1
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
2
|
Sun B, Li J, Bai Y, Zhou X, Lam PKS, Chen L. Hypoxic and temporal variation in the endocrine disrupting toxicity of perfluorobutanesulfonate in marine medaka (Oryzias melastigma). J Environ Sci (China) 2024; 136:279-291. [PMID: 37923438 DOI: 10.1016/j.jes.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is an emerging pollutant capable of potently disrupting the sex and thyroid endocrine systems of teleosts. However, the hypoxic and temporal variation in PFBS endocrine disrupting toxicity remain largely unknown. In the present study, adult marine medaka were exposed to environmentally realistic concentrations of PFBS (0 and 10 µg/L) under normoxia or hypoxia conditions for 7 days, aiming to explore the interactive behavior between PFBS and hypoxia. In addition, PFBS singular exposure was extended till 21 days under normoxia to elucidate the time-course progression in PFBS toxicity. The results showed that hypoxia inhibited the growth and caused the suspension of egg spawn regardless of PFBS exposure. With regard to the sex endocrine system, 7-day PFBS exposure led to an acute stimulation of transcriptional profiles in females, which, subsequently, recovered after the 21-day exposure. The potency of hypoxia to disturb the sex hormones was much stronger than PFBS. A remarkable increase in estradiol concentration was noted in medaka blood after hypoxia exposure. Changes in sex endocrinology of coexposed fish were largely determined by hypoxia, which drove the formation of an estrogenic environment. PFBS further enhanced the endocrine disrupting effects of hypoxia. However, the hepatic synthesis of vitellogenin and choriogenin, two commonly used sensitive biomarkers of estrogenic activity, failed to initiate in response to the estrogen stimulus. Compared to sex endocrine system, disturbances in thyroidal axis by PFBS or hypoxia were relatively mild. Overall, the present findings will advance our toxicological understanding about PFBS pollutant under the interference of hypoxia.
Collapse
Affiliation(s)
- Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yachen Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangzhen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul K S Lam
- Office of the President, Hong Kong Metropolitan University, 30 Good Shepherd Street, Kowloon, Hong Kong SAR, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
3
|
Ma H, Yang F, York LR, Li S, Ding XQ. Excessive Thyroid Hormone Signaling Induces Photoreceptor Degeneration in Mice. eNeuro 2023; 10:ENEURO.0058-23.2023. [PMID: 37596046 PMCID: PMC10481642 DOI: 10.1523/eneuro.0058-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023] Open
Abstract
Rod and cone photoreceptors degenerate in inherited and age-related retinal degenerative diseases, ultimately leading to loss of vision. Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and metabolism. Recent studies have shown a link between TH signaling and retinal degeneration. This work investigates the effects of excessive TH signaling on photoreceptor function and survival in mice. C57BL/6, Thra1 -/-, Thrb2 -/-, Thrb -/-, and the cone dominant Nrl -/- mice received triiodothyronine (T3) treatment (5-20 μg/ml in drinking water) for 30 d, followed by evaluations of retinal function, photoreceptor survival/death, and retinal stress/damage. Treatment with T3 reduced light responses of rods and cones by 50-60%, compared with untreated controls. Outer nuclear layer thickness and cone density were reduced by ∼18% and 75%, respectively, after T3 treatment. Retinal sections prepared from T3-treated mice showed significantly increased numbers of TUNEL-positive, p-γH2AX-positive, and 8-OHdG-positive cells, and activation of Müller glial cells. Gene expression analysis revealed upregulation of the genes involved in oxidative stress, necroptosis, and inflammation after T3 treatment. Deletion of Thra1 prevented T3-induced degeneration of rods but not cones, whereas deletion of Thrb2 preserved both rods and cones. Treatment with an antioxidant partially preserved photoreceptors and reduced retinal stress responses. This study demonstrates that excessive TH signaling induces oxidative stress/damage and necroptosis, induces photoreceptor degeneration, and impairs retinal function. The findings provide insights into the role of TH signaling in retinal degeneration and support the view of targeting TH signaling for photoreceptor protection.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Lilliana R York
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Shujuan Li
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
4
|
Salas-Lucia F, Fekete C, Sinkó R, Egri P, Rada K, Ruska Y, Gereben B, Bianco AC. Axonal T3 uptake and transport can trigger thyroid hormone signaling in the brain. eLife 2023; 12:e82683. [PMID: 37204837 PMCID: PMC10241515 DOI: 10.7554/elife.82683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 05/18/2023] [Indexed: 05/20/2023] Open
Abstract
The development of the brain, as well as mood and cognitive functions, are affected by thyroid hormone (TH) signaling. Neurons are the critical cellular target for TH action, with T3 regulating the expression of important neuronal gene sets. However, the steps involved in T3 signaling remain poorly known given that neurons express high levels of type 3 deiodinase (D3), which inactivates both T4 and T3. To investigate this mechanism, we used a compartmentalized microfluid device and identified a novel neuronal pathway of T3 transport and action that involves axonal T3 uptake into clathrin-dependent, endosomal/non-degradative lysosomes (NDLs). NDLs-containing T3 are retrogradely transported via microtubules, delivering T3 to the cell nucleus, and doubling the expression of a T3-responsive reporter gene. The NDLs also contain the monocarboxylate transporter 8 (Mct8) and D3, which transport and inactivate T3, respectively. Notwithstanding, T3 gets away from degradation because D3's active center is in the cytosol. Moreover, we used a unique mouse system to show that T3 implanted in specific brain areas can trigger selective signaling in distant locations, as far as the contralateral hemisphere. These findings provide a pathway for L-T3 to reach neurons and resolve the paradox of T3 signaling in the brain amid high D3 activity.
Collapse
Affiliation(s)
- Federico Salas-Lucia
- Section of Adult and Pediatric Endocrinology and Metabolism, University of ChicagoChicagoUnited States
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental MedicineBudapestHungary
| | - Richárd Sinkó
- Laboratory of Molecular Cell Metabolism, Institute of Experimental MedicineBudapestHungary
- János Szentágothai PhD School of Neurosciences, Semmelweis UniversityBudapestHungary
| | - Péter Egri
- Laboratory of Molecular Cell Metabolism, Institute of Experimental MedicineBudapestHungary
| | - Kristóf Rada
- Laboratory of Molecular Cell Metabolism, Institute of Experimental MedicineBudapestHungary
| | - Yvette Ruska
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental MedicineBudapestHungary
| | - Balázs Gereben
- Laboratory of Molecular Cell Metabolism, Institute of Experimental MedicineBudapestHungary
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology and Metabolism, University of ChicagoChicagoUnited States
| |
Collapse
|
5
|
Copur S, Yavuz F, Kanbay M. Thyroid hormone Beta receptor agonists for treatment of kidney disease: A promising agent? Eur J Clin Invest 2023; 53:e13939. [PMID: 36537819 DOI: 10.1111/eci.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Chronic kidney disease is a common disorder affecting a significant portion of the adult population with high mortality and morbidity. Obesity and hyperlipidemia are prevalent in chronic kidney disease, and they may trigger fat accumulation in renal parenchyma and eventually fatty kidney. Chronic kidney disease and fatty kidney are also strongly associated with nonalcoholic fatty liver disease. Because they both lead to detrimental effects on organ function, they both need to be treated effectively to improve the outcome. AIM In this narrative review, we have hypothesized that thyroid hormone beta receptor agonists, a novel drug group, may potentially be beneficial in the management of chronic kidney disease due to its promising outcomes among patients with nonalcoholic fatty liver disease, a condition sharing multiple common underlying pathophysiological mechanisms. RESULTS AND CONCLUSION Thyroid hormone beta receptors are abundantly expressed in liver and kidney tissues, while both nonalcoholic fatty liver disease and chronic kidney disease share various similar pathophysiological mechanisms and triggers. Therefore, thyroid hormone beta receptor agonists may become a promising tool in the management of patients with chronic kidney disease.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Furkan Yavuz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
6
|
Han Z, Chen L, Peng H, Zheng H, Lin Y, Peng F, Fan Y, Xie X, Yang S, Wang Z, Yuan L, Wei X, Chen H. The role of thyroid hormone in the renal immune microenvironment. Int Immunopharmacol 2023; 119:110172. [PMID: 37086678 DOI: 10.1016/j.intimp.2023.110172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Thyroid hormones are essential for proper kidney growth and development. The kidney is not only the organ of thyroid hormone metabolism but also the target organ of thyroid hormone. Kidney disease is a common type of kidney damage, mainly including different types of acute kidney injury, chronic kidney disease, diabetic nephropathy, lupus nephritis, and renal cell carcinoma. The kidney is often damaged by an immune response directed against its antigens or a systemic immune response. A variety of immune cells in the innate and adaptive immune systems, including neutrophils, macrophages, dendritic cells, T lymphocytes, and B lymphocytes, is essential for maintaining immune homeostasis and preventing autoimmune kidney disease. Recent studies have found that thyroid hormone plays an indispensable role in the immune microenvironment of various kidney diseases. Thyroid hormones regulate the activity of neutrophils, and dendritic cells express triiodothyronine receptors. Compared to hypothyroidism, hyperthyroidism has a greater effect on neutrophils. Furthermore, in adaptive immune systems, thyroid hormone may activate T lymphocytes through several underlying mechanisms, such as mediating NF-κB, protein kinase C signalling pathways, and β-adrenergic receptors, leading to increased T lymphocyte activation. The present review discusses the effects of thyroid hormone metabolism regulation in the immune microenvironment on the function of various immune cells, especially neutrophils, macrophages, dendritic cells, T lymphocytes, and B lymphocytes. Although there are not enough data at this stage to conclude the clinical relevance of these findings, thyroid hormone metabolism may influence autoimmune kidney disease by regulating the renal immune microenvironment.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyao Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongying Zheng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunhe Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuli Xie
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Simin Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical Medical College of Nanjing Medical University, Lianyungang, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiuyan Wei
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | | |
Collapse
|
7
|
Boucai L, Salas-Lucia F, Krishnamoorthy GP, Sherman E, Rudin CM, Drilon A, Bianco AC, Fagin JA. Selpercatinib-Induced Hypothyroidism Through Off-Target Inhibition of Type 2 Iodothyronine Deiodinase. JCO Precis Oncol 2022; 6:e2100496. [PMID: 35704797 PMCID: PMC9384953 DOI: 10.1200/po.21.00496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/10/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The development of the selective RET inhibitors selpercatinib and pralsetinib has revolutionized the treatment of metastatic progressive RET-mutant medullary thyroid carcinoma (MTC) and other RET-driven cancers, given their more favorable side-effect profile. The aim of this study is to investigate the mechanisms of selpercatinib-induced thyroid dysfunction in athyreotic patients with RET-mutant MTC and in patients with RET-mutant non-small-cell lung cancer (NSCLC) who had a functional thyroid. MATERIALS AND METHODS Thyroid hormone levels were evaluated in an observational cohort of five athyreotic patients with MTC and 30 patients with NSCLC before and after initiation of selpercatinib. In vitro experiments to identify the mechanism of selpercatinib-induced thyroid dysfunction were conducted in cells expressing endogenous D1, D2, and D3 iodothyronine deiodinases. RESULTS Upon initiating treatment with selpercatinib, athyreotic patients developed clinical hypothyroidism with approximately 60% lower T3 levels despite adequate levothyroxine supplementation, whereas in patients with NSCLC, who retain a normal thyroid, selpercatinib resulted in a more attenuated reduction in serum T3, which was dose-dependent. We conducted studies in cells endogenously expressing either D1, D2, or D3, the three iodothyronine deiodinases. Selpercatinib inhibited D2-mediated T3 production in MSTO-211 cells by 50%. A modest repression of D2 mRNA was present in human thyroid cancer TT cells that express RET, but not in the MSTO-211 cells that do not. No effect of the drug was observed on D1 (activating deiodinase) or D3 (inactivating deiodinase). Thus, a nontranscriptional effect of selpercatinib on D2 activity is the most plausible explanation for the low T3 levels. CONCLUSION An off-target effect of selpercatinib on D2-mediated T3 production leads to clinical hypothyroidism, primarily in levothyroxine-treated athyreotic patients. Liothyronine supplementation was needed to achieve normal T3 levels and restore clinical euthyroidism.
Collapse
Affiliation(s)
- Laura Boucai
- Department of Medicine, Division of Endocrinology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Federico Salas-Lucia
- Department of Medicine, Division of Endocrinology, University of Chicago, Chicago, IL
| | - Gnana P. Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eric Sherman
- Department of Medicine, Head and Neck Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Charles M. Rudin
- Department of Medicine, Thoracic Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexander Drilon
- Department of Medicine, Early Drug Development Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Antonio C. Bianco
- Department of Medicine, Division of Endocrinology, University of Chicago, Chicago, IL
| | - James A. Fagin
- Department of Medicine, Division of Endocrinology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
8
|
Hu Y, Liu F, Peng W, Song S, Zhang C, Meng X. Overexpression of miR-99a in hippocampus leads to impairment of reversal learning in mice. Behav Brain Res 2022; 416:113542. [PMID: 34425183 DOI: 10.1016/j.bbr.2021.113542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
As one of the most common human genetic disorders, Down syndrome (DS) is characterized by a mild-to-moderate cognitive disability, which mainly results from genes overexpression on chromosome 21. The expression of miR-99a, a gene harboring on chromosome 21, is increased by 50 folds in DS brain samples. This study aims to investigate the effect of miR-99a overexpression in the hippocampus on mouse behaviors and explore the underlying mechanisms. Lentivirus vectors were delivered into the hippocampus for focal miR-99a overexpression in mice. Then behaviors were observed by an open field, elevated plus maze, rotarod motor test, and Morris water maze. The genes affected by miR-99a were identified by RNA sequencing (RNA-seq) and confirmed by quantitative RT-PCR (qRT-PCR) in samples isolated from the hippocampus injected with lentivirus-GFP-miR-99a or lentivirus-GFP vectors. It was found that the expression of miR-99a with intrahippocampal delivery of lentivirus-GFP-miR-99a resulted in reversal learning impairment in mice although it had no influence on motor function and anxiety. Meanwhile, RNA-seq results showed that 92 genes including mRNAs and microRNAs were significantly regulated by miR-99a, consistent with qRT-PCR consequence. Moreover, dual-luciferase reporter assay showed that miR-99a could directly bind to the 3'-untranslated regions (3'UTR) of target genes (Clic6 and Kcnj13) with an inhibitory effect on their activity. Furthermore, we also found that miR-99a overexpression affected different biological processes by bioinformatic analyses. Our study showed that miR-99a overexpression in the hippocampus leads to cognitive impairment through regulating the expressions of various genes, which reveals a novel function of miR-99a and provides new insights into understanding the pathophysiologic process of DS.
