1
|
Elhajjajy SI, Weng Z. A novel NLP-based method and algorithm to discover RNA-binding protein (RBP) motifs, contexts, binding preferences, and interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.631609. [PMID: 39896518 PMCID: PMC11785142 DOI: 10.1101/2025.01.20.631609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
RNA-binding proteins (RBPs) are essential modulators in the regulation of mRNA processing. The binding patterns, interactions, and functions of most RBPs are not well-characterized. Previous studies have shown that motif context is an important contributor to RBP binding specificity, but its precise role remains unclear. Despite recent computational advances to predict RBP binding, existing methods are challenging to interpret and largely lack a categorical focus on RBP motif contexts and RBP-RBP interactions. There remains a need for interpretable predictive models to disambiguate the contextual determinants of RBP binding specificity in vivo . Here, we present a novel and comprehensive pipeline to address these knowledge gaps. We devise a Natural Language Processing-based decomposition method to deconstruct sequences into entities consisting of a central target k -mer and its flanking regions, then use this representation to formulate the RBP binding prediction task as a weakly supervised Multiple Instance Learning problem. To interpret our predictions, we introduce a deterministic motif discovery algorithm designed to handle our data structure, recapitulating the established motifs of numerous RBPs as validation. Importantly, we characterize the binding motifs and binding contexts for 71 RBPs, with many of them being novel. Finally, through feature integration, transitive inference, and a new cross-prediction approach, we propose novel cooperative and competitive RBP-RBP interaction partners and hypothesize their potential regulatory functions. In summary, we present a complete computational strategy for investigating the contextual determinants of specific RBP binding, and we demonstrate the significance of our findings in delineating RBP binding patterns, interactions, and functions.
Collapse
|
2
|
Takeda JI, Okamoto T, Masuda A. Evolutionarily Developed Alternatively Spliced Exons Containing Translation Initiation Sites. Cells 2024; 14:11. [PMID: 39791712 PMCID: PMC11719525 DOI: 10.3390/cells14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Alternative splicing is essential for the generation of various protein isoforms that are involved in cell differentiation and tissue development. In addition to internal coding exons, alternative splicing affects the exons with translation initiation codons; however, little is known about these exons. Here, we performed a systematic classification of human alternative exons using coding information. The analysis showed that more than 5% of cassette exons contain translation initiation codons (alternatively skipped exons harboring a 5' untranslated region and coding region, 5UC-ASEs) although their skipping causes the deletion of translation initiation sites essential for protein synthesis. The splicing of 5UC-ASEs is under the repressive control of MATR3, a DNA/RNA-binding protein associated with neurodegeneration, and is distinctly regulated particularly in the human brain, muscle, and testis. Interestingly, MATR3 represses its own translation by skipping a 5UC-ASE in MATR3 to autoregulate its expression level. 5UC-ASEs are larger than other types of alternative exons. Furthermore, evolutionary analysis revealed that 5UC-ASEs have already appeared in cartilaginous fishes, have increased in amphibians, and are concentrated in the genes involved in transcription in mammals. Taken together, our analysis identified a unique set of alternative exons, 5UC-ASEs, that have evolutionarily acquired a repression mechanism for gene expression through association with MATR3.
Collapse
Affiliation(s)
- Jun-ichi Takeda
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Takaaki Okamoto
- Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan;
- Academia-Industry Collaboration Platform for Cultivating Medical AI Leaders (AI-MAILs), Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Akio Masuda
- Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan;
| |
Collapse
|
3
|
Long H, Xiong Y, Liu H, Yang M, Liu T, Gong C, Li S. IL-6 Exacerbates Oxidative Damage of RPE Cells by Indirectly Destabilizing the mRNA of DNA Repair Genes. Inflammation 2024:10.1007/s10753-024-02192-2. [PMID: 39581910 DOI: 10.1007/s10753-024-02192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Chronic inflammation has been associated with the progression of age-related macular degeneration (AMD) and diabetic retinopathy (DR), and the levels of various inflammatory factors are significantly increased in intraocular fluids of patients with AMD and DR. Therefore, elucidating the roles of inflammatory factors in the oxidative damage of RPE cells will help uncover the pathogenesis of AMD and DR. We have previously demonstrated that E2F1 plays an important role in the antioxidant capacity of RPE cells. Here, our transcriptome analysis shows that E2F1 affected the expressions of DNA repair genes in RPE cells. In addition, we found that E2F1 transactivated the splicing factor SRSF1. SRSF1 knockdown promoted DNA oxidative damage and apoptosis and decreased the mRNA stability of DNA repair genes XRCC2, POLK and LIG4 in RPE cells. Moreover, we found that SRSF1 could bind to the RNA stabilizing factor MATR3, and knockdown of the latter affected the mRNA stability of these DNA repair genes. Notably, interleukin-6 (IL-6), an inflammatory factor upregulated in intraocular fluids of patients with AMD and DR, decreased SRSF1 expression by inducing acetylation of E2F1 at the K125 position. Consistently, SRSF1 overexpression relieved IL-6-induced DNA oxidative damage and apoptosis in RPE cells. In vivo experiment results also confirmed that IL-6 could aggravate retinal oxidative damage. In conclusion, high levels of IL-6 in the eyes of patients with AMD and DR destabilize the mRNAs of DNA repair genes by disrupting the expression of SRSF1, leading to abnormal repair of DNA oxidative damage in RPE cells.
Collapse
Affiliation(s)
- Huirong Long
- Xuzhou Key Laboratory of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Institute of Xuzhou, Xuzhou, 221100, China
| | - Yucong Xiong
- Xuzhou Key Laboratory of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Institute of Xuzhou, Xuzhou, 221100, China
| | - Haiyu Liu
- Xuzhou Key Laboratory of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Institute of Xuzhou, Xuzhou, 221100, China
| | - Meiling Yang
- Xuzhou Key Laboratory of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Institute of Xuzhou, Xuzhou, 221100, China
| | - Ting Liu
- Xuzhou Key Laboratory of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Institute of Xuzhou, Xuzhou, 221100, China
| | - Chaoju Gong
- Xuzhou Key Laboratory of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Institute of Xuzhou, Xuzhou, 221100, China.
| | - Suyan Li
- Xuzhou Key Laboratory of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Institute of Xuzhou, Xuzhou, 221100, China.
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Institute of Xuzhou, Xuzhou, 221100, China.
| |
Collapse
|
4
|
Wu Y, Yang M, Wu SB, Luo PQ, Zhang C, Ruan CS, Cui W, Zhao QR, Chen LX, Meng JJ, Song Q, Zhang WJ, Pei QQ, Li F, Zeng T, Du HX, Xu LX, Zhang W, Zhang XX, Luo XH. Zinc finger BED-type containing 3 promotes hepatic steatosis by interacting with polypyrimidine tract-binding protein 1. Diabetologia 2024; 67:2346-2366. [PMID: 39037604 DOI: 10.1007/s00125-024-06224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/03/2024] [Indexed: 07/23/2024]
Abstract
AIMS/HYPOTHESIS The relationship between metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes mellitus, insulin resistance and the metabolic syndrome is well established. While zinc finger BED-type containing 3 (ZBED3) has been linked to type 2 diabetes mellitus and the metabolic syndrome, its role in MASLD remains unclear. In this study, we aimed to investigate the function of ZBED3 in the context of MASLD. METHODS Expression levels of ZBED3 were assessed in individuals with MASLD, as well as in cellular and animal models of MASLD. In vitro and in vivo analyses were conducted using a cellular model of MASLD induced by NEFA and an animal model of MASLD induced by a high-fat diet (HFD), respectively, to investigate the role of ZBED3 in MASLD. ZBED3 expression was increased by lentiviral infection or tail-vein injection of adeno-associated virus. RNA-seq and bioinformatics analysis were employed to examine the pathways through which ZBED3 modulates lipid accumulation. Findings from these next-generation transcriptome sequencing studies indicated that ZBED3 controls SREBP1c (also known as SREBF1; a gene involved in fatty acid de novo synthesis); thus, co-immunoprecipitation and LC-MS/MS were utilised to investigate the molecular mechanisms by which ZBED3 regulates the sterol regulatory element binding protein 1c (SREBP1c). RESULTS In this study, we found that ZBED3 was significantly upregulated in the liver of individuals with MASLD and in MASLD animal models. ZBED3 overexpression promoted NEFA-induced triglyceride accumulation in hepatocytes in vitro. Furthermore, the hepatocyte-specific overexpression of Zbed3 promoted hepatic steatosis. Conversely, the hepatocyte-specific knockout of Zbed3 resulted in resistance of HFD-induced hepatic steatosis. Mechanistically, ZBED3 interacts directly with polypyrimidine tract-binding protein 1 (PTBP1) and affects its binding to the SREBP1c mRNA precursor to regulate SREBP1c mRNA stability and alternative splicing. CONCLUSIONS/INTERPRETATION This study indicates that ZBED3 promotes hepatic steatosis and serves as a critical regulator of the progression of MASLD. DATA AVAILABILITY RNA-seq data have been deposited in the NCBI Gene Expression Omnibus ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE231875 ). MS proteomics data have been deposited to the ProteomeXchange Consortium via the iProX partner repository ( https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD041743 ).
Collapse
Affiliation(s)
- Yao Wu
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Min Yang
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Shao-Bo Wu
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Pei-Qi Luo
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Cheng Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Chang-Shun Ruan
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Wei Cui
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qiu-Rong Zhao
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Lin-Xin Chen
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Juan-Juan Meng
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qiang Song
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Wen-Jin Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qin-Qin Pei
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Fang Li
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Ting Zeng
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Hong-Xin Du
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Li-Xin Xu
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Xian-Xiang Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China.
| | - Xiao-He Luo
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China.
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China.
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China.
| |
Collapse
|
5
|
Cha HJ. Nuclear structures and their emerging roles in cell differentiation and development. BMB Rep 2024; 57:381-387. [PMID: 39219044 PMCID: PMC11444988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The nucleus, a highly organized and dynamic organelle, plays a crucial role in regulating cellular processes. During cell differentiation, profound changes occur in gene expression, chromatin organization, and nuclear morphology. This review explores the intricate relationship between nuclear architecture and cellular function, focusing on the roles of the nuclear lamina, nuclear pore complexes (NPCs), sub-nuclear bodies, and the nuclear scaffold. These components collectively maintain nuclear integrity, organize chromatin, and interact with key regulatory factors. The dynamic remodeling of chromatin, its interactions with nuclear structures, and epigenetic modifications work in concert to modulate gene accessibility and ensure precise spatiotemporal control of gene expression. The nuclear lamina stabilizes nuclear shape and is associated with inactive chromatin regions, while NPCs facilitate selective transport. Sub-nuclear bodies contribute to genome organization and gene regulation, often by influencing RNA processing. The nuclear scaffold provides structural support, impacting 3D genome organization, which is crucial for proper gene expression during differentiation. This review underscores the significance of nuclear architecture in regulating gene expression and guiding cell differentiation. Further investigation into nuclear structure and 3D genome organization will deepen our understanding of the mechanisms governing cell fate determination. [BMB Reports 2024; 57(9): 381-387].
