1
|
Machado NR, Fagundes BO, do Nascimento LA, Bergamasco IS, Sgnotto FDR, Fernandes IG, Fernandes JR, Pinto TNC, da Borges JVS, Benard G, Sato MN, Victor JR. Deciphering the IgG Idiotype Network Through Proteomic Analysis of Potential Targets in SARS-CoV-2-Induced Immune Responses. Immunology 2025; 175:226-239. [PMID: 40077865 DOI: 10.1111/imm.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The association between COVID-19 and autoimmune diseases has gained increasing recognition, yet the specific targets of SARS-CoV-2-induced IgG are currently in focus for several studies. This study aims to explore the proteomic targets of these antibodies and their potential role in autoimmunity. We utilised a human proteome microarray encompassing 23 736 unique proteins, including isoform variants and fragments, as catalogued by the Human Protein Atlas. Serum samples were analysed from four groups: healthy controls (N-exp HC), individuals vaccinated with protein-based vaccines (N-Cov Vac) and patients with moderate or severe COVID-19 (COVID-Mod and COVID-Sev). The evaluation of SARS-CoV-2-induced IgG antibodies revealed their potential to recognise multiple human proteins. Key targets included interferon alpha (IFN-α), tumour growth factor beta (TGF-β), interleukin 1 (IL-1), CXCL16, TGF-β receptors, CD34, CD47 and BCL2. The antibodies also targeted proteins from genes overexpressed in various immune cells, such as CD4+ and CD8+ T cells, γδ T cells, B cells, dendritic cells and NK cells. Reactivity was also observed with proteins specifically expressed in multiple organs, including the brain, liver, lungs and heart. Targeting patterns differed between COVID-19 patients and controls, with some proteins showing differential recognition in moderate versus severe cases. Furthermore, we evaluated the protein-protein interaction network (PPIN) of all targeted proteins and observed minimal structural homology and co-expression among the evaluated proteins, with almost no relation to the SARS-CoV-2 immune system reactome. The results suggest that the profile of SARS-CoV-2-induced IgG autoantibodies is associated with disease severity. In contrast, protein-vaccinated individuals exhibited a profile similar to non-exposed controls, suggesting that autoreactive IgG is specifically linked to active SARS-CoV-2 infection. These findings reveal a complex network of SARS-CoV-2-induced IgG idiotypes capable of targeting human proteins, not merely through simple cross-recognition of homologous proteins. This highlights the need for further investigations to determine whether they may influence COVID-19 pathophysiology and its clinical outcomes.
Collapse
Affiliation(s)
- Nicolle Rakanidis Machado
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Beatriz Oliveira Fagundes
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Lais Alves do Nascimento
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | - Iara Grigoletto Fernandes
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Juliana Ruiz Fernandes
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Thalyta Nery Carvalho Pinto
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Gil Benard
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Jefferson Russo Victor
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
- Post Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, Brazil
- School of Medicine, Santo Amaro University (UNISA), São Paulo, Brazil
| |
Collapse
|
2
|
Laletin V, Bernard PL, Montersino C, Yamanashi Y, Olive D, Castellano R, Guittard G, Nunès JA. DOK1 and DOK2 regulate CD8 T cell signaling and memory formation without affecting tumor cell killing. Sci Rep 2024; 14:15053. [PMID: 38956389 PMCID: PMC11220026 DOI: 10.1038/s41598-024-66075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Targeting intracellular inhibiting proteins has been revealed to be a promising strategy to improve CD8+ T cell anti-tumor efficacy. Here, we are focusing on intracellular inhibiting proteins specific to TCR signaling: DOK1 and DOK2 expressed in T cells. We hypothesized that depletion of intracellular inhibition checkpoint DOK1 and DOK2 could improve CD8+ T-cell based cancer therapies. To evaluate the role of DOK1 and DOK2 depletion in physiology and effector function of CD8+ T lymphocytes and in cancer progression, we established a transgenic T cell receptor mouse model specific to melanoma antigen hgp100 (pmel-1 TCR Tg) in WT and Dok1/Dok2 DKO (double KO) mice. We showed that both DOK1 and DOK2 depletion in CD8+ T cells after an in vitro pre-stimulation induced a higher percentage of effector memory T cells as well as an up regulation of TCR signaling cascade- induced by CD3 mAbs, including the increased levels of pAKT and pERK, two major phosphoproteins involved in T cell functions. Interestingly, this improved TCR signaling was not observed in naïve CD8+ T cells. Despite this enhanced TCR signaling essentially shown upon stimulation via CD3 mAbs, pre-stimulated Dok1/Dok2 DKO CD8+ T cells did not show any increase in their activation or cytotoxic capacities against melanoma cell line expressing hgp100 in vitro. Altogether we demonstrate here a novel aspect of the negative regulation by DOK1 and DOK2 proteins in CD8+ T cells. Indeed, our results allow us to conclude that DOK1 and DOK2 have an inhibitory role following long term T cell stimulations.
Collapse
Affiliation(s)
- Vladimir Laletin
- Centre de Recherche en Cancérologie de Marseille, CRCM, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France
| | - Pierre-Louis Bernard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France
| | - Camille Montersino
- Centre de Recherche en Cancérologie de Marseille, CRCM, TrGET Pre-Clinical Assay Platform, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France
| | - Yuji Yamanashi
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille, CRCM, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France
| | - Rémy Castellano
- Centre de Recherche en Cancérologie de Marseille, CRCM, TrGET Pre-Clinical Assay Platform, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France
| | - Geoffrey Guittard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France
| | - Jacques A Nunès
- Centre de Recherche en Cancérologie de Marseille, CRCM, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France.
| |
Collapse
|
3
|
Hu L, Liu D, Zheng D, Lu J, Yuan X, Li Y, Shi F, Shi X, He QY, Li Q, Zhang CZ. Pan-Cancer Proteomics Analysis Reveals Wiskott-Aldrich Syndrome Protein as a Potential Regulator of Programmed Death-Ligand 1. J Proteome Res 2024; 23:2195-2205. [PMID: 38661673 DOI: 10.1021/acs.jproteome.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The programmed death-ligand 1 (PD-L1) is a key mediator of immunosuppression in the tumor microenvironment. The expression of PD-L1 in cancer cells is useful for the clinical determination of an immune checkpoint blockade (ICB). However, the regulatory mechanism of the PD-L1 abundance remains incompletely understood. Here, we integrated the proteomics of 52 patients with solid tumors and examined immune cell infiltration to reveal PD-L1-related regulatory modules. Wiskott-Aldrich syndrome protein (WASP) was identified as a potential regulator of PD-L1 transcription. In two independent cohorts containing 164 cancer patients, WASP expression was significantly associated with PD-L1. High WASP expression contributed to immunosuppressive cell composition, including cells positive for immune checkpoints (PD1, CTLA4, TIGIT, and TIM3), FoxP3+ Treg cells, and CD163+ tumor-associated macrophages. Overexpression of WASP increased, whereas knockdown of WASP decreased the protein level of PD-L1 in cancer cells without alteration of PD-L1 protein stability. The WASP-mediated cell migration and invasion were markedly attenuated by the silence of PD-L1. Collectively, our data suggest that WASP is a potential regulator of PD-L1 and the WASP/PD-L1 axis is responsible for cell migration and an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Liling Hu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Danya Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dandan Zheng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiangli Lu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiaoyi Yuan
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuying Li
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fujin Shi
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xinyu Shi
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiuli Li
- Department of Head and Neck, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Guo ZH, Wang YB, Wang S, Zhang Q, Huang DS. scCorrector: a robust method for integrating multi-study single-cell data. Brief Bioinform 2024; 25:bbad525. [PMID: 38271483 PMCID: PMC10810333 DOI: 10.1093/bib/bbad525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The advent of single-cell sequencing technologies has revolutionized cell biology studies. However, integrative analyses of diverse single-cell data face serious challenges, including technological noise, sample heterogeneity, and different modalities and species. To address these problems, we propose scCorrector, a variational autoencoder-based model that can integrate single-cell data from different studies and map them into a common space. Specifically, we designed a Study Specific Adaptive Normalization for each study in decoder to implement these features. scCorrector substantially achieves competitive and robust performance compared with state-of-the-art methods and brings novel insights under various circumstances (e.g. various batches, multi-omics, cross-species, and development stages). In addition, the integration of single-cell data and spatial data makes it possible to transfer information between different studies, which greatly expand the narrow range of genes covered by MERFISH technology. In summary, scCorrector can efficiently integrate multi-study single-cell datasets, thereby providing broad opportunities to tackle challenges emerging from noisy resources.