Collapse
Affiliation(s)
- Yue Hu
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenpeng Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuxin Song
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Effects of Thyroid Hormone on Tissue Hypoxia: Relevance to Sepsis Therapy. J Clin Med 2021; 10:jcm10245855. [PMID: 34945151 PMCID: PMC8703810 DOI: 10.3390/jcm10245855] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 01/14/2023] Open
Abstract
Tissue hypoxia occurs in various conditions such as myocardial or brain ischemia and infarction, sepsis, and trauma, and induces cellular damage and tissue remodeling with recapitulation of fetal-like reprogramming, which eventually results in organ failure. Analogies seem to exist between the damaged hypoxic and developing organs, indicating that a regulatory network which drives embryonic organ development may control aspects of heart (or tissue) repair. In this context, thyroid hormone (TH), which is a critical regulator of organ maturation, physiologic angiogenesis, and mitochondrial biogenesis during fetal development, may be of important physiological relevance upon stress (hypoxia)-induced fetal reprogramming. TH signaling has been implicated in hypoxic tissue remodeling after myocardial infarction and T3 prevents remodeling of the postinfarcted heart. Similarly, preliminary experimental evidence suggests that T3 can prevent early tissue hypoxia during sepsis with important physiological consequences. Thus, based on common pathways between different paradigms, we propose a possible role of TH in tissue hypoxia after sepsis with the potential to reduce secondary organ failure.
Collapse
|
10
|
Agarwal S, Koh KH, Tardi NJ, Chen C, Dande RR, WerneckdeCastro JP, Sudhini YR, Luongo C, Salvatore D, Samelko B, Altintas MM, Mangos S, Bianco A, Reiser J. Deiodinase-3 is a thyrostat to regulate podocyte homeostasis. EBioMedicine 2021; 72:103617. [PMID: 34649077 PMCID: PMC8517284 DOI: 10.1016/j.ebiom.2021.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Nephrotic syndrome (NS) is associated with kidney podocyte injury and may occur as part of thyroid autoimmunity such as Graves' disease. Therefore, the present study was designed to ascertain if and how podocytes respond to and regulate the input of biologically active thyroid hormone (TH), 3,5,3'-triiodothyronine (T3); and also to decipher the pathophysiological role of type 3 deiodinase (D3), a membrane-bound selenoenzyme that inactivates TH, in kidney disease. METHODS To study D3 function in healthy and injured (PAN, puromycin aminonucleoside and LPS, Lipopolysaccharide-mediated) podocytes, immunofluorescence, qPCR and podocyte-specific D3 knockout mouse were used. Surface plasmon resonance (SPR), co-immunoprecipitation and Proximity Ligation Assay (PLA) were used for the interaction studies. FINDINGS Healthy podocytes expressed D3 as the predominant deiodinase isoform. Upon podocyte injury, levels of Dio3 transcript and D3 protein were dramatically reduced both in vitro and in the LPS mouse model of podocyte damage. D3 was no longer directed to the cell membrane, it accumulated in the Golgi and nucleus instead. Further, depleting D3 from the mouse podocytes resulted in foot process effacement and proteinuria. Treatment of mouse podocytes with T3 phenocopied the absence of D3 and elicited activation of αvβ3 integrin signaling, which led to podocyte injury. We also confirmed presence of an active thyroid stimulating hormone receptor (TSH-R) on mouse podocytes, engagement and activation of which resulted in podocyte injury. INTERPRETATION The study provided a mechanistic insight into how D3-αvβ3 integrin interaction can minimize T3-dependent integrin activation, illustrating how D3 could act as a renoprotective thyrostat in podocytes. Further, injury caused by binding of TSH-R with TSH-R antibody, as found in patients with Graves' disease, explained a plausible link between thyroid disorder and NS. FUNDING This work was supported by American Thyroid Association (ATA-2018-050.R1).
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Internal Medicine, Rush University, Chicago, IL 60612
| | - Kwi Hye Koh
- Department of Internal Medicine, Rush University, Chicago, IL 60612
| | - Nicholas J Tardi
- Department of Internal Medicine, Rush University, Chicago, IL 60612
| | - Chuang Chen
- Department of Internal Medicine, Rush University, Chicago, IL 60612
| | | | | | | | - Cristina Luongo
- Department of Public Health, University of Naples "Federico II," Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples "Federico II," Naples, Italy
| | - Beata Samelko
- Department of Internal Medicine, Rush University, Chicago, IL 60612
| | | | - Steve Mangos
- Department of Internal Medicine, Rush University, Chicago, IL 60612
| | - Antonio Bianco
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Jochen Reiser
- Department of Internal Medicine, Rush University, Chicago, IL 60612.
| |
Collapse
|
11
|
Abstract
Deiodinases modify the biological activity of thyroid hormone (TH) molecules, ie, they may activate thyroxine (T4) to 3,5,3'-triiodothyronine (T3), or they may inactivate T3 to 3,3'-diiodo-L-thyronine (T2) or T4 to reverse triiodothyronine (rT3). Although evidence of deiodination of T4 to T3 has been available since the 1950s, objective evidence of TH metabolism was not established until the 1970s. The modern paradigm considers that the deiodinases not only play a role in the homeostasis of circulating T3, but they also provide dynamic control of TH signaling: cells that express the activating type 2 deiodinase (D2) have enhanced TH signaling due to intracellular build-up of T3; the opposite is seen in cells that express type 3 deiodinase (D3), the inactivating deiodinase. D2 and D3 are expressed in metabolically relevant tissues such as brown adipose tissue, skeletal muscle and liver, and their roles have been investigated using cell, animal, and human models. During development, D2 and D3 expression customize for each tissue/organ the timing and intensity of TH signaling. In adult cells, D2 is induced by cyclic adenosine monophosphate (cAMP), and its expression is invariably associated with enhanced T3 signaling, expression of PGC1 and accelerated energy expenditure. In contrast, D3 expression is induced by hypoxia-inducible factor 1α (HIF-1a), dampening T3 signaling and the metabolic rate. The coordinated expression of these enzymes adjusts TH signaling in a time- and tissue-specific fashion, affecting metabolic pathways in health and disease states.
Collapse
Affiliation(s)
- Samuel C Russo
- Section of Endocrinology, Diabetes & Metabolism, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Federico Salas-Lucia
- Section of Endocrinology, Diabetes & Metabolism, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Antonio C Bianco
- Section of Endocrinology, Diabetes & Metabolism, University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Moti BS, Oz E, Olga A, Bella G, Shifra S, Eilam P. New Cortical Neurodegenerative Pathways in the Hypertensive Rat Brain. Cereb Cortex 2021; 31:5487-5496. [PMID: 34179944 DOI: 10.1093/cercor/bhab173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/20/2021] [Accepted: 05/25/2021] [Indexed: 11/12/2022] Open
Abstract
Hypertension is a risk factor for neurodegenerative diseases. We hypothesized that chronic hypertension underlies neurodegeneration. In this study, we examined the expression of brain cortical proteins involved in homeostasis, apoptosis, and brain functions in Spontaneously Hypertensive Rats (SHR) compared with normotensive Wistar-Kyoto (WKY) rats. We used paraffin-embedded brain sections of 8-month-old SHR and WKY rats, immunohistochemically stained and analyzed by image processing. In SHR, cytochrome c oxidase subunit 7A increased, indicative of hypoxia; heat shock protein 40, the chaperon for refolding proteins, decreased, leading to accumulation of misfolded proteins; the levels of both voltage-gated sodium channels, Na1.2, 1.6, decreased, reflecting attenuation of the action potential, causing axonal injury; autophagy-related protein 4A (Atg4a), an essential protein of autophagy, decreased, reducing the removal of misfolded proteins; demyelination, the hallmark of neurodegeneration, was shown; modulation of both histone deacetylases 2 and histone acetyltransferase 1 was shown, indicative of altered regulation of gene transcription; increased activated (cleaved) caspase-3, indicative of apoptosis. These new findings suggest that chronic hypertension induces hypoxia and oxidative stress, axonal injury, accelerates the accumulation of misfolded proteins and apoptosis, pathways preceding neurodegeneration.
Collapse
Affiliation(s)
- Ben Shabat Moti
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Eliya Oz
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Azrilin Olga
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel.,Neurology Department, Galilee Medical Center, Nahariya, Israel
| | - Gross Bella
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Neurology Department, Galilee Medical Center, Nahariya, Israel
| | - Sela Shifra
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Palzur Eilam
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel
| |
Collapse
|
13
|
Adu-Gyamfi EA, Wang YX, Ding YB. The interplay between thyroid hormones and the placenta: a comprehensive review†. Biol Reprod 2021; 102:8-17. [PMID: 31494673 DOI: 10.1093/biolre/ioz182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/21/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormones (THs) regulate a number of metabolic processes during pregnancy. After implantation, the placenta forms and enhances embryonic growth and development. Dysregulated maternal THs signaling has been observed in malplacentation-mediated pregnancy complications such as preeclampsia, miscarriage, and intrauterine growth restriction (IUGR), but the molecular mechanisms involved in this association have not been fully characterized. In this review, we have discussed THs signaling and its roles in trophoblast proliferation, trophoblast differentiation, trophoblast invasion of the decidua, and decidual angiogenesis. We have also explored the relationship between specific pregnancy complications and placental THs transporters, deiodinases, and THs receptors. In addition, we have examined the effects of specific endocrine disruptors on placental THs signaling. The available evidence indicates that THs signaling is involved in the formation and functioning of the placenta and serves as the basis for understanding the pathogenesis and pathophysiology of dysthyroidism-associated pregnancy complications such as preeclampsia, miscarriage, and IUGR.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
14
|
van der Spek AH, Fliers E, Boelen A. Thyroid Hormone and Deiodination in Innate Immune Cells. Endocrinology 2021; 162:6016930. [PMID: 33275661 DOI: 10.1210/endocr/bqaa200] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Thyroid hormone has recently been recognized as an important determinant of innate immune cell function. Highly specialized cells of the innate immune system, including neutrophils, monocytes/macrophages, and dendritic cells, are capable of identifying pathogens and initiating an inflammatory response. They can either phagocytose and kill microbes, or recruit other innate or adaptive immune cells to the site of inflammation. Innate immune cells derive from the hematopoietic lineage and are generated in the bone marrow, from where they can be recruited into the blood and tissues in the case of infection. The link between the immune and endocrine systems is increasingly well established, and recent studies have shown that innate immune cells can be seen as important thyroid hormone target cells. Tight regulation of cellular thyroid hormone availability and action is performed by thyroid hormone transporters, receptors, and the deiodinase enzymes. Innate immune cells express all these molecular elements of intracellular thyroid hormone metabolism. Interestingly, there is recent evidence for a causal relationship between cellular thyroid hormone status and innate immune cell function. This review describes the effects of modulation of intracellular thyroid hormone metabolism on innate immune cell function, specifically neutrophils, macrophages, and dendritic cells, with a special focus on the deiodinase enzymes. Although there are insufficient data at this stage for conclusions on the clinical relevance of these findings, thyroid hormone metabolism may partially determine the innate immune response and, by inference, the clinical susceptibility to infections.
Collapse
Affiliation(s)
- Anne H van der Spek
- Amsterdam UMC, University of Amsterdam, Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology & Metabolism, AZ Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism, AZ Amsterdam, the Netherlands
| | - Eric Fliers
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism, AZ Amsterdam, the Netherlands
| | - Anita Boelen
- Amsterdam UMC, University of Amsterdam, Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology & Metabolism, AZ Amsterdam, the Netherlands
| |
Collapse
|
15
|
Marcelino CP, McAninch EA, Fernandes GW, Bocco BMLC, Ribeiro MO, Bianco AC. Temporal Pole Responds to Subtle Changes in Local Thyroid Hormone Signaling. J Endocr Soc 2020; 4:bvaa136. [PMID: 33123655 PMCID: PMC7575126 DOI: 10.1210/jendso/bvaa136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
To study thyroid hormone (TH) signaling in the human brain, we analyzed published microarray data sets of the temporal pole (Brodmann area 38) of 19 deceased donors. An index of TH signaling built on the expression of 19 well known TH-responsive genes in mouse brains (T3S+) varied from 0.92 to 1.1. After Factor analysis, T3S+ correlated independently with the expression of TH transporters (MCT8, LAT2), TH receptor (TR) beta and TR coregulators (CARM1, MED1, KAT2B, SRC2, SRC3, NCOR2a). Unexpectedly, no correlation was found between T3S+ vs DIO2, DIO3, SRC1, or TRα. An unbiased systematic analysis of the entire transcriptome identified a set of 1649 genes (set #1) with strong positive correlation with T3S+ (r > 0.75). Factor analysis of set #1 identified 2 sets of genes that correlated independently with T3S+, sets #2 (329 genes) and #3 (191 genes). When processed through the Molecular Signatures Data Base (MSigDB), both sets #2 and #3 were enriched with Gene Ontology (GO)-sets related to synaptic transmission and metabolic processes. Ranking individual human brain donors according to their T3S+ led us to identify 1262 genes (set #4) with >1.3-fold higher expression in the top half. The analysis of the overlapped genes between sets #1 and #4 resulted in 769 genes (set #5), which have a very similar MSigDB signature as sets #2 and #3. In conclusion, gene expression in the human temporal pole can be assessed through T3S+ and fluctuates with subtle variations in local TH signaling.