Collapse
Affiliation(s)
- Hye Ji Cha
- Department of Biomedical Science & Engineering, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
6
|
Masuda A, Okamoto T, Kawachi T, Takeda JI, Hamaguchi T, Ohno K. Blending and separating dynamics of RNA-binding proteins develop architectural splicing networks spreading throughout the nucleus. Mol Cell 2024; 84:2949-2965.e10. [PMID: 39053456 DOI: 10.1016/j.molcel.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/28/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
The eukaryotic nucleus has a highly organized structure. Although the spatiotemporal arrangement of spliceosomes on nascent RNA drives splicing, the nuclear architecture that directly supports this process remains unclear. Here, we show that RNA-binding proteins (RBPs) assembled on RNA form meshworks in human and mouse cells. Core and accessory RBPs in RNA splicing make two distinct meshworks adjacently but distinctly distributed throughout the nucleus. This is achieved by mutual exclusion dynamics between the charged and uncharged intrinsically disordered regions (IDRs) of RBPs. These two types of meshworks compete for spatial occupancy on pre-mRNA to regulate splicing. Furthermore, the optogenetic enhancement of the RBP meshwork causes aberrant splicing, particularly of genes involved in neurodegeneration. Genetic mutations associated with neurodegenerative diseases are often found in the IDRs of RBPs, and cells harboring these mutations exhibit impaired meshwork formation. Our results uncovered the spatial organization of RBP networks to drive RNA splicing.
Collapse
Affiliation(s)
- Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takaaki Okamoto
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshihiko Kawachi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
| |
Collapse
|
7
|
Cheng X, Baki VB, Moran M, Liu B, Yu J, Zhao M, Li Q, Riethoven JJ, Gurumurth CB, Harris EN, Sun X. Liver matrin-3 protects mice against hepatic steatosis and stress response via constitutive androstane receptor. Mol Metab 2024; 86:101977. [PMID: 38936659 PMCID: PMC11267048 DOI: 10.1016/j.molmet.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise with the increasing obesity epidemic. Rezdiffra as an activator of a thyroid hormone receptor-beta is the only Food and Drug Administration approved therapy. As such, there is a critical need to improve our understanding of gene expression regulation and signaling transduction in MASLD to develop new therapies. Matrin-3 is a DNA- and RNA-binding protein involved in the pathogenesis of human diseases. Here we examined its previously uncharacterized role in limiting hepatic steatosis and stress response via the constitutive androstane receptor (CAR). METHODS Matrin-3 floxed and liver-specific knockout mice were fed either a chow diet or 60 kcal% high-fat diet (HFD) for up to 16 weeks. The mice were euthanized for different analysis including liver histology, lipid levels, and gene expression. Bulk RNA-seq, bulk ATAC-seq, and single-nucleus Multiome were used to examine changes of transcriptome and chromatin accessibility in the liver. Integrative bioinformatics analysis of our data and publicly available datasets and different biochemical assays were performed to identify underlying the molecular mechanisms mediating matrin-3's effects. Liver-tropic adeno-associated virus was used to restore the expression of CAR for lipid, acute phase genes, and histological analysis. RESULTS Matrin-3 expression is induced in the steatotic livers of mice. Liver-specific matrin-3 deletion exacerbated HFD-induced steatosis, acute phase response, and inflammation in the liver of female mice. The transcriptome and chromatin accessibility were re-programmed in the liver of these mice with signatures indicating that CAR signaling is dysregulated. Mechanistically, matrin-3 interacts with CAR mRNA, and matrin-3 deficiency promotes CAR mRNA degradation. Consequently, matrin-3 deletion impaired CAR signaling by reducing CAR expression. Matrin-3 levels positively correlate with CAR expression in human livers. Ces2a and Il1r1 were identified as new target genes of CAR. Interestingly, we found that CAR discords with the expression of its target genes including Cyp2b10 and Ces2a in response to HFD, indicating CAR signaling is dysregulated by HFD despite increased CAR expression. Dysregulated CAR signaling upon matrin-3 deficiency reduced Ces2a and de-repressed Il1r1 expression. CAR restoration partially abrogated the dysregulated gene expression, exacerbated hepatic steatosis, acute phase response, and inflammation in liver-specific matrin-3 knockout mice fed a HFD. CONCLUSIONS Our findings demonstrate that matrin-3 is a key upstream regulator maintaining CAR signaling upon metabolic stress, and the matrin-3-CAR axis limits hepatic steatosis and stress response signaling that may give insights for therapeutic intervention.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Vijaya Bhaskar Baki
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Matthew Moran
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Baolong Liu
- Department of Nutrition and Health Sciences, University of Nebraska - Lincoln, 230 Filley Hall, Lincoln, NE 68583-0922, USA
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska - Lincoln, 230 Filley Hall, Lincoln, NE 68583-0922, USA
| | - Miaoyun Zhao
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Jean-Jack Riethoven
- Nebraska Center for Biotechnology, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | | | - Edward N Harris
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska - Lincoln, Lincoln, NE 68588, USA; Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska - Lincoln, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska - Lincoln, Lincoln, NE 68588, USA; Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska - Lincoln, USA.
| |
Collapse
|
8
|
Wang J, Yan L, Wang X, Jia R, Guo J. Surface PD-1 expression in T cells is suppressed by HNRNPK through an exonic splicing silencer on exon 3. Inflamm Res 2024; 73:1123-1135. [PMID: 38698180 DOI: 10.1007/s00011-024-01887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVE Immunotherapy targeting programmed cell death 1 (PDCD1 or PD-1) and its ligands has shown remarkable promise and the regulation mechanism of PD-1 expression has received arising attention in recent years. PDCD1 exon 3 encodes the transmembrane domain and the deletion of exon 3 produces a soluble protein isoform of PD-1 (sPD-1), which can enhance immune response by competing with full-length PD-1 protein (flPD-1 or surface PD-1) on T cell surface. However, the mechanism of PDCD1 exon 3 skipping is unclear. METHODS The online SpliceAid program and minigene expression system were used to analyze potential splicing factors involved in the splicing event of PDCD1 exon 3. The potential binding motifs of heterogeneous nuclear ribonucleoprotein K (HNRNPK) on exon 3 predicted by SpliceAid were mutated by site-directed mutagenesis technology, which were further verified by pulldown assay. Antisense oligonucleotides (ASOs) targeting the exonic splicing silencer (ESS) on PDCD1 exon 3 were synthesized and screened to suppress the skipping of exon 3. The alternative splicing of PDCD1 exon 3 was analyzed by semiquantitative reverse transcription PCR. Western blot and flow cytometry were performed to detect the surface PD-1 expression in T cells. RESULTS HNRNPK was screened as a key splicing factor that promoted PDCD1 exon 3 skipping, causing a decrease in flPD-1 expression on T cell membrane and an increase in sPD-1 expression. Mechanically, a key ESS has been identified on exon 3 and can be bound by HNRNPK protein to promote exon 3 skipping. Blocking the interaction between ESS and HNRNPK with an ASO significantly reduced exon 3 skipping. Importantly, HNRNPK can promote exon 3 skipping of mouse Pdcd1 gene as well. CONCLUSIONS Our study revealed a novel evolutionarily conserved regulatory mechanism of PD-1 expression. The splicing factor HNRNPK markedly promoted PDCD1 exon 3 skipping by binding to the ESS on PDCD1 exon 3, resulting in decreased expression of flPD-1 and increased expression of sPD-1 in T cells.
Collapse
Affiliation(s)
- Jiayun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lingyan Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
9
|
Sprunger ML, Jackrel ME. The role of Matrin-3 in physiology and its dysregulation in disease. Biochem Soc Trans 2024; 52:961-972. [PMID: 38813817 PMCID: PMC11209761 DOI: 10.1042/bst20220585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
The dysfunction of many RNA-binding proteins (RBPs) that are heavily disordered, including TDP-43 and FUS, are implicated in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). These proteins serve many important roles in the cell, and their capacity to form biomolecular condensates (BMCs) is key to their function, but also a vulnerability that can lead to misregulation and disease. Matrin-3 (MATR3) is an intrinsically disordered RBP implicated both genetically and pathologically in ALS/FTD, though it is relatively understudied as compared with TDP-43 and FUS. In addition to binding RNA, MATR3 also binds DNA and is implicated in many cellular processes including the DNA damage response, transcription, splicing, and cell differentiation. It is unclear if MATR3 localizes to BMCs under physiological conditions, which is brought further into question due to its lack of a prion-like domain. Here, we review recent studies regarding MATR3 and its roles in numerous physiological processes, as well as its implication in a range of diseases.
Collapse
Affiliation(s)
- Macy L Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, U.S.A
| | - Meredith E Jackrel
- Department of Chemistry, Washington University, St. Louis, MO 63130, U.S.A
| |
Collapse
|
10
|
Santos JR, Park J. MATR3's Role beyond the Nuclear Matrix: From Gene Regulation to Its Implications in Amyotrophic Lateral Sclerosis and Other Diseases. Cells 2024; 13:980. [PMID: 38891112 PMCID: PMC11171696 DOI: 10.3390/cells13110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Matrin-3 (MATR3) was initially discovered as a component of the nuclear matrix about thirty years ago. Since then, accumulating studies have provided evidence that MATR3 not only plays a structural role in the nucleus, but that it is also an active protein involved in regulating gene expression at multiple levels, including chromatin organization, DNA transcription, RNA metabolism, and protein translation in the nucleus and cytoplasm. Furthermore, MATR3 may play a critical role in various cellular processes, including DNA damage response, cell proliferation, differentiation, and survival. In addition to the revelation of its biological role, recent studies have reported MATR3's involvement in the context of various diseases, including neurodegenerative and neurodevelopmental diseases, as well as cancer. Moreover, sequencing studies of patients revealed a handful of disease-associated mutations in MATR3 linked to amyotrophic lateral sclerosis (ALS), which further elevated the gene's importance as a topic of study. In this review, we synthesize the current knowledge regarding the diverse functions of MATR3 in DNA- and RNA-related processes, as well as its involvement in various diseases, with a particular emphasis on ALS.
Collapse
Affiliation(s)
- Jhune Rizsan Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeehye Park
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
11
|
Moreno-Aguilera M, Neher AM, Mendoza MB, Dodel M, Mardakheh FK, Ortiz R, Gallego C. KIS counteracts PTBP2 and regulates alternative exon usage in neurons. eLife 2024; 13:e96048. [PMID: 38597390 PMCID: PMC11045219 DOI: 10.7554/elife.96048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.
Collapse
Affiliation(s)
| | - Alba M Neher
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Mónica B Mendoza
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Martin Dodel
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Faraz K Mardakheh
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Raúl Ortiz
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Carme Gallego
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| |
Collapse
|
12
|
Islam Z, Polash A, Suzawa M, Chim B, Kuhn S, Sultana S, Cutrona N, Smith PT, Kabat J, Ganesan S, Foroushani A, Hafner M, Muljo SA. MATRIN3 deficiency triggers autoinflammation via cGAS-STING activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587645. [PMID: 38712171 PMCID: PMC11071297 DOI: 10.1101/2024.04.01.587645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Interferon-stimulated genes (ISGs) comprise a program of immune effectors important for host immune defense. When uncontrolled, ISGs play a central role in interferonopathies and other inflammatory diseases. The mechanisms responsible for turning on ISGs are not completely known. By investigating MATRIN3 (MATR3), a nuclear RNA-binding protein mutated in familial ALS, we found that perturbing MATR3 results in elevated expression of ISGs. Using an integrative approach, we elucidate a pathway that leads to activation of cGAS-STING. This outlines a plausible mechanism for pathogenesis in a subset of ALS, and suggests new diagnostic and therapeutic approaches for this fatal disease.