Collapse
Affiliation(s)
- Zhen-Hao Guo
- College of Electronics and Information Engineering, Tongji University, Shanghai 200000, China
| | - Yan-Bin Wang
- College of Computer Science and Technology, Zhejiang University 310027, China
| | - Siguo Wang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Tongxin Road No.568, Ningbo, Zhejiang 315201, China
| | - Qinhu Zhang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Tongxin Road No.568, Ningbo, Zhejiang 315201, China
| | - De-Shuang Huang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Tongxin Road No.568, Ningbo, Zhejiang 315201, China
| |
Collapse
|
5
|
An D, He P, Liu H, Wang R, Yu X, Chen N, Guo X, Li X, Feng M. Enhanced chemoimmunotherapy of breast cancer in mice by apolipoprotein A1-modified doxorubicin liposomes combined with interleukin-21. J Drug Target 2023; 31:1098-1110. [PMID: 37909691 DOI: 10.1080/1061186x.2023.2276664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Backgroud: Breast cancer is a prevalent malignancy among women, with triple-negative breast cancer (TNBC) comprising approximately 15-20% of all cases, possessing high invasiveness, drug resistance and poor prognosis. Chemotherapy, the main treatment for TNBC, is limited by toxicity and drug resistance. Apolipoprotein A1 modified doxorubicin liposome (ApoA1-lip/Dox) was constructed in our previous study, with promising anti-tumour effect and improved safety been proved. However, during long-term administration, the problem of cumulative toxicity and insufficient tumour inhibition is still inevitable. Interleukin-21 is a small molecule protein secreted by T cells with various immune regulatory functions. IL-21 has significantly curative effects in numerous solid tumours, but it has the disadvantages of low response rate and short half-life. The combination of chemotherapy and immunotherapy has received increasing attention.Purpose: In this study, ApoA1 drug loading system and long-acting IL-21 are innovatively combined for tumour treatment.Methods: We combined ApoA1-lip/Dox and IL-21 for treatment and evaluated their impact on tumor-infiltrating lymphocytes and CD8+ T and NK cell cytotoxicity.Results: Combined administration significantly improved the tumour-infiltrating lymphocytes and enhanced the cytotoxicity of CD8+ T and NK cells. The combination of ApoA1-lip/Dox and IL-21 exhibits significantly enhanced anti-tumour efficacy with lower toxicity of ApoA1-lip/Dox, providing a new strategy for TNBC treatment with enhanced anti-tumour response and reduced toxicity.
Collapse
Affiliation(s)
- Duopeng An
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Peng He
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Hongchuan Liu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Rui Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiaochen Yu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Nanye Chen
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiaohan Guo
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiang Li
- Department of Biological Medicines Shanghai Engineering Research Center of Immunotherapeutics, Minhang Hospital & School of Pharmacy, Fudan University, Shanghai, China
| | - Meiqing Feng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
6
|
Heryanto YD, Imoto S. The transcriptome signature analysis of the epithelial-mesenchymal transition and immune cell infiltration in colon adenocarcinoma. Sci Rep 2023; 13:18383. [PMID: 37884639 PMCID: PMC10603081 DOI: 10.1038/s41598-023-45792-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) process is tightly connected to tumors' immune microenvironment. In colon adenocarcinoma (COAD), both the EMT and immune cell infiltration contribute to tumor progression; however, several questions regarding the mechanisms governing the interaction between EMT and the immune response remain unanswered. Our study aims to investigate the cross-talk between these two processes in cases of COAD and identify the key regulators involved. We utilized the EMT and immune signatures of samples from the COAD-TCGA database to identify three subtypes of COAD: high mesenchymal, medium mesenchymal, and low mesenchymal. We observed that EMT was associated with increased tumor immune response and infiltration mediated by pro-inflammatory cytokines. However, EMT was also linked to immunosuppressive activity that involved regulatory T cells, dendritic cells, and the upregulated expression of multiple immune checkpoints, such as PD-1, PDL-1, CTLA-4, and others. Finally, we employed the multivariate random forest feature importance method to identify key genes, such as DOK2 and MSRB3, that may play crucial roles in both EMT and the intratumoral immune response.
Collapse
Affiliation(s)
- Yusri Dwi Heryanto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| |
Collapse
|
7
|
Laletin V, Bernard PL, Costa da Silva C, Guittard G, Nunes JA. Negative intracellular regulators of T-cell receptor (TCR) signaling as potential antitumor immunotherapy targets. J Immunother Cancer 2023; 11:e005845. [PMID: 37217244 PMCID: PMC10231026 DOI: 10.1136/jitc-2022-005845] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Immunotherapy strategies aim to mobilize immune defenses against tumor cells by targeting mainly T cells. Co-inhibitory receptors or immune checkpoints (ICPs) (such as PD-1 and CTLA4) can limit T cell receptor (TCR) signal propagation in T cells. Antibody-based blocking of immune checkpoints (immune checkpoint inhibitors, ICIs) enable escape from ICP inhibition of TCR signaling. ICI therapies have significantly impacted the prognosis and survival of patients with cancer. However, many patients remain refractory to these treatments. Thus, alternative approaches for cancer immunotherapy are needed. In addition to membrane-associated inhibitory molecules, a growing number of intracellular molecules may also serve to downregulate signaling cascades triggered by TCR engagement. These molecules are known as intracellular immune checkpoints (iICPs). Blocking the expression or the activity of these intracellular negative signaling molecules is a novel field of action to boost T cell-mediated antitumor responses. This area is rapidly expanding. Indeed, more than 30 different potential iICPs have been identified. Over the past 5 years, several phase I/II clinical trials targeting iICPs in T cells have been registered. In this study, we summarize recent preclinical and clinical data demonstrating that immunotherapies targeting T cell iICPs can mediate regression of solid tumors including (membrane associated) immune-checkpoint inhibitor refractory cancers. Finally, we discuss how these iICPs are targeted and controlled. Thereby, iICP inhibition is a promising strategy opening new avenues for future cancer immunotherapy treatments.
Collapse
Affiliation(s)
- Vladimir Laletin
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Pierre-Louis Bernard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Cathy Costa da Silva
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Geoffrey Guittard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Jacques A Nunes
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| |
Collapse
|
8
|
Sazonovs A, Stevens CR, Venkataraman GR, Yuan K, Avila B, Abreu MT, Ahmad T, Allez M, Ananthakrishnan AN, Atzmon G, Baras A, Barrett JC, Barzilai N, Beaugerie L, Beecham A, Bernstein CN, Bitton A, Bokemeyer B, Chan A, Chung D, Cleynen I, Cosnes J, Cutler DJ, Daly A, Damas OM, Datta LW, Dawany N, Devoto M, Dodge S, Ellinghaus E, Fachal L, Farkkila M, Faubion W, Ferreira M, Franchimont D, Gabriel SB, Ge T, Georges M, Gettler K, Giri M, Glaser B, Goerg S, Goyette P, Graham D, Hämäläinen E, Haritunians T, Heap GA, Hiltunen M, Hoeppner M, Horowitz JE, Irving P, Iyer V, Jalas C, Kelsen J, Khalili H, Kirschner BS, Kontula K, Koskela JT, Kugathasan S, Kupcinskas J, Lamb CA, Laudes M, Lévesque C, Levine AP, Lewis JD, Liefferinckx C, Loescher BS, Louis E, Mansfield J, May S, McCauley JL, Mengesha E, Mni M, Moayyedi P, Moran CJ, Newberry RD, O'Charoen S, Okou DT, Oldenburg B, Ostrer H, Palotie A, Paquette J, Pekow J, Peter I, Pierik MJ, Ponsioen CY, Pontikos N, Prescott N, Pulver AE, Rahmouni S, Rice DL, Saavalainen P, Sands B, Sartor RB, Schiff ER, Schreiber S, Schumm LP, Segal AW, Seksik P, Shawky R, et alSazonovs A, Stevens CR, Venkataraman GR, Yuan K, Avila B, Abreu MT, Ahmad T, Allez M, Ananthakrishnan AN, Atzmon G, Baras A, Barrett JC, Barzilai N, Beaugerie L, Beecham A, Bernstein CN, Bitton A, Bokemeyer B, Chan A, Chung D, Cleynen I, Cosnes J, Cutler DJ, Daly A, Damas OM, Datta LW, Dawany N, Devoto M, Dodge S, Ellinghaus E, Fachal L, Farkkila M, Faubion W, Ferreira M, Franchimont D, Gabriel SB, Ge T, Georges M, Gettler K, Giri M, Glaser B, Goerg S, Goyette P, Graham D, Hämäläinen E, Haritunians T, Heap GA, Hiltunen M, Hoeppner M, Horowitz JE, Irving P, Iyer V, Jalas C, Kelsen J, Khalili H, Kirschner BS, Kontula K, Koskela JT, Kugathasan S, Kupcinskas J, Lamb CA, Laudes M, Lévesque C, Levine AP, Lewis JD, Liefferinckx C, Loescher BS, Louis E, Mansfield J, May S, McCauley JL, Mengesha E, Mni M, Moayyedi P, Moran CJ, Newberry RD, O'Charoen S, Okou DT, Oldenburg B, Ostrer H, Palotie A, Paquette J, Pekow J, Peter I, Pierik MJ, Ponsioen CY, Pontikos N, Prescott N, Pulver AE, Rahmouni S, Rice DL, Saavalainen P, Sands B, Sartor RB, Schiff ER, Schreiber S, Schumm LP, Segal AW, Seksik P, Shawky R, Sheikh SZ, Silverberg MS, Simmons A, Skeiceviciene J, Sokol H, Solomonson M, Somineni H, Sun D, Targan S, Turner D, Uhlig HH, van der Meulen AE, Vermeire S, Verstockt S, Voskuil MD, Winter HS, Young J, Duerr RH, Franke A, Brant SR, Cho J, Weersma RK, Parkes M, Xavier RJ, Rivas MA, Rioux JD, McGovern DPB, Huang H, Anderson CA, Daly MJ. Large-scale sequencing identifies multiple genes and rare variants associated with Crohn's disease susceptibility. Nat Genet 2022; 54:1275-1283. [PMID: 36038634 PMCID: PMC9700438 DOI: 10.1038/s41588-022-01156-2] [Show More Authors] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/12/2022] [Indexed: 01/18/2023]
Abstract
Genome-wide association studies (GWASs) have identified hundreds of loci associated with Crohn's disease (CD). However, as with all complex diseases, robust identification of the genes dysregulated by noncoding variants typically driving GWAS discoveries has been challenging. Here, to complement GWASs and better define actionable biological targets, we analyzed sequence data from more than 30,000 patients with CD and 80,000 population controls. We directly implicate ten genes in general onset CD for the first time to our knowledge via association to coding variation, four of which lie within established CD GWAS loci. In nine instances, a single coding variant is significantly associated, and in the tenth, ATG4C, we see additionally a significantly increased burden of very rare coding variants in CD cases. In addition to reiterating the central role of innate and adaptive immune cells as well as autophagy in CD pathogenesis, these newly associated genes highlight the emerging role of mesenchymal cells in the development and maintenance of intestinal inflammation.
