Affiliation(s)
- Junlin Ouyang
- Department of Orthopedic Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaping Chen
- Department of Scientific Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shanchun Su
- Department of Anesthesiology, Institute of Anesthesiology and Pain (IAP), Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaohui Li
- Department of Anesthesiology, Institute of Anesthesiology and Pain (IAP), Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xueqin Xu
- Department of Anesthesiology, Institute of Anesthesiology and Pain (IAP), Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xinhua Yu
- Department of Orthopedic Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Changbin Ke
- Department of Anesthesiology, Institute of Anesthesiology and Pain (IAP), Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaohu Zhu
- Department of Orthopedic Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
37
|
An Autism-Associated Mutation Impairs Neuroligin-4 Glycosylation and Enhances Excitatory Synaptic Transmission in Human Neurons. J Neurosci 2020; 41:392-407. [PMID: 33268543 DOI: 10.1523/jneurosci.0404-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroligins (NLGNs) are a class of postsynaptic cell adhesion molecules that interact with presynaptic neurexins (NRXNs) and regulate synapse function. NLGN4 is a member of the NLGN family and consists of a unique amino acid sequence in humans that is not evolutionarily well conserved in rodents. The human-specific NLGN4 gene has been reported to be mutated in many patients with autism and other neurodevelopmental disorders. However, it remained unclear how these mutations might alter the molecular properties of NLGN4 and affect synaptic transmission in human neurons. Here, we describe a severely autistic male patient carrying a single amino acid substitution (R101Q) in the NLGN4 gene. When expressed in HEK293 cells, the R101Q mutation in NLGN4 did not affect its binding affinity for NRXNs or its capacity to form homodimers. This mutation, however, impaired the maturation of NLGN4 protein by inhibiting N-linked glycosylation at an adjacent residue (N102), which is conserved in all NLGNs. As a result, the R101Q substitution significantly decreased the surface trafficking of NLGN4 and increased its retention in the endoplasmic reticulum and Golgi apparatus. In human neurons derived from male stem cell lines, the R101Q mutation also similarly reduced the synaptic localization of NLGN4, resulting in a loss-of-function phenotype. This mutation-induced trafficking defect substantially diminished the ability of NLGN4 to form excitatory synapses and modulate their functional properties. Viewed together, our findings suggest that the R101Q mutation is pathogenic for NLGN4 and can lead to synaptic dysfunction in autism.
Collapse
|
38
|
Verstraelen P, Garcia-Diaz Barriga G, Verschuuren M, Asselbergh B, Nuydens R, Larsen PH, Timmermans JP, De Vos WH. Systematic Quantification of Synapses in Primary Neuronal Culture. iScience 2020; 23:101542. [PMID: 33083769 PMCID: PMC7516133 DOI: 10.1016/j.isci.2020.101542] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Accepted: 09/03/2020] [Indexed: 01/04/2023] Open
Abstract
Most neurological disorders display impaired synaptic connectivity. Hence, modulation of synapse formation may have therapeutic relevance. However, the high density and small size of synapses complicate their quantification. To improve synapse-oriented screens, we analyzed the labeling performance of synapse-targeting antibodies on neuronal cell cultures using segmentation-independent image analysis based on sliding window correlation. When assessing pairwise colocalization, a common readout for mature synapses, overlap was incomplete and confounded by spurious signals. To circumvent this, we implemented a proximity ligation-based approach that only leads to a signal when two markers are sufficiently close. We applied this approach to different marker combinations and demonstrate its utility for detecting synapse density changes in healthy and compromised cultures. Thus, segmentation-independent analysis and exploitation of resident protein proximity increases the sensitivity of synapse quantifications in neuronal cultures and represents a valuable extension to the analytical toolset for in vitro synapse screens.
