1
|
Vittori M. Structural diversity of crustacean exoskeletons and its implications for biomimetics. Interface Focus 2024; 14:20230075. [PMID: 38618234 PMCID: PMC11008965 DOI: 10.1098/rsfs.2023.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/16/2024] [Indexed: 04/16/2024] Open
Abstract
The crustacean cuticle is a biological composite material consisting of chitin-protein fibres in a mineralized matrix. Recent research has revealed a surprising range of fibre architectures and mineral compositions of crustacean skeletal structures adapted to various mechanical demands. It is becoming increasingly clear that the organic fibres in the cuticle may be organized in patterns differing from the standard twisted plywood model. Observed fibre architectures in protruding skeletal structures include longitudinal and circular parallel fibre arrays. Skeletal minerals often include calcium phosphates in addition to calcium carbonates. Furthermore, skeletal properties are affected by protein cross-linking, which replaces mineralization as a stiffening mechanism in some structures. Several common structural motifs, such as the stiffening of the outer skeletal layers, the incorporation of non-mineralized cuticle in exposed structures, and interchanging layers of parallel fibres and the twisted plywood structure, can be identified in skeletal elements with similar functions. These evolutionary solutions have the potential for biomimetic applications, particularly as manufacturing technologies advance. To make use of this potential, we need to understand the processes behind the formation of the crustacean exoskeleton and determine which features are truly adaptive and worth mimicking.
Collapse
Affiliation(s)
- Miloš Vittori
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Rumney BM, Morgan SR, Mosselmans JFW, Malik FT, Holden SJ, Parker AR, White N, Lewis PN, Albon J, Meek KM. Characterisation of carapace composition in developing and adult ostracods ( Skogsbergia lerneri) and its potential for biomaterials. MARINE BIOLOGY 2022; 169:78. [PMID: 35607419 PMCID: PMC9119885 DOI: 10.1007/s00227-022-04047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
The protective carapace of Skogsbergia lerneri, a marine ostracod, is scratch-resistant and transparent. The compositional and structural organisation of the carapace that underlies these properties is unknown. In this study, we aimed to quantify and determine the distribution of chemical elements and chitin within the carapace of adult ostracods, as well as at different stages of ostracod development, to gain insight into its composition. Elemental analyses included X-ray absorption near-edge structure, X-ray fluorescence and X-ray diffraction. Nonlinear microscopy and spectral imaging were performed to determine chitin distribution within the carapace. High levels of calcium (20.3%) and substantial levels of magnesium (1.89%) were identified throughout development. Amorphous calcium carbonate (ACC) was detected in carapaces of all developmental stages, with the polymorph, aragonite, identified in A-1 and adult carapaces. Novel chitin-derived second harmonic generation signals (430/5 nm) were detected. Quantification of relative chitin content within the developing and adult carapaces identified negligible differences in chitin content between developmental stages and adult carapaces, except for the lower chitin contribution in A-2 (66.8 ± 7.6%) compared to A-5 (85.5 ± 10%) (p = 0.03). Skogsbergia lerneri carapace calcium carbonate composition was distinct to other myodocopid ostracods. These calcium polymorphs and ACC are described in other biological transparent materials, and with the consistent chitin distribution throughout S. lerneri development, may imply a biological adaptation to preserve carapace physical properties. Realisation of S. lerneri carapace synthesis and structural organisation will enable exploitation to manufacture biomaterials and biomimetics with huge potential in industrial and military applications.