Collapse
Affiliation(s)
- Aleksejs Sazonovs
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Christine R Stevens
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Kai Yuan
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brandon Avila
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria T Abreu
- Crohn's and Colitis Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Matthieu Allez
- Hopital Saint-Louis, APHP, Universite de Paris, INSERM U1160, Paris, France
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Crohn's and Colitis Center, Massachusetts General Hospital, Boston, MA, USA
| | - Gil Atzmon
- Department for Human Biology, University of Haifa, Haifa, Israel
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Jeffrey C Barrett
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- The Institute for Aging Research, The Nathan Shock Center of Excellence in the Basic Biology of Aging and the Paul F. Glenn Center for the Biology of Human Aging Research at Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Laurent Beaugerie
- Gastroenterology Department, Sorbonne Universite, Saint Antoine Hospital, Paris, France
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- The Dr. John T. Macdonald Foundation Department of Human Genetics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Alain Bitton
- McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Bernd Bokemeyer
- Department of Internal Medicine, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andrew Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Womens Hospital, Boston, MA, USA
| | | | | | - Jacques Cosnes
- Professeur Chef de Service chez APHP and Universite Paris-6, Paris, France
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Allan Daly
- Human Genetics Informatics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Lisa W Datta
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noor Dawany
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcella Devoto
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
- University of Rome Sapienza, Rome, Italy
- IRGB - CNR, Cagliari, Italy
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Sheila Dodge
- Genomics Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eva Ellinghaus
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Laura Fachal
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | | | | | | | - Stacey B Gabriel
- Genomics Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tian Ge
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | | | - Kyle Gettler
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mamta Giri
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Philippe Goyette
- Research Center Montreal Heart Institute, Montreal, Quebec, Canada
| | - Daniel Graham
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Eija Hämäläinen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Marc Hoeppner
- Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Peter Irving
- Department of Gastroenterology, Guys and Saint Thomas Hospital, London, UK
- School of Immunology and Microbial Sciences, Kings College London, London, UK
| | - Vivek Iyer
- Human Genetics Informatics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Chaim Jalas
- Director of Genetic Resources and Services, Center for Rare Jewish Genetic Disorders, Bonei Olam, Brooklyn, NY, USA
| | - Judith Kelsen
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamed Khalili
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Barbara S Kirschner
- Department of Gastroenterology, University of Chicago Medicine, Chicago, IL, USA
| | - Kimmo Kontula
- Department of Medicine, Helsinki University Hospital, and Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Jukka T Koskela
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Subra Kugathasan
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Christopher A Lamb
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Chloé Lévesque
- Research Center Montreal Heart Institute, Montreal, Quebec, Canada
| | | | - James D Lewis
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Crohn's and Colitis Foundation, New York, NY, USA
| | | | - Britt-Sabina Loescher
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - John Mansfield
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sandra May
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jacob L McCauley
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- The Dr. John T. Macdonald Foundation Department of Human Genetics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Emebet Mengesha
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Myriam Mni
- University of Liège, ULG, Liège, Belgium
| | | | | | | | | | - David T Okou
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Institut National de Sante Publique (INSP), Abidjan, Côte d'Ivoire
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Harry Ostrer
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aarno Palotie
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jean Paquette
- Research Center Montreal Heart Institute, Montreal, Quebec, Canada
| | - Joel Pekow
- Department of Gastroenterology, University of Chicago Medicine, Chicago, IL, USA
| | - Inga Peter
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marieke J Pierik
- Department of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | | | - Natalie Prescott
- Department of Medical and Molecular Genetics, Kings College London, London, UK
| | - Ann E Pulver
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Daniel L Rice
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Päivi Saavalainen
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Bruce Sands
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Stefan Schreiber
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - L Philip Schumm
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | | | - Philippe Seksik
- Gastroenterology Department, Sorbonne Universite, Saint Antoine Hospital, Paris, France
| | - Rasha Shawky
- IBD BioResource, NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Shehzad Z Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Alison Simmons
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jurgita Skeiceviciene
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Universite, Saint Antoine Hospital, Paris, France
| | - Matthew Solomonson
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hari Somineni
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Dylan Sun
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Stephan Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Turner
- Shaare Zedek Medical Center, Jerusalem, Israel
| | - Holm H Uhlig
- Translational Gastroenterology Unit and Biomedical Research Centre, Nuffield Department of Clinical Medicine, Experimental Medicine Division, University of Oxford, Oxford, UK
- Department of Pediatrics, John Radcliffe Hospital, Oxford, UK
| | - Andrea E van der Meulen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Séverine Vermeire
- University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Sare Verstockt
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Michiel D Voskuil
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Andre Franke
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Steven R Brant
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Crohn's Colitis Center of New Jersey, Department of Medicine, Rutgers Robert Wood Johnson Medical School and Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, New Brunswick and Piscataway, NJ, USA
| | - Judy Cho
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Miles Parkes
- Department of Gastroenterology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ramnik J Xavier
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Kurt Isselbacher Professor of Medicine at Harvard Medical School, Cambridge, MA, USA
- Core Institute Member, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Immunology Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - John D Rioux
- Research Center Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Carl A Anderson
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Mark J Daly
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Dok-1 regulates mast cell degranulation negatively through inhibiting calcium-dependent F-actin disassembly. Clin Immunol 2022; 238:109008. [PMID: 35421591 DOI: 10.1016/j.clim.2022.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
In food allergies, antigen-induced aggregation of FcεRI on mast cells initiates highly ordered and sequential signaling events. Dok-1(downstream of tyrosine kinase 1), undergoes intense tyrosine phosphorylation upon FcεRI stimulation, which negatively regulates Ras/Erk signaling and the subsequent cytokine release, but it remains unclear whether Dok-1 regulates Fc-mediated degranulation. In this study, we investigated the role of Dok-1 in FcεRI-mediated degranulation. Dok-1 overexpressing RBL-2H3 cells were established. Degranulation, immunoprecipitation, co-immunoprecipitation, immunoblotting and flow cytometry assay were performed to explore the effects of Dok-1 and its underlying mechanisms. We found that, following FcεRI activation, Dok-1 was recruited to the plasma membrane, leading to tyrosine phosphorylation. Phosphorylated Dok-1 inhibits FcεRI-operated calcium influx, and negatively regulated degranulation by inhibiting calcium-dependent disassembly of actin filaments. Our data revealed that Dok-1 is a negative regulator of FcεRI-mediated mast cell degranulation. These findings contribute to the identification of therapeutic targets for food allergies.
Collapse
|
10
|
Xu J, Dong X, Wang R, Chen B. DOK2 Has Prognostic and Immunologic Significance in Adults With Acute Myeloid Leukemia: A Novel Immune-Related Therapeutic Target. Front Med (Lausanne) 2022; 9:842383. [PMID: 35321466 PMCID: PMC8935080 DOI: 10.3389/fmed.2022.842383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe role of downstream tyrosine kinase 2 (DOK2), a major member of the DOK family, remains poorly defined in acute myeloid leukemia (AML). Herein, we investigated the expression levels, clinical outcomes, and biological functions of DOK2 in patients with AML.MethodsDatasets were obtained from the Cancer Genome Atlas (TCGA) database for transcriptomic and clinical information. Nomogram construction and assessment were conducted using Cox regression analysis, receiver operating characteristic (ROC) curves, and calibration plots. Public databases, including the Gene Expression Omnibus, Cancer Cell Line Encyclopedia, LinkedOmics, GeneMANIA, TISIDB, and Gene Set Cancer Analysis, were employed for relevant bioinformatic studies. Moreover, we utilized the CIBERSORT algorithm to evaluate the level of infiltration of immune cells into the bone marrow microenvironment.ResultsWe observed that DOK2 transcription levels were markedly upregulated in AML samples (P < 0.001), and its high expression was associated with inferior overall survival (OS) (HR = 2.17, P < 0.001) and disease-free survival (DFS) (HR = 2.50, P < 0.001). ROC curve analysis also showed the reliable diagnostic efficiency of DOK2 in AML. For treatment regimens, patients with high DOK2 expression could significantly prolong OS by receiving hematopoietic stem cell transplantation (HSCT) (P < 0.001), whereas those with low DOK2 expression were more likely to improve DFS by chemotherapy alone rather than HSCT. Nomograms constructed for predicting OS and DFS exhibited satisfactory discrimination and accuracy. Functional enrichment analysis identified that DOK2 was involved in important pathways associated with immune-related activities. Furthermore, CIBERSORT scores reflected negative correlations of DOK2 with activated mast cells and resting CD4+ memory T cells, which indicated its adverse immunomodulatory potential.ConclusionWe suggest that elevated DOK2 expression could be an unfavorable prognostic indicator of survival in patients with AML. Our findings provide new insights into the role of DOK2 in AML, with promising clinical implications.