Collapse
Affiliation(s)
- Peter Verstraelen
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
| | | | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
| | - Bob Asselbergh
- VIB Center for Molecular Neurology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
| | - Rony Nuydens
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
- Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Antwerp 2340, Belgium
| | - Peter H. Larsen
- Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Antwerp 2340, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
| |
Collapse
|
39
|
TSPAN5 Enriched Microdomains Provide a Platform for Dendritic Spine Maturation through Neuroligin-1 Clustering. Cell Rep 2020; 29:1130-1146.e8. [PMID: 31665629 PMCID: PMC6899445 DOI: 10.1016/j.celrep.2019.09.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/09/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
Tetraspanins are a class of evolutionarily conserved transmembrane proteins with 33 members identified in mammals that have the ability to organize specific membrane domains, named tetraspanin-enriched microdomains (TEMs). Despite the relative abundance of different tetraspanins in the CNS, few studies have explored their role at synapses. Here, we investigate the function of TSPAN5, a member of the tetraspanin superfamily for which mRNA transcripts are found at high levels in the mouse brain. We demonstrate that TSPAN5 is localized in dendritic spines of pyramidal excitatory neurons and that TSPAN5 knockdown induces a dramatic decrease in spine number because of defects in the spine maturation process. Moreover, we show that TSPAN5 interacts with the postsynaptic adhesion molecule neuroligin-1, promoting its correct surface clustering. We propose that membrane compartmentalization by tetraspanins represents an additional mechanism for regulating excitatory synapses. TSPAN5 is expressed in pyramidal neurons and localizes mainly to dendritic spines TSPAN5 interacts with neuroligin-1 and promotes its clustering TSPAN5-neuroligin-1 complex is fundamental for dendritic spine maturation
Collapse
|
40
|
Luo J, Tan JM, Nithianantharajah J. A molecular insight into the dissociable regulation of associative learning and motivation by the synaptic protein neuroligin-1. BMC Biol 2020; 18:118. [PMID: 32921313 PMCID: PMC7646379 DOI: 10.1186/s12915-020-00848-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background In a changing environment, a challenge for the brain is to flexibly guide adaptive behavior towards survival. Complex behavior and the underlying neural computations emerge from the structural components of the brain across many levels: circuits, cells, and ultimately the signaling complex of proteins at synapses. In line with this logic, dynamic modification of synaptic strength or synaptic plasticity is widely considered the cellular level implementation for adaptive behavior such as learning and memory. Predominantly expressed at excitatory synapses, the postsynaptic cell-adhesion molecule neuroligin-1 (Nlgn1) forms trans-synaptic complexes with presynaptic neurexins. Extensive evidence supports that Nlgn1 is essential for NMDA receptor transmission and long-term potentiation (LTP), both of which are putative synaptic mechanisms underlying learning and memory. Here, employing a comprehensive battery of touchscreen-based cognitive assays, we asked whether impaired NMDA receptor transmission and LTP in mice lacking Nlgn1 does in fact disrupt decision-making. To this end, we addressed two key decision problems: (i) the ability to learn and exploit the associative structure of the environment and (ii) balancing the trade-off between potential rewards and costs, or positive and negative utilities of available actions. Results We found that the capacity to acquire complex associative structures and adjust learned associations was intact. However, loss of Nlgn1 alters motivation leading to a reduced willingness to overcome effort cost for reward and an increased willingness to exert effort to escape an aversive situation. We suggest Nlgn1 may be important for balancing the weighting on positive and negative utilities in reward-cost trade-off. Conclusions Our findings update canonical views of this key synaptic molecule in behavior and suggest Nlgn1 may be essential for regulating distinct cognitive processes underlying action selection. Our data demonstrate that learning and motivational computations can be dissociated within the same animal model, from a detailed behavioral dissection. Further, these results highlight the complexities in mapping synaptic mechanisms to their behavioral consequences, and the future challenge to elucidate how complex behavior emerges through different levels of neural hardware.
Collapse
Affiliation(s)
- Jiaqi Luo
- Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience, Melbourne Brain Centre, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Jessica M Tan
- Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience, Melbourne Brain Centre, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Jess Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience, Melbourne Brain Centre, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
41
|
Oku S, Feng H, Connor S, Toledo A, Zhang P, Zhang Y, Thoumine O, Zhang C, Craig AM. Alternative splicing at neuroligin site A regulates glycan interaction and synaptogenic activity. eLife 2020; 9:58668. [PMID: 32915137 PMCID: PMC7486126 DOI: 10.7554/elife.58668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/31/2020] [Indexed: 01/18/2023] Open
Abstract
Post-transcriptional mechanisms regulating cell surface synaptic organizing complexes that control the properties of connections in brain circuits are poorly understood. Alternative splicing regulates the prototypical synaptic organizing complex, neuroligin-neurexin. In contrast to the well-studied neuroligin splice site B, little is known about splice site A. We discovered that inclusion of the positively charged A1 insert in mouse neuroligin-1 increases its binding to heparan sulphate, a modification on neurexin. The A1 insert increases neurexin recruitment, presynaptic differentiation, and synaptic transmission mediated by neuroligin-1. We propose that the A1 insert could be a target for alleviating the consequences of deleterious NLGN1/3 mutations, supported by assays with the autism-linked neuroligin-1-P89L mutant. An enrichment of neuroligin-1 A1 in GABAergic neuron types suggests a role in synchrony of cortical circuits. Altogether, these data reveal an unusual mode by which neuroligin splicing controls synapse development through protein-glycan interaction and identify it as a potential therapeutic target.