Collapse
Affiliation(s)
- Cícera P Marcelino
- Department of Health and Biological Sciences - CCBS, Mackenzie Presbyterian University, Sao Paulo, Sao Paulo, Brazil
- Department of Translational Medicine, Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Elizabeth A McAninch
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology and Metabolism, University of Chicago, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology and Metabolism, University of Chicago, Chicago, Illinois
| | - Miriam O Ribeiro
- Department of Health and Biological Sciences - CCBS, Mackenzie Presbyterian University, Sao Paulo, Sao Paulo, Brazil
- Department of Translational Medicine, Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Antonio C Bianco
- Section of Endocrinology and Metabolism, University of Chicago, Chicago, Illinois
| |
Collapse
|
16
|
Barreto-Chaves MLM, Senger N, Fevereiro MR, Parletta AC, Takano APC. Impact of hyperthyroidism on cardiac hypertrophy. Endocr Connect 2020; 9:R59-R69. [PMID: 32101527 PMCID: PMC7159257 DOI: 10.1530/ec-19-0543] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
The cardiac growth process (hypertrophy) is a crucial phenomenon conserved across a wide array of species and is critically involved in the maintenance of cardiac homeostasis. This process enables an organism to adapt to changes in systemic demand and occurs due to a plethora of responses, depending on the type of signal or stimuli received. The growth of cardiac muscle cells in response to environmental conditions depends on the type, strength and duration of stimuli, and results in adaptive physiological responses or non-adaptive pathological responses. Thyroid hormones (TH) have a direct effect on the heart and induce a cardiac hypertrophy phenotype, which may evolve to heart failure. In this review, we summarize the literature on TH function in the heart by presenting results from experimental studies. We discuss the mechanistic aspects of TH associated with cardiac myocyte hypertrophy, increased cardiac myocyte contractility and electrical remodeling, as well as the associated signaling pathways. In addition to classical crosstalk with the sympathetic nervous system (SNS), emerging work pointing to the new endocrine interaction between TH and the renin-angiotensin system (RAS) is also explored. Given the inflammatory potential of the angiotensin II peptide, this new interaction may open the door for new therapeutic approaches which target the key mechanisms responsible for TH-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- M L M Barreto-Chaves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - N Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M R Fevereiro
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - A C Parletta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - A P C Takano
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Baldassarro VA, Marchesini A, Giardino L, Calzà L. Differential effects of glucose deprivation on the survival of fetal versus adult neural stem cells-derived oligodendrocyte precursor cells. Glia 2019; 68:898-917. [PMID: 31755592 DOI: 10.1002/glia.23750] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022]
Abstract
Impaired myelination is a key feature in neonatal hypoxia/ischemia (HI), the most common perinatal/neonatal cause of death and permanent disabilities, which is triggered by the establishment of an inflammatory and hypoxic environment during the most critical period of myelin development. This process is dependent on oligodendrocyte precursor cells (OPCs) and their capability to differentiate into mature oligodendrocytes. In this study, we investigated the vulnerability of fetal and adult OPCs derived from neural stem cells (NSCs) to inflammatory and HI insults. The resulting OPCs/astrocytes cultures were exposed to cytokines to mimic inflammation, or to oxygen-glucose deprivation (OGD) to mimic an HI condition. The differentiation of both fetal and adult OPCs is completely abolished following exposure to inflammatory cytokines, while only fetal-derived OPCs degenerate when exposed to OGD. We then investigated possible mechanisms involved in OGD-mediated toxicity: (a) T3-mediated maturation induction; (b) glutamate excitotoxicity; (c) glucose metabolism. We found that while no substantial differences were observed in T3 intracellular content regulation and glutamate-mediated toxicity, glucose deprivation lead to selective OPC cell death and impaired differentiation in fetal cultures only. These results indicate that the biological response of OPCs to inflammation and demyelination is different in fetal and adult cells, and that the glucose metabolism perturbation in fetal central nervous system (CNS) may significantly contribute to neonatal pathologies. An understanding of the underlying molecular mechanism will contribute greatly to differentiating myelination enhancing and neuroprotective therapies for neonatal and adult CNS white matter lesions.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | | | - Luciana Giardino
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.,IRET Foundation, Ozzano Emilia, Italy.,Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Laura Calzà
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,IRET Foundation, Ozzano Emilia, Italy
| |
Collapse
|
18
|
Li J, Abe K, Milanesi A, Liu YY, Brent GA. Thyroid Hormone Protects Primary Cortical Neurons Exposed to Hypoxia by Reducing DNA Methylation and Apoptosis. Endocrinology 2019; 160:2243-2256. [PMID: 31095291 DOI: 10.1210/en.2019-00125] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/10/2019] [Indexed: 02/03/2023]
Abstract
Traumatic brain injury (TBI) is associated with disruption of cerebral blood flow leading to localized brain hypoxia. Thyroid hormone (TH) treatment, administered shortly after injury, has been shown to promote neural protection in rodent TBI models. The mechanism of TH protection, however, is not established. We used mouse primary cortical neurons to investigate the effectiveness and possible pathways of T3-promoted cell survival after exposure to hypoxic injury. Cultured primary cortical neurons were exposed to hypoxia (0.2% oxygen) for 7 hours with or without T3 (5 nM). T3 treatment enhanced DNA 5-hydroxymethylcytosine levels and attenuated the hypoxia-induced increase in DNA 5-methylcytosine (5-mc). In the presence of T3, mRNA expression of Tet family genes was increased and DNA methyltransferase (Dnmt) 3a and Dnmt3b were downregulated, compared with conditions in the absence of T3. These T3-induced changes decreased hypoxia-induced DNA de novo methylation, which reduced hypoxia-induced neuronal damage and apoptosis. We used RNA sequencing to characterize T3-regulated genes in cortical neurons under hypoxic conditions and identified 22 genes that were upregulated and 15 genes that were downregulated. Krüppel-like factor 9 (KLF9), a multifunctional transcription factor that plays a key role in central nervous system development, was highly upregulated by T3 treatment in hypoxic conditions. Knockdown of the KLF9 gene resulted in early apoptosis and abolished the beneficial role of T3 in neuronal survival. KLF9 mediates, in part, the neuronal protective role of T3. T3 treatment reduces hypoxic damage, although pathways that reduce DNA methylation and apoptosis remain to be elucidated.
Collapse
Affiliation(s)
- Jianrong Li
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Kiyomi Abe
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Anna Milanesi
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Yan-Yun Liu
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Gregory A Brent
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| |
Collapse
|
19
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
20
|
Jo S, Fonseca TL, Bocco BMLC, Fernandes GW, McAninch EA, Bolin AP, Da Conceição RR, Werneck-de-Castro JP, Ignacio DL, Egri P, Németh D, Fekete C, Bernardi MM, Leitch VD, Mannan NS, Curry KF, Butterfield NC, Bassett JD, Williams GR, Gereben B, Ribeiro MO, Bianco AC. Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain. J Clin Invest 2019; 129:230-245. [PMID: 30352046 PMCID: PMC6307951 DOI: 10.1172/jci123176] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022] Open
Abstract
Levothyroxine (LT4) is a form of thyroid hormone used to treat hypothyroidism. In the brain, T4 is converted to the active form T3 by type 2 deiodinase (D2). Thus, it is intriguing that carriers of the Thr92Ala polymorphism in the D2 gene (DIO2) exhibit clinical improvement when liothyronine (LT3) is added to LT4 therapy. Here, we report that D2 is a cargo protein in ER Golgi intermediary compartment (ERGIC) vesicles, recycling between ER and Golgi. The Thr92-to-Ala substitution (Ala92-D2) caused ER stress and activated the unfolded protein response (UPR). Ala92-D2 accumulated in the trans-Golgi and generated less T3, which was restored by eliminating ER stress with the chemical chaperone 4-phenyl butyric acid (4-PBA). An Ala92-Dio2 polymorphism-carrying mouse exhibited UPR and hypothyroidism in distinct brain areas. The mouse refrained from physical activity, slept more, and required additional time to memorize objects. Enhancing T3 signaling in the brain with LT3 improved cognition, whereas restoring proteostasis with 4-PBA eliminated the Ala92-Dio2 phenotype. In contrast, primary hypothyroidism intensified the Ala92-Dio2 phenotype, with only partial response to LT4 therapy. Disruption of cellular proteostasis and reduced Ala92-D2 activity may explain the failure of LT4 therapy in carriers of Thr92Ala-DIO2.
Collapse
Affiliation(s)
- Sungro Jo
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois, USA
| | - Tatiana L. Fonseca
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Barbara M. L. C. Bocco
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Gustavo W. Fernandes
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Elizabeth A. McAninch
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois, USA
| | - Anaysa P. Bolin
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo, and
| | - Rodrigo R. Da Conceição
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois, USA
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | - Daniele L. Ignacio
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois, USA
| | - Péter Egri
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dorottya Németh
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Csaba Fekete
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Maria Martha Bernardi
- Graduate Program of Environmental and Experimental Pathology, Graduate Program of Dentistry, Universidade Paulista, São Paulo, SP, Brazil
| | - Victoria D. Leitch
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Naila S. Mannan
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Katharine F. Curry
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Natalie C. Butterfield
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - J.H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O. Ribeiro
- Developmental Disorders Program, Center of Biological Science and Health, Mackenzie Presbyterian University, São Paulo, SP, Brazil
| | - Antonio C. Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Nascimento BPP, Bocco BMLC, Fernandes GW, Fonseca TL, McAninch EA, Cardoso CV, Bondan EF, Nassif RJ, Cysneiros RM, Bianco AC, Ribeiro MO. Induction of Type 2 Iodothyronine Deiodinase After Status Epilepticus Modifies Hippocampal Gene Expression in Male Mice. Endocrinology 2018; 159:3090-3104. [PMID: 29905787 PMCID: PMC6669821 DOI: 10.1210/en.2018-00146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/06/2018] [Indexed: 11/19/2022]
Abstract
Status epilepticus (SE) is an abnormally prolonged seizure that results from either a failure of mechanisms that terminate seizures or from initiating mechanisms that inherently lead to prolonged seizures. Here we report that mice experiencing a 3 hours of SE caused by pilocarpine exhibit a rapid increase in expression of type 2 iodothyronine deiodinase gene (Dio2) and a decrease in the expression of type 3 iodothyronine deiodinase gene in hippocampus, amygdala and prefrontal cortex. Type 3 iodothyronine deiodinase in hippocampal sections was seen concentrated in the neuronal nuclei, typical of ischemic injury of the brain. An unbiased analysis of the hippocampal transcriptome of mice undergoing 3 hours of SE revealed a number of genes, including those involved with response to oxidative stress, cellular homeostasis, cell signaling, and mitochondrial structure. In contrast, in mice with targeted disruption of Dio2 in astrocytes (Astro D2KO mouse), the highly induced genes in the hippocampus were related to inflammation, apoptosis, and cell death. We propose that Dio2 induction caused by SE accelerates production of T3 in different areas of the central nervous system and modifies the hippocampal gene expression profile, affecting the balance between adaptive and maladaptive mechanisms.
Collapse
Affiliation(s)
- Bruna P P Nascimento
- Graduate Program of Translational Medicine, Department of Medicine, Federal University of São Paulo, São Paulo-SP, Brazil
- Developmental Disorders Program, Center of Biological Sciences and Health, Mackenzie Presbyterian University, São Paulo-SP, Brazil
| | - Barbara M L C Bocco
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Tatiana L Fonseca
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Elizabeth A McAninch
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Carolina V Cardoso
- Department of Environmental and Experimental Pathology, Paulista University, São Paulo-SP, Brazil
| | - Eduardo F Bondan
- Department of Environmental and Experimental Pathology, Paulista University, São Paulo-SP, Brazil
| | - Renata J Nassif
- Neuroscience Sector, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo-SP, Brazil
| | - Roberta M Cysneiros
- Developmental Disorders Program, Center of Biological Sciences and Health, Mackenzie Presbyterian University, São Paulo-SP, Brazil
| | - Antonio C Bianco
- Division of Endocrinology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Miriam O Ribeiro
- Graduate Program of Translational Medicine, Department of Medicine, Federal University of São Paulo, São Paulo-SP, Brazil
- Developmental Disorders Program, Center of Biological Sciences and Health, Mackenzie Presbyterian University, São Paulo-SP, Brazil
| |
Collapse
|
22
|
Liu YY, Brent GA. Thyroid hormone and the brain: Mechanisms of action in development and role in protection and promotion of recovery after brain injury. Pharmacol Ther 2018; 186:176-185. [PMID: 29378220 DOI: 10.1016/j.pharmthera.2018.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thyroid hormone (TH) is essential for normal brain development and may also promote recovery and neuronal regeneration after brain injury. TH acts predominantly through the nuclear receptors, TH receptor alpha (THRA) and beta (THRB). Additional factors that impact TH action in the brain include metabolism, activation of thyroxine (T4) to triiodothyronine (T3) by the enzyme 5'-deiodinase Type 2 (Dio2), inactivation by the enzyme 5-deiodinase Type 3 (Dio3) to reverse T3 (rT3), which occurs in glial cells, and uptake by the Mct8 transporter in neurons. Traumatic brain injury (TBI) is associated with inflammation, metabolic alterations and neural death. In clinical studies, central hypothyroidism, due to hypothalamic and pituitary dysfunction, has been found in some individuals after brain injury. TH has been shown, in animal models, to be protective for the damage incurred from brain injury and may have a role to limit injury and promote recovery. Although clinical trials have not yet been reported, findings from in vitro and in vivo models inform potential treatment strategies utilizing TH for protection and promotion of recovery after brain injury.