Collapse
|
11
|
Sun P, Li R, Meng Y, Xi S, Wang Q, Yang X, Peng X, Cai J. Introduction to DOK2 and its potential role in cancer. Physiol Res 2021; 70:671-685. [PMID: 34505522 PMCID: PMC8820521 DOI: 10.33549/physiolres.934710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer is a complex, multifactorial disease that modern medicine ultimately aims to overcome. Downstream of tyrosine kinase 2 (DOK2) is a well-known tumor suppressor gene, and a member of the downstream protein DOK family of tyrosine kinases. Through a search of original literature indexed in PubMed and other databases, the present review aims to extricate the mechanisms by which DOK2 acts on cancer, thereby identifying more reliable and effective therapeutic targets to promote enhanced methods of cancer prevention and treatment. The review focuses on the role of DOK2 in multiple tumor types in the lungs, intestines, liver, and breast. Additionally, we discuss the potential mechanisms of action of DOK2 and the downstream consequences via the Ras/MPAK/ERK or PI3K/AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- P Sun
- Department of Pharmacology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China. or Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China. or Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Crinier A, Dumas PY, Escalière B, Piperoglou C, Gil L, Villacreces A, Vély F, Ivanovic Z, Milpied P, Narni-Mancinelli É, Vivier É. Single-cell profiling reveals the trajectories of natural killer cell differentiation in bone marrow and a stress signature induced by acute myeloid leukemia. Cell Mol Immunol 2021; 18:1290-1304. [PMID: 33239726 PMCID: PMC8093261 DOI: 10.1038/s41423-020-00574-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphoid cells (ILCs) involved in the killing of infected and tumor cells. Among human and mouse NK cells from the spleen and blood, we previously identified by single-cell RNA sequencing (scRNAseq) two similar major subsets, NK1 and NK2. Using the same technology, we report here the identification, by single-cell RNA sequencing (scRNAseq), of three NK cell subpopulations in human bone marrow. Pseudotime analysis identified a subset of resident CD56bright NK cells, NK0 cells, as the precursor of both circulating CD56dim NK1-like NK cells and CD56bright NK2-like NK cells in human bone marrow and spleen under physiological conditions. Transcriptomic profiles of bone marrow NK cells from patients with acute myeloid leukemia (AML) exhibited stress-induced repression of NK cell effector functions, highlighting the profound impact of this disease on NK cell heterogeneity. Bone marrow NK cells from AML patients exhibited reduced levels of CD160, but the CD160high group had a significantly higher survival rate.
Collapse
Affiliation(s)
- Adeline Crinier
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Pierre-Yves Dumas
- CHU Bordeaux, Service d'Hématologie Clinique et de Thérapie Cellulaire, Bordeaux, France
- Bordeaux University, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U1035, Bordeaux, France
| | - Bertrand Escalière
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | | | - Laurine Gil
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Arnaud Villacreces
- Bordeaux University, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U1035, Bordeaux, France
| | - Frédéric Vély
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Zoran Ivanovic
- Institut National de la Santé et de la Recherche Médicale, U1035, Bordeaux, France
- Établissement Français du Sang Nouvelle Aquitaine, Bordeaux, France
| | - Pierre Milpied
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Émilie Narni-Mancinelli
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Éric Vivier
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France.
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France.
| |
Collapse
|
13
|
Bernard PL, Laletin V, Pastor S, Nunès JA, Guittard G. [Unleashing NK cell signaling to improve cancer immunotherapy]. Med Sci (Paris) 2020; 36 Hors série n° 1:50-55. [PMID: 33052095 DOI: 10.1051/medsci/2020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pierre-Louis Bernard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| | - Vladimir Laletin
- Centre de Recherche en Cancérologie de Marseille, CRCM, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| | - Sonia Pastor
- Centre de Recherche en Cancérologie de Marseille, CRCM, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| | - Jacques A Nunès
- Centre de Recherche en Cancérologie de Marseille, CRCM, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| | - Geoffrey Guittard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| |
Collapse
|
14
|
Ellison AR, Uren Webster TM, Rodriguez-Barreto D, de Leaniz CG, Consuegra S, Orozco-terWengel P, Cable J. Comparative transcriptomics reveal conserved impacts of rearing density on immune response of two important aquaculture species. FISH & SHELLFISH IMMUNOLOGY 2020; 104:192-201. [PMID: 32534231 DOI: 10.1016/j.fsi.2020.05.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Infectious diseases represent an important barrier to sustainable aquaculture development. Rearing density can substantially impact fish productivity, health and welfare in aquaculture, including growth rates, behaviour and, crucially, immune activity. Given the current emphasis on aquaculture diversification, stress-related indicators broadly applicable across species are needed. Utilising an interspecific comparative transcriptomic (RNAseq) approach, we compared gill gene expression responses of Atlantic salmon (Salmo salar) and Nile tilapia (Oreochromis niloticus) to rearing density and Saprolegnia parasitica infection. Salmon reared at high-density showed increased expression of stress-related markers (e.g. c-fos and hsp70), and downregulation of innate immune genes. Upon pathogen challenge, only salmon reared at low density exhibited increased expression of inflammatory interleukins and lymphocyte-related genes. Tilapia immunity, in contrast, was impaired at low-density. Using overlapping gene ontology enrichment and gene ortholog analyses, we found that density-related stress similarly impacted salmon and tilapia in key immune pathways, altering the expression of genes vital to inflammatory and Th17 responses to pathogen challenge. Given the challenges posed by ectoparasites and gill diseases in fish farms, this study underscores the importance of optimal rearing densities for immunocompetence, particularly for mucosal immunity. Our comparative transcriptomics analyses identified density stress impacted immune markers common across different fish taxa, providing key molecular targets with potential for monitoring and enhancing aquaculture resilience in a wide range of farmed species.
Collapse
Affiliation(s)
- Amy R Ellison
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| | | | | | | | - Sofia Consuegra
- Biosciences Department, Swansea University, Swansea, SA2 8PP, UK.
| | | | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
15
|
Wu SZ, Wei HX, Jiang D, Li SM, Zou WH, Peng HJ. Genome-Wide CRISPR Screen Identifies Host Factors Required by Toxoplasma gondii Infection. Front Cell Infect Microbiol 2020; 9:460. [PMID: 32039045 PMCID: PMC6987080 DOI: 10.3389/fcimb.2019.00460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii are obligate intracellular protoza, and due to their small genome and limited encoded proteins, they have to exploit host factors for entry, replication, and dissemination. Such host factors can be defined as host dependency factors (HDFs). Though HDFs are inessential for cell viability, they are critical for pathogen infection, and potential ideal targets for therapeutic intervention. However, information about these HDFs required by T. gondii infection is highly deficient. In this study, the genes of human foreskin fibroblast (HFF) cells were comprehensively edited using the lentiviral CRISPR-Cas9-sgRNA library, and then the lentivirus-treated cells were infected with T. gondii at multiplication of infection 1 (MOI = 1) for 10 days to identify HDFs essential for T. gondii infection. The survival cells were harvested and sent for sgRNA sequencing. The sgRNA sequence matched genes or miRNAs were potential HDFs. Some cells in the lentivirus-treated group could survive longer than those in the untreated control group after T. gondii infection. From a pool of 19,050 human genes and 1,864 human pri-miRNAs, 1,193 potential HDFs were identified, including 1,183 genes and 10 pri-miRNAs (corresponding with 17 mature miRNAs). Among them, seven genes and five mature miRNAs were validated with siRNAs, miRNA inhibitors, and mimics, respectively. Bioinformatics analysis revealed that, among the 1,183 genes, 53 potential HDFs were associated with regulation of host actin cytoskeleton and 23 potential HDFs coded immune negative regulators. This result indicated that actin dynamics were indispensable for T. gondii infection, and some host immune negative regulators may be involved in disarming host defenses. Our findings contribute to the current limited knowledge about host factors required by T. gondii infection and provide us with new targets for medication therapy and vaccine exploitation.