Collapse
Affiliation(s)
- Benjamin M. Rumney
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ UK
| | - Siân R. Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ UK
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, UK
| | | | - F. Tegwen Malik
- School of Management, Swansea University, Fabian Way, Swansea, SA1 8EN UK
| | - Simon J. Holden
- DSTL Physical Sciences Group, Platform Systems Division, DSTL Porton Down, Salisbury, SP4 0JQ UK
| | - Andrew R. Parker
- Green Templeton College, University of Oxford, Woodstock Road, Oxford, OX2 0HG UK
| | - Nick White
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ UK
- Vivat Scientia Bioimaging Labs, Cardiff University, Cardiff, CF24 4HQ UK
| | - Philip N. Lewis
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ UK
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, UK
| | - Julie Albon
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ UK
- Vivat Scientia Bioimaging Labs, Cardiff University, Cardiff, CF24 4HQ UK
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, UK
| | - Keith M. Meek
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ UK
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Seidl B, Reisecker C, Neues F, Campanaro A, Epple M, Hild S, Ziegler A. The dorsal tergite cuticle of Helleria brevicornis: Ultrastructure, mineral distribution, calcite microstructure and texture. JOURNAL OF STRUCTURAL BIOLOGY-X 2021; 5:100051. [PMID: 34337383 PMCID: PMC8313847 DOI: 10.1016/j.yjsbx.2021.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 10/26/2022]
Abstract
Among the terrestrial Crustacea, isopods have most successfully established themselves in a large variety of terrestrial habitats. As in most Crustacea, their cuticle consists of a hierarchically organised organic phase of chitin-protein fibrils, containing calcium carbonate and some calcium phosphate. In previous studies, we examined the tergite cuticle of Tylos europaeus, which lives on seashores and burrows into moist sand. In this study, we investigate the closely related species Helleria brevicornis, which is completely terrestrial and lives in leaf litter and humus and burrows into the soil. To get deeper insights in relation between the structure of the organic and mineral phase in species living in diverse habitats, we have investigated the structure, and the chemical and crystallographic properties of the tergite cuticle using various preparation techniques, and microscopic and analytical methods. The results reveal long and short epicuticular sensilla with brushed tips on the tergite surface that do not occur in T. europaeus. As in T. europaeus a distal exocuticle, which contains a low number of organic fibres, contains calcite while the subjacent layers of the exo- and endocuticle contain amorphous calcium carbonate. The distal exocuticle contains a polygonal pattern of mineral initiation sites that correspond to interprismatic septa described for decapod crabs. The shape and position of calcite units do not follow the polygonal pattern of the septa. The results indicate that the calcite units form by crystallisation from an amorphous phase that progresses from both margins of the septa to the centres of the polygons.
Collapse
Affiliation(s)
- Bastian Seidl
- Central Facility for Electron Microscopy, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Christian Reisecker
- Department of Polymer Science, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Frank Neues
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstrasse 5-7, 45117Essen, Germany
| | - Alessandro Campanaro
- Council for Agricultural Research and Economics, Research Centre for Plant and Certification, Via di Lanciola 12/a, I-50125 Cascine del Riccio, Florence, Italy
| | - Matthias Epple
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstrasse 5-7, 45117Essen, Germany
| | - Sabine Hild
- Department of Polymer Science, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Andreas Ziegler
- Central Facility for Electron Microscopy, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| |
Collapse
|
4
|
Ernst F, Fabritius HO, Griesshaber E, Reisecker C, Neues F, Epple M, Schmahl WW, Hild S, Ziegler A. Functional adaptations in the tergite cuticle of the desert isopod Hemilepistus reaumuri (Milne-Edwards, 1840). J Struct Biol 2020; 212:107570. [PMID: 32650132 DOI: 10.1016/j.jsb.2020.107570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
To survive in its extreme habitat, the cuticle of the burrowing desert isopod Hemilepistus reaumuri requires properties distinct from isopods living in moist or mesic habitats. In particular, the anterior tergites are exposed to high mechanical loads and temperatures when individuals guard the entrance of their burrow. We have, therefore, investigated the architecture, composition, calcite texture and local mechanical properties of the tergite cuticle, with particular emphasis on large anterior cuticle tubercles and differences between the anterior and posterior tergite. Unexpectedly, structure and thickness of the epicuticle resemble those in mesic isopod species. The anterior tergite has a thicker endocuticle and a higher local stiffness than the posterior tergite. Calcite distribution in the cuticle is unusual, because in addition to the exocuticle the endocuticle distally also contains calcite. The calcite consists of a distal layer of dense and highly co-oriented crystal-units, followed proximally by irregularly distributed and, with respect to each other, misoriented calcite crystallites. The calcite layer at the tip of the tubercle is thicker relative to the tubercle slopes, and its crystallites are more misoriented to each other. A steep decrease of local stiffness and hardness is observed within a distal region of the cuticle, likely caused by a successive increase in the ACC/calcite ratio rather than changes in the degree of mineralisation. Comparison of the results with other isopods reveals a much lower ACC/calcite ratio in H. reaumuri and a correlation between the degree of terrestriality of isopod species and the magnesium content of the cuticle.