Collapse
Affiliation(s)
- Shinichiro Oku
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Huijuan Feng
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, United States
| | - Steven Connor
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, Canada.,Department of Biology, York University, Toronto, Canada
| | - Andrea Toledo
- Interdisciplinary Institute for Neuroscience UMR 5297, CNRS and University of Bordeaux, Bordeaux, France
| | - Peng Zhang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Yue Zhang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Olivier Thoumine
- Interdisciplinary Institute for Neuroscience UMR 5297, CNRS and University of Bordeaux, Bordeaux, France
| | - Chaolin Zhang
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, United States
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
42
|
AMPA receptor nanoscale dynamic organization and synaptic plasticities. Curr Opin Neurobiol 2020; 63:137-145. [DOI: 10.1016/j.conb.2020.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
|
43
|
Nanoscale co-organization and coactivation of AMPAR, NMDAR, and mGluR at excitatory synapses. Proc Natl Acad Sci U S A 2020; 117:14503-14511. [PMID: 32513712 PMCID: PMC7321977 DOI: 10.1073/pnas.1922563117] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The nanoscale co-organization of neurotransmitter receptors facing presynaptic release sites is a fundamental determinant of their coactivation and of synaptic physiology. At excitatory synapses, how endogenous AMPARs, NMDARs, and mGluRs are co-organized inside the synapse and their respective activation during glutamate release are still unclear. Combining single-molecule superresolution microscopy, electrophysiology, and modeling, we determined the average quantity of each glutamate receptor type, their nanoscale organization, and their respective activation. We observed that NMDARs form a unique cluster mainly at the center of the PSD, while AMPARs segregate in clusters surrounding the NMDARs. mGluR5 presents a different organization and is homogenously dispersed at the synaptic surface. From these results, we build a model predicting the synaptic transmission properties of a unitary synapse, allowing better understanding of synaptic physiology.
Collapse
|
44
|
Keable R, Leshchyns'ka I, Sytnyk V. Trafficking and Activity of Glutamate and GABA Receptors: Regulation by Cell Adhesion Molecules. Neuroscientist 2020; 26:415-437. [PMID: 32449484 DOI: 10.1177/1073858420921117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The efficient targeting of ionotropic receptors to postsynaptic sites is essential for the function of chemical excitatory and inhibitory synapses, constituting the majority of synapses in the brain. A growing body of evidence indicates that cell adhesion molecules (CAMs), which accumulate at synapses at the earliest stages of synaptogenesis, are critical for this process. A diverse variety of CAMs assemble into complexes with glutamate and GABA receptors and regulate the targeting of these receptors to the cell surface and synapses. Presynaptically localized CAMs provide an additional level of regulation, sending a trans-synaptic signal that can regulate synaptic strength at the level of receptor trafficking. Apart from controlling the numbers of receptors present at postsynaptic sites, CAMs can also influence synaptic strength by modulating the conductivity of single receptor channels. CAMs thus act to maintain basal synaptic transmission and are essential for many forms of activity dependent synaptic plasticity. These activities of CAMs may underlie the association between CAM gene mutations and synaptic pathology and represent fundamental mechanisms by which synaptic strength is dynamically tuned at both excitatory and inhibitory synapses.