Collapse
Affiliation(s)
- Shui-Zhen Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hai-Xia Wei
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Sheng-Min Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei-Hao Zou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong-Juan Peng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Mucha S, Baurecht H, Novak N, Rodríguez E, Bej S, Mayr G, Emmert H, Stölzl D, Gerdes S, Jung ES, Degenhardt F, Hübenthal M, Ellinghaus E, Kässens JC, Wienbrandt L, Lieb W, Müller-Nurasyid M, Hotze M, Dand N, Grosche S, Marenholz I, Arnold A, Homuth G, Schmidt CO, Wehkamp U, Nöthen MM, Hoffmann P, Paternoster L, Standl M, Bønnelykke K, Ahluwalia TS, Bisgaard H, Peters A, Gieger C, Waldenberger M, Schulz H, Strauch K, Werfel T, Lee YA, Wolfien M, Rosenstiel P, Wolkenhauer O, Schreiber S, Franke A, Weidinger S, Ellinghaus D. Protein-coding variants contribute to the risk of atopic dermatitis and skin-specific gene expression. J Allergy Clin Immunol 2019; 145:1208-1218. [PMID: 31707051 DOI: 10.1016/j.jaci.2019.10.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/09/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Fifteen percent of atopic dermatitis (AD) liability-scale heritability could be attributed to 31 susceptibility loci identified by using genome-wide association studies, with only 3 of them (IL13, IL-6 receptor [IL6R], and filaggrin [FLG]) resolved to protein-coding variants. OBJECTIVE We examined whether a significant portion of unexplained AD heritability is further explained by low-frequency and rare variants in the gene-coding sequence. METHODS We evaluated common, low-frequency, and rare protein-coding variants using exome chip and replication genotype data of 15,574 patients and 377,839 control subjects combined with whole-transcriptome data on lesional, nonlesional, and healthy skin samples of 27 patients and 38 control subjects. RESULTS An additional 12.56% (SE, 0.74%) of AD heritability is explained by rare protein-coding variation. We identified docking protein 2 (DOK2) and CD200 receptor 1 (CD200R1) as novel genome-wide significant susceptibility genes. Rare coding variants associated with AD are further enriched in 5 genes (IL-4 receptor [IL4R], IL13, Janus kinase 1 [JAK1], JAK2, and tyrosine kinase 2 [TYK2]) of the IL13 pathway, all of which are targets for novel systemic AD therapeutics. Multiomics-based network and RNA sequencing analysis revealed DOK2 as a central hub interacting with, among others, CD200R1, IL6R, and signal transducer and activator of transcription 3 (STAT3). Multitissue gene expression profile analysis for 53 tissue types from the Genotype-Tissue Expression project showed that disease-associated protein-coding variants exert their greatest effect in skin tissues. CONCLUSION Our discoveries highlight a major role of rare coding variants in AD acting independently of common variants. Further extensive functional studies are required to detect all potential causal variants and to specify the contribution of the novel susceptibility genes DOK2 and CD200R1 to overall disease susceptibility.
Collapse
Affiliation(s)
- Sören Mucha
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Hansjörg Baurecht
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; Department for Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Natalija Novak
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Elke Rodríguez
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Saptarshi Bej
- Department of Systems Biology and Bioinformatics, University of Rostock, Germany
| | - Gabriele Mayr
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Hila Emmert
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dora Stölzl
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sascha Gerdes
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Eun Suk Jung
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany; Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Matthias Hübenthal
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany; Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Jan Christian Kässens
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Lars Wienbrandt
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank PopGen, Christian Albrechts University of Kiel, Kiel, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Ludwig-Maximilians-University Munich, Germany; Department of Internal Medicine I (Cardiology), Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Melanie Hotze
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Nick Dand
- School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Sarah Grosche
- Pediatric Allergology, Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Centrum (MDC) for Molecular Medicine, Berlin, Germany
| | - Ingo Marenholz
- Pediatric Allergology, Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Centrum (MDC) for Molecular Medicine, Berlin, Germany
| | - Andreas Arnold
- Clinic and Polyclinic of Dermatology, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Carsten O Schmidt
- Institute for Community Medicine, Study of Health in Pomerania/KEF, University Medicine Greifswald, Greifswald, Germany
| | - Ulrike Wehkamp
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Lavinia Paternoster
- Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, and the School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, Gentofte, Denmark
| | - Tarunveer S Ahluwalia
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, Gentofte, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, Gentofte, Denmark
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology and Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology and Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Holger Schulz
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Ludwig-Maximilians-University Munich, Germany
| | - Thomas Werfel
- Steno Diabetes Center Copenhagen, Gentofte, Denmark; Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany
| | - Young-Ae Lee
- Department of Internal Medicine I (Cardiology), Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany; School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Markus Wolfien
- Department of Systems Biology and Bioinformatics, University of Rostock, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany; First Medical Department, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany.
| |
Collapse
|
17
|
Zhang L, Li R, Hu K, Dai Y, Pang Y, Jiao Y, Liu Y, Cui L, Shi J, Cheng Z, Fu L. Prognostic role of DOK family adapters in acute myeloid leukemia. Cancer Gene Ther 2019; 26:305-312. [PMID: 30348947 DOI: 10.1038/s41417-018-0052-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/20/2018] [Accepted: 09/29/2018] [Indexed: 02/05/2023]
Abstract
Acute myeloid leukemia (AML) is a genetically and clinically heterogeneous disease. Gene mutational and expressional profile can aid the identification of different prognostic subgroups. Downstream of tyrosine kinase (DOK) proteins are a multigenic family of adaptors; some of them are key negative regulators of immune cell signaling. However, the expression and clinical implication of DOK family in AML has rarely been investigated. A total of 155 AML patients with DOK family (DOK1-7) expression data from The Cancer Genome Atlas database were enrolled in the study. In patients who only received chemotherapy, those with high expressions of DOK4 or DOK5 had significantly shorter EFS and OS than patients with low expressions (all P < 0.001), whereas high DOK7 expressers had longer EFS and OS than the low expressers (all P < 0.05). In patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT), however, all DOK members had no impact on EFS and OS. Multivariate analysis confirmed that high DOK5 expression was an independent risk factor for EFS and OS in untransplanted patients (all P < 0.05). Our study suggests that in AML, high expressions of DOK4 and DOK5 are adverse prognostic factors, high DOK7 expression is a good prognostic factor, but their effects can be overcome by allo-HSCT.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adult
- Aged
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor
- Databases, Genetic
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Male
- Middle Aged
- Multigene Family
- Mutation
- Prognosis
Collapse
Affiliation(s)
- Lin Zhang
- Department of Human Resources, Huaihe Hospital of Henan University, 475000, Kaifeng, China
| | - Ran Li
- Department of Surgery, Huaihe Hospital of Henan University, 475000, Kaifeng, China
| | - Kai Hu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, 100191, Beijing, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Shantou, China
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yifan Pang
- Department of Medicine, William Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Yang Jiao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 310058, Hangzhou, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, 475000, Kaifeng, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, 475000, Kaifeng, China
| | - Jinlong Shi
- Translational Medicine Center, Huaihe Hospital of Henan University, 475000, Kaifeng, China
- Department of Biomedical Engineering, Chinese PLA General Hospital, 100853, Beijing, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Shantou, China.
- Translational Medicine Center, Huaihe Hospital of Henan University, 475000, Kaifeng, China.
| | - Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, 100191, Beijing, China.
- Department of Hematology, Huaihe Hospital of Henan University, 475000, Kaifeng, China.
| |
Collapse
|
18
|
Li T, Li B, Sara A, Ay C, Leung WY, Zhang Y, Dong Y, Liang Q, Zhang X, Weidner P, Gutting T, Behrens HM, Röcken C, Sung JJ, Ebert MP, Yu J, Burgermeister E. Docking protein-1 promotes inflammatory macrophage signaling in gastric cancer. Oncoimmunology 2019; 8:e1649961. [PMID: 31646096 DOI: 10.1080/2162402x.2019.1649961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Docking protein-1 (DOK1) is a tumor suppressor frequently lost in malignant cells, however, it retains the ability to control activities of immune receptors in adjacent stroma cells of the tumor microenvironment. We therefore hypothesized that addressing DOK1 may be useful for cancer immunotherapy. DOK1 mRNA and DOK1 protein expression were downregulated in tumor cells of gastric cancer patients (n = 249). Conversely, its expression was up-regulated in cases positive for Epstein Barr Virus (EBV+) together with genes related to macrophage biology and targets of clinical immunotherapy such as programmed-cell-death-ligand-1 (PD-L1). Notably, high DOK1 positivity in stroma cells conferred poor prognosis in patients and correlated with high levels of inducible nitric oxide synthase in CD68+ tumor-associated macrophages. In macrophages derived from human monocytic leukemia cell lines, DOK1 (i) was inducible by agonists of the anti-diabetic transcription factor peroxisome proliferator-activated receptor-gamma (PPARγ), (ii) increased polarization towards an inflammatory phenotype, (iii) augmented nuclear factor-κB-dependent transcription of pro-inflammatory cytokines and (iv) reduced PD-L1 expression. These properties empowered DOK1+ macrophages to decrease the viability of human gastric cancer cells in contact-dependent co-cultures. DOK1 also reduced PD-L1 expression in human primary blood monocytes. Our data propose that the drugability of DOK1 may be exploited to reprogram myeloid cells and enforce the innate immune response against EBV+ human gastric cancer.