Collapse
Affiliation(s)
- Yan-Yun Liu
- Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| | - Gregory A Brent
- Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States.
| |
Collapse
|
23
|
Calzà L, Baldassarro VA, Fernandez M, Giuliani A, Lorenzini L, Giardino L. Thyroid Hormone and the White Matter of the Central Nervous System: From Development to Repair. VITAMINS AND HORMONES 2018; 106:253-281. [DOI: 10.1016/bs.vh.2017.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Abstract
Thyroid hormone signaling is customized in a time and cell-specific manner by the deiodinases, homodimeric thioredoxin fold containing selenoproteins. This ensures adequate T3 action in developing tissues, healthy adults and many disease states. D2 activates thyroid hormone by converting the pro-hormone T4 to T3, the biologically active thyroid hormone. D2 expression is tightly regulated by transcriptional mechanisms triggered by endogenous as well as environmental cues. There is also an on/off switch mechanism that controls D2 activity that is triggered by catalysis and functions via D2 ubiquitination/deubiquitination. D3 terminates thyroid hormone action by inactivation of both T4 and T3 molecules. Deiodinases play a role in thyroid hormone homeostasis, development, growth and metabolic control by affecting the intracellular levels of T3 and thus gene expression on a cell-specific basis. In many cases, tight control of these pathways by T3 is achieved with coordinated reciprocal changes in D2-mediated thyroid hormone activation D3-mediated thyroid hormone inactivation.
Collapse
|
25
|
van der Spek AH, Fliers E, Boelen A. The classic pathways of thyroid hormone metabolism. Mol Cell Endocrinol 2017; 458:29-38. [PMID: 28109953 DOI: 10.1016/j.mce.2017.01.025] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 12/15/2022]
Abstract
Thyroid hormones (TH) are crucial for growth and development and play an important role in energy homeostasis. Although serum TH levels are relatively constant in the physiological state, TH bioavailability at the tissue and cellular level is dependent on local TH metabolism. Circulating TH produced by the thyroid can be metabolized by a number of different pathways resulting in 1) activation of TH 2) deactivation of TH or 3) excretion of TH and subsequent metabolites. These pathways play an essential role in determining local TH levels and action. The major classical pathways of TH metabolism are deiodination, sulfation, glucuronidation, and ether-link cleavage. This review provides an overview of these pathways, their relative contributions to TH levels in the serum and in various organs and the changes in these pathways elicited by fasting and illness.
Collapse
Affiliation(s)
- Anne H van der Spek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anita Boelen
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Bardóczi Z, Pál B, Kőszeghy Á, Wilheim T, Watanabe M, Záborszky L, Liposits Z, Kalló I. Glycinergic Input to the Mouse Basal Forebrain Cholinergic Neurons. J Neurosci 2017; 37:9534-9549. [PMID: 28874448 PMCID: PMC5618268 DOI: 10.1523/jneurosci.3348-16.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 11/21/2022] Open
Abstract
The basal forebrain (BF) receives afferents from brainstem ascending pathways, which has been implicated first by Moruzzi and Magoun (1949) to induce forebrain activation and cortical arousal/waking behavior; however, it is very little known about how brainstem inhibitory inputs affect cholinergic functions. In the current study, glycine, a major inhibitory neurotransmitter of brainstem neurons, and gliotransmitter of local glial cells, was tested for potential interaction with BF cholinergic (BFC) neurons in male mice. In the BF, glycine receptor α subunit-immunoreactive (IR) sites were localized in choline acetyltransferase (ChAT)-IR neurons. The effect of glycine on BFC neurons was demonstrated by bicuculline-resistant, strychnine-sensitive spontaneous IPSCs (sIPSCs; 0.81 ± 0.25 × 10-1 Hz) recorded in whole-cell conditions. Potential neuronal as well as glial sources of glycine were indicated in the extracellular space of cholinergic neurons by glycine transporter type 1 (GLYT1)- and GLYT2-IR processes found in apposition to ChAT-IR cells. Ultrastructural analyses identified synapses of GLYT2-positive axon terminals on ChAT-IR neurons, as well as GLYT1-positive astroglial processes, which were localized in the vicinity of synapses of ChAT-IR neurons. The brainstem raphe magnus was determined to be a major source of glycinergic axons traced retrogradely from the BF. Our results indicate a direct effect of glycine on BFC neurons. Furthermore, the presence of high levels of plasma membrane glycine transporters in the vicinity of cholinergic neurons suggests a tight control of extracellular glycine in the BF.SIGNIFICANCE STATEMENT Basal forebrain cholinergic (BFC) neurons receive various activating inputs from specific brainstem areas and channel this information to the cortex via multiple projections. So far, very little is known about inhibitory brainstem afferents to the BF. The current study established glycine as a major regulator of BFC neurons by (1) identifying glycinergic neurons in the brainstem projecting to the BF, (2) showing glycine receptor α subunit-immunoreactive (IR) sites in choline acetyltransferase (ChAT)-IR neurons, (3) demonstrating glycine transporter type 2 (GLYT2)-positive axon terminals synapsing on ChAT-IR neurons, and (4) localizing GLYT1-positive astroglial processes in the vicinity of synapses of ChAT-IR neurons. The effect of glycine on BFC neurons was demonstrated by bicuculline-resistant, strychnine-sensitive spontaneous IPSCs recorded in whole-cell conditions.
Collapse
Affiliation(s)
- Zsuzsanna Bardóczi
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HAS, 1083, Budapest, Hungary
- Semmelweis University, School of PH.D. Studies, 1085, Budapest, Hungary
| | - Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Áron Kőszeghy
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Tamás Wilheim
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HAS, 1083, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, 1083, Budapest, Hungary
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - László Záborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, Newark, New Jersey 07102, and
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HAS, 1083, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, 1083, Budapest, Hungary
| | - Imre Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HAS, 1083, Budapest, Hungary,
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, 1083, Budapest, Hungary
| |
Collapse
|
27
|
Chaker L, Bianco AC, Jonklaas J, Peeters RP. Hypothyroidism. Lancet 2017; 390:1550-1562. [PMID: 28336049 PMCID: PMC6619426 DOI: 10.1016/s0140-6736(17)30703-1] [Citation(s) in RCA: 654] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/15/2017] [Accepted: 01/19/2017] [Indexed: 12/19/2022]
Abstract
Hypothyroidism is a common condition of thyroid hormone deficiency, which is readily diagnosed and managed but potentially fatal in severe cases if untreated. The definition of hypothyroidism is based on statistical reference ranges of the relevant biochemical parameters and is increasingly a matter of debate. Clinical manifestations of hypothyroidism range from life threatening to no signs or symptoms. The most common symptoms in adults are fatigue, lethargy, cold intolerance, weight gain, constipation, change in voice, and dry skin, but clinical presentation can differ with age and sex, among other factors. The standard treatment is thyroid hormone replacement therapy with levothyroxine. However, a substantial proportion of patients who reach biochemical treatment targets have persistent complaints. In this Seminar, we discuss the epidemiology, causes, and symptoms of hypothyroidism; summarise evidence on diagnosis, long-term risk, treatment, and management; and highlight future directions for research.
Collapse
Affiliation(s)
- Layal Chaker
- Academic Centre for Thyroid Disease, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Antonio C Bianco
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, USA
| | | | - Robin P Peeters
- Academic Centre for Thyroid Disease, Erasmus University Medical Centre, Rotterdam, Netherlands.
| |
Collapse
|
28
|
Yang F, Ma H, Belcher J, Butler MR, Redmond TM, Boye SL, Hauswirth WW, Ding XQ. Targeting iodothyronine deiodinases locally in the retina is a therapeutic strategy for retinal degeneration. FASEB J 2016; 30:4313-4325. [PMID: 27623928 DOI: 10.1096/fj.201600715r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022]
Abstract
Recent studies have implicated thyroid hormone (TH) signaling in cone photoreceptor viability. Using mouse models of retinal degeneration, we found that antithyroid treatment preserves cones. This work investigates the significance of targeting intracellular TH components locally in the retina. The cellular TH level is mainly regulated by deiodinase iodothyronine (DIO)-2 and -3. DIO2 converts thyroxine (T4) to triiodothyronine (T3), which binds to the TH receptor, whereas DIO3 degrades T3 and T4. We examined cone survival after overexpression of DIO3 and inhibition of DIO2 and demonstrated the benefits of these manipulations. Subretinal delivery of AAV5-IRBP/GNAT2-DIO3, which directs expression of human DIO3 specifically in cones, increased cone density by 30-40% in a Rpe65-/- mouse model of Lebers congenital amaurosis (LCA) and in a Cpfl1 mouse with Pde6c defect model of achromatopsia, compared with their respective untreated controls. Intravitreal and topical delivery of the DIO2 inhibitor iopanoic acid also significantly improved cone survival in the LCA model mice. Moreover, the expression levels of DIO2 and Slc16a2 were significantly higher in the diseased retinas, suggesting locally elevated TH signaling. We show that targeting DIOs protects cones, and intracellular inhibition of TH components locally in the retina may represent a novel strategy for retinal degeneration management.-Yang, F., Ma, H., Belcher, J., Butler, M. R., Redmond, T. M., Boye, S. L., Hauswirth, W. W., Ding, X.-Q. Targeting iodothyronine deiodinases locally in the retina is a therapeutic strategy for retinal degeneration.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joshua Belcher
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael R Butler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, Bethesda, Maryland, USA
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA; and.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA; and.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA;
| |
Collapse
|
29
|
Bocco BMLC, Werneck-de-Castro JP, Oliveira KC, Fernandes GW, Fonseca TL, Nascimento BPP, McAninch EA, Ricci E, Kvárta-Papp Z, Fekete C, Bernardi MM, Gereben B, Bianco AC, Ribeiro MO. Type 2 Deiodinase Disruption in Astrocytes Results in Anxiety-Depressive-Like Behavior in Male Mice. Endocrinology 2016; 157:3682-95. [PMID: 27501182 PMCID: PMC5007895 DOI: 10.1210/en.2016-1272] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022]
Abstract
Millions of levothyroxine-treated hypothyroid patients complain of impaired cognition despite normal TSH serum levels. This could reflect abnormalities in the type 2 deiodinase (D2)-mediated T4-to-T3 conversion, given their much greater dependence on the D2 pathway for T3 production. T3 normally reaches the brain directly from the circulation or is produced locally by D2 in astrocytes. Here we report that mice with astrocyte-specific Dio2 inactivation (Astro-D2KO) have normal serum T3 but exhibit anxiety-depression-like behavior as found in open field and elevated plus maze studies and when tested for depression using the tail-suspension and the forced-swimming tests. Remarkably, 4 weeks of daily treadmill exercise sessions eliminated this phenotype. Microarray gene expression profiling of the Astro-D2KO hippocampi identified an enrichment of three gene sets related to inflammation and impoverishment of three gene sets related to mitochondrial function and response to oxidative stress. Despite normal neurogenesis, the Astro-D2KO hippocampi exhibited decreased expression of four of six known to be positively regulated genes by T3, ie, Mbp (∼43%), Mag (∼34%), Hr (∼49%), and Aldh1a1 (∼61%) and increased expression of 3 of 12 genes negatively regulated by T3, ie, Dgkg (∼17%), Syce2 (∼26%), and Col6a1 (∼3-fold) by quantitative real-time PCR. Notably, in Astro-D2KO animals, there was also a reduction in mRNA levels of genes known to be affected in classical animal models of depression, ie, Bdnf (∼18%), Ntf3 (∼43%), Nmdar (∼26%), and GR (∼20%), which were also normalized by daily exercise sessions. These findings suggest that defects in Dio2 expression in the brain could result in mood and behavioral disorders.