Collapse
Affiliation(s)
- Franziska Ernst
- Central Facility for Electron Microscopy, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Helge-Otto Fabritius
- Bionics and Materials Development, Hamm-Lippstadt University of Applied Sciences, Marker Allee 76-78, 59063 Hamm, Germany; Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
| | - Erika Griesshaber
- Department of Earth and Environmental Sciences, LMU, Theresienstr. 41, 80333 München, Germany
| | - Christian Reisecker
- Institute of Polymer Science, Johannes Kepler Universität Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Frank Neues
- Inorganic Chemistry and Center for Nanointegration, University of Duisburg-Essen, Universitätsstraße 5-7, 45117 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration, University of Duisburg-Essen, Universitätsstraße 5-7, 45117 Essen, Germany
| | - Wolfgang W Schmahl
- Department of Earth and Environmental Sciences, LMU, Theresienstr. 41, 80333 München, Germany
| | - Sabine Hild
- Institute of Polymer Science, Johannes Kepler Universität Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Andreas Ziegler
- Central Facility for Electron Microscopy, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany.
| |
Collapse
|
5
|
Fast and quantitative 2D and 3D orientation mapping using Raman microscopy. Nat Commun 2019; 10:5555. [PMID: 31804493 PMCID: PMC6895231 DOI: 10.1038/s41467-019-13504-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Non-destructive orientation mapping is an important characterization tool in materials science and geoscience for understanding and/or improving material properties based on their grain structure. Confocal Raman microscopy is a powerful non-destructive technique for chemical mapping of organic and inorganic materials. Here we demonstrate orientation mapping by means of Polarized Raman Microscopy (PRM). While the concept that PRM is sensitive to orientation changes is known, to our knowledge, an actual quantitative orientation mapping has never been presented before. Using a concept of ambiguity-free orientation determination analysis, we present fast and quantitative single-acquisition Raman-based orientation mapping by simultaneous registration of multiple Raman scattering spectra obtained at different polarizations. We demonstrate applications of this approach for two- and three-dimensional orientation mapping of a multigrain semiconductor, a pharmaceutical tablet formulation and a polycrystalline sapphire sample. This technique can potentially move traditional X-ray and electron diffraction type experiments into conventional optical laboratories. Although polarized Raman microscopy is sensitive to orientation changes, quantitative information has been missing. Here, the authors use simultaneous registration of multiple Raman scattering spectra obtained at different polarizations and show quantitative orientation mapping
Collapse
|
6
|
Seidl BH, Griesshaber E, Fabritius HO, Reisecker C, Hild S, Taiti S, Schmahl WW, Ziegler A. Tailored disorder in calcite organization in tergite cuticle of the supralittoral isopod Tylos europaeus Arcangeli, 1938. J Struct Biol 2018; 204:464-480. [DOI: 10.1016/j.jsb.2018.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 11/28/2022]
|
7
|
Biomineral Reactivity: The Kinetics of the Replacement Reaction of Biological Aragonite to Apatite. MINERALS 2018. [DOI: 10.3390/min8080315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present results of bioaragonite to apatite conversion in bivalve, coral and cuttlebone skeletons, biological hard materials distinguished by specific microstructures, skeletal densities, original porosities and biopolymer contents. The most profound conversion occurs in the cuttlebone of the cephalopod Sepia officinalis, the least effect is observed for the nacreous shell portion of the bivalve Hyriopsis cumingii. The shell of the bivalve Arctica islandica consists of cross-lamellar aragonite, is dense at its innermost and porous at the seaward pointing shell layers. Increased porosity facilitates infiltration of the reaction fluid and renders large surface areas for the dissolution of aragonite and conversion to apatite. Skeletal microstructures of the coral Porites sp. and prismatic H. cumingii allow considerable conversion to apatite. Even though the surface area in Porites sp. is significantly larger in comparison to that of prismatic H. cumingii, the coral skeleton consists of clusters of dense, acicular aragonite. Conversion in the latter is sluggish at first as most apatite precipitates only onto its surface area. However, the process is accelerated when, in addition, fluids enter the hard tissue at centers of calcification. The prismatic shell portion of H. cumingii is readily transformed to apatite as we find here an increased porosity between prisms as well as within the membranes encasing the prisms. In conclusion, we observe distinct differences in bioaragonite to apatite conversion rates and kinetics depending on the feasibility of the reaction fluid to access aragonite crystallites. The latter is dependent on the content of biopolymers within the hard tissue, their feasibility to be decomposed, the extent of newly formed mineral surface area and the specific biogenic ultra- and microstructures.