Collapse
Affiliation(s)
- Zohirul Islam
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Ahsan Polash
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease (NIAMS), NIH; Bethesda, Maryland 20892, USA
| | - Masataka Suzawa
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease (NIAMS), NIH; Bethesda, Maryland 20892, USA
| | - Bryan Chim
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Skyler Kuhn
- Integrated Data Sciences Section, Research Technologies Branch (RTB), NIAID, NIH; Bethesda, Maryland 20892, USA
| | - Sabrina Sultana
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Nicholas Cutrona
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Patrick T. Smith
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Juraj Kabat
- Biological Imaging Section, RTB, NIAID, NIH; Bethesda, Maryland 20892, USA
| | - Sundar Ganesan
- Biological Imaging Section, RTB, NIAID, NIH; Bethesda, Maryland 20892, USA
| | - Amir Foroushani
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease (NIAMS), NIH; Bethesda, Maryland 20892, USA
| | - Stefan A. Muljo
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| |
Collapse
|
13
|
Sinha IR, Sandal PS, Burns GD, Mallika AP, Irwin KE, Cruz ALF, Wang V, Rodríguez JL, Wong PC, Ling JP. Large-scale RNA-seq mining reveals ciclopirox triggers TDP-43 cryptic exons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587011. [PMID: 38585725 PMCID: PMC10996699 DOI: 10.1101/2024.03.27.587011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Nuclear clearance and cytoplasmic aggregation of TDP-43 in neurons, initially identified in ALS-FTD, are hallmark pathological features observed across a spectrum of neurodegenerative diseases. We previously found that TDP-43 loss-of-function leads to the transcriptome-wide inclusion of deleterious cryptic exons in brains and biofluids post-mortem as well as during the presymptomatic stage of ALS-FTD, but upstream mechanisms that lead to TDP-43 dysregulation remain unclear. Here, we developed a web-based resource (SnapMine) to determine the levels of TDP-43 cryptic exon inclusion across hundreds of thousands of publicly available RNA sequencing datasets. We established cryptic exon inclusion across a variety of human cells and tissues to provide ground truth references for future studies on TDP-43 dysregulation. We then explored studies that were entirely unrelated to TDP-43 or neurodegeneration and found that ciclopirox olamine (CPX), an FDA-approved antifungal, can trigger the inclusion of TDP-43-associated cryptic exons in a variety of mouse and human primary cells. CPX induction of cryptic exon occurs via heavy metal toxicity and oxidative stress, suggesting that similar vulnerabilities could play a role in neurodegeneration. Our work demonstrates how diverse datasets can be linked through common biological features and underscores that public archives of sequencing data represent a vastly underutilized resource with tremendous potential for uncovering novel insights into complex biological mechanisms and diseases.
Collapse
Affiliation(s)
- Irika R Sinha
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Parker S Sandal
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Grace D Burns
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | - Katherine E Irwin
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Anna Lourdes F Cruz
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Vania Wang
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Philip C Wong
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jonathan P Ling
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Xu L, Zheng S, Witzel K, Van De Slijke E, Baekelandt A, Mylle E, Van Damme D, Cheng J, De Jaeger G, Inzé D, Jiang H. Chromatin attachment to the nuclear matrix represses hypocotyl elongation in Arabidopsis thaliana. Nat Commun 2024; 15:1286. [PMID: 38346986 PMCID: PMC10861482 DOI: 10.1038/s41467-024-45577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
The nuclear matrix is a nuclear compartment that has diverse functions in chromatin regulation and transcription. However, how this structure influences epigenetic modifications and gene expression in plants is largely unknown. In this study, we show that a nuclear matrix binding protein, AHL22, together with the two transcriptional repressors FRS7 and FRS12, regulates hypocotyl elongation by suppressing the expression of a group of genes known as SMALL AUXIN UP RNAs (SAURs) in Arabidopsis thaliana. The transcriptional repression of SAURs depends on their attachment to the nuclear matrix. The AHL22 complex not only brings these SAURs, which contain matrix attachment regions (MARs), to the nuclear matrix, but it also recruits the histone deacetylase HDA15 to the SAUR loci. This leads to the removal of H3 acetylation at the SAUR loci and the suppression of hypocotyl elongation. Taken together, our results indicate that MAR-binding proteins act as a hub for chromatin and epigenetic regulators. Moreover, we present a mechanism by which nuclear matrix attachment to chromatin regulates histone modifications, transcription, and hypocotyl elongation.
Collapse
Affiliation(s)
- Linhao Xu
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| | - Shiwei Zheng
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, 14979, Germany
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Jinping Cheng
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Hua Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany.
| |
Collapse
|
15
|
Liu T, Zhu Q, Kai Y, Bingham T, Wang S, Cha HJ, Mehta S, Schlaeger TM, Yuan GC, Orkin SH. Matrin3 mediates differentiation through stabilizing chromatin loop-domain interactions and YY1 mediated enhancer-promoter interactions. Nat Commun 2024; 15:1274. [PMID: 38341433 PMCID: PMC10858947 DOI: 10.1038/s41467-024-45386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Although emerging evidence indicates that alterations in proteins within nuclear compartments elicit changes in chromosomal architecture and differentiation, the underlying mechanisms are not well understood. Here we investigate the direct role of the abundant nuclear complex protein Matrin3 (Matr3) in chromatin architecture and development in the context of myogenesis. Using an acute targeted protein degradation platform (dTAG-Matr3), we reveal the dynamics of development-related chromatin reorganization. High-throughput chromosome conformation capture (Hi-C) experiments revealed substantial chromatin loop rearrangements soon after Matr3 depletion. Notably, YY1 binding was detected, accompanied by the emergence of novel YY1-mediated enhancer-promoter loops, which occurred concurrently with changes in histone modifications and chromatin-level binding patterns. Changes in chromatin occupancy by Matr3 also correlated with these alterations. Overall, our results suggest that Matr3 mediates differentiation through stabilizing chromatin accessibility and chromatin loop-domain interactions, and highlight a conserved and direct role for Matr3 in maintenance of chromosomal architecture.
Collapse
Affiliation(s)
- Tianxin Liu
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Qian Zhu
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lester Sue Smith Breast Center, Department of Human Molecular Genetics, Baylor College of Medicine, 1 Moursund St, Houston, TX, 77030, USA
| | - Yan Kai
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Trevor Bingham
- Stem Cell Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Stacy Wang
- Lester Sue Smith Breast Center, Department of Human Molecular Genetics, Baylor College of Medicine, 1 Moursund St, Houston, TX, 77030, USA
| | - Hye Ji Cha
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, 31116, South Korea
| | - Stuti Mehta
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Guo-Cheng Yuan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02115, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stuart H Orkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Xiao Y, Chen YM, Zou Z, Ye C, Dou X, Wu J, Liu C, Liu S, Yan H, Wang P, Zeng TB, Liu Q, Fei J, Tang W, He C. Profiling of RNA-binding protein binding sites by in situ reverse transcription-based sequencing. Nat Methods 2024; 21:247-258. [PMID: 38200227 PMCID: PMC10864177 DOI: 10.1038/s41592-023-02146-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
RNA-binding proteins (RBPs) regulate diverse cellular processes by dynamically interacting with RNA targets. However, effective methods to capture both stable and transient interactions between RBPs and their RNA targets are still lacking, especially when the interaction is dynamic or samples are limited. Here we present an assay of reverse transcription-based RBP binding site sequencing (ARTR-seq), which relies on in situ reverse transcription of RBP-bound RNAs guided by antibodies to identify RBP binding sites. ARTR-seq avoids ultraviolet crosslinking and immunoprecipitation, allowing for efficient and specific identification of RBP binding sites from as few as 20 cells or a tissue section. Taking advantage of rapid formaldehyde fixation, ARTR-seq enables capturing the dynamic RNA binding by RBPs over a short period of time, as demonstrated by the profiling of dynamic RNA binding of G3BP1 during stress granule assembly on a timescale as short as 10 minutes.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Yan-Ming Chen
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Zhongyu Zou
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Xiaoyang Dou
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Jinjun Wu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Chang Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Shun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Hao Yan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Pingluan Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Tie-Bo Zeng
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Qinzhe Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Weixin Tang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, Chicago, IL, USA.
| |
Collapse
|
17
|
Khan M, Chen XXL, Dias M, Santos JR, Kour S, You J, van Bruggen R, Youssef MMM, Wan YW, Liu Z, Rosenfeld JA, Tan Q, Pandey UB, Yalamanchili HK, Park J. MATR3 pathogenic variants differentially impair its cryptic splicing repression function. FEBS Lett 2024; 598:415-436. [PMID: 38320753 DOI: 10.1002/1873-3468.14806] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
Matrin-3 (MATR3) is an RNA-binding protein implicated in neurodegenerative and neurodevelopmental diseases. However, little is known regarding the role of MATR3 in cryptic splicing within the context of functional genes and how disease-associated variants impact this function. We show that loss of MATR3 leads to cryptic exon inclusion in many transcripts. We reveal that ALS-linked S85C pathogenic variant reduces MATR3 solubility but does not impair RNA binding. In parallel, we report a novel neurodevelopmental disease-associated M548T variant, located in the RRM2 domain, which reduces protein solubility and impairs RNA binding and cryptic splicing repression functions of MATR3. Altogether, our research identifies cryptic events within functional genes and demonstrates how disease-associated variants impact MATR3 cryptic splicing repression function.
Collapse
Affiliation(s)
- Mashiat Khan
- Department of Molecular Genetics, University of Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Xiao Xiao Lily Chen
- Department of Molecular Genetics, University of Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Michelle Dias
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Jhune Rizsan Santos
- Department of Molecular Genetics, University of Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Justin You
- Department of Molecular Genetics, University of Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Rebekah van Bruggen
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Mohieldin M M Youssef
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Qiumin Tan
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jeehye Park
- Department of Molecular Genetics, University of Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
18
|
Erkelenz S, Grzonka M, Papadakis A, Schaal H, Hoeijmakers JHJ, Gyenis Á. Rbm3 deficiency leads to transcriptome-wide splicing alterations. RNA Biol 2024; 21:1-13. [PMID: 39387568 PMCID: PMC11575738 DOI: 10.1080/15476286.2024.2413820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Rbm3 (RNA-binding motif protein 3) is a stress responsive gene, which maintains cellular homeostasis and promotes survival upon various harmful cellular stimuli. Rbm3 protein shows conserved structural and molecular similarities to heterogeneous nuclear ribonucleoproteins (hnRNPs), which regulate all steps of the mRNA metabolism. Growing evidence is pointing towards a broader role of Rbm3 in various steps of gene expression. Here, we demonstrate that Rbm3 deficiency is linked to transcriptome-wide pre-mRNA splicing alterations, which can be reversed through Rbm3 co-expression from a cDNA. Using an MS2 tethering assay, we show that Rbm3 regulates splice site selection similar to other hnRNP proteins when recruited between two competing 5 ' splice sites. Furthermore, we show that the N-terminal part of Rbm3 encompassing the RNA recognition motif (RRM), is sufficient to elicit changes in splice site selection. On the basis of these findings, we propose a novel, undescribed function of Rbm3 in RNA splicing that contributes to the preservation of transcriptome integrity.
Collapse
Affiliation(s)
- Steffen Erkelenz
- Faculty of Medicine, University of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, Köln, Germany
| | - Marta Grzonka
- Faculty of Medicine, University of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, Köln, Germany
| | - Antonios Papadakis
- Faculty of Medicine, University of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, Köln, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jan H. J. Hoeijmakers
- Faculty of Medicine, University of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, Köln, Germany
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Princess Maxima Center for Pediatric Oncology, ONCODE Institute, Utrecht, The Netherlands
| | - Ákos Gyenis
- Faculty of Medicine, University of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, Köln, Germany
| |
Collapse
|
19
|
Gonzalez E, Flatt TG, Farooqi M, Johnson L, Ahmed AA. Polypyrimidine Tract Binding Protein: A Universal Player in Cancer Development. Curr Mol Med 2024; 24:1450-1460. [PMID: 37877563 DOI: 10.2174/0115665240251370231017053236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVES Polypyrimidine tract binding protein is a 57-Kda protein located in the perinucleolar compartment where it binds RNA and regulates several biological functions through the regulation of RNA splicing. Numerous research articles have been published that address the cellular network and functions of PTB and its isoforms in various disease states. METHODOLOGY Through an extensive PubMed search, we attempt to summarize the relevant research into this biomolecule. RESULTS Besides its roles in embryonic development, neuronal cell growth, RNA metabolism, apoptosis, and hematopoiesis, PTB can affect cancer growth via several metabolic, proliferative, and structural mechanisms. PTB overexpression has been documented in several cancers where it plays a role as a novel prognostic factor. CONCLUSION The diverse carcinogenic effect opens an argument into its potential role in inhibitory targeted therapy.