Collapse
Affiliation(s)
- Barbara M L C Bocco
- Division of Endocrinology and Metabolism (B.M.L.C.B., J.P.W.-d.C., G.W.F., T.L.F., E.A.M., A.C.B.), Rush University Medical Center, Chicago, Illinois 60612; Department of Translational Medicine (B.M.L.C.B., G.W.F., B.P.P.N.), Federal University of Sao Paulo, Sao Paulo SP, 04039-002, Brazil; Biophysics Institute and School of Physical Education and Sports (J.P.W.-d.C.), Federal University of Rio de Janeiro, RJ 21941-599, Brazil; Department of Clinic Endocrinology (K.C.O.), Federal University of Sao Paulo, Sao Paulo SP 04039-032, Brazil; Developmental Disorders Program (B.P.P.N., E.R., M.O.R.), Center of Biological Science and Health, Mackenzie Presbyterian University, Sao Paulo SP 01302-900 Brazil; Department of Endocrine Neurobiology (Z.K.-P., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Graduate Program of Environmental and Experimental Pathology (M.M.B.), Graduate Program of Dentistry, Universidade Paulista, Sao Paulo SP 04026-002, Brazil
| | - João Pedro Werneck-de-Castro
- Division of Endocrinology and Metabolism (B.M.L.C.B., J.P.W.-d.C., G.W.F., T.L.F., E.A.M., A.C.B.), Rush University Medical Center, Chicago, Illinois 60612; Department of Translational Medicine (B.M.L.C.B., G.W.F., B.P.P.N.), Federal University of Sao Paulo, Sao Paulo SP, 04039-002, Brazil; Biophysics Institute and School of Physical Education and Sports (J.P.W.-d.C.), Federal University of Rio de Janeiro, RJ 21941-599, Brazil; Department of Clinic Endocrinology (K.C.O.), Federal University of Sao Paulo, Sao Paulo SP 04039-032, Brazil; Developmental Disorders Program (B.P.P.N., E.R., M.O.R.), Center of Biological Science and Health, Mackenzie Presbyterian University, Sao Paulo SP 01302-900 Brazil; Department of Endocrine Neurobiology (Z.K.-P., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Graduate Program of Environmental and Experimental Pathology (M.M.B.), Graduate Program of Dentistry, Universidade Paulista, Sao Paulo SP 04026-002, Brazil
| | - Kelen C Oliveira
- Division of Endocrinology and Metabolism (B.M.L.C.B., J.P.W.-d.C., G.W.F., T.L.F., E.A.M., A.C.B.), Rush University Medical Center, Chicago, Illinois 60612; Department of Translational Medicine (B.M.L.C.B., G.W.F., B.P.P.N.), Federal University of Sao Paulo, Sao Paulo SP, 04039-002, Brazil; Biophysics Institute and School of Physical Education and Sports (J.P.W.-d.C.), Federal University of Rio de Janeiro, RJ 21941-599, Brazil; Department of Clinic Endocrinology (K.C.O.), Federal University of Sao Paulo, Sao Paulo SP 04039-032, Brazil; Developmental Disorders Program (B.P.P.N., E.R., M.O.R.), Center of Biological Science and Health, Mackenzie Presbyterian University, Sao Paulo SP 01302-900 Brazil; Department of Endocrine Neurobiology (Z.K.-P., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Graduate Program of Environmental and Experimental Pathology (M.M.B.), Graduate Program of Dentistry, Universidade Paulista, Sao Paulo SP 04026-002, Brazil
| | - Gustavo W Fernandes
- Division of Endocrinology and Metabolism (B.M.L.C.B., J.P.W.-d.C., G.W.F., T.L.F., E.A.M., A.C.B.), Rush University Medical Center, Chicago, Illinois 60612; Department of Translational Medicine (B.M.L.C.B., G.W.F., B.P.P.N.), Federal University of Sao Paulo, Sao Paulo SP, 04039-002, Brazil; Biophysics Institute and School of Physical Education and Sports (J.P.W.-d.C.), Federal University of Rio de Janeiro, RJ 21941-599, Brazil; Department of Clinic Endocrinology (K.C.O.), Federal University of Sao Paulo, Sao Paulo SP 04039-032, Brazil; Developmental Disorders Program (B.P.P.N., E.R., M.O.R.), Center of Biological Science and Health, Mackenzie Presbyterian University, Sao Paulo SP 01302-900 Brazil; Department of Endocrine Neurobiology (Z.K.-P., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Graduate Program of Environmental and Experimental Pathology (M.M.B.), Graduate Program of Dentistry, Universidade Paulista, Sao Paulo SP 04026-002, Brazil
| | - Tatiana L Fonseca
- Division of Endocrinology and Metabolism (B.M.L.C.B., J.P.W.-d.C., G.W.F., T.L.F., E.A.M., A.C.B.), Rush University Medical Center, Chicago, Illinois 60612; Department of Translational Medicine (B.M.L.C.B., G.W.F., B.P.P.N.), Federal University of Sao Paulo, Sao Paulo SP, 04039-002, Brazil; Biophysics Institute and School of Physical Education and Sports (J.P.W.-d.C.), Federal University of Rio de Janeiro, RJ 21941-599, Brazil; Department of Clinic Endocrinology (K.C.O.), Federal University of Sao Paulo, Sao Paulo SP 04039-032, Brazil; Developmental Disorders Program (B.P.P.N., E.R., M.O.R.), Center of Biological Science and Health, Mackenzie Presbyterian University, Sao Paulo SP 01302-900 Brazil; Department of Endocrine Neurobiology (Z.K.-P., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Graduate Program of Environmental and Experimental Pathology (M.M.B.), Graduate Program of Dentistry, Universidade Paulista, Sao Paulo SP 04026-002, Brazil
| | - Bruna P P Nascimento
- Division of Endocrinology and Metabolism (B.M.L.C.B., J.P.W.-d.C., G.W.F., T.L.F., E.A.M., A.C.B.), Rush University Medical Center, Chicago, Illinois 60612; Department of Translational Medicine (B.M.L.C.B., G.W.F., B.P.P.N.), Federal University of Sao Paulo, Sao Paulo SP, 04039-002, Brazil; Biophysics Institute and School of Physical Education and Sports (J.P.W.-d.C.), Federal University of Rio de Janeiro, RJ 21941-599, Brazil; Department of Clinic Endocrinology (K.C.O.), Federal University of Sao Paulo, Sao Paulo SP 04039-032, Brazil; Developmental Disorders Program (B.P.P.N., E.R., M.O.R.), Center of Biological Science and Health, Mackenzie Presbyterian University, Sao Paulo SP 01302-900 Brazil; Department of Endocrine Neurobiology (Z.K.-P., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Graduate Program of Environmental and Experimental Pathology (M.M.B.), Graduate Program of Dentistry, Universidade Paulista, Sao Paulo SP 04026-002, Brazil
| | - Elizabeth A McAninch
- Division of Endocrinology and Metabolism (B.M.L.C.B., J.P.W.-d.C., G.W.F., T.L.F., E.A.M., A.C.B.), Rush University Medical Center, Chicago, Illinois 60612; Department of Translational Medicine (B.M.L.C.B., G.W.F., B.P.P.N.), Federal University of Sao Paulo, Sao Paulo SP, 04039-002, Brazil; Biophysics Institute and School of Physical Education and Sports (J.P.W.-d.C.), Federal University of Rio de Janeiro, RJ 21941-599, Brazil; Department of Clinic Endocrinology (K.C.O.), Federal University of Sao Paulo, Sao Paulo SP 04039-032, Brazil; Developmental Disorders Program (B.P.P.N., E.R., M.O.R.), Center of Biological Science and Health, Mackenzie Presbyterian University, Sao Paulo SP 01302-900 Brazil; Department of Endocrine Neurobiology (Z.K.-P., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Graduate Program of Environmental and Experimental Pathology (M.M.B.), Graduate Program of Dentistry, Universidade Paulista, Sao Paulo SP 04026-002, Brazil
| | - Esther Ricci
- Division of Endocrinology and Metabolism (B.M.L.C.B., J.P.W.-d.C., G.W.F., T.L.F., E.A.M., A.C.B.), Rush University Medical Center, Chicago, Illinois 60612; Department of Translational Medicine (B.M.L.C.B., G.W.F., B.P.P.N.), Federal University of Sao Paulo, Sao Paulo SP, 04039-002, Brazil; Biophysics Institute and School of Physical Education and Sports (J.P.W.-d.C.), Federal University of Rio de Janeiro, RJ 21941-599, Brazil; Department of Clinic Endocrinology (K.C.O.), Federal University of Sao Paulo, Sao Paulo SP 04039-032, Brazil; Developmental Disorders Program (B.P.P.N., E.R., M.O.R.), Center of Biological Science and Health, Mackenzie Presbyterian University, Sao Paulo SP 01302-900 Brazil; Department of Endocrine Neurobiology (Z.K.-P., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Graduate Program of Environmental and Experimental Pathology (M.M.B.), Graduate Program of Dentistry, Universidade Paulista, Sao Paulo SP 04026-002, Brazil
| | - Zsuzsanna Kvárta-Papp
- Division of Endocrinology and Metabolism (B.M.L.C.B., J.P.W.-d.C., G.W.F., T.L.F., E.A.M., A.C.B.), Rush University Medical Center, Chicago, Illinois 60612; Department of Translational Medicine (B.M.L.C.B., G.W.F., B.P.P.N.), Federal University of Sao Paulo, Sao Paulo SP, 04039-002, Brazil; Biophysics Institute and School of Physical Education and Sports (J.P.W.-d.C.), Federal University of Rio de Janeiro, RJ 21941-599, Brazil; Department of Clinic Endocrinology (K.C.O.), Federal University of Sao Paulo, Sao Paulo SP 04039-032, Brazil; Developmental Disorders Program (B.P.P.N., E.R., M.O.R.), Center of Biological Science and Health, Mackenzie Presbyterian University, Sao Paulo SP 01302-900 Brazil; Department of Endocrine Neurobiology (Z.K.-P., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Graduate Program of Environmental and Experimental Pathology (M.M.B.), Graduate Program of Dentistry, Universidade Paulista, Sao Paulo SP 04026-002, Brazil
| | - Csaba Fekete
- Division of Endocrinology and Metabolism (B.M.L.C.B., J.P.W.-d.C., G.W.F., T.L.F., E.A.M., A.C.B.), Rush University Medical Center, Chicago, Illinois 60612; Department of Translational Medicine (B.M.L.C.B., G.W.F., B.P.P.N.), Federal University of Sao Paulo, Sao Paulo SP, 04039-002, Brazil; Biophysics Institute and School of Physical Education and Sports (J.P.W.-d.C.), Federal University of Rio de Janeiro, RJ 21941-599, Brazil; Department of Clinic Endocrinology (K.C.O.), Federal University of Sao Paulo, Sao Paulo SP 04039-032, Brazil; Developmental Disorders Program (B.P.P.N., E.R., M.O.R.), Center of Biological Science and Health, Mackenzie Presbyterian University, Sao Paulo SP 01302-900 Brazil; Department of Endocrine Neurobiology (Z.K.-P., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Graduate Program of Environmental and Experimental Pathology (M.M.B.), Graduate Program of Dentistry, Universidade Paulista, Sao Paulo SP 04026-002, Brazil
| | - Maria Martha Bernardi
- Division of Endocrinology and Metabolism (B.M.L.C.B., J.P.W.-d.C., G.W.F., T.L.F., E.A.M., A.C.B.), Rush University Medical Center, Chicago, Illinois 60612; Department of Translational Medicine (B.M.L.C.B., G.W.F., B.P.P.N.), Federal University of Sao Paulo, Sao Paulo SP, 04039-002, Brazil; Biophysics Institute and School of Physical Education and Sports (J.P.W.-d.C.), Federal University of Rio de Janeiro, RJ 21941-599, Brazil; Department of Clinic Endocrinology (K.C.O.), Federal University of Sao Paulo, Sao Paulo SP 04039-032, Brazil; Developmental Disorders Program (B.P.P.N., E.R., M.O.R.), Center of Biological Science and Health, Mackenzie Presbyterian University, Sao Paulo SP 01302-900 Brazil; Department of Endocrine Neurobiology (Z.K.-P., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Graduate Program of Environmental and Experimental Pathology (M.M.B.), Graduate Program of Dentistry, Universidade Paulista, Sao Paulo SP 04026-002, Brazil
| | - Balázs Gereben
- Division of Endocrinology and Metabolism (B.M.L.C.B., J.P.W.-d.C., G.W.F., T.L.F., E.A.M., A.C.B.), Rush University Medical Center, Chicago, Illinois 60612; Department of Translational Medicine (B.M.L.C.B., G.W.F., B.P.P.N.), Federal University of Sao Paulo, Sao Paulo SP, 04039-002, Brazil; Biophysics Institute and School of Physical Education and Sports (J.P.W.-d.C.), Federal University of Rio de Janeiro, RJ 21941-599, Brazil; Department of Clinic Endocrinology (K.C.O.), Federal University of Sao Paulo, Sao Paulo SP 04039-032, Brazil; Developmental Disorders Program (B.P.P.N., E.R., M.O.R.), Center of Biological Science and Health, Mackenzie Presbyterian University, Sao Paulo SP 01302-900 Brazil; Department of Endocrine Neurobiology (Z.K.-P., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Graduate Program of Environmental and Experimental Pathology (M.M.B.), Graduate Program of Dentistry, Universidade Paulista, Sao Paulo SP 04026-002, Brazil
| | - Antonio C Bianco
- Division of Endocrinology and Metabolism (B.M.L.C.B., J.P.W.-d.C., G.W.F., T.L.F., E.A.M., A.C.B.), Rush University Medical Center, Chicago, Illinois 60612; Department of Translational Medicine (B.M.L.C.B., G.W.F., B.P.P.N.), Federal University of Sao Paulo, Sao Paulo SP, 04039-002, Brazil; Biophysics Institute and School of Physical Education and Sports (J.P.W.-d.C.), Federal University of Rio de Janeiro, RJ 21941-599, Brazil; Department of Clinic Endocrinology (K.C.O.), Federal University of Sao Paulo, Sao Paulo SP 04039-032, Brazil; Developmental Disorders Program (B.P.P.N., E.R., M.O.R.), Center of Biological Science and Health, Mackenzie Presbyterian University, Sao Paulo SP 01302-900 Brazil; Department of Endocrine Neurobiology (Z.K.-P., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Graduate Program of Environmental and Experimental Pathology (M.M.B.), Graduate Program of Dentistry, Universidade Paulista, Sao Paulo SP 04026-002, Brazil
| | - Miriam O Ribeiro
- Division of Endocrinology and Metabolism (B.M.L.C.B., J.P.W.-d.C., G.W.F., T.L.F., E.A.M., A.C.B.), Rush University Medical Center, Chicago, Illinois 60612; Department of Translational Medicine (B.M.L.C.B., G.W.F., B.P.P.N.), Federal University of Sao Paulo, Sao Paulo SP, 04039-002, Brazil; Biophysics Institute and School of Physical Education and Sports (J.P.W.-d.C.), Federal University of Rio de Janeiro, RJ 21941-599, Brazil; Department of Clinic Endocrinology (K.C.O.), Federal University of Sao Paulo, Sao Paulo SP 04039-032, Brazil; Developmental Disorders Program (B.P.P.N., E.R., M.O.R.), Center of Biological Science and Health, Mackenzie Presbyterian University, Sao Paulo SP 01302-900 Brazil; Department of Endocrine Neurobiology (Z.K.-P., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Graduate Program of Environmental and Experimental Pathology (M.M.B.), Graduate Program of Dentistry, Universidade Paulista, Sao Paulo SP 04026-002, Brazil
| |
Collapse
|
30
|
van der Spek AH, Bloise FF, Tigchelaar W, Dentice M, Salvatore D, van der Wel NN, Fliers E, Boelen A. The Thyroid Hormone Inactivating Enzyme Type 3 Deiodinase is Present in Bactericidal Granules and the Cytoplasm of Human Neutrophils. Endocrinology 2016; 157:3293-305. [PMID: 27355490 DOI: 10.1210/en.2016-1103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neutrophils are important effector cells of the innate immune system. Thyroid hormone (TH) is thought to play an important role in their function. Intracellular TH levels are regulated by the deiodinating enzymes. The TH-inactivating type 3 deiodinase (D3) is expressed in infiltrating murine neutrophils, and D3 knockout mice show impaired bacterial killing upon infection. This suggests that D3 plays an important role in the bacterial killing capacity of neutrophils. The mechanism behind this effect is unknown. We aimed to assess the presence of D3 in human neutrophils, and determine its subcellular localization using confocal and electron microscopy, because this could give important clues about its function in these cells. D3 appeared to be present in the cytoplasm and in myeloperoxidase containing azurophilic granules and as well as lactoferrin containing specific granules within human neutrophils. This subcellular localization did not change upon activation of the cells. D3 is observed intracellularly during neutrophil extracellular trap formation, followed by a reduction of D3 staining after release of the neutrophil extracellular traps into the extracellular space. At the transcriptional level, human neutrophils expressed additional essential elements of TH metabolism, including TH transporters and TH receptors. Here, we demonstrate the presence and subcellular location of D3 in human neutrophils for the first time and propose a model, in which D3 plays a role in the bacterial killing capacity of neutrophils either through generation of iodide for the myeloperoxidase system or through modulation of intracellular TH bioavailability.