Collapse
Affiliation(s)
- Tong Li
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Beifang Li
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Asgharpour Sara
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christine Ay
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wing Yan Leung
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yanquan Zhang
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yujuan Dong
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiaoyi Liang
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Philip Weidner
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Gutting
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Christoph Röcken
- Dept. of Pathology, Christian-Albrechts University, Kiel, Germany
| | - Joseph Jy Sung
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthias P Ebert
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jun Yu
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Elke Burgermeister
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
19
|
Dynamic Gene Network Analysis of Caco-2 Cell Response to Shiga Toxin-Producing Escherichia coli-Associated Hemolytic-Uremic Syndrome. Microorganisms 2019; 7:microorganisms7070195. [PMID: 31288487 PMCID: PMC6680469 DOI: 10.3390/microorganisms7070195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 01/26/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some strains may cause hemolytic-uremic syndrome (HUS). In Brazil, these strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here, a system biology approach was used to investigate the differential transcriptomic and phenotypic responses of enterocyte-like Caco-2 cells to two STEC O113:H21 strains with similar virulence factor profiles (i.e. expressing stx2, ehxA, epeA, espA, iha, saa, sab, and subA): EH41 (Caco-2/EH41), isolated from a HUS patient in Australia, and Ec472/01 (Caco-2/Ec472), isolated from bovine feces in Brazil, during a 3 h period of bacteria-enterocyte interaction. Gene co-expression network analysis for Caco-2/EH41 revealed a quite abrupt pattern of topological variation along 3 h of enterocyte-bacteria interaction when compared with networks obtained for Caco-2/Ec472. Transcriptional module characterization revealed that EH41 induces inflammatory and apoptotic responses in Caco-2 cells just after the first hour of enterocyte-bacteria interaction, whereas the response to Ec472/01 is associated with cytoskeleton organization at the first hour, followed by the expression of immune response modulators. Scanning electron microscopy showed more intense microvilli destruction in Caco-2 cells exposed to EH41 when compared to those exposed to Ec472/01. Altogether, these results show that EH41 expresses virulence genes, inducing a distinctive host cell response, and is likely associated with severe pathogenicity.
Collapse
|
20
|
Almeida FF, Jacquelot N, Belz GT. Deconstructing deployment of the innate immune lymphocyte army for barrier homeostasis and protection. Immunol Rev 2019; 286:6-22. [PMID: 30294966 PMCID: PMC6446816 DOI: 10.1111/imr.12709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022]
Abstract
The study of the immune system has shifted from a purely dichotomous separation between the innate and adaptive arms to one that is now highly complex and reshaping our ideas of how steady‐state health is assured. It is now clear that immune cells do not neatly fit into these two streams and immune homeostasis depends on continual dialogue between multiple lineages of the innate (including dendritic cells, innate lymphoid cells, and unconventional lymphocytes) and adaptive (T and B lymphocytes) arms together with a finely tuned synergy between the host and microbes which is essential to ensure immune homeostasis. Innate lymphoid cells are critical players in this new landscape. Here, we discuss recent studies that have elucidated in detail the development of ILCs from their earliest progenitors and examine factors that influence their identification and ability to drive immune homeostasis and long‐term immune protection.
Collapse
Affiliation(s)
- Francisca F Almeida
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicolas Jacquelot
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gabrielle T Belz
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Miyata-Takata T, Chuang SS, Takata K, Toji T, Maeda Y, Sato Y, Yoshino T. Expression of T-cell receptor signalling pathway components in extranodal NK/T-cell lymphoma. Histopathology 2018; 73:1030-1038. [PMID: 30102799 DOI: 10.1111/his.13728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022]
Abstract
AIMS Although the neoplastic cells of extranodal natural killer (NK)/T-cell lymphoma (ENKTL) usually do not express T-cell antigens, the T-cell receptor (TCR) gene might be rearranged and TCR protein expressed. The aim is to elucidate the expression of the downstream TCR pathway components and their importance in ENKTL. METHODS AND RESULTS We used formalin-fixed paraffin-embedded tissues from 91 ENKTL samples to immunohistochemically characterise the expression of TCR pathway components. The following proteins were variably expressed: ZAP70 (94%; 83/88), GRAP2/GADS (68%; 60/88), DOK2 (42%; 38/90), LCK (35%; 31/88), and ITK (10%; 9/90). When these tumours were classified as being of T lineage (16%), NK lineage (45%), or indeterminate lineage (38%), the GRAP2/GADS expression rate was higher in T lineage tumours (versus NK, P = 0.0073; versus indeterminate, P = 0.00082). GRAP2/GADS-positive NK lineage tumours more frequently expressed DOK2 (P = 0.0073), and were more often confined to the nasal areas (P = 0.014). Furthermore, when these tumours were immunophenotypically classified into a T signature (42%) or NK signature (58%), the expression rates of GRAP2/GADS and ITK were higher in T signature tumours (P = 0.00074 and P = 0.067, respectively), whereas that of LCK was higher in NK-signature tumours (P = 0.10). CONCLUSIONS Although some ENTKL cases were polyclonal for TCR rearrangement and others lacked TCR expression, we speculate that the TCR pathway might be functioning in ENKTLs. A T signature versus a NK signature might be better for delineating the physiology of ENKTL than cellular lineage. Furthermore, ITK may represent a potential therapeutic target for patients with ITK-expressing tumours.
Collapse
Affiliation(s)
- Tomoko Miyata-Takata
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Katsuyoshi Takata
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Lymphoid Cancer Research, British Columbia Cancer, Vancouver, Canada
| | - Tomohiro Toji
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Haematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuharu Sato
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tadashi Yoshino
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
22
|
Picard E, Godet Y, Laheurte C, Dosset M, Galaine J, Beziaud L, Loyon R, Boullerot L, Lauret Marie Joseph E, Spehner L, Jacquin M, Eberst G, Gaugler B, Le Pimpec-Barthes F, Fabre E, Westeel V, Caignard A, Borg C, Adotévi O. Circulating NKp46 + Natural Killer cells have a potential regulatory property and predict distinct survival in Non-Small Cell Lung Cancer. Oncoimmunology 2018; 8:e1527498. [PMID: 30713781 DOI: 10.1080/2162402x.2018.1527498] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022] Open
Abstract
Natural killer (NK) cells are innate effector lymphocytes widely involved in cancer immunosurveillance. In this study, we described three circulating NK cell subsets in patients with non-small cell lung cancer (NSCLC). Compared to healthy donors (HD), lower rate of the cytotoxic CD56dim CD16+ NK cells was found in NSCLC patients (76.1% vs 82.4%, P = 0.0041). In contrast, the rate of CD56bright NK cells was similar between patients and HD. We showed in NSCLC patients a higher rate of a NK cell subset with CD56dim CD16- phenotype (16.7% vs 9.9% P = 0.0001). The degranulation property and cytokines production were mainly drive by CD56dim CD16- NK cell subset in patients. Analysis of natural cytotoxicity receptors (NCRs) expression identified four distinct clusters of patients with distinct NK cell subset profiles as compared to one major cluster in HD. Notably the cluster characterized by a low circulating level of NKp46+ NK cell subsets was absent in HD. We showed that the rate of circulating NKp46+ CD56dim CD16+ NK cells influenced the patients' survival. Indeed, the median overall survival in patients exhibiting high versus low level of this NK cell subset was 16 and 27 months respectively (P = 0.02). Finally, we demonstrated that blocking NKp46 receptor in vitro was able to restore spontaneous tumor specific T cell responses in NSCLC patients. In conclusion, this study showed a distinct distribution and phenotype of circulating NK cell subsets in NSCLC. It also supports the regulatory role of NKp46+ NK cell subset in NSCLC patients.
Collapse
Affiliation(s)
- Emilie Picard
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Yann Godet
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Caroline Laheurte
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France.,University Hospital of Besançon, INSERM CIC-1431 Clinical Investigation Center in Biotherapies, Besançon, France
| | - Magalie Dosset
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Jeanne Galaine
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Laurent Beziaud
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Romain Loyon
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Laura Boullerot
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | | | - Laurie Spehner
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Marion Jacquin
- University Hospital of Besançon, INSERM CIC-1431 Clinical Investigation Center in Biotherapies, Besançon, France
| | - Guillaume Eberst
- University Hospital of Besançon, Department of Pneumology, Besançon, France
| | - Béatrice Gaugler
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | | | - Elizabeth Fabre
- Service d'Oncologie Médicale, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Virginie Westeel
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France.,University Hospital of Besançon, Department of Pneumology, Besançon, France
| | - Anne Caignard
- INSERM, UMR1160, Institut Universitaire d'hématologie, Paris, France
| | - Christophe Borg
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Olivier Adotévi
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| |
Collapse
|
23
|
Guittard G, Pontarotti P, Granjeaud S, Rodrigues M, Abi-Rached L, Nunès JA. Evolutionary and expression analyses reveal a pattern of ancient duplications and functional specializations in the diversification of the Downstream of Kinase (DOK) genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:193-198. [PMID: 29453999 DOI: 10.1016/j.dci.2018.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/10/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Downstream of Kinase (DOK) proteins represent a multigenic family of adaptors that includes negative regulators of immune cell signaling. Using phylogenetics and intron/exon structure data, we show here that the seven human DOK genes (DOK1 to DOK7) form three highly divergent groups that emerged before the protostome-deuterostome split: DOK1/2/3, DOK4/5/6, and DOK7. For two of these three groups (DOK1/2/3 and DOK4/5/6), further gene duplications occurred in vertebrates and so while chordates only have three DOK genes, vertebrates have seven DOK genes over the three groups. From our expression analysis in humans, we show that each group of DOK genes has a distinct pattern of expression. The DOK1/2/3 group is immune specific, yet each of the three genes in the group has a distinct pattern of expression in immune cells. This immune specificity could thus be ancestral, with the DOK1/2/3 gene also being immune-related in protostomes. The DOK4/5/6 and DOK7 groups represent genes that are much less expressed in immune system than the DOK1/2/3 group. Interestingly, we identify a novel tyrosine based motif that is specific to the vertebrate DOK4/5/6 sequences. The evolution of the DOK genes is thus marked by a pattern of ancient duplications and functional specializations.