Collapse
Affiliation(s)
- Elizabeth Gonzalez
- Pediatric Hematology Oncology, Children Mercy Hospital, Kansas City, Missouri, USA
| | - Terrie G Flatt
- Pediatric Hematology Oncology, Children Mercy Hospital, Kansas City, Missouri, USA
| | - Midhat Farooqi
- Departments of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Lisa Johnson
- Pathology and Laboratory Medicine, Seattle Children's Hospital/University of Washington, Seattle, Washington, USA
| | - Atif A Ahmed
- Pathology and Laboratory Medicine, Seattle Children's Hospital/University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Ebersberger S, Hipp C, Mulorz MM, Buchbender A, Hubrich D, Kang HS, Martínez-Lumbreras S, Kristofori P, Sutandy FXR, Llacsahuanga Allcca L, Schönfeld J, Bakisoglu C, Busch A, Hänel H, Tretow K, Welzel M, Di Liddo A, Möckel MM, Zarnack K, Ebersberger I, Legewie S, Luck K, Sattler M, König J. FUBP1 is a general splicing factor facilitating 3' splice site recognition and splicing of long introns. Mol Cell 2023:S1097-2765(23)00516-6. [PMID: 37506698 DOI: 10.1016/j.molcel.2023.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Splicing of pre-mRNAs critically contributes to gene regulation and proteome expansion in eukaryotes, but our understanding of the recognition and pairing of splice sites during spliceosome assembly lacks detail. Here, we identify the multidomain RNA-binding protein FUBP1 as a key splicing factor that binds to a hitherto unknown cis-regulatory motif. By collecting NMR, structural, and in vivo interaction data, we demonstrate that FUBP1 stabilizes U2AF2 and SF1, key components at the 3' splice site, through multivalent binding interfaces located within its disordered regions. Transcriptional profiling and kinetic modeling reveal that FUBP1 is required for efficient splicing of long introns, which is impaired in cancer patients harboring FUBP1 mutations. Notably, FUBP1 interacts with numerous U1 snRNP-associated proteins, suggesting a unique role for FUBP1 in splice site bridging for long introns. We propose a compelling model for 3' splice site recognition of long introns, which represent 80% of all human introns.
Collapse
Affiliation(s)
| | - Clara Hipp
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Miriam M Mulorz
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | | | - Dalmira Hubrich
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Hyun-Seo Kang
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Santiago Martínez-Lumbreras
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Panajot Kristofori
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, 70569 Stuttgart, Germany
| | | | | | - Jonas Schönfeld
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Cem Bakisoglu
- Buchmann Institute for Molecular Life Sciences & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Heike Hänel
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Kerstin Tretow
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Mareen Welzel
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | | | - Martin M Möckel
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; CardioPulmonary Institute (CPI), 35392 Gießen, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; Senckenberg Biodiversity and Climate Research Center (S-BIK-F), 60325 Frankfurt am Main, Germany; LOEWE Center for Translational Biodiversity Genomics (TBG), 60325 Frankfurt am Main, Germany
| | - Stefan Legewie
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, 70569 Stuttgart, Germany; Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany.
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany.
| | - Julian König
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany.
| |
Collapse
|
21
|
Muys BR, Shrestha RL, Anastasakis DG, Pongor L, Li XL, Grammatikakis I, Polash A, Chari R, Gorospe M, Harris CC, Aladjem MI, Basrai MA, Hafner M, Lal A. Matrin3 regulates mitotic spindle dynamics by controlling alternative splicing of CDC14B. Cell Rep 2023; 42:112260. [PMID: 36924503 PMCID: PMC10132239 DOI: 10.1016/j.celrep.2023.112260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/03/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Matrin3 is an RNA-binding protein that regulates diverse RNA-related processes, including mRNA splicing. Although Matrin3 has been intensively studied in neurodegenerative diseases, its function in cancer remains unclear. Here, we report Matrin3-mediated regulation of mitotic spindle dynamics in colorectal cancer (CRC) cells. We comprehensively identified RNAs bound and regulated by Matrin3 in CRC cells and focused on CDC14B, one of the top Matrin3 targets. Matrin3 knockdown results in increased inclusion of an exon containing a premature termination codon in the CDC14B transcript and simultaneous down-regulation of the standard CDC14B transcript. Knockdown of CDC14B phenocopies the defects in mitotic spindle dynamics upon Matrin3 knockdown, and the elongated and misoriented mitotic spindle observed upon Matrin3 knockdown are rescued upon overexpression of CDC14B, suggesting that CDC14B is a key downstream effector of Matrin3. Collectively, these data reveal a role for the Matrin3/CDC14B axis in control of mitotic spindle dynamics.
Collapse
Affiliation(s)
- Bruna R Muys
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | | | - Dimitrios G Anastasakis
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD 20892, USA
| | - Lorinc Pongor
- Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Ahsan Polash
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD 20892, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, Frederick, MD 21701, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD 21224, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, CCR, NCI, Bethesda, MD 20892, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD 20892, USA.
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Ye R, Hu N, Cao C, Su R, Xu S, Yang C, Zhou X, Xue Y. Capture RIC-seq reveals positional rules of PTBP1-associated RNA loops in splicing regulation. Mol Cell 2023; 83:1311-1327.e7. [PMID: 36958328 DOI: 10.1016/j.molcel.2023.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 03/25/2023]
Abstract
RNA-binding proteins (RBPs) bind at different positions of the pre-mRNA molecules to promote or reduce the usage of a particular exon. Seeking to understand the working principle of these positional effects, we develop a capture RIC-seq (CRIC-seq) method to enrich specific RBP-associated in situ proximal RNA-RNA fragments for deep sequencing. We determine hnRNPA1-, SRSF1-, and PTBP1-associated proximal RNA-RNA contacts and regulatory mechanisms in HeLa cells. Unexpectedly, the 3D RNA map analysis shows that PTBP1-associated loops in individual introns preferentially promote cassette exon splicing by accelerating asymmetric intron removal, whereas the loops spanning across cassette exon primarily repress splicing. These "positional rules" can faithfully predict PTBP1-regulated splicing outcomes. We further demonstrate that cancer-related splicing quantitative trait loci can disrupt RNA loops by reducing PTBP1 binding on pre-mRNAs to cause aberrant splicing in tumors. Our study presents a powerful method for exploring the functions of RBP-associated RNA-RNA proximal contacts in gene regulation and disease.
Collapse
Affiliation(s)
- Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Naijing Hu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruibao Su
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihan Xu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, Zhejiang 325003, China
| | - Chen Yang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, Zhejiang 325003, China
| | - Xiangtian Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, Zhejiang 325003, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Nair SJ, Suter T, Wang S, Yang L, Yang F, Rosenfeld MG. Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures. Trends Genet 2022; 38:1019-1047. [PMID: 35811173 PMCID: PMC9474616 DOI: 10.1016/j.tig.2022.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023]
Abstract
Gene regulation by transcriptional enhancers is the dominant mechanism driving cell type- and signal-specific transcriptional diversity in metazoans. However, over four decades since the original discovery, how enhancers operate in the nuclear space remains largely enigmatic. Recent multidisciplinary efforts combining real-time imaging, genome sequencing, and biophysical strategies provide insightful but conflicting models of enhancer-mediated gene control. Here, we review the discovery and progress in enhancer biology, emphasizing the recent findings that acutely activated enhancers assemble regulatory machinery as mesoscale architectural structures with distinct physical properties. These findings help formulate novel models that explain several mysterious features of the assembly of transcriptional enhancers and the mechanisms of spatial control of gene expression.
Collapse
Affiliation(s)
- Sreejith J Nair
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Tom Suter
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan Wang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Cellular and Molecular Medicine Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lu Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Feng Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
24
|
Muehlbauer LK, Wei T, Shishkova E, Coon JJ, Lambert PF. IQGAP1 and RNA Splicing in the Context of Head and Neck via Phosphoproteomics. J Proteome Res 2022; 21:2211-2223. [PMID: 35980772 PMCID: PMC9833422 DOI: 10.1021/acs.jproteome.2c00309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
IQGAP1 (IQ motif-containing GTPase-activating protein 1) scaffolds several signaling pathways in mammalian cells that are implicated in carcinogenesis, including the RAS and PI3K pathways that involve multiple protein kinases. IQGAP1 has been shown to promote head and neck squamous cell carcinoma (HNSCC); however, the underlying mechanism(s) remains unclear. Here, we report a mass spectrometry-based analysis identifying differences in phosphorylation of cellular proteins in vivo and in vitro in the presence or absence of IQGAP1. By comparing the esophageal phosphoproteome profiles between Iqgap1+/+ and Iqgap1-/- mice, we identified RNA splicing as one of the most altered cellular processes. Serine/arginine-rich splicing factor 6 (SRSF6) was the protein with the most downregulated levels of phosphorylation in Iqgap1-/- tissue. We confirmed that the absence of IQGAP1 reduced SRSF6 phosphorylation both in vivo and in vitro. We then expanded our analysis to human normal oral keratinocytes. Again, we found factors involved in RNA splicing to be highly altered in the phosphoproteome profile upon genetic disruption of IQGAP1. Both the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Cancer Genome Atlas (TCGA) data sets indicate that phosphorylation of splicing-related proteins is important in HNSCC prognosis. The Biological General Repository for Interaction Datasets (BioGRID) repository also suggested multiple interactions between IQGAP1 and splicing-related proteins. Based on these collective observations, we propose that IQGAP1 regulates the phosphorylation of splicing proteins, which potentially affects their splicing activities and, therefore, contributes to HNSCC. Raw data are available from the MassIVE database with identifier MSV000087770.
Collapse
Affiliation(s)
- Laura K. Muehlbauer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tao Wei
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
25
|
Azari A, Goodarzi A, Jafarkhani B, Eghbali M, Karimi Z, Hosseini Balef SS, Irannejad H. Novel molecular targets and mechanisms for neuroprotective modulation in neurodegenerative disorders. Cent Nerv Syst Agents Med Chem 2022; 22:88-107. [PMID: 35713146 DOI: 10.2174/1871524922666220616092132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neuronal death underlies the symptoms of several human neurological disorders, including Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis that their precise pathophysiology have not yet been elucidated. According to various studies the prohibition is the best therapy with neuroprotective approaches which are advanced and safe methods. METHODS This review summarizes some of the already-known and newly emerged neuroprotective targets and strategies that their experimental effects have been reported. Accordingly, literature was studied from 2000 to 2021 and appropriate articles were searched in Google Scholar and Scopus with the keywords given in the Keywords section of the current review. RESULTS Lewy bodies are the histopathologic characteristics of neurodegenerative disorders and are protein-rich intracellular deposits in which Alpha-Synuclein is its major protein. Alpha-Synuclein's toxic potential provides a compelling rationale for therapeutic strategies aimed at decreasing its burden in neuronal cells through numerous pathways including ubiquitin-proteasome system and autophagy-lysosome Pathway, proteolytic breakdown via cathepsin D, kallikrein-6 (neurosin), calpain-1 or MMP9, heat shock proteins, and proteolysis targeting chimera which consists of a target protein ligand and an E3 ubiquitin ligase (E3) followed by target protein ubiquitination (PROTACs). Other targets that have been noticed recently are the mutant huntingtin, tau proteins and glycogen synthase kinase 3β that their accumulation proceeds extensive neuronal damage and up to the minute approach such as Proteolysis Targeting Chimera promotes its degradation in cells. As various studies demonstrated that Mendelian gene mutations can result into the neurodegenerative diseases, additional target that has gained much interest is epigenetics such as mutation, phosphodiesterase, RNA binding proteins and Nuclear respiratory factor 1. CONCLUSION The novel molecular targets and new strategies compiled and introduced here can be used by scientists to design and discover more efficient small molecule drugs against the neurodegenerative diseases. And also the genes in which their mutations can lead to the α-synuclein aggregation or accumulation are discussed and considered a valuable information of epigenetics in dementia.