Collapse
Affiliation(s)
- Anne H van der Spek
- Department of Endocrinology and Metabolism (A.H.v.d.S., F.F.B., E.F., A.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology (W.T., N.N.v.d.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Department of Clinical Medicine and Surgery (M.D., D.S.), University of Naples Federico II, Naples, Italy
| | - Flavia F Bloise
- Department of Endocrinology and Metabolism (A.H.v.d.S., F.F.B., E.F., A.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology (W.T., N.N.v.d.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Department of Clinical Medicine and Surgery (M.D., D.S.), University of Naples Federico II, Naples, Italy
| | - Wikky Tigchelaar
- Department of Endocrinology and Metabolism (A.H.v.d.S., F.F.B., E.F., A.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology (W.T., N.N.v.d.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Department of Clinical Medicine and Surgery (M.D., D.S.), University of Naples Federico II, Naples, Italy
| | - Monica Dentice
- Department of Endocrinology and Metabolism (A.H.v.d.S., F.F.B., E.F., A.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology (W.T., N.N.v.d.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Department of Clinical Medicine and Surgery (M.D., D.S.), University of Naples Federico II, Naples, Italy
| | - Domenico Salvatore
- Department of Endocrinology and Metabolism (A.H.v.d.S., F.F.B., E.F., A.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology (W.T., N.N.v.d.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Department of Clinical Medicine and Surgery (M.D., D.S.), University of Naples Federico II, Naples, Italy
| | - Nicole N van der Wel
- Department of Endocrinology and Metabolism (A.H.v.d.S., F.F.B., E.F., A.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology (W.T., N.N.v.d.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Department of Clinical Medicine and Surgery (M.D., D.S.), University of Naples Federico II, Naples, Italy
| | - Eric Fliers
- Department of Endocrinology and Metabolism (A.H.v.d.S., F.F.B., E.F., A.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology (W.T., N.N.v.d.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Department of Clinical Medicine and Surgery (M.D., D.S.), University of Naples Federico II, Naples, Italy
| | - Anita Boelen
- Department of Endocrinology and Metabolism (A.H.v.d.S., F.F.B., E.F., A.B.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology (W.T., N.N.v.d.W.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and Department of Clinical Medicine and Surgery (M.D., D.S.), University of Naples Federico II, Naples, Italy
| |
Collapse
|
31
|
Lee JY, Petratos S. Thyroid Hormone Signaling in Oligodendrocytes: from Extracellular Transport to Intracellular Signal. Mol Neurobiol 2016; 53:6568-6583. [PMID: 27427390 DOI: 10.1007/s12035-016-0013-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/10/2016] [Indexed: 01/24/2023]
Abstract
Thyroid hormone plays an important role in central nervous system (CNS) development, including the myelination of variable axonal calibers. It is well-established that thyroid hormone is required for the terminal differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes by inducing rapid cell-cycle arrest and constant transcription of pro-differentiation genes. This is well supported by the hypomyelinating phenotypes exhibited by patients with congenital hypothyroidism, cretinism. During development, myelinating oligodendrocytes only appear after the formation of neural circuits, indicating that the timing of oligodendrocyte differentiation is important. Since fetal and post-natal serum thyroid hormone levels peak at the stage of active myelination, it is suspected that the timing of oligodendrocyte development is finely controlled by thyroid hormone. The essential machinery for thyroid hormone signaling such as deiodinase activity (utilized by cells to auto-regulate the level of thyroid hormone), and nuclear thyroid hormone receptors (for gene transcription) are expressed on oligodendrocytes. In this review, we discuss the known and potential thyroid hormone signaling pathways that may regulate oligodendrocyte development and CNS myelination. Moreover, we evaluate the potential of targeting thyroid hormone signaling for white matter injury or disease.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia.,ToolGen, Inc., #1204, Byucksan Digital Valley 6-cha, Seoul, South Korea
| | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia.
| |
Collapse
|
32
|
Fernández M, Baldassarro VA, Sivilia S, Giardino L, Calzà L. Inflammation severely alters thyroid hormone signaling in the central nervous system during experimental allergic encephalomyelitis in rat: Direct impact on OPCs differentiation failure. Glia 2016; 64:1573-89. [PMID: 27404574 DOI: 10.1002/glia.23025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 01/01/2023]
Abstract
Differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes is severely impaired by inflammatory cytokines and this could lead to remyelination failure in inflammatory/demyelinating diseases. Due to the role of thyroid hormone in the maturation of OPCs and developmental myelination, in this study we investigated (i) the possible occurrence of dysregulation of thyroid hormone signaling in the CNS tissue during experimental neuroinflammation; (ii) the possible impact of inflammatory cytokines on thyroid hormone signaling and OPCs differentiation in vitro. The disease model is the experimental allergic encephalomyelitis in female Dark-Agouti rats, whereas in vitro experiments were carried out in OPCs derived from neural stem cells. The main results are the following: (i) a strong upregulation of cytokine mRNA expression level was found in the spinal cord during experimental allergic encephalomyelitis; (ii) thyroid hormone signaling in the spinal cord (thyroid hormone receptors; deiodinase; thyroid hormone membrane transporter) is substantially downregulated, due to the upregulation of the thyroid hormone inactivating enzyme deiodinase 3 and the downregulation of thyroid hormone receptors, as investigated at mRNA expression level; (iii) when exposed to inflammatory cytokines, deiodinase 3 is upregulated in OPCs as well, and OPCs differentiation is blocked; (iv) deiodinase 3 inhibition by iopanoic acid recovers OPCs differentiation in the presence on inflammatory cytokines. These data suggest that cellular hypothyroidism occurs during experimental allergic encephalomyelitis, possibly impacting on thyroid hormone-dependent cellular processes, including maturation of OPCs into myelinating oligodendrocytes. GLIA 2016;64:1573-1589.
Collapse
Affiliation(s)
- Mercedes Fernández
- Health Science and Technology Interdepartmental Center for Industrial Research, University of Bologna, Bologna, Italy
| | - Vito A Baldassarro
- Health Science and Technology Interdepartmental Center for Industrial Research, University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sandra Sivilia
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.,IRET Foundation, Ozzano Emilia, Bologna, Italy
| | - Laura Calzà
- Health Science and Technology Interdepartmental Center for Industrial Research, University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,IRET Foundation, Ozzano Emilia, Bologna, Italy
| |
Collapse
|
33
|
Human Heat shock protein 40 (Hsp40/DnaJB1) promotes influenza A virus replication by assisting nuclear import of viral ribonucleoproteins. Sci Rep 2016; 6:19063. [PMID: 26750153 PMCID: PMC4707480 DOI: 10.1038/srep19063] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/26/2015] [Indexed: 01/11/2023] Open
Abstract
A unique feature of influenza A virus (IAV) life cycle is replication of the viral genome in the host cell nucleus. The nuclear import of IAV genome is an indispensable step in establishing virus infection. IAV nucleoprotein (NP) is known to mediate the nuclear import of viral genome via its nuclear localization signals. Here, we demonstrate that cellular heat shock protein 40 (Hsp40/DnaJB1) facilitates the nuclear import of incoming IAV viral ribonucleoproteins (vRNPs) and is important for efficient IAV replication. Hsp40 was found to interact with NP component of IAV RNPs during early stages of infection. This interaction is mediated by the J domain of Hsp40 and N-terminal region of NP. Drug or RNAi mediated inhibition of Hsp40 resulted in reduced nuclear import of IAV RNPs, diminished viral polymerase function and attenuates overall viral replication. Hsp40 was also found to be required for efficient association between NP and importin alpha, which is crucial for IAV RNP nuclear translocation. These studies demonstrate an important role for cellular chaperone Hsp40/DnaJB1 in influenza A virus life cycle by assisting nuclear trafficking of viral ribonucleoproteins.
Collapse
|
34
|
Gereben B, McAninch EA, Ribeiro MO, Bianco AC. Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol 2015; 11:642-652. [PMID: 26416219 PMCID: PMC5003781 DOI: 10.1038/nrendo.2015.155] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The coordinated expression and activity of the iodothyronine deiodinases regulate thyroid hormone levels in hypothyroidism. Once heralded as the pathway underpinning adequate thyroid-hormone replacement therapy with levothyroxine, the role of these enzymes has come into question as they have been implicated in both an inability to normalize serum levels of tri-iodothyronine (T3) and the incomplete resolution of hypothyroid symptoms. These observations, some of which were validated in animal models of levothyroxine monotherapy, challenge the paradigm that tissue levels of T3 and thyroid-hormone signalling can be fully restored by administration of levothyroxine alone. The low serum levels of T3 observed among patients receiving levothyroxine monotherapy occur as a consequence of type 2 iodothyronine deiodinase (DIO2) in the hypothalamus being fairly insensitive to ubiquitination. In addition, residual symptoms of hypothyroidism have been linked to a prevalent polymorphism in the DIO2 gene that might be a risk factor for neurodegenerative disease. Here, we discuss how these novel findings underscore the clinical importance of iodothyronine deiodinases in hypothyroidism and how an improved understanding of these enzymes might translate to therapeutic advances in the care of millions of patients with this condition.
Collapse
Affiliation(s)
- Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony Street 43, Budapest H-1083, Hungary
| | - Elizabeth A McAninch
- Division of Endocrinology and Metabolism, Rush University Medical Center, 212 Cohn Building, 1735 West Harrison Street, Chicago, IL 60612, USA
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center for Biological and Health Science, Mackenzie Presbyterian University, Rua da Consolação 930, Building 16, São Paulo, SP 01302, Brazil
| | - Antonio C Bianco
- Division of Endocrinology and Metabolism, Rush University Medical Center, 212 Cohn Building, 1735 West Harrison Street, Chicago, IL 60612, USA
| |
Collapse
|
35
|
Perinatal deiodinase 2 expression in hepatocytes defines epigenetic susceptibility to liver steatosis and obesity. Proc Natl Acad Sci U S A 2015; 112:14018-23. [PMID: 26508642 DOI: 10.1073/pnas.1508943112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thyroid hormone binds to nuclear receptors and regulates gene transcription. Here we report that in mice, at around the first day of life, there is a transient surge in hepatocyte type 2 deiodinase (D2) that activates the prohormone thyroxine to the active hormone triiodothyronine, modifying the expression of ∼165 genes involved in broad aspects of hepatocyte function, including lipid metabolism. Hepatocyte-specific D2 inactivation (ALB-D2KO) is followed by a delay in neonatal expression of key lipid-related genes and a persistent reduction in peroxisome proliferator-activated receptor-γ expression. Notably, the absence of a neonatal D2 peak significantly modifies the baseline and long-term hepatic transcriptional response to a high-fat diet (HFD). Overall, changes in the expression of approximately 400 genes represent the HFD response in control animals toward the synthesis of fatty acids and triglycerides, whereas in ALB-D2KO animals, the response is limited to a very different set of only approximately 200 genes associated with reverse cholesterol transport and lipase activity. A whole genome methylation profile coupled to multiple analytical platforms indicate that 10-20% of these differences can be related to the presence of differentially methylated local regions mapped to sites of active/suppressed chromatin, thus qualifying as epigenetic modifications occurring as a result of neonatal D2 inactivation. The resulting phenotype of the adult ALB-D2KO mouse is dramatic, with greatly reduced susceptibility to diet-induced steatosis, hypertriglyceridemia, and obesity.
Collapse
|
36
|
Werneck-de-Castro JP, Fonseca TL, Ignacio DL, Fernandes GW, Andrade-Feraud CM, Lartey LJ, Ribeiro MB, Ribeiro MO, Gereben B, Bianco AC. Thyroid Hormone Signaling in Male Mouse Skeletal Muscle Is Largely Independent of D2 in Myocytes. Endocrinology 2015; 156:3842-52. [PMID: 26214036 PMCID: PMC4588812 DOI: 10.1210/en.2015-1246] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/23/2015] [Indexed: 01/25/2023]
Abstract
The type 2 deiodinase (D2) activates the prohormone T4 to T3. D2 is expressed in skeletal muscle (SKM), and its global inactivation (GLOB-D2KO mice) reportedly leads to skeletal muscle hypothyroidism and impaired differentiation. Here floxed Dio2 mice were crossed with mice expressing Cre-recombinase under the myosin light chain 1f (cre-MLC) to disrupt D2 expression in the late developmental stages of skeletal myocytes (SKM-D2KO). This led to a loss of approximately 50% in D2 activity in neonatal and adult SKM-D2KO skeletal muscle and about 75% in isolated SKM-D2KO myocytes. To test the impact of Dio2 disruption, we measured soleus T3 content and found it to be normal. We also looked at the expression of T3-responsive genes in skeletal muscle, ie, myosin heavy chain I, α-actin, myosin light chain, tropomyosin, and serca 1 and 2, which was preserved in neonatal SKM-D2KO hindlimb muscles, at a time that coincides with a peak of D2 activity in control animals. In adult soleus the baseline level of D2 activity was about 6-fold lower, and in the SKM-D2KO soleus, the expression of only one of five T3-responsive genes was reduced. Despite this, adult SKM-D2KO animals performed indistinguishably from controls on a treadmill test, running for approximately 16 minutes and reached a speed of about 23 m/min; muscle strength was about 0.3 mN/m·g body weight in SKM-D2KO and control ankle muscles. In conclusion, there are multiple sources of D2 in the mouse SKM, and its role is limited in postnatal skeletal muscle fibers.