Collapse
Affiliation(s)
- Geoffrey Guittard
- Centre de Recherche en Cancérologie de Marseille, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, U1068, CNRS, UMR7258, Aix-Marseille Université UM 105, Marseille, France
| | - Pierre Pontarotti
- Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373, équipe évolution Biologique Modélisation, Marseille, France
| | - Samuel Granjeaud
- Centre de Recherche en Cancérologie de Marseille, CiBi Platform, Institut Paoli-Calmettes, Inserm, U1068, CNRS, UMR7258, Aix-Marseille Université UM 105, Marseille, France
| | - Magda Rodrigues
- Centre de Recherche en Cancérologie de Marseille, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, U1068, CNRS, UMR7258, Aix-Marseille Université UM 105, Marseille, France
| | - Laurent Abi-Rached
- Equipe ATIP, Aix Marseille Université, CNRS, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France.
| | - Jacques A Nunès
- Centre de Recherche en Cancérologie de Marseille, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, U1068, CNRS, UMR7258, Aix-Marseille Université UM 105, Marseille, France.
| |
Collapse
|
24
|
He P, Xu Z, Zhou J, Li X, Zhang W, Wu D, Zhang Z, Lian X, Yao X, Deng Z, Lin J, Qian J. Methylation‐associated
DOK1
and
DOK2
down‐regulation: Potential biomarkers for predicting adverse prognosis in acute myeloid leukemia. J Cell Physiol 2018; 233:6604-6614. [PMID: 29150948 DOI: 10.1002/jcp.26271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Pin‐Fang He
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
| | - Zi‐Jun Xu
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
| | - Jing‐Dong Zhou
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Xi‐Xi Li
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Wei Zhang
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - De‐Hong Wu
- Department of HematologyThe Third People's Hospital of KunShan CityKunshanJiangsuP.R. China
| | - Zhi‐Hui Zhang
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Xin‐Yue Lian
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Xin‐Yu Yao
- School of medicineJiangsu UniversityZhenjiangJiangsuP.R. China
| | - Zhao‐Qun Deng
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
| | - Jiang Lin
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
| | - Jun Qian
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| |
Collapse
|
25
|
Jang Y, Gerbec ZJ, Won T, Choi B, Podsiad A, B Moore B, Malarkannan S, Laouar Y. Cutting Edge: Check Your Mice-A Point Mutation in the Ncr1 Locus Identified in CD45.1 Congenic Mice with Consequences in Mouse Susceptibility to Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:1982-1987. [PMID: 29440507 DOI: 10.4049/jimmunol.1701676] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/21/2018] [Indexed: 12/31/2022]
Abstract
B6.SJL-Ptprca Pepcb /Boy (CD45.1) mice have been used in hundreds of congenic competitive transplants, with the presumption that they differ from C57BL/6 mice only at the CD45 locus. In this study, we describe a point mutation in the natural cytotoxicity receptor 1 (Ncr1) locus fortuitously identified in the CD45.1 strain. This point mutation was mapped at the 40th nucleotide of the Ncr1 locus causing a single amino acid mutation from cysteine to arginine at position 14 from the start codon, resulting in loss of NCR1 expression. We found that these mice were more resistant to CMV due to a hyper innate IFN-γ response in the absence of NCR1. In contrast, loss of NCR1 increased susceptibility to influenza virus, a result that is consistent with the role of NCR1 in the recognition of influenza Ag, hemagglutinin. This work sheds light on potential confounding experimental interpretation when this congenic strain is used as a tool for tracking lymphocyte development.
Collapse
Affiliation(s)
- Youngsoon Jang
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Zachary J Gerbec
- Blood Center of Wisconsin, Milwaukee, WI 53226.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Taejoon Won
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Bongkum Choi
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Amy Podsiad
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Subramaniam Malarkannan
- Blood Center of Wisconsin, Milwaukee, WI 53226.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Yasmina Laouar
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
26
|
MiR-192 and miR-662 enhance chemoresistance and invasiveness of squamous cell lung carcinoma. Lung Cancer 2018; 118:111-118. [PMID: 29571988 DOI: 10.1016/j.lungcan.2018.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Overexpression of miR-192, miR-192* and miR-662 was previously found to correlate with poor prognosis of early-stage squamous cell lung cancer (SCC) patients. In this study, we investigated the relevance of these miRNAs to cancer cell biology and chemoresistance. MATERIALS AND METHODS MiRNA expression profile was analysed in 10 non-small cell lung cancer (NSCLC) cell lines using RT-qPCR. H520 and H1703 cells were transfected with miRNA inhibitors (anti-miR-192, -192* and -662) for functional studies. Chemoresistance to cisplatin and etoposide was evaluated using MTT colorimetric assay. H520 cells were subjected to 3D soft-agar colony formation assay and H1703 cells to wound healing assay. Whole transcriptome analysis was used to assess the effect of miR-192 and miR-662 inhibition on gene expression. RESULTS SCC cell lines, H520 and H1703, differed in miRNA expression and phenotypic features. MiR-192 and miR-662 inhibition decreased clonogenicity and motility of SCC cells. MiR-192 and miR-662 inhibition sensitized SCC cells to etoposide but not to cisplatin. Whole transcriptome analysis revealed genes regulated by miR-192 and miR-662 in SCC, relevant to maintaining chemoresistance, invasiveness, epithelial-mesenchymal transition (EMT) and immune evasion. CONCLUSIONS We showed for the first time that miR-192 and miR-662 have functional role in SCC cells. Our findings suggest that targeting these miRNAs may impact both chemoresistance and invasiveness of SCC, and add to the evidence linking these aspects of tumour biology. Overexpression of miR-192 and miR-662 might be useful as a marker of resistance to etoposide.
Collapse
|
27
|
Kulkeaw K, Inoue T, Ishitani T, Nakanishi Y, Zon LI, Sugiyama D. Purification of zebrafish erythrocytes as a means of identifying a novel regulator of haematopoiesis. Br J Haematol 2017; 180:420-431. [PMID: 29265183 DOI: 10.1111/bjh.15048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/09/2017] [Indexed: 11/29/2022]
Abstract
Zebrafish embryos are useful to study haematopoietic gene function in vertebrates, although lack of antibodies to zebrafish proteins has limited the purification of specific cell populations. Here, we purified primitive zebrafish erythrocytes using 1, 5-bis{[2-(di-methylamino)ethyl]amino}-4, 8-dihydroxyanthracene-9, 10-dione (DRAQ5TM ), a DNA-staining fluorescent dye. At 48-h post-fertilization, we sorted small-sized cells from embryos using forward scatter and found that they consisted of DRAQ5high and DRAQ5low populations. DRAQ5high cells contained haemoglobin, lacked myeloperoxidase activity and expressed high levels of embryonic globin (hbae3 and hbbe1.1) mRNA, all characteristics of primitive erythrocytes. Following DRAQ5TM analysis of gata1:dsRed transgenic embryos, we purified primitive DRAQ5high dsRed+ erythrocytes from haematopoietic progenitor cells. Using this method, we identified docking protein 2 (Dok2) as functioning in differentiation of primitive erythrocytes. We conclude that DRAQ5TM -based flow cytometry enables purification of primitive zebrafish erythrocytes.