Collapse
Affiliation(s)
- Aala Azari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Goodarzi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Behrouz Jafarkhani
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Eghbali
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Karimi
- Department of Obstetrics & Gynecology, Imam Khomeini hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Sajad Hosseini Balef
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
26
|
Chen Q, Tian F, Cheng T, Jiang J, Zhu G, Gao Z, Lin H, Hu J, Qian Q, Fang X, Chen F. Translational repression of FZP mediated by CU-rich element/OsPTB interactions modulates panicle development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1319-1331. [PMID: 35293072 DOI: 10.1111/tpj.15737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Panicle development is an important determinant of the grain number in rice. A thorough characterization of the molecular mechanism underlying panicle development will lead to improved breeding of high-yielding rice varieties. Frizzy Panicle (FZP), a critical gene for panicle development, is regulated by OsBZR1 and OsARFs at the transcriptional stage. However, the translational modulation of FZP has not been reported. We reveal that the CU-rich elements (CUREs) in the 3' UTR of the FZP mRNA are crucial for efficient FZP translation. The knockout of CUREs in the FZP 3' UTR or the over-expression of the FZP 3' UTR fragment containing CUREs resulted in an increase in FZP mRNA translation efficiency. Moreover, the number of secondary branches (NSB) and the grain number per panicle (GNP) decreased in the transformed rice plants. The CUREs in the 3' UTR of FZP mRNA were verified as the targets of the polypyrimidine tract-binding proteins OsPTB1 and OsPTB2 in rice. Both OsPTB1 and OsPTB2 were highly expressed in young panicles. The knockout of OsPTB1/2 resulted in an increase in the FZP translational efficiency and a decrease in the NSB and GNP. Furthermore, the over-expression of OsPTB1/2 decreased the translation of the reporter gene fused to FZP 3' UTR in vivo and in vitro. These results suggest that OsPTB1/2 can mediate FZP translational repression by interacting with CUREs in the 3' UTR of FZP mRNA, leading to changes in the NSB and GNP. Accordingly, in addition to transcriptional regulation, FZP expression is also fine-tuned at the translational stage during rice panicle development.
Collapse
Affiliation(s)
- Qiong Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Fa'an Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tingting Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun'e Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanlin Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Haiyan Lin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaohua Fang
- Genetic Resource R&D Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chang Zhou, 213001, China
| | - Fan Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| |
Collapse
|
27
|
He F, Kuwasako K, Takizawa M, Takahashi M, Tsuda K, Nagata T, Watanabe S, Tanaka A, Kobayashi N, Kigawa T, Güntert P, Shirouzu M, Yokoyama S, Muto Y. 1H, 13C and 15N resonance assignments and solution structures of the two RRM domains of Matrin-3. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:41-49. [PMID: 34783967 DOI: 10.1007/s12104-021-10057-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Matrin-3 is a multifunctional protein that binds to both DNA and RNA. Its DNA-binding activity is linked to the formation of the nuclear matrix and transcriptional regulation, while its RNA-binding activity is linked to mRNA metabolism including splicing, transport, stabilization, and degradation. Correspondingly, Matrin-3 has two zinc finger domains for DNA binding and two consecutive RNA recognition motif (RRM) domains for RNA binding. Matrin-3 has been reported to cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) when its disordered region contains pathogenic mutations. Simultaneously, it has been shown that the RNA-binding activity of Matrin-3 mediated by its RRM domains, affects the formation of insoluble cytoplasmic granules, which are related to the pathogenic mechanism of ALS/FTD. Thus, the effect of the RRM domains on the phase separation of condensed protein/RNA mixtures has to be clarified for a comprehensive understanding of ALS/FTD. Here, we report the 1H, 15N, and 13C resonance assignments of the two RNA binding domains and their solution structures. The resonance assignments and the solution structures obtained in this work will contribute to the elucidation of the molecular basis of Matrin-3 in the pathogenic mechanism of ALS and/or FTD.
Collapse
Affiliation(s)
- Fahu He
- RIKEN Center for Life Science and Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Kanako Kuwasako
- RIKEN Center for Life Science and Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, 202-8585, Japan
| | - Masayuki Takizawa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, 202-8585, Japan
| | - Mari Takahashi
- RIKEN Center for Life Science and Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Kengo Tsuda
- RIKEN Center for Life Science and Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takashi Nagata
- RIKEN Center for Life Science and Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Institute of Advanced Energy and Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Satoru Watanabe
- RIKEN Center for Life Science and Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- RIKEN Yokohama NMR Facility, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Akiko Tanaka
- RIKEN Center for Life Science and Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Naohiro Kobayashi
- RIKEN Center for Life Science and Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- RIKEN Yokohama NMR Facility, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takanori Kigawa
- RIKEN Center for Life Science and Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- RIKEN Quantitative Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Peter Güntert
- Tatsuo Miyazawa Memorial Program, RIKEN Genomic Sciences Center, Yokohama, 230-0045, Japan
- Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Mikako Shirouzu
- RIKEN Center for Life Science and Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
| | - Yutaka Muto
- RIKEN Center for Life Science and Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, 202-8585, Japan.
| |
Collapse
|
28
|
Sprunger ML, Lee K, Sohn BS, Jackrel ME. Molecular determinants and modifiers of Matrin-3 toxicity, condensate dynamics, and droplet morphology. iScience 2022; 25:103900. [PMID: 35252808 PMCID: PMC8889142 DOI: 10.1016/j.isci.2022.103900] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Matrin-3 (MATR3) is a DNA- and RNA-binding protein implicated in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and distal myopathy. Here, we report the development of a yeast model of MATR3 proteotoxicity and aggregation. MATR3 is toxic and forms dynamic shell-like nuclear condensates in yeast. Disease-associated mutations in MATR3 impair condensate dynamics and disrupt condensate morphology. MATR3 toxicity is largely driven by its RNA-recognitions motifs (RRMs). Further, deletion of one or both RRMs drives coalescence of these condensates. Aberrant phase separation of several different RBPs underpins ALS/FTD, and we have engineered Hsp104 variants to reverse this misfolding. Here, we demonstrate that these same variants also counter MATR3 toxicity. We suggest that these Hsp104 variants which rescue MATR3, TDP-43, and FUS toxicity might be employed against a range of ALS/FTD-associated proteins. We anticipate that our yeast model could be a useful platform to screen for modulators of MATR3 misfolding.
Collapse
Affiliation(s)
- Macy L. Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Ken Lee
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Brian S. Sohn
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
29
|
Todd TW, Petrucelli L. Modelling amyotrophic lateral sclerosis in rodents. Nat Rev Neurosci 2022; 23:231-251. [PMID: 35260846 DOI: 10.1038/s41583-022-00564-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
The efficient study of human disease requires the proper tools, one of the most crucial of which is an accurate animal model that faithfully recapitulates the human condition. The study of amyotrophic lateral sclerosis (ALS) is no exception. Although the majority of ALS cases are considered sporadic, most animal models of this disease rely on genetic mutations identified in familial cases. Over the past decade, the number of genes associated with ALS has risen dramatically and, with each new genetic variant, there is a drive to develop associated animal models. Rodent models are of particular importance as they allow for the study of ALS in the context of a living mammal with a comparable CNS. Such models not only help to verify the pathogenicity of novel mutations but also provide critical insight into disease mechanisms and are crucial for the testing of new therapeutics. In this Review, we aim to summarize the full spectrum of ALS rodent models developed to date.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA.
| |
Collapse
|
30
|
Selective Loss of MATR3 in Spinal Interneurons, Upper Motor Neurons and Hippocampal CA1 Neurons in a MATR3 S85C Knock-In Mouse Model of Amyotrophic Lateral Sclerosis. BIOLOGY 2022; 11:biology11020298. [PMID: 35205163 PMCID: PMC8869279 DOI: 10.3390/biology11020298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the motor neurons in the brain and spinal cord. Mutations in the gene Matr3 have been linked to ALS, including the autosomal dominant missense mutation S85C. We previously created a mouse model containing the S85C mutation in the Matr3 gene to understand how it causes ALS. The S85C mice exhibited MATR3 staining loss in selective populations of degenerating neurons, such as Purkinje cells in the cerebellum and α-motor neurons in the lumbar spinal cord. However, studies have shown that neurons other than motor neurons may be involved in contributing to ALS; therefore, we investigated additional neuronal cell types in the spinal cord and brain. Here, we found that MATR3 staining is selectively reduced in interneurons and α-motor neurons of the cervical and thoracic regions of the spinal cord, as well as in subsets of upper motor neurons and hippocampal neurons. These neurons did not exhibit cell body loss; however, how the MATR3 loss affects neuronal function remains to be determined. Overall, these findings demonstrate that the MATR3 S85C mutation affects other neuronal types of the brain and spinal cord in addition to motor neurons, suggesting that these additional neuronal types are involved in ALS pathogenesis. Abstract The neuropathological hallmark of amyotrophic lateral sclerosis (ALS) is motor neuron degeneration in the spinal cord and cortex. Accumulating studies report that other neurons in the central nervous system (CNS) are also affected in ALS. Mutations in Matr3, which encodes a nuclear matrix protein involved in RNA splicing, have been linked to ALS. Previously, we generated a MATR3 S85C knock-in (KI) mouse model that recapitulates early-stage features of ALS. We reported that MATR3 S85C KI mice exhibit defects in lumbar spinal cord motor neurons and in cerebellar Purkinje cells, which are associated with reduced MATR3 immunoreactivity. Here, we show that neurons in various other regions of the CNS are affected in MATR3 S85C KI mice. Using histological analyses, we found selective loss of MATR3 staining in α-motor neurons, but not γ-motor neurons in the cervical and thoracic spinal cord. Loss of MATR3 was also found in parvalbumin-positive interneurons in the cervical, thoracic and lumbar spinal cord. In addition, we found the loss of MATR3 in subsets of upper motor neurons and hippocampal CA1 neurons. Collectively, our findings suggest that these additional neuronal types may contribute to the disease process in MATR3 S85C KI mice.
Collapse
|
31
|
Salem A, Wilson CJ, Rutledge BS, Dilliott A, Farhan S, Choy WY, Duennwald ML. Matrin3: Disorder and ALS Pathogenesis. Front Mol Biosci 2022; 8:794646. [PMID: 35083279 PMCID: PMC8784776 DOI: 10.3389/fmolb.2021.794646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of both upper and lower motor neurons in the brain and spinal cord. ALS is associated with protein misfolding and inclusion formation involving RNA-binding proteins, including TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS). The 125-kDa Matrin3 is a highly conserved nuclear DNA/RNA-binding protein that is implicated in many cellular processes, including binding and stabilizing mRNA, regulating mRNA nuclear export, modulating alternative splicing, and managing chromosomal distribution. Mutations in MATR3, the gene encoding Matrin3, have been identified as causal in familial ALS (fALS). Matrin3 lacks a prion-like domain that characterizes many other ALS-associated RNA-binding proteins, including TDP-43 and FUS, however, our bioinformatics analyses and preliminary studies document that Matrin3 contains long intrinsically disordered regions that may facilitate promiscuous interactions with many proteins and may contribute to its misfolding. In addition, these disordered regions in Matrin3 undergo numerous post-translational modifications, including phosphorylation, ubiquitination and acetylation that modulate the function and misfolding of the protein. Here we discuss the disordered nature of Matrin3 and review the factors that may promote its misfolding and aggregation, two elements that might explain its role in ALS pathogenesis.