Collapse
MESH Headings
- Adipose Tissue, Brown/metabolism
- Animals
- Animals, Newborn
- Cells, Cultured
- Gene Expression
- Iodide Peroxidase/genetics
- Iodide Peroxidase/metabolism
- Male
- Mice, Knockout
- Mice, Transgenic
- Muscle Fibers, Skeletal/metabolism
- Muscle Strength/genetics
- Muscle Strength/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Myosin Heavy Chains/genetics
- Physical Conditioning, Animal/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
- Signal Transduction
- Thyroid Hormones/metabolism
- Thyroxine/metabolism
- Time Factors
- Triiodothyronine/metabolism
- Tropomyosin/genetics
- Iodothyronine Deiodinase Type II
Collapse
Affiliation(s)
- Joao P Werneck-de-Castro
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Tatiana L Fonseca
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Daniele L Ignacio
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Gustavo W Fernandes
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Cristina M Andrade-Feraud
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Lattoya J Lartey
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Marcelo B Ribeiro
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Miriam O Ribeiro
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Balazs Gereben
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| | - Antonio C Bianco
- Division of Endocrinology and Metabolism (J.P.W.d.C., T.L.F., G.W.F., A.C.B.), Rush University Medical Center, Chicago Illinois 60612; Division of Endocrinology, Diabetes, and Metabolism (J.P.W.d.C., D.L.I., C.M.A.F., L.J.L., M.B.R.), University of Miami Miller School of Medicine, Miami, Florida 33101-6960; Biophysics Institute and School of Physical Education and Sports (J.P.W.d.C., D.L.I., M.B.R.), Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil; Developmental Disorders Program (M.O.R.), Center for Biological and Health Sciences, Mackenzie Presbyterian University, 01302 Sao Paulo, Brazil; Department of Endocrine Neurobiology (B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; and Translational Medicine (G.W.F.), Federal University of Sao Paulo, 01302-907 Sao Paulo, Brazil
| |
Collapse
|
37
|
Sodium selenite supplementation does not fully restore oxidative stress-induced deiodinase dysfunction: Implications for the nonthyroidal illness syndrome. Redox Biol 2015; 6:436-445. [PMID: 26402162 PMCID: PMC4588414 DOI: 10.1016/j.redox.2015.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 12/28/2022] Open
Abstract
Nonthyroidal illness syndrome (NTIS) is marked by low T3 and high reverse T3 levels. The physiopathology is poorly understood but involves oxidative stress-induced disruption of the iodothyronine deiodinases, which activate or inactivate thyroid hormones. Selenium, an essential trace element, exerts antioxidant function mainly through the thioredoxin reductase (TRx) and glutathione peroxidase (GPx) redox-regulating systems. We evaluated the effect of sodium selenite on IL6-induced disruption on deiodinase function. Cell lines expressing endogenous deiodinases type 1(D1), 2(D2) or 3(D3) (HepG2, MSTO, and MCF-7 cells, respectively) were used in an intact cell model that mimics the deiodination process under physiological conditions of substrate and cofactor, in the presence or not of IL6, with or without selenite. Deiodinase activity was quantified by the amount of iodine-125 in the medium (D1 and D2) or by ion-exchange chromatography (D3). Oxidative stress was evaluated by measuring reactive species (RS), carbonyl content as well as enzymatic and non-enzymatic antioxidant defenses. Results: IL6 induced ROS and carbonyl content in all 3 cell lines (all P<0.001). Increased ROS was paralleled by D1 and D2-decreased T3-production (P<0.01) and increased D3-catalyzed T3-inactivation (P<0.001). Selenite decreases the IL6-induced ROS and carbonyl content, while enhances Gpx and Trx activities. Nevertheless, it failed on restoring D1 or D2 function and only attenuates D3 activation (P<0.05). In conclusion, although sodium selenite reduces IL6-induced redox imbalance it does not fully repair deiodinase function. These results shed light on NTIS physiopathology and might explain why low T3 levels are unaffected by selenium supplementation in sick patients. IL6 induced oxidative stress impairs deiodinase function in critically ill patients. Selenite induces the antioxidant defense through the enzymatic TRx and GPx pathways. Selenite attenuates redox imbalance but it does not restore deiodinase activities. Intracellular cysteine levels are critical to proper deiodinases function.
Collapse
|
38
|
Calzà L, Fernández M, Giardino L. Role of the Thyroid System in Myelination and Neural Connectivity. Compr Physiol 2015; 5:1405-21. [DOI: 10.1002/cphy.c140035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Depping R, Jelkmann W, Kosyna FK. Nuclear-cytoplasmatic shuttling of proteins in control of cellular oxygen sensing. J Mol Med (Berl) 2015; 93:599-608. [PMID: 25809665 DOI: 10.1007/s00109-015-1276-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 12/11/2022]
Abstract
In order to pass through the nuclear pore complex, proteins larger than ∼40 kDa require specific nuclear transport receptors. Defects in nuclear-cytoplasmatic transport affect fundamental processes such as development, inflammation and oxygen sensing. The transcriptional response to O2 deficiency is controlled by hypoxia-inducible factors (HIFs). These are heterodimeric transcription factors of each ∼100-120 kDa proteins, consisting of one out of three different O2-labile α subunits (primarily HIF-1α) and a more constitutive 1β subunit. In the presence of O2, the α subunits are hydroxylated by specific prolyl-4-hydroxylase domain proteins (PHD1, PHD2, and PHD3) and an asparaginyl hydroxylase (factor inhibiting HIF-1, FIH-1). The prolyl hydroxylation causes recognition by von Hippel-Lindau tumor suppressor protein (pVHL), ubiquitination, and proteasomal degradation. The activity of the oxygen sensing machinery depends on dynamic intracellular trafficking. Nuclear import of HIF-1α and HIF-1β is mainly mediated by importins α and β (α/β). HIF-1α can shuttle between nucleus and cytoplasm, while HIF-1β is permanently inside the nucleus. pVHL is localized to both compartments. Nuclear import of PHD1 relies on a nuclear localization signal (NLS) and uses the classical import pathway involving importin α/β receptors. PHD2 shows an atypical NLS, and its nuclear import does not occur via the classical pathway. PHD2-mediated hydroxylation of HIF-1α occurs predominantly in the cell nucleus. Nuclear export of PHD2 involves a nuclear export signal (NES) in the N-terminus and depends on the export receptor chromosome region maintenance 1 (CRM1). Nuclear import of PHD3 is mediated by importin α/β receptors and depends on a non-classical NLS. Specific modification of the nuclear translocation of the three PHD isoforms could provide a promising strategy for the development of new therapeutic substances to tackle major diseases.
Collapse
Affiliation(s)
- Reinhard Depping
- Institute of Physiology, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany,
| | | | | |
Collapse
|
40
|
McAninch EA, Jo S, Preite NZ, Farkas E, Mohácsik P, Fekete C, Egri P, Gereben B, Li Y, Deng Y, Patti ME, Zevenbergen C, Peeters RP, Mash DC, Bianco AC. Prevalent polymorphism in thyroid hormone-activating enzyme leaves a genetic fingerprint that underlies associated clinical syndromes. J Clin Endocrinol Metab 2015; 100:920-33. [PMID: 25569702 PMCID: PMC4333048 DOI: 10.1210/jc.2014-4092] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/30/2014] [Indexed: 01/14/2023]
Abstract
CONTEXT A common polymorphism in the gene encoding the activating deiodinase (Thr92Ala-D2) is known to be associated with quality of life in millions of patients with hypothyroidism and with several organ-specific conditions. This polymorphism results in a single amino acid change within the D2 molecule where its susceptibility to ubiquitination and proteasomal degradation is regulated. OBJECTIVE To define the molecular mechanisms underlying associated conditions in carriers of the Thr92Ala-D2 polymorphism. DESIGN, SETTING, PATIENTS Microarray analyses of 19 postmortem human cerebral cortex samples were performed to establish a foundation for molecular studies via a cell model of HEK-293 cells stably expressing Thr92 or Ala92 D2. RESULTS The cerebral cortex of Thr92Ala-D2 carriers exhibits a transcriptional fingerprint that includes sets of genes involved in CNS diseases, ubiquitin, mitochondrial dysfunction (chromosomal genes encoding mitochondrial proteins), inflammation, apoptosis, DNA repair, and growth factor signaling. Similar findings were made in Ala92-D2-expressing HEK-293 cells and in both cases there was no evidence that thyroid hormone signaling was affected ie, the expression level of T3-responsive genes was unchanged, but that several other genes were differentially regulated. The combined microarray analyses (brain/cells) led to the development of an 81-gene classifier that correctly predicts the genotype of homozygous brain samples. In contrast to Thr92-D2, Ala92-D2 exhibits longer half-life and was consistently found in the Golgi. A number of Golgi-related genes were down-regulated in Ala92-D2-expressing cells, but were normalized after 24-h-treatment with the antioxidant N-acetylecysteine. CONCLUSIONS Ala92-D2 accumulates in the Golgi, where its presence and/or ensuing oxidative stress disrupts basic cellular functions and increases pre-apoptosis. These findings are reminiscent to disease mechanisms observed in other neurodegenerative disorders such as Huntington's disease, and could contribute to the unresolved neurocognitive symptoms of affected carriers.
Collapse
Affiliation(s)
- Elizabeth A McAninch
- Division of Endocrinology and Metabolism (E.A.M., S.J., N.Z.P., A.C.B.), Rush University Medical Center, Chicago, Illinois 60612; Department of Endocrine Neurobiology (E.F., P.M., C.F., P.E., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083, Hungary; Péter Pázmány Catholic University (E.F.), Multidisciplinary Doctoral School of Sciences and Technology, Budapest, H-1083 Hungary; Semmelweis University (P.M., P.E.), János Szentágothai PhD School of Neurosciences, Budapest, H-1085 Hungary; Division of Endocrinology (C.F.), Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts 02111; Department of Medicine (Y.L., Y.D.), Rush University Medical Center, Chicago, Illinois 60612; Joslin Diabetes Center (M.E.P.), Harvard Medical School, Boston, Massachusetts 02215; Division of Endocrinology (C.Z., R.P.P.), Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Department of Neurology (D.C.M.), University of Miami Miller School of Medicine, Miami, Florida 33136
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, Cooper DS, Kim BW, Peeters RP, Rosenthal MS, Sawka AM. Guidelines for the treatment of hypothyroidism: prepared by the american thyroid association task force on thyroid hormone replacement. Thyroid 2014; 24:1670-751. [PMID: 25266247 PMCID: PMC4267409 DOI: 10.1089/thy.2014.0028] [Citation(s) in RCA: 1050] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND A number of recent advances in our understanding of thyroid physiology may shed light on why some patients feel unwell while taking levothyroxine monotherapy. The purpose of this task force was to review the goals of levothyroxine therapy, the optimal prescription of conventional levothyroxine therapy, the sources of dissatisfaction with levothyroxine therapy, the evidence on treatment alternatives, and the relevant knowledge gaps. We wished to determine whether there are sufficient new data generated by well-designed studies to provide reason to pursue such therapies and change the current standard of care. This document is intended to inform clinical decision-making on thyroid hormone replacement therapy; it is not a replacement for individualized clinical judgment. METHODS Task force members identified 24 questions relevant to the treatment of hypothyroidism. The clinical literature relating to each question was then reviewed. Clinical reviews were supplemented, when relevant, with related mechanistic and bench research literature reviews, performed by our team of translational scientists. Ethics reviews were provided, when relevant, by a bioethicist. The responses to questions were formatted, when possible, in the form of a formal clinical recommendation statement. When responses were not suitable for a formal clinical recommendation, a summary response statement without a formal clinical recommendation was developed. For clinical recommendations, the supporting evidence was appraised, and the strength of each clinical recommendation was assessed, using the American College of Physicians system. The final document was organized so that each topic is introduced with a question, followed by a formal clinical recommendation. Stakeholder input was received at a national meeting, with some subsequent refinement of the clinical questions addressed in the document. Consensus was achieved for all recommendations by the task force. RESULTS We reviewed the following therapeutic categories: (i) levothyroxine therapy, (ii) non-levothyroxine-based thyroid hormone therapies, and (iii) use of thyroid hormone analogs. The second category included thyroid extracts, synthetic combination therapy, triiodothyronine therapy, and compounded thyroid hormones. CONCLUSIONS We concluded that levothyroxine should remain the standard of care for treating hypothyroidism. We found no consistently strong evidence for the superiority of alternative preparations (e.g., levothyroxine-liothyronine combination therapy, or thyroid extract therapy, or others) over monotherapy with levothyroxine, in improving health outcomes. Some examples of future research needs include the development of superior biomarkers of euthyroidism to supplement thyrotropin measurements, mechanistic research on serum triiodothyronine levels (including effects of age and disease status, relationship with tissue concentrations, as well as potential therapeutic targeting), and long-term outcome clinical trials testing combination therapy or thyroid extracts (including subgroup effects). Additional research is also needed to develop thyroid hormone analogs with a favorable benefit to risk profile.
Collapse
Affiliation(s)
| | - Antonio C. Bianco
- Division of Endocrinology, Rush University Medical Center, Chicago, Illinois
| | - Andrew J. Bauer
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kenneth D. Burman
- Endocrine Section, Medstar Washington Hospital Center, Washington, DC
| | - Anne R. Cappola
- Division of Endocrinology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Francesco S. Celi
- Division of Endocrinology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - David S. Cooper
- Division of Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brian W. Kim
- Division of Endocrinology, Rush University Medical Center, Chicago, Illinois
| | - Robin P. Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - M. Sara Rosenthal
- Program for Bioethics, Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Anna M. Sawka
- Division of Endocrinology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Abdalla SM, Bianco AC. Defending plasma T3 is a biological priority. Clin Endocrinol (Oxf) 2014; 81:633-41. [PMID: 25040645 PMCID: PMC4699302 DOI: 10.1111/cen.12538] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/03/2014] [Accepted: 06/27/2014] [Indexed: 12/16/2022]
Abstract
Triiodothyronine (T3), the active form of thyroid hormone is produced predominantly outside the thyroid parenchyma secondary to peripheral tissue deiodination of thyroxine (T4), with <20% being secreted directly from the thyroid. In healthy individuals, plasma T3 is regulated by the negative feedback loop of the hypothalamus-pituitary-thyroid axis and by homoeostatic changes in deiodinase expression. Therefore, with the exception of a minimal circadian rhythmicity, serum T3 levels are stable over long periods of time. Studies in rodents indicate that different levels of genetic disruption of the feedback mechanism and deiodinase system are met with increase in serum T4 and thyroid-stimulating hormone (TSH) levels, while serum T3 levels remain stable. These findings have focused attention on serum T3 levels in patients with thyroid disease, with important clinical implications affecting therapeutic goals and choice of therapy for patients with hypothyroidism. Although monotherapy with levothyroxine is the standard of care for hypothyroidism, not all patients normalize serum T3 levels with many advocating for combination therapy with levothyroxine and liothyronine. The latter could be relevant for a significant number of patients that remain symptomatic on monotherapy with levothyroxine, despite normalization of serum TSH levels.