Collapse
Affiliation(s)
- Kasem Kulkeaw
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoko Inoue
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tohru Ishitani
- Division of Cell Regulation Systems, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yoichi Nakanishi
- Department of Clinical Study, Centre for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan
| | - Leonard I Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Stem Cell Program and Division of Haematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Stem Cell Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Daisuke Sugiyama
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Clinical Study, Centre for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan.,Centre for Clinical and Translational Research, Kyushu University, Fukuoka, Japan
| |
Collapse
|
28
|
Dok-1 and Dok-2 Are Required To Maintain Herpes Simplex Virus 1-Specific CD8 + T Cells in a Murine Model of Ocular Infection. J Virol 2017; 91:JVI.02297-16. [PMID: 28490594 DOI: 10.1128/jvi.02297-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Dok-1 and Dok-2 negatively regulate responses downstream of several immune receptors in lymphoid and myeloid cells. Recent evidence showed that Dok proteins are essential in the formation of memory CD8+ T cells to an exogenous epitope expressed by vaccinia virus; however, the importance of Dok-1 and Dok-2 in the control of viral infection is unknown. Here, we investigated the role of Dok proteins in modulating the immune response against herpes simplex virus 1 (HSV-1) in a mouse model of ocular infection. During acute infection, viral titers in the eye were similar in wild-type (WT) and Dok-1 and Dok-2 double-knockout (DKO) mice, and the percentages of infiltrating leukocytes were similar in DKO and WT corneas and trigeminal ganglia (TG). DKO mice exhibited a diminished CD8+ T cell response to the immunodominant HSV-1 glycoprotein B (gB) epitope in the spleen and draining lymph nodes compared to WT mice during acute infection. Remarkably, gB-specific CD8+ T cells almost completely disappeared in the spleens of DKO mice during latency, and the reduction of CD8+ effector memory T (Tem) cells was more severe than that of CD8+ central memory T (Tcm) cells. The percentage of gB-specific CD8+ T cells in TG during latency was also dramatically reduced in DKO mice; however, they were phenotypically similar to those from WT mice. In ex vivo assays, reactivation was detected earlier in TG cultures from infected DKO versus WT mice. Thus, Dok-1 and Dok-2 promote survival of gB-specific CD8+ T cells in TG latently infected with HSV-1.IMPORTANCE HSV-1 establishes lifelong latency in sensory neurons of trigeminal ganglia (TG). In humans, HSV-1 is able to sporadically reactivate from latently infected neurons and establish a lytic infection at a site to which the neurons project. Most herpetic disease in humans is due to reactivation of HSV-1 from latency rather than to primary acute infection. CD8+ T cells are thought to play an important role in controlling recurrent infections. In this study, we examined the involvement of Dok-1 and Dok-2 signaling proteins in the control of HSV-1 infection. We provide evidence that Dok proteins are required to maintain a CD8+ T cell response against HSV-1 during latency-especially CD8+ Tem cells-and that they negatively affect HSV-1 reactivation from latency. Elucidating Dok-mediated mechanisms involved in the control of HSV-1 reactivation from latency might contribute to the development of therapeutic strategies to prevent recurrent HSV-1-induced pathology.
Collapse
|
29
|
Win S, Than TA, Min RWM, Aghajan M, Kaplowitz N. c-Jun N-terminal kinase mediates mouse liver injury through a novel Sab (SH3BP5)-dependent pathway leading to inactivation of intramitochondrial Src. Hepatology 2016; 63:1987-2003. [PMID: 26845758 PMCID: PMC4874901 DOI: 10.1002/hep.28486] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/03/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Sustained c-Jun N-terminal kinase (JNK) activation has been implicated in many models of cell death and tissue injury. Phosphorylated JNK (p-JNK) interacts with the mitochondrial outer membrane SH3 homology associated BTK binding protein (Sab, or SH3BP5). Using knockdown or liver-specific deletion of Sab, we aimed to elucidate the consequences of this interaction on mitochondrial function in isolated mitochondria and liver injury models in vivo. Respiration in isolated mitochondria was directly inhibited by p-JNK + adenosine triphosphate. Knockdown or liver-specific knockout of Sab abrogated this effect and markedly inhibited sustained JNK activation and liver injury from acetaminophen or tumor necrosis factor/galactosamine. We then elucidated an intramitochondrial pathway in which interaction of JNK and Sab on the outside of the mitochondria released protein tyrosine phosphatase, nonreceptor type 6 (SHP1, or PTPN6) from Sab in the inside of the mitochondrial outer membrane, leading to its activation and transfer to the inner membrane, where it dephosphorylates P-Y419Src (active), which required a platform protein, docking protein 4 (DOK4), on the inner membrane. Knockdown of mitochondrial DOK4 or SHP1 inhibited the inactivation of mitochondrial p-Src and the effect of p-JNK on mitochondria. CONCLUSIONS The binding to and phosphorylation of Sab by p-JNK on the outer mitochondrial membrane leads to SHP1-dependent and DOK4-dependent inactivation of p-Src on the inner membrane; inactivation of mitochondrial Src inhibits electron transport and increases reactive oxygen species release, which sustains JNK activation and promotes cell death and organ injury. (Hepatology 2016;63:1987-2003).
Collapse
Affiliation(s)
- Sanda Win
- USC Research Center for Liver Disease, Keck School of Medicine of USC, Los Angeles, California
| | - Tin Aung Than
- USC Research Center for Liver Disease, Keck School of Medicine of USC, Los Angeles, California
| | - Robert Win Maw Min
- USC Research Center for Liver Disease, Keck School of Medicine of USC, Los Angeles, California
| | | | - Neil Kaplowitz
- USC Research Center for Liver Disease, Keck School of Medicine of USC, Los Angeles, California,To whom correspondence should be addressed: USC Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., HMR 101, Los Angeles, CA 90089-9121, Tel.: 323-442-5576; Fax: 323-442-3243;
| |
Collapse
|
30
|
Tang A, Dadaglio G, Oberkampf M, Di Carlo S, Peduto L, Laubreton D, Desrues B, Sun CM, Montagutelli X, Leclerc C. B cells promote tumor progression in a mouse model of HPV-mediated cervical cancer. Int J Cancer 2016; 139:1358-71. [DOI: 10.1002/ijc.30169] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/20/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Alexandre Tang
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur; Paris France
| | - Gilles Dadaglio
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Marine Oberkampf
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Selene Di Carlo
- Institut Pasteur, Unité Microenvironnement Et Immunité; Paris France
| | - Lucie Peduto
- Institut Pasteur, Unité Microenvironnement Et Immunité; Paris France
| | - Daphné Laubreton
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Belinda Desrues
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Cheng-Ming Sun
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Xavier Montagutelli
- Institut Pasteur, Unité de Génétique fonctionnelle de la souris; Paris France
| | - Claude Leclerc
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| |
Collapse
|
31
|
Coppin E, De Grandis M, Pandolfi PP, Arcangeli ML, Aurrand-Lions M, Nunès JA. Dok1 and Dok2 Proteins Regulate Cell Cycle in Hematopoietic Stem and Progenitor Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:4110-21. [DOI: 10.4049/jimmunol.1501037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 03/11/2016] [Indexed: 01/27/2023]
|
32
|
Taylor EB, Nayak DK, Quiniou SMA, Bengten E, Wilson M. Identification of SHIP-1 and SHIP-2 homologs in channel catfish, Ictalurus punctatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:79-87. [PMID: 25743379 DOI: 10.1016/j.dci.2015.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
Src homology domain 2 (SH2) domain-containing inositol 5'-phosphatases (SHIP) proteins have diverse roles in signal transduction. SHIP-1 and SHIP-2 homologs were identified in channel catfish, Ictalurus punctatus, based on sequence homology to murine and human SHIP sequences. Full-length cDNAs for catfish SHIP-1 and SHIP-2 (IpSHIP-1 and IpSHIP-2) were obtained using 5' and 3' RACE protocols. Catfish SHIP molecules share a high degree of sequence identity to their respective SHIP sequences from diverse taxa and both are encoded by single copy genes. IpSHIP-1 and IpSHIP-2 transcripts were expressed in all catfish tissues analyzed except for skin, and IpSHIP-1 message was more abundant than IpSHIP-2 message in lymphoid tissues. Catfish clonal B, cytotoxic T, and macrophage cell lines also expressed message for both molecules. IpSHIP-1 and IpSHIP-2 SH2 domains were expressed as recombinant proteins and were both found to be bound by cross-reacting rabbit anti-mouse SHIP-1 pAb. The anti-mouse SHIP-1 pAb also reacted with cell lysates from the cytotoxic T cell lines, macrophages and stimulated PBL. SHIP-1 is also phosphorylated at a conserved tyrosine residue, as shown by immunoprecipitation studies.
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Deepak K Nayak
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Sylvie M A Quiniou
- Warmwater Aquaculture Research Unit, USDA-ARS, Stoneville, MS 38776, USA
| | - Eva Bengten
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Melanie Wilson
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
33
|
Coppin E, Malergue F, Thibult ML, Scifo C, Favre C, Nunès JA. Flow cytometric analysis of intracellular phosphoproteins in human monocytes. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 92:207-210. [DOI: 10.1002/cyto.b.21207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Emilie Coppin
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille; Marseille France
- Institut Paoli-Calmettes; Marseille France
- CNRS, UMR7258, Centre de Recherche en Cancérologie de Marseille; Marseille France
- Aix-Marseille Université, UM105; Marseille France
| | - Fabrice Malergue
- Beckman Coulter Immunotech, Life Sciences Global Assay and Applications Development; Marseille France
| | - Marie-Laure Thibult
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille; Marseille France
- Institut Paoli-Calmettes; Marseille France
- CNRS, UMR7258, Centre de Recherche en Cancérologie de Marseille; Marseille France
- Aix-Marseille Université, UM105; Marseille France
| | - Caroline Scifo
- Beckman Coulter Immunotech, Life Sciences Global Assay and Applications Development; Marseille France
| | - Cédric Favre
- Beckman Coulter Immunotech, Life Sciences Global Assay and Applications Development; Marseille France
| | - Jacques A. Nunès
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille; Marseille France
- Institut Paoli-Calmettes; Marseille France
- CNRS, UMR7258, Centre de Recherche en Cancérologie de Marseille; Marseille France
- Aix-Marseille Université, UM105; Marseille France
| |
Collapse
|