Collapse
Affiliation(s)
- Ahmed Salem
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Carter J. Wilson
- Department of Applied Mathematics, Western University, London, ON, Canada
| | - Benjamin S. Rutledge
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Allison Dilliott
- Department of Neurology and Neurosurgery, McGill Universty, Montreal, QC, Canada
| | - Sali Farhan
- Department of Neurology and Neurosurgery, McGill Universty, Montreal, QC, Canada
- Department of Human Genetics, McGill Universty, Montreal, QC, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Martin L. Duennwald
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
32
|
Cha HJ, Uyan Ö, Kai Y, Liu T, Zhu Q, Tothova Z, Botten GA, Xu J, Yuan GC, Dekker J, Orkin SH. Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture. Nat Commun 2021; 12:6241. [PMID: 34716321 PMCID: PMC8556400 DOI: 10.1038/s41467-021-26574-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Precise control of gene expression during differentiation relies on the interplay of chromatin and nuclear structure. Despite an established contribution of nuclear membrane proteins to developmental gene regulation, little is known regarding the role of inner nuclear proteins. Here we demonstrate that loss of the nuclear scaffolding protein Matrin-3 (Matr3) in erythroid cells leads to morphological and gene expression changes characteristic of accelerated maturation, as well as broad alterations in chromatin organization similar to those accompanying differentiation. Matr3 protein interacts with CTCF and the cohesin complex, and its loss perturbs their occupancy at a subset of sites. Destabilization of CTCF and cohesin binding correlates with altered transcription and accelerated differentiation. This association is conserved in embryonic stem cells. Our findings indicate Matr3 negatively affects cell fate transitions and demonstrate that a critical inner nuclear protein impacts occupancy of architectural factors, culminating in broad effects on chromatin organization and cell differentiation.
Collapse
Affiliation(s)
- Hye Ji Cha
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Özgün Uyan
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yan Kai
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Tianxin Liu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Qian Zhu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Giovanni A Botten
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Xu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guo-Cheng Yuan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
33
|
Cavalli M, Cardani R, Renna LV, Toffetti M, Villa L, Meola G. First Family of MATR3-Related Distal Myopathy From Italy: The Role of Muscle Biopsy in the Diagnosis and Characterization of a Still Poorly Understood Disease. Front Neurol 2021; 12:715386. [PMID: 34659085 PMCID: PMC8517147 DOI: 10.3389/fneur.2021.715386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in the MATR3 gene are associated to distal myopathy with vocal cord and pharyngeal weakness (VCPDM), as well as familiar and sporadic motor neuron disease. To date, 12 VCPDM families from the United States, Germany, Japan, Bulgary, and France have been described in the literature. Here we report an Italian family with a propositus of a 40-year-old woman presenting progressive bilateral foot drop, rhinolalia, and distal muscular atrophy, without clinical signs of motor neuron affection. Her father, deceased some years before, presented a similar distal myopathy phenotype, while her 20-year-old son is asymptomatic. Myopathic changes with vacuolization were observed in muscle biopsy from the propositus. These results, together with the peculiar clinical picture, lead to MATR3 gene sequencing, which revealed a heterozygous p.S85C mutation in the propositus. The same mutation was found in her son. Over a 5-year follow-up, progression is mild in the propositus, while her son remains asymptomatic. Clinical, radiological, and pathological data of our propositus are presented and compared to previously reported cases of VCPDM. VCPDM turns out to be a quite homogenous phenotype of late-onset myopathy associated to p.S85C mutation in MATR3 gene. MATR3-related pathology, encompassing myopathy and motor neuron disease, represents an illustrative example of multisystem proteinopathy (MSP), such as other diseases associated to mutations in VCP, HNRNPA2B1, HNRNPA1, and SQSTM1 genes. The present report contributes to a further characterization of this still poorly understood pathology and points out the diagnostic utility of muscle biopsy in challenging cases.
Collapse
Affiliation(s)
- Michele Cavalli
- Université Côte d'Azur, Peripheral Nervous System and Muscle Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Rosanna Cardani
- BioCor Biobank, Department of Clinical Pathology, Istituto di Ricovero e Cura a Carattere Scientifico - IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Laura Valentina Renna
- BioCor Biobank, Department of Clinical Pathology, Istituto di Ricovero e Cura a Carattere Scientifico - IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Mauro Toffetti
- Department of Neurology and Stroke Unit, ASST Franciacorta, Chiari, Italy
| | - Luisa Villa
- Université Côte d'Azur, Peripheral Nervous System and Muscle Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
34
|
Tanu T, Taniue K, Imamura K, Onoguchi-Mizutani R, Han H, Jensen TH, Akimitsu N. hnRNPH1-MTR4 complex-mediated regulation of NEAT1v2 stability is critical for IL8 expression. RNA Biol 2021; 18:537-547. [PMID: 34470577 DOI: 10.1080/15476286.2021.1971439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many long noncoding RNAs (lncRNAs) are localized in the nucleus and play important roles in various biological processes, including cell proliferation, differentiation and antiviral response. Yet, it remains unclear how some nuclear lncRNAs are turned over. Here we show that the heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) controls expression levels of NEAT1v2, a lncRNA involved in the formation of nuclear paraspeckles. hnRNPH1 associates, in an RNA-independent manner, with the RNA helicase MTR4/MTREX, an essential co-factor of the nuclear ribonucleolytic RNA exosome. hnRNPH1 localizes in nuclear speckles and depletion of hnRNPH1 enhances NEAT1v2-mediated expression of the IL8 mRNA, encoding a cytokine involved in the innate immune response. Taken together, our results indicate that the hnRNPH1-MTR4 linkage regulates IL8 expression through the degradation of NEAT1v2 RNA.
Collapse
Affiliation(s)
- Tanzina Tanu
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Imamura
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | - Han Han
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
35
|
Onoguchi M, Zeng C, Matsumaru A, Hamada M. Binding patterns of RNA-binding proteins to repeat-derived RNA sequences reveal putative functional RNA elements. NAR Genom Bioinform 2021; 3:lqab055. [PMID: 34235430 PMCID: PMC8253551 DOI: 10.1093/nargab/lqab055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Recent reports have revealed that repeat-derived sequences embedded in introns or long noncoding RNAs (lncRNAs) are targets of RNA-binding proteins (RBPs) and contribute to biological processes such as RNA splicing or transcriptional regulation. These findings suggest that repeat-derived RNAs are important as scaffolds of RBPs and functional elements. However, the overall functional sequences of the repeat-derived RNAs are not fully understood. Here, we show the putative functional repeat-derived RNAs by analyzing the binding patterns of RBPs based on ENCODE eCLIP data. We mapped all eCLIP reads to repeat sequences and observed that 10.75 % and 7.04 % of reads on average were enriched (at least 2-fold over control) in the repeats in K562 and HepG2 cells, respectively. Using these data, we predicted functional RNA elements on the sense and antisense strands of long interspersed element 1 (LINE1) sequences. Furthermore, we found several new sets of RBPs on fragments derived from other transposable element (TE) families. Some of these fragments show specific and stable secondary structures and are found to be inserted into the introns of genes or lncRNAs. These results suggest that the repeat-derived RNA sequences are strong candidates for the functional RNA elements of endogenous noncoding RNAs.
Collapse
Affiliation(s)
- Masahiro Onoguchi
- Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Chao Zeng
- Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Ayako Matsumaru
- Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
36
|
Zhou L, Han YF, Yuan C, Duan ZQ. Screening and bioinformatics analysis of cellular proteins interacting with chicken bromodomain-containing protein 2 in DF-1 cells. Br Poult Sci 2021; 62:810-819. [PMID: 34152239 DOI: 10.1080/00071668.2021.1943311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Bromodomain-containing protein 2 (BRD2) is an important member of the BET protein family, which can specifically bind histone acetylated lysine to participate in gene transcriptional regulation, chromatin remodelling, cell proliferation and apoptosis. The following investigation of cellular proteins interacting with chBRD2 will be helpful in understanding the new functions of chBRD2 and the mechanism of NDV replication.2. The recombinant eukaryotic expression vector pEGFP-chBRD2 and empty vector pEGFP-C1 were transfected into DF-1 cells to overexpress GFP-chBRD2 and GFP, respectively. GO annotation, KEGG pathway, and protein-protein interaction network were used to analyse the cellular proteins interacting with chBRD2. In addition, one targeted protein was selected to verify its interaction with chBRD2 using fluorescent co-localisation and Co-IP.3. A total of 225 cellular proteins were identified that potentially interact with chBRD2. GO analysis showed that these play key roles in gene transcriptional regulation, cell cycle and development, immunity and viral infection. Further KEGG pathway analysis showed that these proteins were mainly involved in genetic information processing, immune system, cellular processes and translation. In addition, one targeted cellular protein chicken matrin 3 (chMATR3) was also identified as chBRD2 complex using both fluorescence co-localisation and Co-IP analysis.4. This study presents the interactome data of chBRD2 protein in DF-1 cells, which provides new information to understand the functions of chBRD2 and new targets for further investigating the replication and pathogenesis of NDV.
Collapse
Affiliation(s)
- L Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountains Region, Ministry of Education (Guizhou University)/Key Laboratory of Animal Genetics, Breeding and Reproduction in Guizhou Province, Guiyang, China.,College of Animal Sciences, Guizhou University, Guiyang, China
| | - Y F Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountains Region, Ministry of Education (Guizhou University)/Key Laboratory of Animal Genetics, Breeding and Reproduction in Guizhou Province, Guiyang, China.,College of Animal Sciences, Guizhou University, Guiyang, China
| | - C Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountains Region, Ministry of Education (Guizhou University)/Key Laboratory of Animal Genetics, Breeding and Reproduction in Guizhou Province, Guiyang, China.,College of Animal Sciences, Guizhou University, Guiyang, China
| | - Z Q Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountains Region, Ministry of Education (Guizhou University)/Key Laboratory of Animal Genetics, Breeding and Reproduction in Guizhou Province, Guiyang, China.,College of Animal Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
37
|
van Bruggen R, Maksimovic K, You J, Tran DD, Lee HJ, Khan M, Kao CS, Kim JR, Cho W, Chen XXL, Park J. MATR3 F115C knock-in mice do not exhibit motor defects or neuropathological features of ALS. Biochem Biophys Res Commun 2021; 568:48-54. [PMID: 34182213 DOI: 10.1016/j.bbrc.2021.06.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
The F115C mutation in the MATR3 gene has been linked to amyotrophic lateral sclerosis (ALS). To determine the pathogenicity of the F115C mutation and the mechanism by which this mutation causes ALS, we generated mice that harbor the F115C mutation in the endogenous murine Matr3 locus. Heterozygous or homozygous MATR3 F115C knock-in mice were viable and did not exhibit motor deficits up to 2 years of age. The mutant mice showed no significant differences in the number of Purkinje cells or motor neurons compared to wild-type littermates. Neuropathological examination revealed an absence of MATR3 and TDP-43 pathology in Purkinje cells and motor neurons in the mutant mice. Together, our results suggest that the F115C mutation in MATR3 may not confer pathogenicity.