Collapse
|
8
|
Fabritius HO, Ziegler A, Friák M, Nikolov S, Huber J, Seidl BHM, Ruangchai S, Alagboso FI, Karsten S, Lu J, Janus AM, Petrov M, Zhu LF, Hemzalová P, Hild S, Raabe D, Neugebauer J. Functional adaptation of crustacean exoskeletal elements through structural and compositional diversity: a combined experimental and theoretical study. BIOINSPIRATION & BIOMIMETICS 2016; 11:055006. [PMID: 27609556 DOI: 10.1088/1748-3190/11/5/055006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The crustacean cuticle is a composite material that covers the whole animal and forms the continuous exoskeleton. Nano-fibers composed of chitin and protein molecules form most of the organic matrix of the cuticle that, at the macroscale, is organized in up to eight hierarchical levels. At least two of them, the exo- and endocuticle, contain a mineral phase of mainly Mg-calcite, amorphous calcium carbonate and phosphate. The high number of hierarchical levels and the compositional diversity provide a high degree of freedom for varying the physical, in particular mechanical, properties of the material. This makes the cuticle a versatile material ideally suited to form a variety of skeletal elements that are adapted to different functions and the eco-physiological strains of individual species. This review presents our recent analytical, experimental and theoretical studies on the cuticle, summarising at which hierarchical levels structure and composition are modified to achieve the required physical properties. We describe our multi-scale hierarchical modeling approach based on the results from these studies, aiming at systematically predicting the structure-composition-property relations of cuticle composites from the molecular level to the macro-scale. This modeling approach provides a tool to facilitate the development of optimized biomimetic materials within a knowledge-based design approach.
Collapse
Affiliation(s)
- Helge-Otto Fabritius
- Department Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Huber J, Griesshaber E, Nindiyasari F, Schmahl WW, Ziegler A. Functionalization of biomineral reinforcement in crustacean cuticle: Calcite orientation in the partes incisivae of the mandibles of Porcellio scaber and the supralittoral species Tylos europaeus (Oniscidea, Isopoda). J Struct Biol 2015; 190:173-91. [DOI: 10.1016/j.jsb.2015.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
|
10
|
Function-related adaptations of ultrastructure, mineral phase distribution and mechanical properties in the incisive cuticle of mandibles of Porcellio scaber Latreille, 1804. J Struct Biol 2014; 188:1-15. [DOI: 10.1016/j.jsb.2014.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/04/2014] [Accepted: 09/06/2014] [Indexed: 11/15/2022]
|
11
|
Quantum-Mechanical Study of Single-Crystalline and Polycrystalline Elastic Properties of Mg-Substituted Calcite Crystals. ACTA ACUST UNITED AC 2013. [DOI: 10.4028/www.scientific.net/kem.592-593.335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use quantum-mechanical calculations to study single-crystalline elastic properties of (Ca,Mg)CO3crystals with concentrations ranging from calcite CaCO3to magnesite MgCO3. By analyzing results for a dense set of distributions of Ca and Mg atoms within 30-atom supercells, our theoretical study shows that those atomic configurations, that minimize the total energy for a given concentration, are characterized by elastic constants that either increase with the Mg content or remain nearly constants. Employing theseab initiocalculated single-crystalline elastic parameters, the polycrystalline elastic properties of (Ca,Mg)CO3aggregates are determined using a mean-field self-consistent homogenization method. The computed integral elastic moduli (bulk and shear) show a significant stiffening impact of Mg atoms on calcite crystals. Our analysis also demonstrates that it is not advantageous to use a granular two-phase composite of stoichiometric calcite and magnesite instead of substituting individual Ca and Mg atoms. Such two-phase aggregates are not significantly thermodynamically favorable and do not offer any strong additional stiffening effect.
Collapse
|
12
|
Schulz-Mirbach T, Götz A, Griesshaber E, Plath M, Schmahl W. Texture and nano-scale internal microstructure of otoliths in the Atlantic molly, Poecilia mexicana: A high-resolution EBSD study. Micron 2013; 51:60-9. [DOI: 10.1016/j.micron.2013.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/18/2013] [Accepted: 07/02/2013] [Indexed: 11/15/2022]
|
13
|
Ruangchai S, Reisecker C, Hild S, Ziegler A. The architecture of the joint head cuticle and its transition to the arthrodial membrane in the terrestrial crustacean Porcellio scaber. J Struct Biol 2013; 182:22-35. [DOI: 10.1016/j.jsb.2013.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/18/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
|
14
|
Zhu LF, Friák M, Lymperakis L, Titrian H, Aydin U, Janus A, Fabritius HO, Ziegler A, Nikolov S, Hemzalová P, Raabe D, Neugebauer J. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals. J Mech Behav Biomed Mater 2013; 20:296-304. [DOI: 10.1016/j.jmbbm.2013.01.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 11/24/2022]
|