Collapse
Affiliation(s)
- Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
45
|
Letellier M, Lagardère M, Tessier B, Janovjak H, Thoumine O. Optogenetic control of excitatory post-synaptic differentiation through neuroligin-1 tyrosine phosphorylation. eLife 2020; 9:e52027. [PMID: 32324534 PMCID: PMC7180054 DOI: 10.7554/elife.52027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroligins (Nlgns) are adhesion proteins mediating trans-synaptic contacts in neurons. However, conflicting results around their role in synaptic differentiation arise from the various techniques used to manipulate Nlgn expression level. Orthogonally to these approaches, we triggered here the phosphorylation of endogenous Nlgn1 in CA1 mouse hippocampal neurons using a photoactivatable tyrosine kinase receptor (optoFGFR1). Light stimulation for 24 hr selectively increased dendritic spine density and AMPA-receptor-mediated EPSCs in wild-type neurons, but not in Nlgn1 knock-out neurons or when endogenous Nlgn1 was replaced by a non-phosphorylatable mutant (Y782F). Moreover, light stimulation of optoFGFR1 partially occluded LTP in a Nlgn1-dependent manner. Combined with computer simulations, our data support a model by which Nlgn1 tyrosine phosphorylation promotes the assembly of an excitatory post-synaptic scaffold that captures surface AMPA receptors. This optogenetic strategy highlights the impact of Nlgn1 intracellular signaling in synaptic differentiation and potentiation, while enabling an acute control of these mechanisms.
Collapse
Affiliation(s)
- Mathieu Letellier
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
| | - Matthieu Lagardère
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
| | - Béatrice Tessier
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash UniversityClaytonAustralia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash UniversityClaytonAustralia
| | - Olivier Thoumine
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
| |
Collapse
|
46
|
Delgado JY, Nall D, Selvin PR. Pin1 Binding to Phosphorylated PSD-95 Regulates the Number of Functional Excitatory Synapses. Front Mol Neurosci 2020; 13:10. [PMID: 32231520 PMCID: PMC7082786 DOI: 10.3389/fnmol.2020.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
The post-synaptic density protein 95 (PSD-95) plays a central role in excitatory synapse development and synaptic plasticity. Phosphorylation of the N-terminus of PSD-95 at threonine 19 (T19) and serine 25 (S25) decreases PSD-95 stability at synapses; however, a molecular mechanism linking PSD-95 phosphorylation to altered synaptic stability is lacking. Here, we show that phosphorylation of T19/S25 recruits the phosphorylation-dependent peptidyl-prolyl cis-trans isomerase (Pin1) and reduces the palmitoylation of Cysteine 3 and Cysteine 5 in PSD-95. This reduction in PSD-95 palmitoylation accounts for the observed loss in the number of dendritic PSD-95 clusters, the increased AMPAR mobility, and the decreased number of functional excitatory synapses. We find the effects of Pin1 overexpression were all rescued by manipulations aimed at increasing the levels of PSD-95 palmitoylation. Therefore, Pin1 is a key signaling molecule that regulates the stability of excitatory synapses and may participate in the destabilization of PSD-95 following the induction of synaptic plasticity.
Collapse
Affiliation(s)
- Jary Y. Delgado
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Duncan Nall
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - Paul R. Selvin
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| |
Collapse
|
47
|
Activity Dependent and Independent Determinants of Synaptic Size Diversity. J Neurosci 2020; 40:2828-2848. [PMID: 32127494 DOI: 10.1523/jneurosci.2181-19.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 11/21/2022] Open
Abstract
The extraordinary diversity of excitatory synapse sizes is commonly attributed to activity-dependent processes that drive synaptic growth and diminution. Recent studies also point to activity-independent size fluctuations, possibly driven by innate synaptic molecule dynamics, as important generators of size diversity. To examine the contributions of activity-dependent and independent processes to excitatory synapse size diversity, we studied glutamatergic synapse size dynamics and diversification in cultured rat cortical neurons (both sexes), silenced from plating. We found that in networks with no history of activity whatsoever, synaptic size diversity was no less extensive than that observed in spontaneously active networks. Synapses in silenced networks were larger, size distributions were broader, yet these were rightward-skewed and similar in shape when scaled by mean synaptic size. Silencing reduced the magnitude of size fluctuations and weakened constraints on size distributions, yet these were sufficient to explain synaptic size diversity in silenced networks. Model-based exploration followed by experimental testing indicated that silencing-associated changes in innate molecular dynamics and fluctuation characteristics might negatively impact synaptic persistence, resulting in reduced synaptic numbers. This, in turn, would increase synaptic molecule availability, promote synaptic enlargement, and ultimately alter fluctuation characteristics. These findings suggest that activity-independent size fluctuations are sufficient to fully diversify glutamatergic synaptic sizes, with activity-dependent processes primarily setting the scale rather than the shape of size distributions. Moreover, they point to reciprocal relationships between synaptic size fluctuations, size distributions, and synaptic numbers mediated by the innate dynamics of synaptic molecules as they move in, out, and between synapses.SIGNIFICANCE STATEMENT Sizes of glutamatergic synapses vary tremendously, even when formed on the same neuron. This diversity is commonly thought to reflect the outcome of activity-dependent forms of synaptic plasticity, yet activity-independent processes might also play some part. Here we show that in neurons with no history of activity whatsoever, synaptic sizes are no less diverse. We show that this diversity is the product of activity-independent size fluctuations, which are sufficient to generate a full repertoire of synaptic sizes at correct proportions. By combining modeling and experimentation we expose reciprocal relationships between size fluctuations, synaptic sizes and synaptic counts, and show how these phenomena might be connected through the dynamics of synaptic molecules as they move in, out, and between synapses.