Collapse
Affiliation(s)
- Rebekah van Bruggen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Katarina Maksimovic
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Justin You
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - David Duc Tran
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Hyeok Jun Lee
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Mashiat Khan
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ching Serena Kao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jihye Rachel Kim
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Wooin Cho
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Xiao Xiao Lily Chen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| |
Collapse
|
38
|
The human nucleoporin Tpr protects cells from RNA-mediated replication stress. Nat Commun 2021; 12:3937. [PMID: 34168151 PMCID: PMC8225803 DOI: 10.1038/s41467-021-24224-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
Although human nucleoporin Tpr is frequently deregulated in cancer, its roles are poorly understood. Here we show that Tpr depletion generates transcription-dependent replication stress, DNA breaks, and genomic instability. DNA fiber assays and electron microscopy visualization of replication intermediates show that Tpr deficient cells exhibit slow and asymmetric replication forks under replication stress. Tpr deficiency evokes enhanced levels of DNA-RNA hybrids. Additionally, complementary proteomic strategies identify a network of Tpr-interacting proteins mediating RNA processing, such as MATR3 and SUGP2, and functional experiments confirm that their depletion trigger cellular phenotypes shared with Tpr deficiency. Mechanistic studies reveal the interplay of Tpr with GANP, a component of the TREX-2 complex. The Tpr-GANP interaction is supported by their shared protein level alterations in a cohort of ovarian carcinomas. Our results reveal links between nucleoporins, DNA transcription and replication, and the existence of a network physically connecting replication forks with transcription, splicing, and mRNA export machinery.
Collapse
|
39
|
Su R, Fan LH, Cao C, Wang L, Du Z, Cai Z, Ouyang YC, Wang Y, Zhou Q, Wu L, Zhang N, Zhu X, Lei WL, Zhao H, Tian Y, He S, Wong CCL, Sun QY, Xue Y. Global profiling of RNA-binding protein target sites by LACE-seq. Nat Cell Biol 2021; 23:664-675. [PMID: 34108658 DOI: 10.1038/s41556-021-00696-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023]
Abstract
RNA-binding proteins (RBPs) have essential functions during germline and early embryo development. However, current methods are unable to identify the in vivo targets of a RBP in these low-abundance cells. Here, by coupling RBP-mediated reverse transcription termination with linear amplification of complementary DNA ends and sequencing, we present the LACE-seq method for identifying RBP-regulated RNA networks at or near the single-oocyte level. We determined the binding sites and regulatory mechanisms for several RBPs, including Argonaute 2 (Ago2), Mili, Ddx4 and Ptbp1, in mature mouse oocytes. Unexpectedly, transcriptomics and proteomics analysis of Ago2-/- oocytes revealed that Ago2 interacts with endogenous small interfering RNAs (endo-siRNAs) to repress mRNA translation globally. Furthermore, the Ago2 and endo-siRNA complexes fine-tune the transcriptome by slicing long terminal repeat retrotransposon-derived chimeric transcripts. The precise mapping of RBP-binding sites in low-input cells opens the door to studying the roles of RBPs in embryonic development and reproductive diseases.
Collapse
Affiliation(s)
- Ruibao Su
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Hua Fan
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Zongchang Du
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yue Wang
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhou
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Nan Zhang
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Beijing, China
| | - Xiaoxiao Zhu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hailian Zhao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Catherine C L Wong
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Beijing, China. .,School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China. .,Peking University First Hospital, Beijing, China.
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China. .,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
40
|
Kinoshita C, Kubota N, Aoyama K. Interplay of RNA-Binding Proteins and microRNAs in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22105292. [PMID: 34069857 PMCID: PMC8157344 DOI: 10.3390/ijms22105292] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
The number of patients with neurodegenerative diseases (NDs) is increasing, along with the growing number of older adults. This escalation threatens to create a medical and social crisis. NDs include a large spectrum of heterogeneous and multifactorial pathologies, such as amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and multiple system atrophy, and the formation of inclusion bodies resulting from protein misfolding and aggregation is a hallmark of these disorders. The proteinaceous components of the pathological inclusions include several RNA-binding proteins (RBPs), which play important roles in splicing, stability, transcription and translation. In addition, RBPs were shown to play a critical role in regulating miRNA biogenesis and metabolism. The dysfunction of both RBPs and miRNAs is often observed in several NDs. Thus, the data about the interplay among RBPs and miRNAs and their cooperation in brain functions would be important to know for better understanding NDs and the development of effective therapeutics. In this review, we focused on the connection between miRNAs, RBPs and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| |
Collapse
|
41
|
Agostini F, Zagalak J, Attig J, Ule J, Luscombe NM. Intergenic RNA mainly derives from nascent transcripts of known genes. Genome Biol 2021; 22:136. [PMID: 33952325 PMCID: PMC8097831 DOI: 10.1186/s13059-021-02350-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Eukaryotic genomes undergo pervasive transcription, leading to the production of many types of stable and unstable RNAs. Transcription is not restricted to regions with annotated gene features but includes almost any genomic context. Currently, the source and function of most RNAs originating from intergenic regions in the human genome remain unclear. RESULTS We hypothesize that many intergenic RNAs can be ascribed to the presence of as-yet unannotated genes or the "fuzzy" transcription of known genes that extends beyond the annotated boundaries. To elucidate the contributions of these two sources, we assemble a dataset of more than 2.5 billion publicly available RNA-seq reads across 5 human cell lines and multiple cellular compartments to annotate transcriptional units in the human genome. About 80% of transcripts from unannotated intergenic regions can be attributed to the fuzzy transcription of existing genes; the remaining transcripts originate mainly from putative long non-coding RNA loci that are rarely spliced. We validate the transcriptional activity of these intergenic RNAs using independent measurements, including transcriptional start sites, chromatin signatures, and genomic occupancies of RNA polymerase II in various phosphorylation states. We also analyze the nuclear localization and sensitivities of intergenic transcripts to nucleases to illustrate that they tend to be rapidly degraded either on-chromatin by XRN2 or off-chromatin by the exosome. CONCLUSIONS We provide a curated atlas of intergenic RNAs that distinguishes between alternative processing of well-annotated genes from independent transcriptional units based on the combined analysis of chromatin signatures, nuclear RNA localization, and degradation pathways.
Collapse
Affiliation(s)
| | - Julian Zagalak
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jan Attig
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jernej Ule
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- UCL Genetics Institute, Department of Genetics, Environment and Evolution, University College London, Gower Street, London, WC1E 6BT, UK
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| |
Collapse
|
42
|
Pollini D, Loffredo R, Maniscalco F, Cardano M, Micaelli M, Bonomo I, Licata NV, Peroni D, Tomaszewska W, Rossi A, Crippa V, Dassi E, Viero G, Quattrone A, Poletti A, Conti L, Provenzani A. Multilayer and MATR3-dependent regulation of mRNAs maintains pluripotency in human induced pluripotent stem cells. iScience 2021; 24:102197. [PMID: 33733063 PMCID: PMC7940987 DOI: 10.1016/j.isci.2021.102197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/22/2020] [Accepted: 02/11/2021] [Indexed: 10/28/2022] Open
Abstract
Matrin3 (MATR3) is a nuclear RNA/DNA-binding protein that plays pleiotropic roles in gene expression regulation by directly stabilizing target RNAs and supporting the activity of transcription factors by modulating chromatin architecture. MATR3 is involved in the differentiation of neural cells, and, here, we elucidate its critical functions in regulating pluripotent circuits in human induced pluripotent stem cells (hiPSCs). MATR3 downregulation affects hiPSCs' differentiation potential by altering key pluripotency regulators' expression levels, including OCT4, NANOG, and LIN28A by pleiotropic mechanisms. MATR3 binds to the OCT4 and YTHDF1 promoters favoring their expression. YTHDF1, in turn, binds the m6A-modified OCT4 mRNA. Furthermore, MATR3 is recruited on ribosomes and controls pluripotency regulating the translation of specific transcripts, including NANOG and LIN28A, by direct binding and favoring their stabilization. These results show that MATR3 orchestrates the pluripotency circuitry by regulating the transcription, translational efficiency, and epitranscriptome of specific transcripts.
Collapse
Affiliation(s)
- Daniele Pollini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Rosa Loffredo
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Federica Maniscalco
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
- Institute of Biophysics, CNR, Trento, Italy
| | - Marina Cardano
- Cell Technology Core Facility, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Mariachiara Micaelli
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Isabelle Bonomo
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | - Daniele Peroni
- Mass Spectrometry Core Facility, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Weronika Tomaszewska
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Annalisa Rossi
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Valeria Crippa
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Angelo Poletti
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
43
|
Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degenerations: Similarities in Genetic Background. Diagnostics (Basel) 2021; 11:diagnostics11030509. [PMID: 33805659 PMCID: PMC7998502 DOI: 10.3390/diagnostics11030509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal progressive degenerative disorder of motor neurons that overlaps with frontotemporal lobar degeneration (FTLD) clinically, morphologically, and genetically. Although many distinct mutations in various genes are known to cause amyotrophic lateral sclerosis, it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Many of the gene mutations are in proteins that share similar functions. They can be grouped into those associated with cell axon dynamics and those associated with cellular phagocytic machinery, namely protein aggregation and metabolism, apoptosis, and intracellular nucleic acid transport. Analysis of pathways implicated by mutant ALS genes has provided new insights into the pathogenesis of both familial forms of ALS (fALS) and sporadic forms (sALS), although, regrettably, this has not yet yielded definitive treatments. Many genes play an important role, with TARDBP, SQSTM1, VCP, FUS, TBK1, CHCHD10, and most importantly, C9orf72 being critical genetic players in these neurological disorders. In this mini-review, we will focus on the molecular mechanisms of these two diseases.
Collapse
|
44
|
Agirre E, Oldfield AJ, Bellora N, Segelle A, Luco RF. Splicing-associated chromatin signatures: a combinatorial and position-dependent role for histone marks in splicing definition. Nat Commun 2021; 12:682. [PMID: 33514745 PMCID: PMC7846797 DOI: 10.1038/s41467-021-20979-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing relies on the combinatorial recruitment of splicing regulators to specific RNA binding sites. Chromatin has been shown to impact this recruitment. However, a limited number of histone marks have been studied at a global level. In this work, a machine learning approach, applied to extensive epigenomics datasets in human H1 embryonic stem cells and IMR90 foetal fibroblasts, has identified eleven chromatin modifications that differentially mark alternatively spliced exons depending on the level of exon inclusion. These marks act in a combinatorial and position-dependent way, creating characteristic splicing-associated chromatin signatures (SACS). In support of a functional role for SACS in coordinating splicing regulation, changes in the alternative splicing of SACS-marked exons between ten different cell lines correlate with changes in SACS enrichment levels and recruitment of the splicing regulators predicted by RNA motif search analysis. We propose the dynamic nature of chromatin modifications as a mechanism to rapidly fine-tune alternative splicing when necessary. Chromatin is known to regulate splicing by modulating recruitment of splicing factors. Using machine learning approaches, the authors have underlined a chromatin code for alternative splicing regulation that is conserved amongst cell lines.
Collapse
Affiliation(s)
- E Agirre
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34000, Montpellier, France.,Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - A J Oldfield
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34000, Montpellier, France
| | - N Bellora
- Institute of Nuclear Technologies for Health (INTECNUS), National Scientific and Technical Research Council (CONICET), Bariloche, 8400, Argentina
| | - A Segelle
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34000, Montpellier, France
| | - R F Luco
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34000, Montpellier, France.
| |
Collapse
|
45
|
Abstract
RNA-binding proteins (RBPs) are essential factors required for the physiological function of neurons, muscle, and other tissue types. In keeping with this, a growing body of genetic, clinical, and pathological evidence indicates that RBP dysfunction and/or gene mutation leads to neurodegeneration and myopathy. Here, we summarize the current understanding of matrin 3 (MATR3), a poorly understood RBP implicated not only in ALS and frontotemporal dementia but also in distal myopathy. We begin by reviewing MATR3's functions, its regulation, and how it may be involved in both sporadic and familial neuromuscular disease. We also discuss insights gleaned from cellular and animal models of MATR3 pathogenesis, the links between MATR3 and other disease-associated RBPs, and the mechanisms underlying RBP-mediated disorders.