Collapse
Affiliation(s)
- Sherine M Abdalla
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
43
|
Medina MC, Fonesca TL, Molina J, Fachado A, Castillo M, Dong L, Soares R, Hernández A, Caicedo A, Bianco AC. Maternal inheritance of an inactive type III deiodinase gene allele affects mouse pancreatic β-cells and disrupts glucose homeostasis. Endocrinology 2014; 155:3160-71. [PMID: 24885572 PMCID: PMC4097999 DOI: 10.1210/en.2013-1208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dio3 is the most distal gene of the imprinted Dlk1-Dio3 gene locus and is expressed according to parental origin. Dio3 encodes the type 3 deiodinase (D3), a thioredoxin-fold like containing selenoenzyme that inactivates thyroid hormone and dampens thyroid hormone signaling. Here we used heterozygous animals with disruption of the Dio3 gene to study the allelic expression pattern of Dio3 in pancreatic β-cells and the metabolic phenotype resulting from its inactivation. Adult heterozygous mice with disruption of the Dio3 gene with maternal inheritance of the inactive Dio3 allele exhibited a total loss of D3 activity in isolated pancreatic islets, approximately 30% reduction in total pancreatic islet area, a marked decrease in insulin2 mRNA and in vivo glucose intolerance. In contrast, inheritance of the inactive Dio3 allele from the father did not affect D3 activity in isolated pancreatic islets and did not result in a pancreatic phenotype. Furthermore, exposure of pancreatic explants, D3-expressing MIN6-C3 cells or isolated pancreatic islets to 100 nM T3 for 24 hours reduced insulin2 mRNA by approximately 50% and the peak of glucose-induced insulin secretion. An unbiased analysis of T3-treated pancreatic islets revealed the down-regulation of 21 gene sets (false discovery rate q value < 25%) involved in nucleolar function and transcription of rRNA, ribonucleotide binding, mRNA translation, and membrane organization. We conclude that the Dio3 gene is preferentially expressed from the maternal allele in pancreatic islets and that the inactivation of this allele is sufficient to disrupt glucose homeostasis by reducing the pancreatic islet area, insulin2 gene expression, and glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Mayrin C Medina
- University of Miami Miller School of Medicine, Division of Endocrinology and Metabolism (M.C.M., J.M., M.C., L.D., R.S., A.C.), Miami, Florida 33136; Rush University Medical Center (T.L.F., A.C.B.), Chicago, Illinois 60612; and Diabetes Research Institute (A.F.), Maine Medical Center Research Institute (A.H.), Scarborough, Maine 04074
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Huang L, Yu Z, Zhang T, Zhao X, Huang G. HSP40 interacts with pyruvate kinase M2 and regulates glycolysis and cell proliferation in tumor cells. PLoS One 2014; 9:e92949. [PMID: 24658033 PMCID: PMC3962495 DOI: 10.1371/journal.pone.0092949] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 02/27/2014] [Indexed: 11/29/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) is predominantly expressed in cancers, which is considered as a key regulator of the Warburg effect. In this study, HSP40 was identified as a novel binding partner of PKM2. HSP40-PKM2 association destabilized PKM2 protein through HSC70. In the presence of HSP40, PKM2 protein level and PKM2-mediated PDK1 expression were down-regulated. Moreover, HSP40 was involved in regulating glucose metabolism on PKM2 dependent way and at the mean time had an effect on mitochondrial oxygen respiration. In line with inhibition effect of HSP40 on glycolysis, the growth of cancer cells was inhibited by HSP40.Our data provided a new regulation mechanism of PKM2, which suggested a new therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Liangqian Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenhai Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Teng Zhang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
45
|
McAninch EA, Bianco AC. Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann N Y Acad Sci 2014; 1311:77-87. [PMID: 24697152 DOI: 10.1111/nyas.12374] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The thyroid hormone (TH) plays a significant role in diverse processes related to growth, development, differentiation, and metabolism. TH signaling modulates energy expenditure through both central and peripheral pathways. At the cellular level, the TH exerts its effects after concerted mechanisms facilitate binding to the TH receptor. In the hypothalamus, signals from a range of metabolic pathways, including appetite, temperature, afferent stimuli via the autonomic nervous system, availability of energy substrates, hormones, and other biologically active molecules, converge to maintain plasma TH at the appropriate level to preserve energy homeostasis. At the tissue level, TH actions on metabolism are controlled by transmembrane transporters, deiodinases, and TH receptors. In the modern environment, humans are susceptible to an energy surplus, which has resulted in an obesity epidemic and, thus, understanding the contribution of the TH to cellular and organism metabolism is increasingly relevant.
Collapse
Affiliation(s)
- Elizabeth A McAninch
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | | |
Collapse
|
46
|
Ciavardelli D, Bellomo M, Crescimanno C, Vella V. Type 3 deiodinase: role in cancer growth, stemness, and metabolism. Front Endocrinol (Lausanne) 2014; 5:215. [PMID: 25566187 PMCID: PMC4269192 DOI: 10.3389/fendo.2014.00215] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/27/2014] [Indexed: 12/17/2022] Open
Abstract
Deiodinases are selenoenzymes that catalyze thyroid hormones (THs) activation (type 1 and type 2, D1 and D2, respectively) or inactivation (type 3, D3). THs are essential for proper body development and cellular differentiation. Their intra- and extra-cellular concentrations are tightly regulated by deiodinases with a pre-receptorial control thus generating active or inactive form of THs. Changes in deiodinases expression are anatomically and temporally regulated and influence the downstream TH signaling. D3 overexpression is a feature of proliferative tissues such as embryo or cancer tissues. The enhanced TH degradation by D3 induces a local hypothyroidism, thus inhibiting THs transcriptional activity. Of note, overexpression of D3 is a feature of several highly proliferative cancers. In this paper, we review recent advances in the role of D3 in cancer growth, stemness, and metabolic phenotype. In particular, we focus on the main signaling pathways that result in the overexpression of D3 in cancer cells and are known to be relevant to cancer development, progression, and recurrence. We also discuss the potential role of D3 in cancer stem cells metabolic phenotype, an emerging topic in cancer research.
Collapse
Affiliation(s)
- Domenico Ciavardelli
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
- Center of Excellence on Aging (CeS.I.), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Maria Bellomo
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
| | | | - Veronica Vella
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
- Department of Clinical and Molecular Bio-Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Medical Center, Catania, Italy
- *Correspondence: Veronica Vella, School of Human and Social Sciences, University “Kore” of Enna, via delle Olimpiadi, Enna 94100, Italy e-mail:
| |
Collapse
|
47
|
Bianco AC, Anderson G, Forrest D, Galton VA, Gereben B, Kim BW, Kopp PA, Liao XH, Obregon MJ, Peeters RP, Refetoff S, Sharlin DS, Simonides WS, Weiss RE, Williams GR. American Thyroid Association Guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid 2014; 24:88-168. [PMID: 24001133 PMCID: PMC3887458 DOI: 10.1089/thy.2013.0109] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. SUMMARY Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. CONCLUSIONS It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes.
Collapse
Affiliation(s)
- Antonio C. Bianco
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Grant Anderson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota Duluth, Duluth, Minnesota
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Valerie Anne Galton
- Department of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Brian W. Kim
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Peter A. Kopp
- Division of Endocrinology, Metabolism, and Molecular Medicine, and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xiao Hui Liao
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Maria Jesus Obregon
- Institute of Biomedical Investigation (IIB), Spanish National Research Council (CSIC) and Autonomous University of Madrid, Madrid, Spain
| | - Robin P. Peeters
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Samuel Refetoff
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - David S. Sharlin
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota
| | - Warner S. Simonides
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Roy E. Weiss
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Graham R. Williams
- Department of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
48
|
Treatment with thyroxine restores myelination and clinical recovery after intraventricular hemorrhage. J Neurosci 2013; 33:17232-46. [PMID: 24174657 DOI: 10.1523/jneurosci.2713-13.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intraventricular hemorrhage (IVH) remains a major cause of white matter injury in preterm infants with no viable therapeutic strategy to restore myelination. Maturation of oligodendrocytes and myelination is influenced by thyroid hormone (TH) signaling, which is mediated by TH receptor α (TRα) and TRβ. In the brain, cellular levels of TH are regulated by deiodinases, with deiodinase-2 mediating TH activation and deiodinase-3 TH inactivation. Therefore, we hypothesized that IVH would decrease TH signaling via changes in the expression of deiodinases and/or TRs, and normalization of TH signaling would enhance maturation of oligodendrocytes and myelination in preterm infants with IVH. These hypotheses were tested using both autopsy materials from human preterm infants and a rabbit model of IVH. We found that deiodinase-2 levels were reduced, whereas deiodinase-3 levels were increased in brain samples of both humans and rabbits with IVH compared with controls without IVH. TRα expression was also increased in human infants with IVH. Importantly, treatment with TH accelerated the proliferation and maturation of oligodendrocytes, increased transcription of Olig2 and Sox10 genes, augmented myelination, and restored neurological function in pups with IVH. Consistent with these findings, the density of myelinating oligodendrocytes was almost doubled in TH-treated human preterm infants compared with controls. Thus, in infants with IVH the combined elevation in deiodinase-3 and reduction in deiodinase-2 decreases TH signaling that can be worsened by an increase in unliganded TRα. Given that TH promotes neurological recovery in IVH, TH treatment might improve the neurodevelopmental outcome of preterm infants with IVH.
Collapse
|
49
|
Arrojo E Drigo R, Egri P, Jo S, Gereben B, Bianco AC. The type II deiodinase is retrotranslocated to the cytoplasm and proteasomes via p97/Atx3 complex. Mol Endocrinol 2013; 27:2105-15. [PMID: 24196352 DOI: 10.1210/me.2013-1281] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The type II iodothyronine deiodinase (D2) is a type I endoplasmic reticulum (ER)-resident thioredoxin fold-containing selenoprotein that activates thyroid hormone. D2 is inactivated by ER-associated ubiquitination and can be reactivated by two ubiquitin-specific peptidase-class D2-interacting deubiquitinases (DUBs). Here, we used D2-expressing cell models to define that D2 ubiquitination (UbD2) occurs via K48-linked ubiquitin chains and that exposure to its natural substrate, T4, accelerates UbD2 formation and retrotranslocation to the cytoplasm via interaction with the p97-ATPase complex. D2 retrotranslocation also includes deubiquitination by the p97-associated DUB Ataxin-3 (Atx3). Inhibiting Atx3 with eeyarestatin-I did not affect D2:p97 binding but decreased UbD2 retrotranslocation and caused ER accumulation of high-molecular weight UbD2 bands possibly by interfering with the D2-ubiquitin-specific peptidases binding. Once in the cytosol, D2 is delivered to the proteasomes as evidenced by coprecipitation with 19S proteasome subunit S5a and increased colocalization with the 20S proteasome. We conclude that interaction between UbD2 and p97/Atx3 mediates retranslocation of UbD2 to the cytoplasm for terminal degradation in the proteasomes, a pathway that is accelerated by exposure to T4.
Collapse
|
50
|
Drigo RA, Fonseca TL, Werneck-de-Castro JPS, Bianco AC. Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1830:3956-64. [PMID: 22967761 PMCID: PMC4979226 DOI: 10.1016/j.bbagen.2012.08.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/11/2012] [Accepted: 08/23/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Thyroid hormone signaling is critical for development, growth and metabolic control in vertebrates. Although serum concentration of thyroid hormone is remarkable stable, deiodinases modulate thyroid hormone signaling on a time- and cell-specific fashion by controlling the activation and inactivation of thyroid hormone. SCOPE OF THE REVIEW This review covers the recent advances in D2 biology, a member of the iodothyronine deiodinase family, thioredoxin fold-containing selenoenzymes that modify thyroid hormone signaling in a time- and cell-specific manner. MAJOR CONCLUSIONS D2-catalyzed T3 production increases thyroid hormone signaling whereas blocking D2 activity or disruption of the Dio2 gene leads to a state of localized hypothyroidism. D2 expression is regulated by different developmental, metabolic or environmental cues such as the hedgehog pathway, the adrenergic- and the TGR5-activated cAMP pathway, by xenobiotic molecules such as flavonols and by stress in the endoplasmic reticulum, which specifically reduces de novo synthesis of D2 via an eIF2a-mediated mechanism. Thus, D2 plays a central role in important physiological processes such as determining T3 content in developing tissues and in the adult brain, and promoting adaptive thermogenesis in brown adipose tissue. Notably, D2 is critical in the T4-mediated negative feed-back at the pituitary and hypothalamic levels, whereby T4 inhibits TSH and TRH expression, respectively. Notably, ubiquitination is a major step in the control of D2 activity, whereby T4 binding to and/or T4 catalysis triggers D2 inactivation by ubiquitination that is mediated by the E3 ubiquitin ligases WSB-1 and/or TEB4. Ubiquitinated D2 can be either targeted to proteasomal degradation or reactivated by deubiquitination, a process that is mediated by the deubiquitinases USP20/33 and is important in adaptive thermogenesis. GENERAL SIGNIFICANCE Here we review the recent advances in the understanding of D2 biology focusing on the mechanisms that regulate its expression and their biological significance in metabolically relevant tissues. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Rafael Arrojo Drigo
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Tatiana L. Fonseca
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Joao Pedro Saar Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL, USA
- Instituto de Biofisica Carlos Chagas, Brazil
- Escola de Educacao Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio C. Bianco
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|