Collapse
|
48
|
Fossati M, Assendorp N, Gemin O, Colasse S, Dingli F, Arras G, Loew D, Charrier C. Trans-Synaptic Signaling through the Glutamate Receptor Delta-1 Mediates Inhibitory Synapse Formation in Cortical Pyramidal Neurons. Neuron 2019; 104:1081-1094.e7. [PMID: 31704028 PMCID: PMC6926483 DOI: 10.1016/j.neuron.2019.09.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/11/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Fine orchestration of excitatory and inhibitory synaptic development is required for normal brain function, and alterations may cause neurodevelopmental disorders. Using sparse molecular manipulations in intact brain circuits, we show that the glutamate receptor delta-1 (GluD1), a member of ionotropic glutamate receptors (iGluRs), is a postsynaptic organizer of inhibitory synapses in cortical pyramidal neurons. GluD1 is selectively required for the formation of inhibitory synapses and regulates GABAergic synaptic transmission accordingly. At inhibitory synapses, GluD1 interacts with cerebellin-4, an extracellular scaffolding protein secreted by somatostatin-expressing interneurons, which bridges postsynaptic GluD1 and presynaptic neurexins. When binding to its agonist glycine or D-serine, GluD1 elicits non-ionotropic postsynaptic signaling involving the guanine nucleotide exchange factor ARHGEF12 and the regulatory subunit of protein phosphatase 1 PPP1R12A. Thus, GluD1 defines a trans-synaptic interaction regulating postsynaptic signaling pathways for the proper establishment of cortical inhibitory connectivity and challenges the dichotomy between iGluRs and inhibitory synaptic molecules.
Collapse
Affiliation(s)
- Matteo Fossati
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Nora Assendorp
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Olivier Gemin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sabrina Colasse
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France
| | - Guillaume Arras
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France
| | - Cécile Charrier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
49
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
50
|
Linking Nanoscale Dynamics of AMPA Receptor Organization to Plasticity of Excitatory Synapses and Learning. J Neurosci 2019; 38:9318-9329. [PMID: 30381423 DOI: 10.1523/jneurosci.2119-18.2018] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/21/2022] Open
Abstract
The spatiotemporal organization of neurotransmitter receptors in the postsynaptic membrane is a fundamental determinant of synaptic transmission and thus of information processing by the brain. The ionotropic AMPA subtype of glutamate receptors (AMPARs) mediate fast excitatory synaptic transmission in the CNS. The number of AMPARs located en face presynaptic glutamate release sites sets the efficacy of synaptic transmission. Understanding how this number is set and regulated has been the topic of intense research in the last two decades. We showed that AMPARs are not stable in the synapse as initially thought. They continuously enter and exit the postsynaptic density by lateral diffusion, and they exchange between the neuronal surface and intracellular compartments by endocytosis and exocytosis at extrasynaptic sites. Regulation of these various trafficking pathways has emerged as a key mechanism for activity-dependent plasticity of synaptic transmission, a process important for learning and memory. I here present my view of these findings. In particular, the advent of super-resolution microscopy and single-molecule tracking has helped to uncover the intricacy of AMPARs' dynamic organization at the nanoscale. In addition, AMPAR surface diffusion is highly regulated by a variety of factors, including neuronal activity, stress hormones, and neurodegeneration, suggesting that AMPAR diffusion-trapping may play a central role in synapse function. Using innovative tools to understand further the link between receptor dynamics and synapse plasticity is now unveiling new molecular mechanisms of learning. Modifying AMPAR dynamics may emerge as a new target to correct synapse dysfunction in the diseased brain.
Collapse
|