Collapse
Affiliation(s)
- Ahmed M. Malik
- Medical Scientist Training Program
- Neuroscience Graduate Program, and
| | - Sami J. Barmada
- Neuroscience Graduate Program, and
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
46
|
Desideri F, Cipriano A, Petrezselyova S, Buonaiuto G, Santini T, Kasparek P, Prochazka J, Janson G, Paiardini A, Calicchio A, Colantoni A, Sedlacek R, Bozzoni I, Ballarino M. Intronic Determinants Coordinate Charme lncRNA Nuclear Activity through the Interaction with MATR3 and PTBP1. Cell Rep 2020; 33:108548. [PMID: 33357424 PMCID: PMC7773549 DOI: 10.1016/j.celrep.2020.108548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/27/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Chromatin architect of muscle expression (Charme) is a muscle-restricted long noncoding RNA (lncRNA) that plays an important role in myogenesis. Earlier evidence indicates that the nuclear Charme isoform, named pCharme, acts on the chromatin by assisting the formation of chromatin domains where myogenic transcription occurs. By combining RNA antisense purification (RAP) with mass spectrometry and loss-of-function analyses, we have now identified the proteins that assist these chromatin activities. These proteins—which include a sub-set of splicing regulators, principally PTBP1 and the multifunctional RNA/DNA binding protein MATR3—bind to sequences located within the alternatively spliced intron-1 to form nuclear aggregates. Consistent with the functional importance of pCharme interactome in vivo, a targeted deletion of the intron-1 by a CRISPR-Cas9 approach in mouse causes the release of pCharme from the chromatin and results in cardiac defects similar to what was observed upon knockout of the full-length transcript. pCharme is the chromatin-retained isoform of the muscle-specific Charme lncRNA Intronic signals coordinate the association of pCharme with MATR3 and PTBP1 The particle assembly prompts pCharme intron-1 chromatin retention Deletion of the intron-1 by CRISPR-Cas9 leads to heart defects in mouse
Collapse
Affiliation(s)
- Fabio Desideri
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Andrea Cipriano
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Silvia Petrezselyova
- Czech Centre of Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Giulia Buonaiuto
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Tiziana Santini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Petr Kasparek
- Czech Centre of Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre of Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Giacomo Janson
- Department of Biochemical Sciences "A. Rossi Fanelli," Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences "A. Rossi Fanelli," Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro Calicchio
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessio Colantoni
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Radislav Sedlacek
- Czech Centre of Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Irene Bozzoni
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Monica Ballarino
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
47
|
Ramesh N, Daley EL, Gleixner AM, Mann JR, Kour S, Mawrie D, Anderson EN, Kofler J, Donnelly CJ, Kiskinis E, Pandey UB. RNA dependent suppression of C9orf72 ALS/FTD associated neurodegeneration by Matrin-3. Acta Neuropathol Commun 2020; 8:177. [PMID: 33129345 PMCID: PMC7603783 DOI: 10.1186/s40478-020-01060-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
The most common genetic cause of amyotrophic lateral sclerosis (ALS) is a GGGGCC (G4C2) hexanucleotide repeat expansions in first intron of the C9orf72 gene. The accumulation of repetitive RNA sequences can mediate toxicity potentially through the formation of intranuclear RNA foci that sequester key RNA-binding proteins (RBPs), and non-ATG mediated translation into toxic dipeptide protein repeats. However, the contribution of RBP sequestration to the mechanisms underlying RNA-mediated toxicity remain unknown. Here we show that the ALS-associated RNA-binding protein, Matrin-3 (MATR3), colocalizes with G4C2 RNA foci in patient tissues as well as iPSC-derived motor neurons harboring the C9orf72 mutation. Hyperexpansion of C9 repeats perturbed subcellular distribution and levels of endogenous MATR3 in C9-ALS patient-derived motor neurons. Interestingly, we observed that ectopic expression of human MATR3 strongly mitigates G4C2-mediated neurodegeneration in vivo. MATR3-mediated suppression of C9 toxicity was dependent on the RNA-binding domain of MATR3. Importantly, we found that expression of MATR3 reduced the levels of RAN-translation products in mammalian cells in an RNA-dependent manner. Finally, we have shown that knocking down endogenous MATR3 in C9-ALS patient-derived iPSC neurons decreased the presence of G4C2 RNA foci in the nucleus. Overall, these studies suggest that MATR3 genetically modifies the neuropathological and the pathobiology of C9orf72 ALS through modulating the RNA foci and RAN translation.
Collapse
Affiliation(s)
- Nandini Ramesh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth L Daley
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amanda M Gleixner
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Jacob R Mann
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Darilang Mawrie
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Human Genetics, School of Public Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
48
|
Selective neuronal degeneration in MATR3 S85C knock-in mouse model of early-stage ALS. Nat Commun 2020; 11:5304. [PMID: 33082323 PMCID: PMC7576598 DOI: 10.1038/s41467-020-18949-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
A missense mutation, S85C, in the MATR3 gene is a genetic cause for amyotrophic lateral sclerosis (ALS). It is unclear how the S85C mutation affects MATR3 function and contributes to disease. Here, we develop a mouse model that harbors the S85C mutation in the endogenous Matr3 locus using the CRISPR/Cas9 system. MATR3 S85C knock-in mice recapitulate behavioral and neuropathological features of early-stage ALS including motor impairment, muscle atrophy, neuromuscular junction defects, Purkinje cell degeneration and neuroinflammation in the cerebellum and spinal cord. Our neuropathology data reveals a loss of MATR3 S85C protein in the cell bodies of Purkinje cells and motor neurons, suggesting that a decrease in functional MATR3 levels or loss of MATR3 function contributes to neuronal defects. Our findings demonstrate that the MATR3 S85C mouse model mimics aspects of early-stage ALS and would be a promising tool for future basic and preclinical research.
Collapse
|
49
|
Ricciardi L, Giurato G, Memoli D, Pietrafesa M, Dal Col J, Salvato I, Nigro A, Vatrella A, Caramori G, Casolaro V, Stellato C. Posttranscriptional Gene Regulatory Networks in Chronic Airway Inflammatory Diseases: In silico Mapping of RNA-Binding Protein Expression in Airway Epithelium. Front Immunol 2020; 11:579889. [PMID: 33178205 PMCID: PMC7596416 DOI: 10.3389/fimmu.2020.579889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Posttranscriptional gene regulation (PTGR) contributes to inflammation through alterations in messenger RNA (mRNA) turnover and translation rates. RNA-binding proteins (RBPs) coordinate these processes but their role in lung inflammatory diseases is ill-defined. We evaluated the expression of a curated list of mRNA-binding RBPs (mRBPs) in selected Gene Expression Omnibus (GEO) transcriptomic databases of airway epithelium isolated from chronic obstructive pulmonary disease (COPD), severe asthma (SA) and matched control subjects, hypothesizing that global changes in mRBPs expression could be used to infer their pathogenetic roles and identify novel disease-related regulatory networks. Methods: A published list of 692 mRBPs [Nat Rev Genet 2014] was searched in GEO datasets originated from bronchial brushings of stable COPD patients (C), smokers (S), non-smokers (NS) controls with normal lung function (n = 6/12/12) (GEO ID: GSE5058) and of (SA) and healthy control (HC) (n = 6/12) (GSE63142). Fluorescence intensity data were extracted and normalized on the medians for fold change (FC) comparisons. FCs were set at ≥ |1.5| with a false discovery rate (FDR) of ≤ 0.05. Pearson correlation maps and heatmaps were generated using tMEV tools v4_9_0.45. DNA sequence motifs were searched using PScan-ChIP. Gene Ontology (GO) was performed with Ingenuity Pathway Analysis (IPA) tool. Results: Significant mRBP expression changes were detected for S/NS, COPD/NS and COPD/S (n = 41, 391, 382, respectively). Of those, 32% of genes changed by FC ≥ |1.5| in S/NS but more than 60% in COPD/NS and COPD/S (n = 13, 267, 257, respectively). Genes were predominantly downregulated in COPD/NS (n = 194, 73%) and COPD/S (n = 202, 79%), less so in S/NS (n = 4, 31%). Unsupervised cluster analysis identified in 4 out of 12 S the same mRBP pattern seen in C, postulating subclinical COPD. Significant DNA motifs enrichment for transcriptional regulation was found for downregulated RBPs. Correlation analysis identified five clusters of co-expressed mRBPs. GO analysis revealed significant enrichments in canonical pathways both specific and shared among comparisons. Unexpectedly, no significant mRBPs modulation was found in SA compared to controls. Conclusions: Airway epithelial mRBPs profiling reveals a COPD-specific global downregulation of RBPs shared by a subset of control smokers, the potential of functional cooperation by coexpressed RBPs and significant impact on relevant pathogenetic pathways in COPD. Elucidation of PTGR in COPD could identify disease biomarkers or pathways for therapeutic targeting.
Collapse
Affiliation(s)
- Luca Ricciardi
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Mariagrazia Pietrafesa
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Ilaria Salvato
- Pulmonology, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Gaetano Caramori
- Pulmonology, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
50
|
Yang J, Lee SJ, Kwon Y, Ma L, Kim J. Tumor suppressive function of Matrin 3 in the basal-like breast cancer. Biol Res 2020; 53:42. [PMID: 32977861 PMCID: PMC7519516 DOI: 10.1186/s40659-020-00310-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Basal-like breast cancer (BLBC) or triple-negative breast cancer (TNBC) is an aggressive and highly metastatic subtype of human breast cancer. The present study aimed to elucidate the potential tumor-suppressive function of MATR3, an abundant nuclear protein, in BLBC/TNBC, whose cancer-relevance has not been characterized. METHODS We analyzed in vitro tumorigenecity by cell proliferation and soft agar colony formation assays, apoptotic cell death by flow cytometry and Poly (ADP-ribose) polymerase (PARP) cleavage, epithelial-mesenchymal transition (EMT) by checking specific EMT markers with real-time quantitative PCR and in vitro migration and invasion by Boyden Chamber assays. To elucidate the underlying mechanism by which MATR3 functions as a tumor suppressor, we performed Tandem affinity purification followed by mass spectrometry (TAP-MS) and pathway analysis. We also scrutinized MATR3 expression levels in the different subtypes of human breast cancer and the correlation between MATR3 expression and patient survival by bioinformatic analyses of publicly available transcriptome datasets. RESULTS MATR3 suppressed in vitro tumorigenecity, promoted apoptotic cell death and inhibited EMT, migration, and invasion in BLBC/TNBC cells. Various proteins regulating apoptosis were identified as MATR3-binding proteins, and YAP/TAZ pathway was suppressed by MATR3. MATR3 expression was inversely correlated with the aggressive and metastatic nature of breast cancer. Moreover, high expression levels of MATR3 were associated with a good prognosis of breast cancer patients. CONCLUSIONS Our data demonstrate that MATR3 functions as a putative tumor suppressor in BLBC/TNBC cells. Also, MATR3 potentially plays a role as a biomarker in predicting chemotherapy-sensitivity and patient survival in breast cancer patients.
Collapse
Affiliation(s)
- Jaehyuk Yang
- Department of Life Sciences, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Seung Jun Lee
- Department of Life Sciences, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Yongseok Kwon
- Department of Chemistry, Sogang University, Seoul, Republic of Korea
| | - Li Ma
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jongchan Kim
- Department of Life Sciences, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea.
| |
Collapse
|